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ABSTRACT

Verification Based Trustworthiness Assurance for Deep Neural

Networks

Xiaoyong Xue (Applied Mathematics)
Directed by Prof. Meng Sun

ABSTRACT

With the abundance of computing resources and the innovation of neural network al-
gorithms, deep neural networks have made significant progress and breakthroughs in the
past decade. In many fields, such as computer vision, natural language processing, speech
recognition, recommendation systems, deep neural networks have demonstrated outstanding
performance, with accuracy and efficiency that can match or even outperform human beings.
Due to their excellent performance, deep neural networks have also been applied in many
safety-critical systems to make crucial decisions, such as autonomous driving, unmanned
aerial vehicle control, medical diagnosis, etc. Meanwhile, a series of risks represented by
adversarial examples have been discovered. This reveals the potential risks in the security
and robustness of deep neural networks, raising public concerns about their trustworthiness.
The trustworthiness issues of deep neural networks have become a significant barrier to their
application in safety-critical fields.

Formal verification techniques have been widely recognized and used to ensure the trust-
worthiness of traditional software systems. These techniques verify whether software conforms
to predefined specifications through precise definitions and rigorous proofs, and reveal errors
that conventional testing techniques fail to detect. However, due to the significant differences
in structure and behavior between deep neural networks and traditional software, there exists
many challenges in using verification techniques to ensure the trustworthiness of deep neural
networks. Deep neural networks are data-driven models generated by training algorithms. Due
to the lack of explicit decision logic, it is difficult to determine the semantics of individual or
groups of neurons. There exists different types of operators in deep neural networks, making
it hard for verification methods to be universal, and thus requiring specialized designs for each
operator. The massive scale of deep neural networks requires highly efficient and scalable veri-

fication methods. These characteristics make that formal verification techniques for traditional
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software systems unable to be directly applied to deep neural networks. Therefore, based on
the characteristics of deep neural networks and the robustness and trustworthiness issues, this
thesis studies formal verification methods for deep neural networks. This thesis proposes ded-
icated formal verification methods for deep neural networks with different operators. For the
mainstream branch and bound verification framework, this thesis designs efficient branching
strategies to improve the verification efficiency.

The first part of this thesis proposes a verification framework for deep neural networks with
ReLU activation functions, which is based on multi-neuron relaxation and can be used to verify
properties with input perturbations in general norm spaces. The current relaxation methods for
individual neuron have reached a bottleneck in improving verification accuracy. Furthermore,
existing verification methods involve inputs that lie outside the feasible region at the input
layer, resulting in notable errors. The verification framework in this part presents a multi-
neuron relaxation method that divides neurons within the same layer into several groups and
uses polyhedral abstraction to establish linear relationships between multiple neurons within
a group. In the presence of multiple candidate relaxations, we propose a relaxation selection
method to select tighter convex relaxations. In order to exclude inputs outside the feasible
region, we also propose a region clipping method, which solves a constrained optimization
problem to improve the verification ability.

The second part of this thesis presents a branch-and-bound verification framework, which
is suitable for neural networks with sigmoid-like activation functions. Due to the nonlinear na-
ture of sigmoid-like activation functions, verification of such neural networks mostly relies on
linear approximation methods, which inevitably introduce errors and lead to imprecise results.
The branch-and-bound technique iteratively refines the results of linear approximations and
is able to achieve higher precision. This framework contains a neuron splitting method and
a branching strategy. The neuron splitting method divides the nonlinear activation function
into several segments based on the linear relaxation of the parent problem and the concavity
of the activation function, and computes a linear upper bound and a linear lower bound for
each segment, which ensures the monotonicity of the branch and bound verification process.
Additionally, we propose a dedicated branching strategy for this verification framework. This
strategy can effectively reduce the size of the branch-and-bound search tree, thereby improving
verification efficiency. Experiments show that the verification results obtained with our verifi-
cation framework are more precise compared to those from existing state-of-the-art verification

methods for sigmoid-like neural networks.
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ABSTRACT

The third part of this thesis proposes a branching strategy that can be applied to various
neural networks. Branching strategy is a critical component in the branch and bound veri-
fication framework, determining how the feasible region of the problem is divided. A good
branching strategy can reduce the number of branches that need to be explored during the
verification process, thereby improving verification efficiency. The branching strategy assign
a score to each neuron based on the improvement of the sub-problems relative to the parent
problem. Neurons with higher scores are more likely to produce sub-problems that can be
directly verified, making them better candidates for branching decisions. To ensure the ef-
ficiency of the branching strategy, we extend the optimal solution obtained by the bounding
verification algorithm for the parent problem to all layers in the neural network, which is used
to estimate the improvement of the sub-problems relative to the parent problem. Additionally,
the branching strategy includes out-of-bound compensation and score truncation techniques,
which adjust the score for each neuron. We also prove that some sub-problems generated
by certain branch choices can be directly solved, thereby reducing the number of calls to
the bounding algorithm. Experimental results show that this branching strategy effectively
improve verification efficiency by reducing the verification time and the number of branches
produced during the verification process.

This thesis makes contributions to formal verification techniques for trustworthiness
assurance of deep neural networks, presenting a deep neural network verification framework
based on linear relaxation and branch and bound techniques. It is specially optimized for
deep neural networks with different operators to improve the precision and efficiency of
verification. This framework provides rigorous and efficient solutions to the safety, security
and trustworthiness problems of deep neural networks, and is important to the application of
deep neural networks in safety-critical areas and the development of trustworthy deep neural

networks.

KEY WORDS: Deep Neural Network, Formal Verification, Trustworthiness Assurance, Branch
and Bound, Branching Strategy
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