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ABSTRACT

Coverage Testing and Global Verification of Deep

Learning Systems

Weidi Sun (Applied mathematics)
Directed by: Prof. Meng Sun

ABSTRACT

In recent years, deep learning (DL) systems have been applied in more and more fields.
Such systems use neural network for search, recommendation, decision, feature extraction,
etc., and have achieved performance comparable to or even surpassing human beings in many
frontier fields such as computer vision and natural language processing. However, the deploy-
ment of DL systems in safety-critical areas such as medical diagnosis and autonomous driving
has raised public concerns about its correctness and robustness. Especially with the discovery
of adversarial attacks and a series of distressing accidents, the industry has realized that DL
systems, like traditional hardware and software systems, face serious security and trustworthi-
ness problems. Rigorous and systematic methods are urgently needed to ensure DL systems’
application in security-critical fields.

The behaviors of DL systems are significantly different from those of traditional soft-
ware and hardware systems, which brings great challenges to DL systems’ reliability. For
example, DL systems inherently follow a data-driven programming paradigm and lack explicit
control flow; DL systems are emergent, and the complexity of their overall behavior is much
greater than the simple accumulation of their unit-level behaviors’ complexity; DL systems
have huge input space containing pervasively distributed adversarial examples, and traditional
verification methods can hardly find all these adversarial examples etc. The aforementioned
challenges make it difficult to directly migrate the certification methods of traditional soft-
ware and hardware systems to DL systems, and seriously limit the availability of the existing
DL trustworthiness assurance methods. Therefore, this thesis aims to investigate testing and
formal verification of the DL systems based on their own characteristics. Testing is the most
common light-weight method for trustworthiness guarantee of large-scale DL systems. It can
effectively expose the potential problems and vulnerabilities before the deployment, so as to

guarantee the trustworthiness of systems. Formal verification is a heavy-weight method which
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is complementary to testing. It can provide complete trustworthiness assurance for DL sys-
tems. This thesis includes the following three parts: the validity of coverage testing for DL
systems, the improvement of neural networks’ coverage criteria, and the global robustness

verification of feedforward neural networks.

The first part of this thesis explores the validity of DL coverage criteria in two aspects,
measuring test adequacy and improving the robustness of DL systems, and proposes a new
coverage testing criterion. Inspired by the traditional software engineering testing, testing
methods based on various coverage criteria have been proposed to ensure the safety of DL
systems. However, the validity of coverage criteria in the adversarial attack, finding vulner-
abilities, and other applications has been questioned in related researches. This thesis points
out two areas suitable for coverage criteria: 1) evaluating test adequacy of different test sets,
2) guiding data augmentation to improve the robustness of DL systems, and evaluates the per-
formance of coverage criteria via the experiment in these two aspects. The evaluation results
show the validity of coverage criteria in these two areas, and our novel coverage criterion is

superior to other mainstream criteria in these two aspects.

The second part of this thesis proposes a framework for accelerating and refining coverage
testing. Existing coverage criteria are either not fine enough to capture the subtle behavior of
neural networks, or too time-consuming to be deployed on large-scale neural networks, which
can hardly balance the quality and efficiency of test adequacy evaluation. In addition, some
mainstream coverage criteria lack “scalability” regarding test suite size. Their performance
does not conform with DNN testing practice when the scale of the evaluated test suite is too
big or small. In this thesis, a combinatorial coverage testing framework with hash acceleration
is proposed. The framework utilizes cryptographic hash functions to speed up the analysis of
activation states, and makes mainstream coverage criteria transitive and combinatorial to refine
their evaluation granularity and improve their scalability. The framework reduces the time
complexity of combinatorial coverage testing from polynomial time to linear time, enabling its

deployment on larger-scale neural networks and more sensitive test adequacy evaluation.

The third part of this thesis presents a variable-grained DL coverage criterion. Coverage
criteria are applied to many areas, such as evaluating the test adequacy of deep learning sys-
tems, finding corner cases, guiding the selection of test samples, assisting data augmentation,
etc. Different applications require coverage criteria with different levels of granularity. For
example, the coverage criteria for evaluating the test adequacy need to be as fine-grained as

possible, while guiding the test sample selection requires the coverage criteria to provide a
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small number of high-value candidates at a coarser granularity. To provide a common cover-
age criterion for different tasks, this thesis proposes a variable-grained DL coverage criterion:
HeatC. It extracts class-activation-map-based features from neural networks, and clusters the
features to generate test targets. HeatC outperforms existing mainstream coverage criteria in
assessing the adequacy of test suites and selecting high-value test samples from unlabeled
dataset.

The fourth part of the thesis proposes a DL framework for global robustness verification.
The existing DL adversarial attack technologies are incomplete, as they cannot guarantee the
safety of neural networks when adversarial examples cannot be found. Meanwhile, existing
DL verification works mostly focus on local robustness, such as analyzing the output space
reachability of a specified feasible region in input space. For mainstream DL tasks, specify-
ing a feasible region in a high-dimensional input space is an “Oracle Problem”, because if we
can specify the feasible regions of a certain category in the input space in the form of simple
constraints, we do not need the DL systems. To address this problem, a framework for global
robustness verification of DL systems named DeepGlobal is developed in this part. Deep-
Global has a rule generator that finds the potential boundaries of the network via symbolic
execution, and a neural network architecture that reduces the cost of rule generation to poly-
nomial time. From the generated potential boundaries, DeepGlobal selects the real boundaries
taking effect in the execution of the neural network, and searches for non-noise inputs around
the real boundaries to find the adversarial dangerous boundaries.

The research contents of this thesis consist of the safety analysis of DL systems and robust-
ness verification techniques against adversarial attacks. A trustworthiness assurance frame-
work based on neural network coverage testing and global robustness verification is proposed,
which provides highly scalable solutions to the credibility and safety problems faced by DL
systems through the combination of testing and formal verification. It is of great significance
to the application of DL systems in safety-critical fields and the development of trustworthy

DL systems.

KEY WORDS: Deep Learning Systems, Testing,Coverage Criteria,Formal Verification
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