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ABSTRACT

Testing-based Machine Learning Systems Safety Strengthening

Yuteng Lu (Applied Mathematics)
Directed by Prof. Meng Sun

ABSTRACT

With the rapid development and popularization of artificial intelligence, machine learning
technique has been widely applied in various fields, such as pattern recognition, speech recog-
nition, machine translation, and more, achieving significant progress and breakthroughs. Its
performance can even surpass that of humans, bringing great convenience to human life. It is
particularly noteworthy that machine learning technique plays an increasingly important role in
safety-critical domains, including autonomous driving, facial recognition, and medical diag-
nosis. However, with the exposure of hidden risks represented by adversarial examples and a
series of heartbreaking accidents occurring frequently in safety-critical domains, people have
begun to question the ability of machine learning technique to provide the necessary levels
of robustness and security for its application in these domains. The lack of interpretability in
the decision-making process of machine learning systems has made this problem persistently
unresolved. Therefore, this thesis investigates methods to strengthen the safety of machine
learning systems using testing techniques such as mutation testing and fuzz testing, aiming to
provide a more solid trustworthiness guarantee for machine learning technique.

Mutation testing has been proven to be a mature technique for evaluating the quality of
testing data and identifying system defects; while fuzz testing is a testing technique for identify-
ing potential system vulnerabilities by constructing and executing test cases. These techniques,
based on the architecture and decision logic of traditional software, have achieved great success
in traditional software quality assurance. However, due to the fundamental differences in be-
havior and decision-making logic between machine learning systems and traditional software
systems, safety assurance techniques from the traditional software domain cannot be directly
applied to machine learning systems.

This thesis covers three important machine learning paradigms: supervised learning, un-
supervised learning, and reinforcement learning. According to the characteristics of supervised

learning, this thesis optimizes and integrates the techniques of fuzz testing and mutation test-
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ing, proposes an approach for diagnosing and repairing abnormal neural networks based on the
integrated testing framework, and applies the proposed techniques and approach to supervised
learning systems. In allusion to the characteristics of unsupervised learning and reinforcement
learning, this thesis has designed and implemented corresponding mutation testing approaches,

which have achieved promising results in experiments.

The first part of this thesis focuses on supervised learning systems, optimizes mutation
testing and fuzz testing techniques based on reinforcement learning, and integrates the opti-
mized techniques into a theoretical framework RGChaser to generate high-quality test cases.
RGChaser automates the generation of mutants that meet pre-defined targets through muta-
tion testing, and produces test cases with low overhead by automatically handling diverse tar-
gets through fuzzing. The experimental results demonstrate that the proposed framework has
higher efficiency and success rates in generating target test cases and mutants than existing
approaches. The thesis also provides an open-source GUI tool RGCHASER developed based on
RGChaser. The application capability of the tool have been validated in experiments analyzing
the root causes of potential problems in neural networks. Furthermore, the thesis proposes a
testing-based approach MRepair for automatically diagnosing and providing repair suggestions

for problems in abnormal neural networks, such as Oscillating Loss and Slow Convergence.

The second part of this thesis proposes a mutation testing approach MTUL for unsuper-
vised learning systems, which builds corresponding mutation frameworks at both the data and
algorithm levels. This thesis proposes a series of mutation operators for unsupervised learning
techniques, such as cluster analysis and generative adversarial networks (GANs), from multiple
perspectives at the data and algorithm levels, and defines the corresponding mutation scores.
Additionally, a new approach for constructing adversarial examples is developed by combin-
ing MTUL with autoencoders. MTUL can be used not only to screen high-quality test data,
but also to aid in evaluating the stability and risk-resistance capabilities of systems. The thesis
develops an open-source GUI tool, MTGAN, that incorporates the mutation testing technique

for GANs, enabling developers to evaluate GANs efficiently.

The third part of this thesis proposes a mutation testing approach for reinforcement learn-
ing systems. As reinforcement learning is built on the interaction between an agent and its
environment, it is not possible to provide test data for reinforcement learning systems similar
to those for supervised or unsupervised learning systems. The approach defines a series of
mutation operators, primarily consisting of element-level and agent-level operators, which are

used to simulate the issues that reinforcement learning systems may encounter. This thesis

v
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addresses the design of mutation operators from various perspectives (e.g. the exploration-
exploitation dilemma), in order to comprehensively cover potential error types and enhance
the overall completeness of the mutation operator set. Furthermore, the thesis designs dedi-
cated mutation scores and mutation testing frameworks tailored to the unique characteristics of
reinforcement learning. The presented approach is expected to guide the construction of test
environments for reinforcement learning systems, reveal potential errors in such systems, and
assist system designers in building reinforcement learning systems that better meet expected
performance.

The research content of this thesis is focused on testing techniques for safety assurance of
machine learning systems, covering supervised learning, unsupervised learning, and reinforce-
ment learning. A framework for safety assurance of supervised learning systems is constructed
based on the optimization and integration of mutation testing and fuzz testing techniques. Ded-
icated mutation testing approaches are designed for unsupervised learning systems and rein-
forcement learning systems. The thesis provides efficient solutions to the reliability and safety
issues faced by machine learning systems, which is of great significance to the application
of machine learning systems in safety-critical fields and the development of trusted machine

learning technique.

KEY WORDS: Machine Learning systems, Supervised Learning, Unsupervised Learning, Re-

inforcement Learning, Mutation Testing, Fuzz Testing
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