MATH 251-019: Homework 8 (Due: 10/18/2017)

Please make your hand-writing clear to read. Please box your final answer.

1. (Spring 2017, Exam 2, Question 2) Find the inverse Laplace transform of $F(s)=e^{-\pi s} \frac{2 s+1}{s^{2}+2 s+10}$.
(A) $f(t)=u_{\pi}(t)\left(2 e^{-t+\pi} \cos (3 t-3 \pi)-\frac{1}{3} e^{-t+\pi} \sin (3 t-3 \pi)\right)$
(B) $f(t)=u_{\pi}(t)\left(2 e^{-t+\pi} \cos (3 t-3 \pi)-e^{-t+\pi} \sin (3 t-3 \pi)\right)$
(C) $f(t)=u_{\pi}(t)\left(2 e^{t-\pi} \cos (3 t-3 \pi)-e^{t-\pi} \sin (3 t-3 \pi)\right)$
(D) $f(t)=u_{\pi}(t)\left(2 e^{t-\pi} \cos (3 t-3 \pi)-\frac{1}{3} e^{-t+\pi} \sin (3 t-3 \pi)\right)$
2. (Spring 2016, Exam 2, Question 3) Find the Laplace transform $\mathcal{L}\left\{u_{\pi}(t) e^{2 t-2 \pi}(t-\right.$ $\left.\pi)^{2}\right\}$.
(A) $\frac{2 e^{-\pi s}}{(s-2)^{3}}$
(B) $\frac{2 e^{-2 \pi} e^{-\pi s}}{(s-2)^{3}}$
(C) $\frac{e^{-\pi s}}{s(s-2)^{2}}$
(D) $\frac{e^{-\pi(2+s)}}{s(s-2)^{2}}$
3. (Spring 2017, Exam 2, Question 3) Find the Laplace transform $\mathcal{L}\left\{u_{4}(t)(t-\right.$ $\left.2)^{2}\right\}$.
(A) $F(s)=e^{-4 s} \frac{2-12 s+36 s^{2}}{s^{3}}$
(B) $F(s)=e^{-4 s} \frac{2-4 s+4 s^{2}}{s^{3}}$
(C) $F(s)=e^{-4 s} \frac{2-4 s+4 s^{2}}{s^{4}}$
(D) $F(s)=e^{-4 s} \frac{2+4 s+4 s^{2}}{s^{3}}$
4. (Fall 2016, Exam 2, Question 2) Find the Laplace transform $\mathcal{L}\left\{u_{1}(t) e^{-3 t} \sin (t-\right.$ 1) $\}$
(A) $F(s)=\frac{e^{3-s}}{(s-3)^{2}+1}$
(B) $F(s)=\frac{e^{-3-s}}{(s-3)^{2}+1}$
(C) $F(s)=\frac{e^{-3-s}}{(s+3)^{2}+1}$
(D) $F(s)=\frac{e^{3-s}}{(s+3)^{2}+1}$
5. (Spring 2017, Exam 2, Question 4) Rewrite the following function using step functions:

$$
f(t)=\left\{\begin{aligned}
2 t^{2}-e^{-6 t}, & t<4 \\
9 t+3, & 4 \leq t<10 \\
\sin (2 t), & 10 \leq t
\end{aligned}\right.
$$

(A) $f(t)=\left(2 t^{2}-e^{-6 t}\right) u_{4}(t)+(9 t+3)\left(u_{10}(t)-u_{4}(t)\right)+\sin (2 t)\left(1-u_{10}(t)\right)$
(B) $f(t)=\left(2 t^{2}-e^{-6 t}\right)\left(1-u_{4}(t)\right)+(9 t+3)\left(u_{10}(t)-u_{4}(t)\right)+\sin (2 t) u_{10}(t)$
(C) $f(t)=\left(2 t^{2}-e^{-6 t}\right)\left(1-u_{4}(t)\right)+(9 t+3)\left(u_{4}(t)-u_{10}(t)\right)+\sin (2 t) u_{10}(t)$
(D) $f(t)=\left(2 t^{2}-e^{-6 t}\right) u_{4}(t)+(9 t+3)\left(u_{4}(t)-u_{10}(t)\right)+\sin (2 t)\left(1-u_{10}(t)\right)$
6. (Fall 2016, Exam 2, Question 1) Consider the function

$$
f(t)=\left\{\begin{aligned}
0, & t<3 \\
t^{2}, & 3 \leq t<5 \\
3 \cos t, & t \geq 5
\end{aligned}\right.
$$

Which of the following expressions also describes $f(t)$?
(A) $f(t)=\left(u_{5}(t)-t_{3}(t)\right) t^{2}+u_{5}(t) 3 \cos t$
(B) $f(t)=u_{3}(t) t^{2}+u_{5}(t) 3 \cos t$
(C) $f(t)=u_{3}(t) t^{2}+u_{5}(t)\left(-t^{2}+3 \cos t\right)$
(D) $f(t)=\left(t^{2}-3 \cos t\right) u_{3}(t)+u_{5}(t) t^{2}$
7. (Fall 2016, Exam 2, Question 3) Let $y(t)$ be the solution of the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+3 y=u_{2}(t)-u_{4}(t), \quad y(0)=0, y^{\prime}(0)=8
$$

Find its Laplace transform $Y(s)=\mathcal{L}\{y(t)\}$.
(A) $Y(s)=\frac{e^{-2 s}}{s\left(s^{2}-2 s+3\right)}-\frac{s^{-4 s}}{s\left(s^{2}-2 s+3\right)}-\frac{8}{s^{2}-2 s+3}$
(B) $Y(s)=\frac{e^{-2 s}}{s^{2}-2 s+3}-\frac{s^{-4 s}}{s^{2}-2 s+3}-\frac{8 s}{s^{2}-2 s+3}$
(C) $Y(s)=\frac{e^{-2 s}}{s\left(s^{2}-2 s+3\right)}-\frac{s^{-4 s}}{s\left(s^{2}-2 s+3\right)}+\frac{8}{s^{2}-2 s+3}$
(D) $Y(s)=\frac{e^{-2 s}}{s\left(s^{2}-2 s+3\right)}-\frac{s^{-4 s}}{s\left(s^{2}-2 s+3\right)}+\frac{8 s}{s^{2}-2 s+3}$
8. Determine whether each statement below is TRUE or FALSE. You must justify your answers.
(a) (Spring 2017, Exam 2, Question 7(c)) Suppose $f(t)=\left(t^{2}+4\right) u_{e}(t)-$ $7 u_{\pi}(t)$, then $f(4)=20$.
(b) (Spring 2016, Exam 2, Question 8(a)) Laplace transform has the following properties: $\mathcal{L}\{a f(t)+b g(t)\}=a \mathcal{L}\{f(t)\}+b \mathcal{L}\{g(t)\}$, for any constants a and b; and that $\mathcal{L}\{f(t) g(t)\}=\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}$.
(c) (Spring 2016, Exam 2, Question (b)) The third derivatives of the Laplace transform $\mathcal{L}\{f(t)\}$ is given by $\frac{d^{3}}{d s^{3}} \mathcal{L}\{f(t)\}=-\mathcal{L}\left\{t^{3} f(t)\right\}$.
(d) (Spring 2015, Exam 2, Question 8(b)) Suppose $f(t)=u_{3}(t) \cos t+u_{2}(t) t+$ $u_{4}(t)$, then $f(\pi)=\pi$.
9. (Spring 2017, Exam 2, Question 9(a)) Find the inverse Laplace transform of $F(s)=e^{-2 s} \frac{s^{3}+3}{s(s+1)^{2}}$.
10. (Fall 2016, Exam 2, Question 8(a)) Find the inverse Laplace transform of

$$
F(s)=e^{-6 s} \frac{5 s+20}{s^{3}+2 s^{2}+10 s} .
$$

11. (Fall 2014, Exam 2, Question 10) Find the Laplace transform of $f(s)=$ $\left\{\begin{aligned} t^{2}, & t<4 \\ 2 t+e^{\pi t}, & t \geq 4 .\end{aligned}\right.$
