MATH 251-019: Homework 7 (Due: 10/11/2017)

Please make your hand-writing clear to read. Please box your final answer.

1. (Spring 2017, Exam 2, Question 1) Evaluate the following definite integral

$$\int_0^\infty t^3 e^{-(s-2)t} dt.$$

- (A) $\frac{6}{(s-2)^4}$ (B) $\frac{3}{(s-2)^3}$ (C) $\frac{3}{(s+2)^3}$ (D) $\frac{6}{(s+2)^4}$

2. (Fall 2015, Exam 2, Question 1) Evaluate the following definite integral

$$\int_0^\infty e^{-(s+4)t}\cos(2t)dt.$$

3. (Spring 2015, Exam 2, Question 1) Evaluate the following definite integral

$$\int_0^\infty e^{-(s-3)t}\cos(2t)dt.$$

- $\begin{array}{l} \text{(A)} \ \frac{(s-3)}{(s-3)^2+4} \\ \text{(B)} \ \frac{s}{(s-3)(s^2+4)} \\ \text{(C)} \ \frac{s}{(s+3)(s^2+4)} \\ \text{(D)} \ \frac{s+3}{(s+3)^2+4} \end{array}$

4. (Fall 2014, Exam 2, Question 1) Evaluate the following definite integral

$$\int_0^\infty te^{-st}\sin(4t)dt.$$

5. (Spring 2014, Exam 2, Question 1) Evaluate the following definite integral

$$\int_0^\infty e^{-st}(t^3 + \sin(2t))dt.$$

- (A) $\frac{3}{s^4} + \frac{2}{s^2+4}$
- (B) $\frac{6}{s^4} + \frac{2}{s^2+4}$
- (C) $\frac{6}{s^4} + \frac{1}{s^2 + 2^2}$
- (D) $\frac{3}{s^3} + \frac{1}{s^2 + 2^2}$
- 6. For each part below, determine whether the statement is true or false. You must justify your answers.
 - (a) (Spring 2017, Exam 2, Question 7(a)) Suppose $\mathcal{L}\{f(t)\} = \frac{s^4}{s^5+6}$, then $\mathcal{L}\{e^{-8t}f(t)\} = \frac{(s+8)^4}{(s+8)^5+6}$.
 - (b) (Spring 2017, Exam 2, Question 7(b)) Suppose $\mathcal{L}\{f(t)\} = \frac{s^4}{s^5+6}$ and given f(0) = 1, then $\mathcal{L}\{f'(t)\} = \frac{-6}{s^5+6}$.
 - (c) (Fall 2016, Exam 2, Question 7(a)) Suppose $\mathcal{L}\{\frac{s^2}{s^3+6}\}$, then $\mathcal{L}\{e^{2t}f(t)\}=\frac{(s+2)^2}{(s+2)^3+6}$.
 - (d) (Fall 2015, Exam 2, Question 8(b)) $\mathcal{L}\{t(t-1)e^{2t-3}\} = e^{-3}\mathcal{L}\{t^2e^{2t}\} e^{-3}\mathcal{L}\{te^{2t}\}.$
 - (e) (Spring 2015, Exam 2, Question 8(a)) $\mathcal{L}\left\{e^{-(2+3t)}(\cos(t) \sin(t))\right\} = \frac{1}{e^2}\mathcal{L}\left\{e^{-3t}\cos(t)\right\} \frac{1}{e^2}\mathcal{L}\left\{e^{-3t}\sin(t)\right\}.$
 - (f) (Fall 2014, Exam 2, Question 8(a)) Suppose $\mathcal{L}\{f(t)\} = \frac{s^2 1}{s^3 + 8}$, then $\mathcal{L}\{e^{3t}f(t)\} = \frac{s^2 6s + 8}{(s 3)^3 + 8}$.
 - (g) (Fall 2014, Exam 2, Question 8(b)) Let C_1 and C_2 be any 2 constants, $\mathcal{L}\{C_1f(t) C_2g(t)\} = \mathcal{L}\{C_1\}\mathcal{L}\{f(t)\} \mathcal{L}\{C_2\}\mathcal{L}\{g(t)\}.$
 - (h) (Spring 2014, Exam 2, Question 7(b)) Suppose $\mathcal{L}\{f(t)\} = \frac{1}{1+s^2}$, then $\mathcal{L}\{tf(t)\} = \frac{2s}{(1+s^2)^2}$.
- 7. (Spring 2017, Exam 2, Question 9(b)) Find the Laplace transform

$$\mathcal{L}\{(3t+\pi^2)e^{2t}\sin(t)\}.$$

- 8. (Fall 2016, Exam 2, Question 8) Suppose that $\mathcal{L}\{f(t)\} = \frac{s^2}{s^3+6}$, and that f(0) = -1, f'(0) = 2.
 - (a) Determine $\mathcal{L}\{tf(t)\}$.
 - (b) Determine $\mathcal{L}\{f''(t)\}.$
- 9. (Spring 2015, Exam 2, Question 10) Suppose $\mathcal{L}\{f(t)\}=\frac{s}{s^3+11}$. What is $\mathcal{L}\{e^{-2t}tf(t)\}$?