MATH 251-019: Homework 6 (Due: 10/04/2017)

Please make your hand-writing clear to read. Please box your final answer.

1. (Fall 2012, Exam 1, Question 13) Consider the second order nonhomogeneous linear equation

$$
y^{\prime \prime}-2 y^{\prime}-3 y=e^{-t}+3
$$

(a) Find $y_{c}(t)$, the solution of its corresponding homogeneous equation.
(b) Find its general solution.
(c) What is the form of particular solution Y that you would use to solve the following equation using the Method of Undetermined Coefficients? DO NOT ATTEMPT TO SOLVE THE COEFFICIENTS.

$$
y^{\prime \prime}-2 y^{\prime}-3 y=7 t e^{-t} \sin 2 t .
$$

2. (Fall 2011, Exam 1, Question 14) Consider the second order nonhomogeneous linear equation

$$
y^{\prime \prime}-4 y^{\prime}+5 y=e^{2 t}-10 t .
$$

(a) Find its general solution.
(b) What is the form of particular solution Y that you would use to solve the following equation using the Method of Undetermined Coefficients? DO NOT ATTEMPT TO SOLVE THE COEFFICIENTS.

$$
y^{\prime \prime}-4 y^{\prime}-5 y=(t+1) e^{2 t} \sin t+t^{2}
$$

3. (Spring 2015, Exam 1, Question 11) Consider the following list of differential equations:
A. $u^{\prime \prime}+4 u^{\prime}+13 u=0$
B. $u^{\prime \prime}-4 u^{\prime}+4 u=0$
C. $u^{\prime \prime}+6 u^{\prime}+6 u=\cos (t)$
D. $u^{\prime \prime}+5 u^{\prime}-4 u=2$
E. $u^{\prime \prime}+u=0$
F. $u^{\prime \prime}+4 u=\sqrt{3} \sin (4 t)$
G. $u^{\prime \prime}+6 u^{\prime}+9 u=0$
H. $\quad u^{\prime \prime}+9 u=5 \pi \cos (3 t)$

Each of the equations above may or may not describe the displacement of a mass-spring system. Each question below has exactly one correct answer. The same equation may be reused to answer more than one question.
(a) Which equation describes a mass-spring system that is critically damped?
(b) Which equation describes a mass-spring system that is underdamped?
(c) Which equation describes a mass-spring system that is undergoing resonance?
(d) Which equation describes a mass-spring system that exhibits a simple harmonic motion?
(e) Which equation describes a mass-spring system whose motion crosses the equilibrium position at most once?
4. Consider the following list of differential equations:

$$
\begin{array}{ll}
\text { A. } & u^{\prime \prime}+6 u^{\prime}+13 u=0 \\
\text { B. } & u^{\prime \prime}-u=2 \cos (t) \\
\text { C. } & u^{\prime \prime}+2 u^{\prime}+u=0 \\
\text { D. } & u^{\prime \prime}+4 u=\pi \cos (\sqrt{2} t) \\
\text { E. } & u^{\prime}+4 u=0 \\
\text { F. } & u^{\prime \prime}+9 u=(1+\sqrt{3}) \sin (3 t) \\
\text { G. } & u^{\prime \prime}+15 u=0 \\
\text { H. } & u^{\prime \prime}-4 u^{\prime}+4 u=0
\end{array}
$$

Each of the equations above may or may not describe the displacement of a mass-spring system. Each question below has exactly one correct answer. The same equation may be reused to answer more than one question.
(a) Which equation describes a mass-spring system that is undergoing resonance?
(b) Which equation describes a mass-spring system that is critically damped?
(c) Which equation describes a mass-spring system that is underdamped?
(d) Which equation describes a mass-spring system that exhibits a simple harmonic motion?
(e) Which equation describes a mass-spring system whose motion crosses the equilibrium position at most once?
5. (Spring 2017, Exam 1, Question 6) Consider a certain mass-spring system described by the equation

$$
3 u^{\prime \prime}+\gamma u^{\prime}+k u=0, \quad \gamma \geq 0, \quad k>0
$$

Answer the following questions. Be sure to justify your answer.
(a) Suppose $k=12$. For what value(s) of γ would the system be critically damped?
(b) Suppose $\gamma=6$ and $k=9$. Will an solution of the equation cross the equilibrium position more than once?
(c) Suppose $\gamma=12$ and $k=15$. Find the quasi-period of the system.
(d) Suppose a force of $F(t)=49 \sin (\alpha t)$ is applied to the system $(\alpha>0)$, and given that $\gamma=0$ and $k=75$. What is the value(s) of α if the system exhibits resonance?
6. (Fall 2016, Exam 1, Question 9) Consider the fourth order linear equation

$$
y^{(4)}+6 y^{\prime \prime}+9 y=0 .
$$

Which of the following is its general solution?
(A) $y=\left(C_{1}+C_{2} t\right) \cos \sqrt{3} t+\left(C_{3}+C_{4} t\right) \sin \sqrt{3} t$
(B) $y=\left(C_{1}+C_{2} t+C_{3} t^{2}+C_{4} t^{3}\right) e^{-\sqrt{3} t}$
(C) $y=C_{1} \cos \sqrt{3} t+C_{2} \sin \sqrt{3} t+C_{3} e^{\sqrt{3} t}+C_{4} e^{-\sqrt{3} t}$
(D) $y=C_{1} e^{-\sqrt{3} t}+C_{2} t e^{-\sqrt{3} t}+C_{3} e^{\sqrt{3} t}+C_{4} t e^{\sqrt{3} t}$
7. (Fall 2015, Exam 1, Question 8) Find the general solution of the fourth order equation

$$
y^{(4)}+6 y^{\prime \prime \prime}+10 y^{\prime \prime}=0
$$

(A) $y=C_{1}+C_{2} t+C_{3} e^{-3 t} \cos t+C_{4} e^{-3 t} \sin t$
(B) $y=C_{1}+C_{2} t+C_{3} e^{3 t} \cos t+C_{4} e^{3 t} \sin t$
(C) $y=C_{1}+C_{2} t+C_{3} e^{t} \cos 3 t+C_{4} e^{t} \sin 3 t$
(D) $y=C_{1} t+C_{2} t^{2}+C_{3} e^{-3 t} \cos t+C_{4} e^{-3 t} \sin t$
8. (Fall 2014, Exam 1, Question 10) Consider the fourth order linear equation

$$
y^{(4)}-10 y^{\prime \prime}+25 y=0 .
$$

Which of the following is the general solution?
(A) $y=\left(C_{1}+C_{2} t\right) \cos \sqrt{5} t+\left(C_{3}+C_{4} t\right) \sin \sqrt{5} t$
(B) $y=C_{1} e^{-\sqrt{5} t}+C_{2} t e^{-\sqrt{5} t}+C_{3} e^{\sqrt{5} t}+C_{4} t e^{\sqrt{5} t}$
(C) $y=C_{1} e^{-\sqrt{5} t}+C_{2} t e^{-\sqrt{5} t}+C_{3} t^{2} e^{-\sqrt{5} t}+C_{4} t^{3} e^{-\sqrt{5} t}$
(D) $y=C_{1} e^{-\sqrt{5} t}+C_{2} e^{\sqrt{5} t}+C_{3} \cos \sqrt{5} t+C_{4} \sin \sqrt{5} t$

