MATH 251-019: Homework 5 (Due: 09/27/2017)

Please make your hand-writing clear to read. Please box your final answer.

1. (Spring 2016, Exam 1, Question 6) Which equation below has the property that all of its nonzero solutions become unbounded as $t \rightarrow \infty$?
(A) $3 y^{\prime \prime}+2 y^{\prime}-y=0$
(B) $y^{\prime \prime}-y^{\prime}-4 y=0$
(C) $y^{\prime \prime}+y^{\prime}+4 y=0$
(D) $y^{\prime \prime}-2 y^{\prime}+y=0$
2. Which equation below has the property that some, but not all, of its nonzero solution converge to zero as $t \rightarrow \infty$?
(A) $y^{\prime \prime}+9 y=0$
(B) $y^{\prime \prime}-4 y^{\prime}-5 y=0$
(C) $y^{\prime \prime}-4 y^{\prime}+5 y=0$
(D) $y^{\prime \prime}+4 y^{\prime}+4 y=0$
3. (Fall 2015, Exam 1, Question 6) Suppose $y_{1}(t)=e^{-\pi t}$ and $y_{2}(t)=e^{\sqrt{2} t}$ are two solutions of a certain second order differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

Which of the following statements is false?
(A) $y(t)=0$ is another solution.
(B) $y(t)=\sqrt{2} e^{-\pi t}-\pi e^{\sqrt{2} t}$ is another solution.
(C) $y(t)=e^{(\sqrt{2}-\pi) t}$ is another solution.
(D) $y_{1}(t)$ and $y_{2}(t)$ form a pair of fundamental solutions.
4. (Spring 2014, Exam 1, Question 11) Given that $y_{1}(t)=t^{4}$ is a known solution of the linear differential equation

$$
t^{2} y^{\prime \prime}-7 t y^{\prime}+16 y=0, \quad t>0
$$

Use reduction of order to find the general solution of the equation.
5. (Fall 2016, Exam 1, Question 14) Consider the second order nonhomogeneous linear equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=5 t+9+2 e^{-t} .
$$

(a) Find $y_{c}(t)$, the solution of its corresponding homogeneous equation.
(b) Find its general solution.
(c) What is the form of particular solution Y that you would use to solve the following equation using the Method of Undetermined Coefficients? DO NOT ATTEMPT TO SOLVE THE COEFFICIENTS.

$$
y^{\prime \prime}+4 y^{\prime}+5 y=7 t e^{-2 t} \cos t .
$$

6. (Spring 2016, Exam 1, Question 13) Consider the second order nonhomogeneous linear equation

$$
y^{\prime \prime}-2 y^{\prime}+5 y=5 t^{2}+6 t-12 .
$$

(a) Find $y_{c}(t)$, the solution of its corresponding homogeneous equation.
(b) Find a particular function $Y(t)$ that satisfies the equation.
(c) Write down the general solution of the equation.
(d) What is the form of particular solution Y that you would use to solve the following equation using the Method of Undetermined Coefficients?

DO NOT ATTEMPT TO SOLVE THE COEFFICIENTS.

$$
y^{\prime \prime}-2 y^{\prime}+5 y=e^{t}\left(t^{2}+t\right) \cos (2 t) .
$$

7. (Fall 2015, Exam 1, Question 13) Consider the second order nonhomogeneous linear equation

$$
y^{\prime \prime}-4 y^{\prime}=5-e^{2 t} .
$$

(a) Find $y_{c}(t)$, the solution of its corresponding homogeneous equation.
(b) Find its general solution by using the Method of Undetermined Coefficients.
(c) What is the form of particular solution Y that you would use to solve the following equation using the Method of Undetermined Coefficients? DO NOT ATTEMPT TO SOLVE THE COEFFICIENTS.

$$
y^{\prime \prime}-4 y^{\prime}=t^{2}+2 t e^{4 t} \sin (t)
$$

8. (Spring 2015, Exam 1, Question 14) Consider the second order nonhomogeneous linear equation

$$
y^{\prime \prime}-6 y^{\prime}-7 y=8 e^{-t}-7 t-6 .
$$

(a) Find $y_{c}(t)$, the solution of its corresponding homogeneous equation.
(b) Find a particular function $Y(t)$ that satisfies the equation.
(c) Write down the general solution of the equation.
(d) What is the form of particular solution Y that you would use to solve the following equation using the Method of Undetermined Coefficients? DO NOT ATTEMPT TO SOLVE THE COEFFICIENTS.

$$
y^{\prime \prime}-6 y^{\prime}-7 y=e^{t}\left(t^{2}+1\right) \sin (2 t) .
$$

