## MATH 251-019: Homework 4 (Due: 09/20/2017)

Please make your hand-writing clear to read. Please box your final answer.

1. Consider the autonomous differential equation

$$
y^{\prime}=\sin (y)(y+1)(y-3) .
$$

(a) Find all of its equilibrium solutions.
(b) Classify the stability of each equilibrium solution. Be sure to provide a clear reason for your answer.
(c) Suppose $y(\pi)=\beta$ and $\lim _{t \rightarrow \infty} y(t)=\pi$, find all possible $\beta$.
(d) Suppose $y(2)=-2$, find $\lim _{t \rightarrow \infty} y(t)$.
2. Consider the differential equation

$$
-2 x+3 x^{2} y^{2}+\left(2 x^{3} y+e^{-y}\right) y^{\prime}=0 .
$$

(a) Verify that it is an exact equation.
(b) Find $f(x, y)$ such that

$$
\frac{\partial f}{\partial x}=M(x, y), \quad \frac{\partial f}{\partial y}=N(x, y) .
$$

(c) Find the solution of this equation satisfying $y(1)=0$. You may leave your answer in an implicit form.
3. (Spring 2016, Exam 1, Question 11) Consider the differential equation

$$
\left(4 x^{3} y^{3}-y e^{x y}+x\right)+\left(3 x^{4} y^{2}-x e^{x y}-y\right) y^{\prime}=0 .
$$

(a) Verify that it is an exact equation.
(b) Find the solution of this equation satisfying $y(2)=0$. You may leave your answer in an implicit form.
4. (Fall 2016, Exam 1, Question 7) Suppose $y_{1}(t)$ and $y_{2}(t)$ are two solutions of the second order linear equation

$$
(2+\sin (t)) y^{\prime \prime}-\cos (t) y^{\prime}+y=0 .
$$

What is the general form of their Wronskian $W\left(y_{1}, y_{2}\right)$ ?
5. Determine whether each statement below is TRUE or FALSE.
(a) (Fall 2016, Exam 1, Question 10) The pair of functions $y_{1}(t)=e^{t}$ and $y_{2}(t)=0$ can be a set of fundamental solutions of a certain second order linear equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
(b) (Spring 2017, Exam 1, Question 7) Suppose $y=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is a general solution of a certain second order linear equation $y^{\prime \prime}+p(t) y^{\prime}+$ $q(t) y=0$, then their Wronskian $W\left(y_{1}(t), y_{2}(t)\right)=0$.
(c) (Spring 2017, Exam 1, Question 7) Suppose $y_{1}(t)$ is a solution of a certain second order nonhomogeneous linear equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=\mathbf{g}(\mathbf{t})$, then $y_{2}(t)=C y_{1}(t)$, where $C$ is any constant, is always another solution of the same equation.
6. (Fall 2013, Exam 1, Question 4) Consider all nonzero solutions of the linear equation

$$
y^{\prime \prime}+4 y^{\prime}-5 y=0 .
$$

As $t \rightarrow \infty$, they will
(A) all approach 0 .
(B) some approach $\infty$, all the rest approach $-\infty$
(C) some approach 0 , some approach $\infty$, and some approach $-\infty$
(D) neither approach any limit, nor approach $\pm \infty$
7. (Fall 2016, Exam 1, Question 13) Consider the second order linear equation

$$
y^{\prime \prime}-5 y^{\prime}-6 y=0
$$

(a) Find the general solution of the equation.
(b) Find the solution satisfying the initial conditions $y(455)=3, y^{\prime}(455)=$ -3 .
(c) For your answer from (b), determine $\lim _{t \rightarrow \infty} y(t)$.
8. (Fall 2015, Exam 1, Question 7) Let $y(t)$ be the solution of the initial value problem

$$
y^{\prime \prime}-y^{\prime}-20 y=0, \quad y(0)=2, \quad y^{\prime}(0)=\beta .
$$

Find the value of $\beta$ for which $\lim _{t \rightarrow \infty} y(t)=0$.
9. (Spring 2017, Exam 1, Question 11) Given that $y_{1}(t)=t^{2} \ln t$ is a known solution of the linear differential equation

$$
t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0, \quad t>0
$$

Use reduction of order to find the general solution of the equation.
10. (Spring 2015, Exam 1, Question 13) Given that $y_{1}(t)=t^{2}$ is a known solution of the linear differential equation

$$
t^{2} y^{\prime \prime}-5 t y^{\prime}+8 y=0, \quad t>0
$$

Use reduction of order to find the general solution of the equation.

