1 补充题 1

设 V_1, W 为数域 K 上线性空间 V 的两个子空间, 并且 $V_1 \subset W$. 设 V_1 的一个补空间为 V_2 , 即 $V = V_1 \oplus V_2$. 证明: $W = V1 \oplus (W \cap V_2)$. 证明:

因为 $W \subset V = V_1 \oplus V_2$, 因此 $\forall w \in W$, 存在 $v_1 \in V_1, v_2 \in V_2$, 使得 $w = v_1 + v_2$. 由于 $w \in W$ 以及 $v_1 \in V_1 \subset W$, 我们知 $v_2 = w - v_1 \in W$, 即 $v_2 \in W \cap V_2$. 所以 $w \in V_1 + (W \cap V_2)$. 由 w 的任意性得到 $W \subset V_1 + (W \cap V_2)$.

另一方面, 由于 $V_1 \subset W$, $W \cap V_2 \subset W$, 从而 $W \supset V_1 + (W \cap V_2)$.

因此 $W = V_1 + (W \cap V_2)$. 又由于 V_2 是 V_1 的补空间, $V_1 \cap (V_2 \cap W) = \{0\}$, 从而 $W = V_1 \oplus (W \cap V_2)$.

Q.E.D.

2 补充题 2

设 A,B 为数域 K 上的 $m\times n$ 矩阵, 并且 $\mathrm{rank}(A)=\mathrm{rank}(B)$. 设齐次 线性方程组 AX=0 和 BY=0 的解空间分别为 W_1 和 W_2 . 证明: 存在 K 上的可逆矩阵 T, 使得 $\sigma(X)=TX(\forall X\in W_1)$ 为 W_1 到 W_2 的同构. 证明:

因为 $\dim W_1 = n - \operatorname{rank}(A) = n - \operatorname{rank}(B) = \dim W_2$, 因此数域 K 上的两个有限维线性空间 W_1 和 W_2 同构. 下面构造可逆矩阵 T.

由于 A, B 相抵, 存在可逆矩阵 $P \in K^{m \times m}$, $Q \in K^{n \times n}$ 使得 B = PAQ. 任意 $x \in W_1$, Ax = 0, 从而 $P^{-1}BQ^{-1}x = 0$, $Q^{-1}x \in W_2$. 记 $T = Q^{-1}$, 则 σ 是从 W_1 到 W_2 的一个映射. 显然, σ 保持加法和数乘运算.

下证 σ 是双射. 由于 T 的逆存在,从而 σ 是单的. 又任意 $y \in W_2$, By = 0,从而 PAQy = 0,得到 $z := Qy \in W_1$,即存在 $z \in W_1$ 使得 Tz = y. 因此 σ 是满的. 从而 σ 是双射.

因此 σ 是同构, 存在性得证.

Q.E.D.