2024秋,有限元方法II,作业4

交作业时间: 2024/11/28

1. Given a triangle T with diameter h_T , if $r \in \mathbb{R}$, show that

 $h_T \|r\|_{L^2(T)} \lesssim \|r\|_{H^{-1}(T)},$

where the hidden constant depends on the shape-regularity of T.

2. Let V, Q be Banach spaces, $B: V \to Q'$ be a bound linear operator, Z := N(B). For any subspace $S \subset V$, define

$$S^{\circ} := \{ f \in V' \mid \langle f, v \rangle = 0, \ \forall v \in S \}.$$

For any subspace $F \subset V'$, define

$$^{\circ}F := \{ v \in V \mid \langle f, v \rangle = 0, \ \forall f \in F \}.$$

- Show that S° and $^{\circ}F$ are closed.
- Show that $^{\circ}(S^{\circ}) = S$ if and only if S is closed in V; And $(^{\circ}F)^{\circ} = F$ if and only if F is closed in V'.
- Show that $^{\circ}R(B') = Z$.
- Show that $R(B') = Z^{\circ}$ if and only if R(B') is closed in V'.
- 3. Let *H* be a Hilbert space with a norm $\|\cdot\|_H$ and inner product $(\cdot, \cdot)_H$. Let $P: H \to H$ be an idempotent, such that $0 \neq P^2 = P \neq I$. Then, the following indentity holds

$$||P||_{\mathcal{L}(H,H)} = ||I - P||_{\mathcal{L}(H,H)}.$$

4. Define

$$\mathbb{H}_k(K) := \{ q \in \mathcal{P}_k(K) \mid \text{div}q = 0 \text{ and } q \cdot \underline{n} |_{\partial K} = 0 \}$$

Show that in 2D, $\mathbb{H}_k(K) = \operatorname{curl}(b_K \mathcal{P}_{k-2}(K))$. (Hint: You can directly utilize the dimension formula for $\mathbb{H}_k(K)$ discussed in class.)

5. Let $\Omega \subset \mathbb{R}^2$ be a simply connected domain. For any $\underline{v} \in (L^2(\Omega))^2$, show that there exists $\psi \in H_0^1(\Omega)$ and $\phi \in H^1(\Omega)$, such that

$$\underline{v} = \nabla \psi + \operatorname{curl} \phi,$$

and

$$\|\nabla \phi\|_{L^{2}} + \|\nabla \psi\|_{L^{2}} \lesssim \|\psi\|_{L^{2}}$$

(Hint: R(curl) = N(div) on simply connected domain.)

- 6. Let $\Omega \subset \mathbb{R}^3$ be the half space $x_3 < 0$ and Γ be the space $x_3 = 0$. Given a vector $\chi = (\chi_1, \chi_2, \chi_3)^T \in H(\operatorname{curl}, \Omega)$, show that $\operatorname{div}_{\Gamma} \operatorname{Tr} \chi = \operatorname{curl} \chi \cdot \underline{n}|_{\Gamma}$, where $\operatorname{Tr} \chi = \chi \times \underline{n}$.
- 7. For any $w \in \mathcal{H}_k$ (\mathcal{H}_k stands for the homogeneous polynomial space of order k), define

$$\widetilde{\eta} = \frac{\operatorname{curl} \widetilde{w}}{k+1}, \quad \mu = \frac{\widetilde{x} \cdot \widetilde{w}}{k+1}.$$

show that

$$-\underline{x} \times \underline{\eta} + \nabla \mu = \underline{w}.$$

8. Show that for any $\underline{p}_k \in \underline{\mathcal{P}}_k$, there exists a decomposition

$$p_k = \underline{w}_{k-1} + \nabla \theta_s$$

where $w_{k-1} \in \mathcal{P}_{k-1} + x \times \mathcal{P}_{k-1}$, and $\theta \in \mathcal{P}_{k+1}$.