2023年秋,有限元方法II,上机作业1

截至时间: 2023/12/12, 晚上12点

要求:

- 用TeX写上机报告(中英文均可), 包含必要的数值结果讨论, 页数上限15.
- 本次上机作业中, 须自己组装刚度矩阵, 推荐使用软件包iFEM. 请 仔细阅读iFEM(或其他类似程序)中的实现方法, 特别需要关 注Matlab程序的向量化操作.
- 截止时间前将程序和上机报告的源码发送至snwu@math.pku.edu.cn

Consider the following biharmonic equation

$$\begin{cases}
(-\Delta)^2 u = f & \text{in } \Omega \subset \mathbb{R}^2, \\
u = g_0 & \text{on } \partial\Omega, \\
\frac{\partial u}{\partial \boldsymbol{n}} = g_1 & \text{on } \partial\Omega.
\end{cases} \tag{1}$$

This lab entails the implementation of Morley elements on a triangular mesh and the solution of the above equation on a quasi-uniform grid. During numerical tests, the source function f and boundary data g_i can be derived from the exact solution u.

- 1. For the domain $\Omega = (0,1)^2$, select a suitable smooth solution u, compute the errors in discrete H^2 semi-norm, discrete H^1 semi-norm, and L^2 norm, then summarize the convergence orders.
- 2. For the L-shape domain $\Omega = (-1,1)^2 \setminus [0,1) \times (-1,0]$, the solution is set to be

$$u = r^{1.5} \sin(1.5\theta),$$

where (r, θ) are polar coordinates. Compute the errors in discrete H^2 semi-norm, discrete H^1 semi-norm, and L^2 norm, then summarize the convergence orders.

3. (optional) Consider the following H^2 perturbation problem:

$$\begin{cases}
\varepsilon^{2} \Delta^{2} u - \Delta u = f & \text{in } \Omega \subset \mathbb{R}^{2}, \\
u = g_{0} & \text{on } \partial \Omega, \\
\frac{\partial u}{\partial \boldsymbol{n}} = g_{1} & \text{on } \partial \Omega,
\end{cases} \tag{2}$$

where $0 < \varepsilon < 1$. Evaluate the computational performance of Morley elements for this problem across different values of ε . In particular, what observations can be made from numerical tests when $\varepsilon \ll 1$?