2023秋,有限元方法II,作业5

交作业时间: 2023/12/19

1. Given any $\epsilon > 0$, let $X = H(\operatorname{curl}) \cap H^{1/2+\epsilon}$. Given a Lipschitz domain Ω , show that there exists $\delta(\epsilon, \Omega) > 0$ so that $\operatorname{curl} X(\Omega) \subset L^{2+\delta(\epsilon,\Omega)}(\Omega)$. Let $W = H(\operatorname{div}) \cap L^{2+\delta(\epsilon)}$. Show the following commutative diagram

$X(K) \stackrel{\operatorname{curl}}{$	$\rightarrow W(K)$	X(K) —	$\xrightarrow{\operatorname{curl}} W(K)$
Π_k^N	${\displaystyle \int} \Pi_k^{RT}$	$\Pi_{k+1}^{NC} \downarrow$	$\int \Pi_k^{RT}$
$N_k(K) \xrightarrow{\operatorname{curl}} $	$RT_k(K)$	$NC_{k+1}(K)$	$\xrightarrow{\operatorname{curl}} RT_k(K)$

Find the similar version for $BDM_k(K)$ (no need to show the proof).

2. Show that the following two inequalities are equivalent

$$\|p\|_{L^{2}(\Omega)} \lesssim \|p\|_{H^{-1}(\Omega)} + \sum_{i=1}^{d} \|\frac{\partial p}{\partial x_{i}}\|_{H^{-1}(\Omega)} \quad \forall p \in L^{2}(\Omega), \qquad (1)$$

$$\|p\|_{L^{2}(\Omega)} \lesssim \sum_{i=1}^{d} \|\frac{\partial p}{\partial x_{i}}\|_{H^{-1}(\Omega)} \qquad \forall p \in L^{2}_{0}(\Omega).$$
(2)

3. Let \mathcal{T}_h is a shape-regular triangulation of $\Omega \subset \mathbb{R}^2$. For any edge e connected by V_i and V_j , define

$$b_e := 6\phi_i(x)\phi_j(x)/|e|,$$

where $\phi_i(x)$ is the piecewise linear basis function associated with V_i . Let

$$\Pi_h \underline{v} := \sum_e \left(\int_e \underline{v} \mathrm{d}s \right) b_e.$$

Show that

$$\|\Pi_h \underline{v}\|_{L^2}^2 \lesssim \|\underline{v}\|_{L^2}^2 + h^2 |\underline{v}|_{H^1}^2.$$

4. For the Stokes problem, assume the modified inf-sup condition

$$\inf_{q_h \in Q_h} \sup_{\underline{v}_h \in V_h} \frac{(\operatorname{div} \underline{v}_h, q_h)}{\|\underline{v}_h\|_V \|q_h - \bar{q}_h\|_Q} = k_0 > 0,$$

where k_0 is independent of h and \bar{q}_h is the L^2 projection of q_h . Assume further that V_h is such that, for any $q_h \in \mathcal{P}_0^{-1}$,

$$\sup_{\underline{v}_h \in V_h} \frac{(\operatorname{div}_{\underline{v}_h}, q_h)}{\|\underline{v}_h\|_V} \ge \gamma_0 \|q_h\|_Q,$$

with γ_0 independent of h. Then, $V_h \times Q_h$ is inf-sup stable.

5. Consider the Stokes problem with homogeneous Dirichlet boundary condition:

$$-\Delta \underline{u} + \nabla p = \underline{f} \quad \text{in } \Omega,$$
$$-\text{div} \underline{u} = 0 \quad \text{in } \Omega,$$
$$\underline{u}|_{\partial \Omega} = \underline{0}.$$

Let $V = \mathcal{H}_0^1(\Omega)$ and $Q = L_0^2(\Omega)$. Given a stable Stokes pair $V_h \times Q_h \subset V \times Q$, we can obtain the following energy energy estimate

$$\|\underline{u} - \underline{u}_h\|_{H^1} + \|p - p_h\|_{L^2} \lesssim \inf_{\underline{v}_h \in V_h} \|\underline{u} - \underline{v}_h\|_{H^1} + \inf_{q_h \in Q_h} \|p - q_h\|_{L^2}.$$

Assume further the approximation property of $V_h \times Q_h$:

$$\inf_{\underline{v}_h \in V_h} \|\underline{z} - \underline{v}_h\|_{H^1} \lesssim h \|\underline{z}\|_{H^2} \quad \forall \underline{z} \in \underline{\mathcal{H}}^2(\Omega), \\
\inf_{q_h \in Q_h} \|r - q_h\|_{L^2} \lesssim h \|r\|_{H^1}, \quad \forall r \in H^1(\Omega).$$

Duality argument: Find appropriate regularity assumption of the dual problem:

$$\begin{split} \Delta \underline{z} + \nabla r &= \underline{\theta} \quad \text{in } \Omega, \\ \text{div} \underline{z} &= 0 \quad \text{in } \Omega, \\ \underline{z}|_{\partial \Omega} &= \underline{0}. \end{split}$$

so that one can obtain the L^2 estimate of y:

$$\|\underline{u}-\underline{u}_h\|_{L^2} \lesssim h\left(\inf_{\underline{v}_h\in V_h} \|\underline{u}-\underline{v}_h\|_{H^1} + \inf_{q_h\in Q_h} \|p-q_h\|_{L^2}\right).$$