2022年秋,有限元方法II,上机作业2

截至时间: 2022/12/25, 晚上12点

要求:

- 用TeX写上机报告(中英文均可), 包含必要的数值结果讨论, 页数上 限15.
- 本次上机作业中, 须自己组装刚度矩阵, 推荐使用软件包iFEM.
- 截止时间前将程序和上机报告的源码发送至snwu@math.pku.edu.cn

Consider the following mixed formulation of the Poisson equation

$$\begin{cases} \boldsymbol{p} - \nabla u = 0 & \text{in } \Omega \subset \mathbb{R}^2, \\ -\text{div } \boldsymbol{p} = f & \text{in } \Omega, \\ u = g & \text{on } \partial\Omega. \end{cases}$$
(1)

The computational domain is given as,

$$\Omega := \{ (x, y) \in (-1, 1)^2 : 0 < \theta < \pi/\beta \},\$$

where $\beta \geq \frac{1}{2}$. Note that if $\beta < 1$, then Ω is non-convex. Use $\operatorname{RT}_k - \mathcal{P}_k^$ and $\operatorname{BDM}_{k+1} - \mathcal{P}_k^-$ mixed finite elements to solve (1) with different β 's and exact solutions on *quasi-uniform* meshes. The source f and boundary data g can be obtained from the exact solution u.

- Problem 1. Choose *smooth* solution u. Report the errors of p in H(div) norm, L^2 norm and errors of u in L^2 norm for different β 's.
- Problem 2. Quasi-uniform meshes: Choose

$$u = r^{\beta} \sin(\beta \theta). \tag{2}$$

Report the errors and rates of \boldsymbol{p} in H(div), $L^2_{\alpha-1}$ norms and u in L^2 , L^2_{α} norms with different $\alpha \in (1 - \beta, 1 + \beta)$ for different β 's such that $\beta \in (\frac{1}{2}, 1]$ (non-convex case). Here, L^2_{α} denotes the weighted Sobolev space equipped with the norm

$$\|p\|_{L^2_{\alpha}} = \|r^{\alpha}p\|_{L^2(\Omega)},$$

where $r = \sqrt{x^2 + y^2}$ is the Euclidean distance to the origin. Try to summarize your findings.

<u>Remark:</u> The case in which k = 0 (RT₀- \mathcal{P}_0^{-1} and BDM₁- \mathcal{P}_0^{-1}) is required. At least one high-order case (e.g., RT₁- \mathcal{P}_1^{-1} or BDM₂- \mathcal{P}_1^{-1}) is required.