2022秋，有限元方法II，作业4

交作业时间：2022／11／18

1．Let V, Q be Banach spaces，$B: V \rightarrow Q^{\prime}$ be a bound linear operator， $Z:=N(B)$ ．For any $S \subset V$ ，define

$$
S^{\circ}:=\left\{f \in V^{\prime} \mid\langle f, v\rangle=0, \forall v \in S\right\}
$$

For any $F \subset V^{\prime}$ ，define

$$
{ }^{\circ} F:=\{v \in V \mid\langle f, v\rangle=0, \forall f \in F\}
$$

－Show that S° and ${ }^{\circ} F$ are closed．
－Show that ${ }^{\circ}\left(S^{\circ}\right)=S$ if and only if S is closed in V ；And $\left({ }^{\circ} F\right)^{\circ}=$ F if and only if F is closed in V^{\prime} ．
－Show that ${ }^{\circ} R\left(B^{\prime}\right)=Z$ ．
－Show that $R\left(B^{\prime}\right)=Z^{\circ}$ if and only if $R\left(B^{\prime}\right)$ is closed in V^{\prime} ．
2．Let H be a Hilbert space with a norm $\|\cdot\|_{H}$ and inner product $(\cdot, \cdot)_{H}$ ． Let $P: H \rightarrow H$ be an idempotent，such that $0 \neq P^{2}=P \neq I$ ．Then， the following identity holds

$$
\|P\|_{\mathcal{L}(H, H)}=\|I-P\|_{\mathcal{L}(H, H)}
$$

3．Show that the following two inequalities are equivalent

$$
\begin{align*}
\|p\|_{L^{2}(\Omega)} \lesssim\|p\|_{H^{-1}(\Omega)}+\sum_{i=1}^{d}\left\|\frac{\partial p}{\partial x_{i}}\right\|_{H^{-1}(\Omega)} & \forall p \in L^{2}(\Omega) \tag{1}\\
\|p\|_{L^{2}(\Omega)} \lesssim \sum_{i=1}^{d}\left\|\frac{\partial p}{\partial x_{i}}\right\|_{H^{-1}(\Omega)} & \forall p \in L_{0}^{2}(\Omega) \tag{2}
\end{align*}
$$

4．Let Ω be a connected domain with a Lipschitz boundary．Assume that $\Gamma_{D} \subset \partial \Omega$ satisfies meas $\left(\Gamma_{D}\right) \neq 0$ ．Show that

$$
\left\|{\underset{\sim}{v}}_{{\underset{\sim}{H}}^{1}(\Omega)} \lesssim\right\| \varepsilon(\underset{\sim}{v}) \|, \quad \forall \underset{\sim}{v} \in \underset{\sim}{\underset{\sim}{H}}{ }_{D}^{1}(\Omega),
$$

where $\underset{\sim}{\underset{\sim}{H}}{ }_{D}^{1}(\Omega):=\left\{\underset{\sim}{v} \in{\underset{\sim}{H}}^{1}(\Omega): \underset{\sim}{v}=0\right.$ on $\left.\Gamma_{D}\right\}$ ．
5. Let \mathcal{T}_{h} is a shape-regular triangulation of $\Omega \subset \mathbb{R}^{2}$. For any edge e connected by V_{i} and V_{j}, define

$$
b_{e}:=6 \phi_{i}(x) \phi_{j}(x) /|e|,
$$

where $\phi_{i}(x)$ is the piecewise linear basis function associated with V_{i}. Let

$$
\Pi_{h} v:=\sum_{e}\left(\int_{e} \underset{\sim}{v} \mathrm{~d} s\right) b_{e} .
$$

Show that

$$
\left\|\Pi_{h} v\right\|_{L^{2}}^{2} \lesssim\|v\|_{L^{2}}^{2}+h^{2}|v|_{H^{1}}^{2} .
$$

