## 2022秋，有限元方法II，作业3

交作业时间：2022／11／01

The Mathematical Theory of Finite Element Methods：
－Chapter 5：5．x．5，5．x．8，5．x．9，5．x．17，5．x． 21
－Chapter 9：9．x．5，9．x．7，9．x．14，9．x． 19
－Chapter 10：10．x．4，10．x． 8
Supplementary Questions：
1．Consider two different triangulations on the unit square $\Omega=(0,1)^{2}$ ： the uniform grid（Fig．11）and the criss－cross grid（Fig．22）．


Figure 1：Uniform triangulation of the domain $(0,1)^{2}$
（a）For the uniform grid，let $u_{h}=\sum_{i j} u_{i, j} \phi_{i, j}$ ，where $\phi_{i, j}$ is the nodal basis function associated with the grid point $\left(x_{i}, y_{i}\right)$ ．Show that the finite element formulation $a\left(u_{h}, \phi_{i j}\right)=\left(f, \phi_{i j}\right)$ can be written as

$$
\begin{equation*}
\frac{-u_{i, j-1}-u_{i, j+1}+4 u_{i, j}-u_{i-1, j}-u_{i+1, j}}{h^{2}}=\frac{1}{h^{2}} \tilde{f}_{i, j} \tag{1}
\end{equation*}
$$

Here

$$
\tilde{f}_{i, j}=\frac{1}{h^{2}} \int_{\Omega} f(x, y) \phi_{i j}(x, y)
$$



Figure 2: Criss-cross triangulation of the domain $(0,1)^{2}$
(b) Prove that $\tilde{f}_{i, j}-f\left(x_{i}, y_{i}\right)=\mathcal{O}\left(h^{2}\right)$ for the uniform grid.
(c) Show that on the criss-cross grid,

$$
\frac{\left(\nabla u_{h}, \nabla \phi_{i, j}\right)}{h^{2}}+\Delta u\left(x_{i}, y_{i}\right)=\mathcal{O}\left(h^{2}\right) .
$$

(d) Prove that for the criss-cross grid

$$
\tilde{f}_{i, j} \nrightarrow f\left(x_{i}, y_{j}\right), \quad \tilde{f}_{i+\frac{1}{2}, j+\frac{1}{2}} \nrightarrow f\left(x_{i+\frac{1}{2}}, y_{j+\frac{1}{2}}\right) .
$$

Namely, the corresponding finite element scheme is not consistent with the finite difference scheme in the classic case.

