2021秋，有限元方法II，作业4

交作业时间：2021／12／17

1．Let H be a Hilbert space with a norm $\|\cdot\|_{H}$ and inner product $(\cdot, \cdot)_{H}$ ． Let $P: H \rightarrow H$ be an idempotent，such that $0 \neq P^{2}=P \neq I$ ．Then， the following indentity holds

$$
\|P\|_{\mathcal{L}(H, H)}=\|I-P\|_{\mathcal{L}(H, H)}
$$

2．Let V, Q be Banach spaces，$B: V \rightarrow Q^{\prime}$ be a bound linear operator， $Z:=N(B)$ ．For any $S \subset V$ ，define

$$
S^{\circ}:=\left\{f \in V^{\prime} \mid\langle f, v\rangle=0, \forall v \in S\right\}
$$

For any $F \subset V^{\prime}$ ，define

$$
{ }^{\circ} F:=\{v \in V \mid\langle f, v\rangle=0, \forall f \in F\}
$$

－Show that S° and ${ }^{\circ} F$ are closed．
－Show that ${ }^{\circ}\left(S^{\circ}\right)=S$ if and only if S is closed in V ；And $\left({ }^{\circ} F\right)^{\circ}=$ F if and only if F is closed in V^{\prime} ．
－Show that ${ }^{\circ} R\left(B^{\prime}\right)=Z$ ．
－Show that $R\left(B^{\prime}\right)=Z^{\circ}$ if and only if $R\left(B^{\prime}\right)$ is closed in V^{\prime} ．
3．Consider the Stokes problem with homogeneous Dirichlet boundary condition：

$$
\begin{aligned}
&-\Delta \underset{\sim}{u}+\nabla p=\underset{\sim}{f} \text { in } \Omega, \\
&-\operatorname{div} \underset{\sim}{u}=0 \quad \text { in } \Omega, \\
& \underset{\sim}{u} \mid \partial \Omega=\underset{\sim}{0} .
\end{aligned}
$$

Let $V={\underset{\sim}{H}}_{0}^{1}(\Omega)$ and $Q=L_{0}^{2}(\Omega)$ ．Given a stable Stokes pair $V_{h} \times Q_{h} \subset$ $V \times Q$ ，we can obtain the following energy energy estimate

$$
\left\|\underset{\sim}{u}-{\underset{\sim}{u}}_{h}\right\|_{H^{1}}+\left\|p-p_{h}\right\|_{L^{2}} \lesssim \inf _{{\underset{v}{v}}^{\prime} \in V_{h}}\left\|\underset{\sim}{u}-{\underset{\sim}{v}}_{h}\right\|_{H^{1}}+\inf _{q_{h} \in Q_{h}}\left\|p-q_{h}\right\|_{L^{2}} .
$$

Assume further the approximation property of $V_{h} \times Q_{h}$ ：

$$
\begin{aligned}
\inf _{v_{h} \in V_{h}}\left\|z-v_{h}\right\|_{H^{1}} \lesssim h\|z\|_{H^{2}} & \forall z \in{\underset{\sim}{H}}^{2}(\Omega) \\
\inf _{q_{h} \in Q_{h}}\left\|r-q_{h}\right\|_{L^{2}} \lesssim h\|r\|_{H^{1}}, & \forall r \in H^{1}(\Omega)
\end{aligned}
$$

Duality argument: Find appropriate regularity assumption of the dual problem:

$$
\begin{array}{rlr}
-\Delta z+\nabla r=\underset{\sim}{\theta} & \text { in } \Omega, \\
\operatorname{div} z=0 & \text { in } \Omega, \\
z \mid \partial \Omega=\underset{\sim}{0} . &
\end{array}
$$

so that one can obtain the L^{2} estimate of $\underset{\sim}{u}$:

$$
\left\|\underset{\sim}{u}-{\underset{\sim}{u}}_{h}\right\|_{L^{2}} \lesssim h\left(\inf _{{\underset{v}{v}}_{h} \in V_{h}}\left\|\underset{\sim}{u}-{\underset{\sim}{v}}_{h}\right\|_{H^{1}}+\inf _{q_{h} \in Q_{h}}\left\|p-q_{h}\right\|_{L^{2}}\right) .
$$

4. Let \mathcal{T}_{h} is a shape-regular triangulation of $\Omega \subset \mathbb{R}^{2}$. For any edge e connected by V_{i} and V_{j}, define

$$
b_{e}:=6 \phi_{i}(x) \phi_{j}(x) /|e|
$$

where $\phi_{i}(x)$ is the piecewise linear basis function associated with V_{i}. Let

$$
\Pi_{h} v:=\sum_{e}\left(\int_{e} \underline{v} \mathrm{~d} s\right) b_{e} .
$$

Show that

$$
\left\|\Pi_{h} v\right\|_{L^{2}}^{2} \lesssim\|v\|_{L^{2}}^{2}+h^{2}|v|_{H^{1}}^{2} .
$$

5. Let $\hat{K} \subset \mathbb{R}^{n}, F$ be a smooth mapping from \mathbb{R}^{n} to \mathbb{R}^{n}, and $K=F(\hat{K})$. Assume that F is globally invertible on K and its Jacobian $D F$ is invertible. For any $\underset{\sim}{\hat{q}} \in\left(C^{\infty}(\hat{K})\right)^{n}$, define

$$
\mathcal{G}(\underset{\sim}{\hat{q}})(x):=\frac{1}{J(\hat{x})} D F(\hat{x}) \underset{\sim}{\hat{q}}(\hat{x}), \quad \hat{x}=F^{-1}(x),
$$

where $J(x)=|\operatorname{det} D F(\hat{x})|$. Show that

$$
\operatorname{div} \underset{\sim}{q}=\frac{1}{J} \widehat{\operatorname{div}} \underset{\sim}{\hat{q}} .
$$

Here, $\widehat{\text { div }}$ means the derivatives on \hat{x}.
6. Let $v=\mathcal{F}(\hat{v}):=\hat{v}\left(F^{-1}(x)\right)$, and $\underset{\sim}{q}=\mathcal{G}(\underset{q}{\hat{q}})$, where $F(\hat{x})=B \hat{x}+b_{0}$ is an affine mapping. Show that

$$
\begin{aligned}
\int_{K} \underset{\sim}{q} \cdot \operatorname{grad} v \mathrm{~d} x & =\int_{\hat{K}} \hat{\sim} \cdot \underline{q} \cdot \hat{\operatorname{grad}} \hat{v} \mathrm{~d} \hat{x} \\
\int_{K} v \operatorname{div} \underset{\sim}{q} \mathrm{~d} x & =\int_{\hat{K}} \hat{v} \operatorname{div} \underset{\sim}{\hat{q}} \mathrm{~d} \hat{x} \\
\int_{\partial K} \underset{\sim}{q} \cdot \underset{\sim}{n} v \mathrm{~d} s & =\int_{\partial \hat{K}} \underset{\sim}{\hat{q}} \cdot \underset{\sim}{\hat{n}} \hat{v} \mathrm{~d} \hat{s} .
\end{aligned}
$$

7. Define

$$
\mathbb{H}_{k}(K):=\left\{\underset{\sim}{q} \in \mathcal{P}_{k}(K) \mid \operatorname{div} \underset{\sim}{q}=0 \quad \text { and }\left.\quad \underset{\sim}{q} \cdot \underset{\sim}{n}\right|_{\partial K}=0\right\} .
$$

Show that in 2D, $\mathbb{H}_{k}(K)=\operatorname{curl}\left(b_{K} \mathcal{P}_{k-2}(K)\right)$.
8. Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected domain. For any $\underset{\sim}{v} \in\left(L^{2}(\Omega)\right)^{2}$, show that there exists $\psi \in H_{0}^{1}(\Omega)$ and $\phi \in H^{1}(\Omega)$, such that

$$
\underset{\sim}{v}=\nabla \psi+\operatorname{curl} \phi,
$$

and

$$
\|\nabla \phi\|_{L^{2}}+\|\nabla \psi\|_{L^{2}} \lesssim\|v\|_{L^{2}} .
$$

(Hint: $R($ curl $)=N($ div $)$ on simply connected domain.)

