有限元方法II, 上机作业2

交作业时间: 2019/12/19

要求:

- 用TeX写上机报告(中英文均可), 包含必要的数值结果讨论, 页数上限12.
- 本次上机作业中, 要求使用软件包FEniCS, Python 或 C++均可.
- 在课上提交上机报告打印版, 截止时间前将程序和上机报告的源码发送至 snwu@math.pku.edu.cn

Consider the Stokes equation

$$\begin{cases}
-\mu \Delta \underline{u} + \nabla p = \underline{f} & \text{in } \Omega \subset \mathbb{R}^2, \\
-\nabla \cdot \underline{u} = 0 & \text{in } \Omega, \\
\underline{u} = \underline{g}_D & \text{on } \Gamma_D, \\
2\mu \varepsilon(\underline{u})\underline{n} - p\underline{n} = \underline{g}_N & \text{on } \Gamma_N = \partial \Omega \setminus \Gamma_D.
\end{cases} \tag{1}$$

- Problem 1. Choose $\mu=1$, any domain $\Omega\subset\mathbb{R}^2$, exact solution \underline{u} (div-free) and p, Γ_D (Γ_D is not supposed to be $\partial\Omega$ in this problem), then \underline{f} , \underline{g}_D and \underline{g}_N can be obtained. Using the following pairs
 - MINI element
 - $\mathcal{P}_2 \mathcal{P}_0^{-1}$
 - Taylor-Hood element \mathcal{P}_k - \mathcal{P}_{k-1} $(k \ge 2)$
 - \mathcal{P}_4 - \mathcal{P}_3^{-1}

Report the velocity errors in H^1 , L^2 , and pressure errors in L^2 . Try \mathcal{P}_1 - \mathcal{P}_1 pair and report your finding.

Problem 2. Consider the following case: $\Omega = (0,1)^2$, $\Gamma_D = \partial \Omega$. The exact solution is choosen as $\underline{u} = \underline{0}$, $p = y^3 - y^2/2 + y - 7/12$, hence $\underline{f} = (0,3y^2 - y^2)^2$. Choose $\mu = 1,10^{-2},10^{-4},10^{-6}$, report the velocity errors $\|\nabla(\underline{u}-\underline{u}_h)\|_{L^2}$ by the stable pairs in Problem 1. Discuss (and try to analyse) the results.

Problem 3. Consider the following case: $\Omega=(0,1)^2,$ $\Gamma_D=\partial\Omega.$ The exact solution is choosen as

$$\underline{u} = \begin{pmatrix} x^2 (1-x)^2 y (1-y) (1-2y) \\ -x (1-x) (1-2x) y^2 (1-y)^2 \end{pmatrix},
p = 10 ((x-1/2)^3 y^2 + (1-x)^3 (y-1/2)^3).$$

Using the "grad-div stabilization" in the variation form, namely

$$a_h(\underline{u}_h,\underline{v}_h) = (2\mu\varepsilon(\underline{u}_h),\varepsilon(\underline{v}_h)) + \gamma(\nabla\cdot\underline{u}_h,\nabla\cdot\underline{v}_h)$$

Using the Taylor-Hood pair \mathcal{P}_2 - \mathcal{P}_1 . For $\mu = 1, 10^{-2}, 10^{-4}$, report the $\|\nabla(\underline{u} - \underline{u}_h)\|_{L^2}$ and $\|\nabla \cdot \underline{u}_h\|_{L^2}$ for various γ . Discuss the results.