有限元方法II, 作业4

交作业时间: 2019/11/27

1. Let *H* be a Hilbert space with a norm $\|\cdot\|_H$ and inner product $(\cdot, \cdot)_H$. Let $P: H \to H$ be an idempotent, such that $0 \neq P^2 = P \neq I$. Then, the following identity holds

$$||P||_{\mathcal{L}(H,H)} = ||I - P||_{\mathcal{L}(H,H)}$$

2. Assume that $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite and $B \in \mathbb{R}^{m \times n}$ is of full-rank $m \ (m \le n)$. Let $S = BA^{-1}B^T$. Show that the "preconditioned" matrix

$$\begin{pmatrix} A^{-1} & 0 \\ 0 & S^{-1} \end{pmatrix} \begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix}$$

only has three distinctive eigenvalues: $1, (1 \pm \sqrt{5})/2$. Determine the multiplicity of these eigenvalues.

3. Let V, Q be Banach spaces, $B: V \to Q'$ be a bound linear operator, Z := N(B). For any $S \subset V$, define

$$S^{\circ} := \{ f \in V' \mid \langle f, v \rangle = 0, \ \forall v \in S \}.$$

For any $F \subset V'$, define

$$^{\circ}F := \{ v \in V \mid \langle f, v \rangle = 0, \ \forall f \in F \}.$$

- Show that S° and $^{\circ}F$ are closed.
- Show that $^{\circ}(S^{\circ}) = S$ if and only if S is closed in V; And $(^{\circ}F)^{\circ} = F$ if and only if F is closed in V'.
- Show that $^{\circ}R(B') = Z$.
- Show that $R(B') = Z^{\circ}$ if and only if R(B') is closed in V'.
- 4. Let V, Q be Banach spaces, $b(\cdot, \cdot) : V \times Q \to \mathbb{R}$ be a bilinear form. Show that the inf-sup condition

$$\inf_{q \in Q} \sup_{v \in V} \frac{b(v,q)}{\|v\| \|q\|} = \beta > 0$$

is equivalent to the following statement: $\forall q \in Q, \exists v \in V \text{ such that}$

$$b(v,q) = ||q||^2$$
 and $||v|| \le C ||q||$.

5. For any $p \in L^2(\Omega)$, show that

$$||p||_{H^{-1}} + \sum_{i=1}^{d} ||\frac{\partial p}{\partial x_i}||_{H^{-1}} \lesssim ||p||_{L^2}.$$

6. Consider the Stokes problem with homogeneous Dirichlet boundary condition:

$$-\Delta \underline{u} + \nabla p = \underline{f} \quad \text{in } \Omega,$$
$$-\text{div} \underline{u} = 0 \quad \text{in } \Omega,$$
$$\underline{u}|_{\partial \Omega} = \underline{0}.$$

Let $V = \mathcal{H}_0^1(\Omega)$ and $Q = L_0^2(\Omega)$. Given a stable Stokes pair $V_h \times Q_h \subset V \times Q$, we can obtain the following energy energy estimate

$$\|\underline{u} - \underline{v}_h\|_{H^1} + \|p - p_h\|_{L^2} \lesssim \inf_{\underline{v}_h \in V_h} \|\underline{u} - \underline{v}_h\|_{H^1} + \inf_{q_h \in Q_h} \|p - q_h\|_{L^2}.$$

Assume further the approximation property of $V_h \times Q_h$:

$$\inf_{\substack{\boldsymbol{y}_h \in V_h}} \| \boldsymbol{z} - \boldsymbol{y}_h \|_{H^1} \lesssim h \| \boldsymbol{z} \|_{H^2} \quad \forall \boldsymbol{z} \in \boldsymbol{H}^2(\Omega), \\
\inf_{\substack{q_h \in Q_h}} \| r - q_h \|_{L^2} \lesssim h \| r \|_{H^1}, \quad \forall r \in H^1(\Omega).$$

Duality argument: Find appropriate regularity assumption of the dual problem:

$$-\Delta \underline{z} + \nabla r = \underline{\theta} \quad \text{in } \Omega,$$
$$\operatorname{div}_{\underline{z}} = 0 \quad \text{in } \Omega,$$
$$\underline{z}|_{\partial \Omega} = \underline{0}.$$

so that one can obtain the L^2 estimate of \underline{u} :

$$\|\underline{u}-\underline{u}_h\|_{L^2} \lesssim h\left(\inf_{\underline{v}_h \in V_h} \|\underline{u}-\underline{v}_h\|_{H^1} + \inf_{q_h \in Q_h} \|p-q_h\|_{L^2}\right).$$