2024春，差分方法II，作业5

交作业时间：2024／05／08

1．Let A and B be two nonempty compact subsets of \mathbb{R}^{d} for $d \geq 1$ ．Then the following inequality holds：

$$
|A+B|^{1 / d} \geq|A|^{1 / d}+|B|^{1 / d},
$$

where the Minkowski sum is defined by

$$
A+B:=\left\{v+w \in \mathbb{R}^{d}: v \in A \text { and } w \in B\right\} .
$$

2．Consider a function $u(x, y)=x^{2}+y^{2}+x^{2} y^{2}$ and discretize the Monge－ Ampère operator using 9 －point stencil，i．e．

$$
\mathcal{G}_{\theta}=\left\{\left\{(1,0)^{T},(0,1)^{T}\right\},\left\{(1,1)^{T},(-1,1)^{T}\right\}\right\} .
$$

Show that

$$
\min _{\left\{w_{1}, w_{2}\right\} \in \mathcal{G}_{\theta}}\left(\Delta_{w_{1}} u(0,0)\right)^{+}\left(\Delta_{w_{2}} u(0,0)\right)^{+}=4,
$$

and

$$
\min _{w \in\left\{w_{1}, w_{2}\right\} \in \mathcal{G}_{\theta}}\left(\Delta_{w} u(0,0)\right)^{+} \max _{w \in\left\{w_{1}, w_{2}\right\} \in \mathcal{G}_{\theta}}\left(\Delta_{w} u(0,0)\right)^{+}=4+2 h^{2} .
$$

3．Let u_{ε} be a sequence of the uniformly bounded functions on $\bar{\Omega}$ ，where ε can be understood as a discretization parameter．Define

$$
\bar{u}(x)=\lim _{y \rightarrow x} \sup _{\varepsilon \downarrow 0} u_{\varepsilon}(y) .
$$

Let $\varphi \in C^{2}(\bar{\Omega})$ and assume that $\bar{u}-\varphi$ has a strictly local maximum at $x_{0} \in \bar{\Omega}$ with $\bar{u}\left(x_{0}\right)=\varphi\left(x_{0}\right)$ ．Show that there are sequences $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty} \subset$ \mathbb{R}^{+}and $\left\{y_{n}\right\}_{n=1}^{\infty} \subset \bar{\Omega}$ ，such that

$$
\varepsilon_{n} \downarrow 0, \quad y_{n} \rightarrow x_{0}, \quad u_{\varepsilon_{n}}\left(y_{n}\right) \rightarrow \bar{u}\left(x_{0}\right)
$$

and the sequence of functions $u_{\varepsilon_{n}}-\varphi$ attains its maximum at y_{n} ．
4. Let $\boldsymbol{w} \in \mathbb{R}^{2}$ be such that $|\boldsymbol{w}|=1$. Then, for every $\epsilon>0$, there exists $\boldsymbol{v} \in \mathbb{Q}^{2}$ such that $|\boldsymbol{v}|=1$ and

$$
|\boldsymbol{w}-\boldsymbol{v}| \leq \epsilon .
$$

Moreover, if $\boldsymbol{v}=\left(\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}\right)^{T}$ with $p_{1}, p_{2} \in \mathbb{Z}$ and $q_{1}, q_{2} \in \mathbb{N}$, then we have that

$$
0<q_{i} \leq \frac{64}{\epsilon^{2}}
$$

Is this estimate about the order of ϵ sharp (i.e., whether there can exist $\alpha<2$ and a constant C independent of ϵ, such that $\left.q_{i} \leq C \epsilon^{-\alpha}\right)$?
5. Show the discrete comparison principle and L^{∞} stability of the regularized wide stencil FD for Monge-Ampère $M A_{h, \theta, \delta}^{\mathrm{WS}}$.
6. For every symmetric positive semi definite (SPSD) matrix A, show that

$$
(\operatorname{det} A)^{1 / d}=\frac{1}{d} \inf \{\operatorname{tr}(A B) \mid B \text { is SPD and } \operatorname{det} B=1\} .
$$

7. Show that the function $A \mapsto(\operatorname{det} A)^{1 / d}$ is concave on SPSD matrices.
