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1. Let (η, ψ) be an entropy pair. Suppose the following cell entropy con-
dition holds:
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Ψ(·, ·) that is consistent with ψ. Show that the limiting weak solution
q satisfies the entropy condition. (Hint: mimicking the proof of the
Lax-Wendroff Theorem.)

2. For scalar conservation law qt + f(q)x = 0, show that the Godunov
flux (by solving the Riemann problem) has the compact form
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f(q) if Qi−1 ≥ Qi.

3. For the scalar conservation law, show that LxF (Lax-Friedrichs), LLF
(Local Lax-Friedrichs), and Engquist-Osher fluxes are all E-fluxes.

4. For a monotone flux we have that F(↑, ↓). Show that a monotone flux
is an E-flux.

5. Consider a conservative scheme with a Lipschitz-continuous numerical
flux. If the scheme is TVB (Total Variation Bounded), show that there
exists a constant R̃ and k0, such that

TVT (Q) ≤ R̃, ∀nk ≤ T, k ≤ k0. (1)
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Does (1) imply TVB?

6. Show that LxF (Lax-Friedrichs), Engquist-Osher, and Godunov fluxes
are entropy stable.
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