差分方法II，作业3

交作业时间：2023／04／28

1．For the scalar conservation law，show that LxF（Lax－Friedrichs），LLF （Local Lax－Friedrichs），and Engquist－Osher fluxes are all E－fluxes．

2．For a monotone flux we have that $\mathcal{F}(\uparrow, \downarrow)$ ．Show that a monotone flux is an E－flux．

3．In the MUSCL scheme，if the following conditions hold

$$
\begin{aligned}
& \min \left(Q_{i-1}^{n}, Q_{i}^{n}\right) \leq Q_{i-1 / 2}^{+, n+1 / 2} \leq \max \left(Q_{i-1}^{n}, Q_{i}^{n}\right) \\
& \min \left(Q_{i}^{n}, Q_{i+1}^{n}\right) \leq Q_{i+1 / 2}^{-, n+1 / 2} \leq \max \left(Q_{i}^{n}, Q_{i+1}^{n}\right)
\end{aligned}
$$

and the flux is monotone，then the MUSCL scheme is TVD－stable．
4．Consider the modified s－stage SSPRK for $q_{t}=-\mathcal{L}(q)$ ：

$$
\left\{\begin{aligned}
Q^{(i)} & =v_{i} Q^{n}+\sum_{j=1}^{s}\left[\alpha_{i j} Q^{(j)}+k \beta_{i j} \mathcal{L}\left(Q^{(j)}\right)\right] \quad i=1, \cdots, s+1 \\
Q^{n+1} & =Q^{(s+1)}
\end{aligned}\right.
$$

Define $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{R}^{(s+1) \times(s+1)}$ as

$$
\boldsymbol{\alpha}=\left(\begin{array}{cccc}
\alpha_{11} & \cdots & \alpha_{1 s} & 0 \\
\alpha_{21} & \cdots & \alpha_{2 s} & 0 \\
\vdots & & \vdots & \vdots \\
\alpha_{s+1,1} & \cdots & \alpha_{s+1, s} & 0
\end{array}\right), \quad \boldsymbol{\beta}=\left(\begin{array}{cccc}
\beta_{11} & \cdots & \beta_{1 s} & 0 \\
\beta_{21} & \cdots & \beta_{2 s} & 0 \\
\vdots & & \vdots & \vdots \\
\beta_{s+1,1} & \cdots & \beta_{s+1, s} & 0
\end{array}\right) .
$$

Show that the above SSPRK can be recast into the s－stage Runge－ Kutta method：

$$
\left\{\begin{aligned}
Q^{(i)} & =Q^{n}+k \sum_{j=1}^{s} a_{i j} \mathcal{L}\left(Q^{(j)}\right) \quad i=1, \cdots, s \\
Q^{n+1} & =Q^{n}+k \sum_{i=1}^{s} b_{i} \mathcal{L}\left(Q^{(i)}\right)
\end{aligned}\right.
$$

under the following condition：

$$
(\boldsymbol{I}-\boldsymbol{\alpha})^{-1} \boldsymbol{\beta}=\left(\begin{array}{cc}
A & 0 \\
b^{T} & 0
\end{array}\right)
$$

Here，$A=\left(a_{i j}\right) \in \mathbb{R}^{s \times s}, b=\left(b_{1}, \cdots, b_{s}\right)^{T} \in \mathbb{R}^{s}$ ．
5. Consider the WENO reconstruction

$$
v_{i+1 / 2}=\sum_{r=0}^{m-1} \omega_{r} v_{i+1 / 2}^{(r)}
$$

where the weights are chosen as

$$
\omega_{r}=\frac{\alpha_{r}}{\sum_{s=0}^{m-1} \alpha_{s}}, \quad \alpha_{r}=\frac{d_{r}}{\left(\epsilon+\beta_{r}\right)^{2}}
$$

Here, d_{r} are the coefficients such that $\sum_{r=0}^{m-1} d_{r} v_{i+1 / 2}^{(r)}$ coincides with the reconstruction using all the $(2 m-1)$ cell averages. Show that
(a) For $m=2, d_{0}=\frac{2}{3}, d_{1}=\frac{1}{3}$;
(b) For $m=3, d_{0}=\frac{3}{10}, d_{1}=\frac{3}{5}, d_{2}=\frac{1}{10}$;
(c) d_{r} is away positive.
6. In the WENO reconstruction, let the reconstruction polynomial on the stencil $S_{r}(i)$ be denoted by $p_{r}(x)$. Define

$$
\beta_{r}=\sum_{l=1}^{m-1} \int_{I_{i}} h^{2 l-1}\left(\frac{\partial^{l} p_{r}(x)}{\partial x^{l}}\right) \mathrm{d} x \quad r=0, \cdots, m-1 .
$$

(a) Show that when $m=2$,

$$
\beta_{0}=\left(\bar{v}_{i+1}-\bar{v}_{i}\right)^{2}, \quad \beta_{1}=\left(\bar{v}_{i}-\bar{v}_{i-1}\right)^{2} .
$$

(b) Verify the condition that

$$
\begin{equation*}
\beta_{r}=D\left(1+\mathcal{O}\left(h^{m-1}\right)\right) \tag{1}
\end{equation*}
$$

when $m=2$, where D is a nonzero quantity independent of r (but may depend on h).
(c) Find the expression of β_{0}, β_{1} and β_{2} for $m=3$ and verify the condition (1).
7. Consider the elliptic problem in non-divergence form:

$$
\boldsymbol{A}(x): D^{2} u(x)=f(x), \quad \boldsymbol{A}(x) \geq 0
$$

If there exists $\Lambda_{0} \geq \lambda_{0}>0$, such that $\lambda_{0} \boldsymbol{I} \leq A(x) \leq \Lambda_{0} \boldsymbol{I}$ for all $x \in \Omega$, show that the non-divergence form is uniformly elliptic.

