差分方法II，作业5

交作业时间：2021／06／14

1．Let v_{h} be a piecewise linear function on the mesh \mathcal{T}_{h} ．For any face $F=T^{+} \cap T^{-}$with $T^{ \pm} \in \mathcal{T}_{h}$ ，define the jump

$$
\left.\llbracket v_{h} \rrbracket\right|_{F}:=-\left.n_{F}^{+} \cdot \nabla v_{h}\right|_{T^{+}}-\left.n_{F}^{-} \cdot \nabla v_{h}\right|_{T^{-}} .
$$

Show that v_{h} is convex if and only if

$$
\left.\llbracket v_{h} \rrbracket\right|_{F} \geq 0 \quad \text { for all faces } F
$$

2．Let $p(x)=\frac{1}{2}\left(x^{2}+y^{2}\right)$ ．A mesh \mathcal{T}_{h} is called Delaunay if the sum of the angles opposite to any edge is less than or equal to π ．Show that $I_{h} p=\Gamma\left(I_{h} p\right)$ if and only if \mathcal{T}_{h} is Delaunay，where I_{h} is the interpolant to the continuous piecewise linear space．

3．For ODE $y^{\prime}=f(t, y)$ ，consider the linear multi－step method
$a_{k} y_{n+k}+a_{k-1} y_{n+k-1}+\ldots+a_{0} y_{n}=b_{k} f_{n+k}+b_{k-1} f_{n+k-1}+\ldots+b_{0} f_{n}$.
Show that the multistep is of order p
\Longleftrightarrow（i）$\sum_{i=0}^{k} a_{i}=0$ and $\sum_{i=0}^{k} a_{i} i^{q}=q \sum_{i=0}^{k} b_{i} i^{q-1}, q=1, \ldots, p$ ；
\Longleftrightarrow（ii）$\rho\left(\mathrm{e}^{\tau}\right)-\tau \sigma\left(\mathrm{e}^{\tau}\right)=\mathcal{O}\left(\tau^{p+1}\right)$ as $\tau \rightarrow 0$ ；
\Longleftrightarrow（ii）$\frac{\rho(\zeta)}{\log (\zeta)}-\sigma(\zeta)=\mathcal{O}\left((\zeta-1)^{p}\right)$ as $\zeta \rightarrow 1$ ．
Here，$\rho(\zeta)$ and $\sigma(\zeta)$ are the generating functions of $\left\{a_{i}\right\}_{i=0}^{k}$ and $\left\{b_{i}\right\}_{i=0}^{k}$ ， respectively．

4．Assume $u(t)$ is continuous on $[0, T]$ and $u(0)=0$ ．Show that

$$
u(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\xi)^{\alpha-1} \partial_{\xi}^{\alpha} u(\xi) \mathrm{d} \xi
$$

Notice that the Caputo and Riemann－Liouville fractional derivatives coincide due to $u(0)=0$ ．

5．Consider the two－parameter Milttag－Leffler function

$$
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(k \alpha+\beta)} \quad z \in \mathbb{C}
$$

For $\lambda>0, \alpha>0$, and $t>0$, show that

$$
\begin{aligned}
{ }^{C} \partial_{t}^{\alpha} E_{\alpha, 1}\left(-\lambda t^{\alpha}\right) & =-\lambda E_{\alpha, 1}\left(-\lambda t^{\alpha}\right), \\
E_{\alpha, 1}\left(-\lambda t^{\alpha}\right) & =1-\lambda t^{\alpha} E_{\alpha, 1+\alpha}\left(-\lambda t^{\alpha}\right) .
\end{aligned}
$$

