差分方法II，作业4

交作业时间：2021／05／31

1．For every symmetric positive semi definite（SPSD）matrix A ，show that

$$
(\operatorname{det} A)^{1 / d}=\frac{1}{d} \inf \{\operatorname{tr}(A B) \mid B \text { is SPD and } \operatorname{det} B=1\}
$$

2．Show that the function $A \mapsto(\operatorname{det} A)^{1 / d}$ is concave on SPSD matrices．
3．Let $\mathbf{S}_{+}:=\{A \in \mathbf{S}, A \geq 0\}$ and $\mathbf{S}_{1}=\left\{B \in \mathbf{S}_{+}, \operatorname{tr}(B)=1\right\}$ ，where \mathbf{S} denotes the set of $d \times d$ symmetric real matrices．Define the Bellman operator

$$
H(A, f):=\sup _{B \in \mathbf{S}_{1}}(-B: A+f \sqrt[d]{\operatorname{det} B}) \quad \forall A \in \mathbf{S}, f \in[0, \infty)
$$

and the Monge－Ampère operator

$$
M(A, f):=\left(\frac{f}{d}\right)^{d}-\operatorname{det} A \quad \forall A \in \mathbf{S}, f \in[0, \infty)
$$

（a）Let $f \in[0, \infty)$ and $A \in \mathbf{S}$ ．Show that $H(A, f)=0$ holds if and only if $M(A, f)=0$ and $A \in \mathbf{S}_{+}$．
（b）Let $A \in \mathbf{S}_{+}, f \in[0, \infty)$ and let λ be the smallest eigenvalue of A ． Show that the function

$$
\Phi_{A, f}:[-f, \infty) \rightarrow[-\lambda, \infty), \delta \mapsto H(A, f+\delta)
$$

is continuous，strictly monotonically increasing and bijective．
4．Consider the LBR for Monge－Ampère：

$$
\mathrm{MA}_{h, S}^{\mathrm{LBR}} u(x):=\min _{\substack{(e, f, g) \in S^{3} \\ \text { superbase }}} \gamma\left(\nabla_{e, h}^{2,+} u(x), \nabla_{f, h}^{2,+} u(x), \nabla_{g, h}^{2,+} u(x)\right),
$$

where $\gamma: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}$ is defined by

$$
\gamma(a, b, c)= \begin{cases}b c & \text { if } a \geq b+c \\ a c & \text { if } b \geq a+c \\ a b & \text { if } c \geq a+b \\ \frac{1}{2}(a b+b c+c a)-\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right) & \text { otherwise }\end{cases}
$$

(a) Show that $\mathrm{MA}_{h, S}^{\mathrm{LBR}}$ is monotone and satisfies the discrete maximal principle (DCP).
(b) If replacing min by $\min ^{\delta}$ (regularized min), show that $\mathrm{MA}_{h, S, \delta}^{\mathrm{LBR}}$ is also monotone and satisfies DCP.
5. Let u_{ε} be the solution of two-scale method for MA, $I_{h} u$ be the interpolation of exact solution. Give the convergence rate estimate of

$$
\max _{\Omega}\left(I_{h} u-u_{\varepsilon}\right) .
$$

