差分方法II，作业2

交作业时间：2021／04／26

Finite Difference Schemes and Partial Differential Equations：
－Chapter 8：8．1．6，8．2．5
－Chapter 9：9．1．4，Example 9．2．2（show the uniformly diagonalizable）
－Chapter 10：10．1．6，10．1．10，10．3．4
1．Consider the elliptic problem in non－divergence form：

$$
\boldsymbol{A}(x): D^{2} u(x)=f(x), \quad \boldsymbol{A}(x) \geq 0
$$

If there exists $\Lambda_{0} \geq \lambda_{0}>0$, such that $\lambda_{0} \boldsymbol{I} \leq A(x) \leq \Lambda_{0} \boldsymbol{I}$ for all $x \in \Omega$ ， show that the non－divergence form is uniformly elliptic．

2．Given a symmetric matrix $\boldsymbol{A}(\boldsymbol{A} \neq 0)$ ，show that $\gamma=\frac{\operatorname{tr} \boldsymbol{A}}{\|\boldsymbol{A}\|_{F}^{2}}$ is the minimizer of

$$
\min _{\tau \in \mathbb{R}}\|\tau \boldsymbol{A}-\boldsymbol{I}\|_{F}^{2}
$$

Here $\|\cdot\|_{F}$ represents the Frobenius norm．Find the minimum．

