差分方法II，作业5

请将作业发到邮箱：snwu＠math．pku．edu．cn
交作业时间：2020／05／25

1．Consider the following problem：find $u: \bar{\Omega} \rightarrow \mathbb{R}$ such that

$$
F\left(x, u(x), \nabla u(x), D^{2} u(x)\right)=0 \quad \text { in } \Omega, \quad u(x)=g(x) \quad \text { on } \partial \Omega,
$$

where F is elliptic．If further F is strictly decreasing in the r variable or uniformly elliptic，show that the problem cannot have more than one classical solution．

2．Given a symmetric matrix $\boldsymbol{A}(\boldsymbol{A} \neq 0)$ ，show that $\gamma=\frac{\operatorname{tr} \boldsymbol{A}}{\|\boldsymbol{A}\|_{F}^{2}}$ is the minimizer of

$$
\min _{\tau \in \mathbb{R}}\|\tau \boldsymbol{A}-\boldsymbol{I}\|_{F}^{2}
$$

Here $\|\cdot\|_{F}$ represents the Frobenius norm．Find the minimum．
3．Let A and B be two nonempty compact subset of \mathbb{R}^{d} for $d \geq 1$ ．Then the following inequality holds：

$$
|A+B|^{1 / d} \geq|A|^{1 / d}+|B|^{1 / d}
$$

where the Minkowski sum is defined by

$$
A+B:=\left\{v+w \in \mathbb{R}^{d}: v \in A \text { and } w \in B\right\} .
$$

4．Consider a function $u(x, y)=x^{2}+y^{2}+x^{2} y^{2}$ and discretize the Monge－ Ampère operator using 9 －point stencil，i．e．

$$
\mathcal{G}_{\theta}=\left\{\left\{(1,0)^{T},(0,1)^{T}\right\},\left\{(1,1)^{T},(-1,1)^{T}\right\}\right\} .
$$

Show that

$$
\min _{\left\{w_{1}, w_{2}\right\} \in \mathcal{G}_{\theta}}\left(\Delta_{w_{1}} u(0,0)\right)^{+}\left(\Delta_{w_{2}} u(0,0)\right)^{+}=4,
$$

and

$$
\min _{w \in\left\{w_{1}, w_{2}\right\} \in \mathcal{G}_{\theta}}\left(\Delta_{w} u(0,0)\right)^{+} \max _{w \in\left\{w_{1}, w_{2}\right\} \in \mathcal{G}_{\theta}}\left(\Delta_{w} u(0,0)\right)^{+}=4+2 h^{2} .
$$

5. Consider the 17-point stencil for the regularized discretized MongeAmpère operator $\mathrm{MA}_{h, \theta, \delta}^{\mathrm{WS}}$. Find its Jacobian.
6. Let u_{ε} be a sequence of the uniformly bounded functions on $\bar{\Omega}$, where ε can be understood as a discretization parameter. Define

$$
\bar{u}(x)=\lim _{y \rightarrow x} \sup _{\varepsilon \downarrow 0} u_{\varepsilon}(y) .
$$

Let $\varphi \in C^{2}(\bar{\Omega})$ and assume that $\bar{u}-\varphi$ has a local maximum at $x_{0} \in \bar{\Omega}$ with $\bar{u}\left(x_{0}\right)=\varphi\left(x_{0}\right)$. Show that there are sequences $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}^{+}$and $\left\{y_{n}\right\}_{n=1}^{\infty} \subset \bar{\Omega}$, such that

$$
\varepsilon_{n} \downarrow 0, \quad y_{n} \rightarrow x_{0}, \quad u_{\varepsilon_{n}}\left(y_{n}\right) \rightarrow \bar{u}\left(x_{0}\right)
$$

and the sequence of functions $u_{\varepsilon_{n}}-\varphi$ attains its maximum at y_{n}.

