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Finite Volume Methods for Hyperbolic Problems:

• Chapter 8: 8.3

• Chapter 12: 12.3

Supplementary Questions:

1. Let q, w be piecewise smooth weak solutions of scalar conservation law
qt + f(q)x = 0, where f is convex. Assume that all the discontinuities
are shocks. Let the nonoverlapping Ik(t) := [xk(t), xk+1(t)] on which
q(x, t)− w(x, t) has sign (−1)k. Show that for any k,
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[
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]∣∣∣∣xk+1

xk
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2. For the scalar conservation law, show that Engquist-Osher flux is
monotone when the CFL condition holds.

3. For the scalar conservation law, show that LxF (Lax-Friedrichs), LLF
(Local Lax-Friedrichs), and Engquist-Osher fluxes are all E-fluxes.

4. For a monotone flux we have that F(↑, ↓). Show that a monotone flux
is an E-flux.

5. Let f(z) be a smooth vector-valued function. Show that

∇zf is symmetric ⇐⇒ fT = ∇zr for some scalar-valued function r(z).

6. Consider a conservative scheme with a Lipschitz-continuous numerical
flux. If the scheme is TVB (Total Variation Bounded), then there
exists a constant R̃ and k0, such that

TVT (Q) ≤ R̃, ∀nk ≤ T, k ≤ k0. (1)

where

TVT (Q) :=
∑
i

∑
n
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i+1 −Qn

i |+ h|Qn+1
i −Qn

i |].

Does (1) imply TVB?
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