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Abstract

In this paper, we study critical and subcritical branching α-stable processes, α ∈ (0, 2).
We obtain the exact asymptotic behaviors of the tails of the maximal positions of all
subcritical branching α-stable processes with positive jumps. In the case of subcritical
branching spectrally negative α-stable processes, we obtain the exact asymptotic behaviors
of the tails of the maximal positions under the assumption that the offspring distributions
satisfy the L logL condition. For critical branching α-stable processes, we obtain the exact
asymptotic behaviors of the tails under the assumption that the offspring distributions
belong to the domain of attraction of a γ-distribution, γ ∈ (1, 2].

Keywords— Branching stable process; rightmost position; integral equation
2020 MSC— 60J80; 60G52; 60G51; 60G70.

1 Introduction and main results

1.1 Introduction

A branching Lévy process is a continuous-time Markov process defined as follows. At time 0, there is
a particle at x ∈ R and it moves according to a Lévy process (ξt,Px). After an exponential time with
parameter 1, independent of the motion, it dies and produces k offspring with probability pk, k > 0.
The offspring move independently according to ξ from the place where they are born and obey the
same branching mechanism as their parent. This procedure goes on. For t > 0, let Nt be the collection
of particles alive at time t. For u ∈ Nt, we use Xu(t) to denote the position of the particle u at time
t. The point process (Zt)t>0 defined by

Zt :=
∑

u∈Nt

δXu(t), t > 0,

is called a branching Lévy process. We will denote the law of (Zt)t>0 by Px and write P for P0 for
simplicity. When ξ is a Brownian motion, (Zt)t>0 is called a branching Brownian motion. When ξ is
an α-stable process, α ∈ (0, 2), (Zt)t>0 is called a branching α-stable process.

Let m :=
∑∞

k=0 kpk be the mean of the offspring distribution. When m > 1(= 1, < 1), we say that
the branching Lévy process (Zt)t>0 is supercritical (critical, subcritical). It is well known that in the
critical and subcritical cases, (Zt)t>0 will die out in finite time with probability 1. Thus in this case
we can define the maximal position of (Zt)t>0 by

M := sup
t>0

sup
u∈Nt

Xu(t).
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When m = 1 and ξ is a standard Brownian motion, Sawyer and Fleischman [17] proved that, under
the assumption

∑∞
k=0 k

3pk < ∞,

lim
x→+∞

x2P (M > x) =
6

σ2
,

where σ2 is the variance of the offspring distribution. Profeta [13] extended the result above to some
critical branching spectrally negative Lévy processes under the same third moment condition on the
offspring distribution. When m = 1, ξ is an α-stable process with positive jumps and

∑∞
k=0 k

3pk < ∞,
Lalley and Shao [10], and Profeta [12] proved that

lim
x→+∞

xα/2P (M > x) = c1(α),

where c1(α) is an explicit positive constant. For critical branching spectrally negative α-stable processes
with α ∈ (1, 2), Profeta [13, Corollary 1.3] proved that, when

∑∞
k=0 k

3pk < ∞,

0 < lim inf
x→∞

xαP (M > x) 6 lim sup
x→∞

xαP (M > x) < ∞. (1)

When m < 1 and ξ is a standard Brownian motion, Sawyer and Fleischman [17] proved that, under
the assumption

∑∞
k=0 k

3pk < ∞, there exists a function c(·) bounded between two positive constants
such that

lim
x→+∞

P (M > x)

(1 −m)c(x)e−
√

2(1−m)x
= 1.

For subcritical branching α-stable processes with positive jumps, Profeta [12] proved that, under the
assumption

∑∞
k=0 k

3pk < ∞,

lim
x→+∞

xαP (M > x) =
c2(α)

1−m

for some explicit constant c2(α). For subcritical branching spectrally negative processes, Profeta [13,
Theorem 1] proved that, under the assumption

∑∞
k=0 k

3pk < ∞,

lim
x→∞

ec4xP (M > x) = c3

for some explicit positive constants c3, c4.
For results on the asymptotic behaviors of the tails of maximal positions of (sub)critical branching

random walks, see [9, 11].
The purpose of this paper is to establish the exact asymptotic behaviors of the tails of the maxi-

mal positions of (sub)critical branching α-stable processes under minimal conditions on the offspring
distributions. More precisely, we will obtain (i) the exact asymptotic behaviors of the tails of the
maximal positions of subcritical branching α-stable processes with positive jumps without any extra
assumption on the offspring distributions; (ii) the exact asymptotic behaviors of the tail of the maximal
positions of subcritical branching spectrally negative α-stable processes under the assumption that the
offspring distributions satisfy the L logL condition; (iii) the exact asymptotic behaviors of the tails of
critical branching α-stable processes under the assumption that the offspring distributions belong to
the domain of attraction of a γ-distribution, γ ∈ (1, 2].

1.2 Main results

Before we state our main results, we recall some useful facts about stable processes. In this paper,
we always assume that the spatial motion ξ is a (strictly) α-stable process, α ∈ (0, 2). For basic
information on α-stable process, see, for instance, [1, Chap. VIII]. We assume that the Lévy measure
of ξ is given by

vα(dx) := c+x
−(1+α)1(0,∞)(x)dx + c−|x|−(1+α)1(−∞,0)(x)dx,

where c+ and c− are non-negative numbers with at least one of them being positive. Let Ψ(θ) :=
− lnE(eiθξ1) be the characteristic exponent of ξ. It is known (see, for instance [8, Chapter 1.2.6]) that,

Ψ(θ) =

{
c∗|θ|α

(
1− iβ tan πα

2 sgn θ
)
, for α ∈ (0, 1) ∪ (1, 2) and β ∈ [−1, 1],

c∗|θ|+ iθη, for α = 1

2



where η ∈ R, c∗ := − (c+ + c−) Γ(−α) cos(πα/2), and β = (c+ − c−) / (c+ + c−) if α ∈ (0, 1) ∪ (1, 2).
Here sgn θ = 1(θ>0) − 1(θ<0). Note that, for (strictly) 1-stable process, c+ = c− (see, for example, [16,
Theorem 14.7 (v)]). It follows from [15, Example 1.1, Lemma 2.1 and the last sentence in Subsection
1.1] (see also [1, Proposition VIII.4]) that, when c+ > 0,

lim
x→∞

xαP0(ξ1 > x) = να((1,∞)) =
c+
α
. (2)

When c+ = 0 and α ∈ (0, 1), −ξ is a subordinator and M = 0 almost surely. A spectrally negative
1-stable process reduces to the drift −ηt. When η > 0, M = 0. Thus in the case of branching spectrally
negative α-stable processes, exclude the above cases and assume either α ∈ (1, 2), or α = 1 and η < 0.
In this case, it is easy to see that for any λ > 0,

E0(e
λξ1) = exp {C1(α)λ

α} , where C1(α) = −Ψ(−i). (3)

Define τy = inf{t > 0, ξt > y}. For any x < y, combining (3) with the fact that Px

(
ξτy = y

)
= 1, we

have that for any λ > 0,

Ex

(
e−λτy

)
= exp

{
−C1(α)

−1/αλ1/α(y − x)
}
. (4)

In the critical case, we will need the following assumption on the offspring distribution:

(H) The offspring distribution {pk : k > 0} belongs to the domain of attraction of a γ-stable,
γ ∈ (1, 2], distribution. More precisely, either there exist γ ∈ (1, 2) and κγ ∈ (0,∞) such that

lim
n→∞

nγ
∞∑

k=n

pk = κγ ,

or that (corresponding γ = 2)
∞∑

k=0

k2pk < ∞.

Recall that σ2 is the variance of the offspring distribution. We define

C2(γ) :=

{
Γ(2−γ)
γ−1 κγ for γ ∈ (1, 2);

1
2σ

2 for γ = 2.
(5)

Our first main result is on (sub)critical branching stable processes with positive jumps.

Theorem 1. Suppose that c+ > 0.
i) If m < 1, then

lim
x→+∞

xαP (M > x) =
c+

(1−m)α
.

ii) If m = 1 and (H) holds, then

lim
x→+∞

xα/γP (M > x) =

(
c+

αC2(γ)

) 1
γ

,

where C2(γ) is defined in (5).

Remark 1. Theorem 1 (ii) is also contained in Theorem 3 of the recent preprint [14]. Since there
are some differences between the proofs of Theorem 1 (ii) and [14, Theorem 3], we include it here for
completeness. The proof of Theorem 1 is an adaptation of that of the corresponding result in [12]
below. (H) only changes the behaviors of Φ0 and ΦR, defined in (7). In [12, (1.5)], the third moment
condition on the offspring distribution is used to estimate ΦR directly while in the γ-stable branching
case, we have to do a more careful analysis.

Our second main result is on the case for critical branching spectrally negative α-stable process
with α ∈ (1, 2), and it generalizes and refines (1).

3



Theorem 2. Suppose c+ = 0 and α ∈ (1, 2) or α = 1 and η < 0. If m = 1 and (H) holds, then there
exists a constant C3(α, β, γ) ∈ (0,∞) such that

lim
x→∞

x
α

γ−1P (M > x) = C3(α, β, γ).

Remark 2. The constant C3(α, β, γ) has a probabilistic representation via a super α-stable process,
see the proof of Proposition 2. In the proof of Proposition 2, we use the fact that a superprocess is an
appropriate scaling limit of branching Markov processes.

Our last main result is on subcritical branching spectrally negative α-stable process with α ∈ (1, 2).

Theorem 3. Suppose that c+ = 0, and that either α ∈ (1, 2) or α = 1 and η < 0. If m < 1 and∑∞
k=0 k(log k)pk < ∞, then there exists a positive constant C4(α) such that

lim
x→∞

e((1−m)/C1(α))
1/αxP (M > x) = C4(α).

Remark 3. Our proof of Theorem 3 can be easily adapted to a widely class of subcritical branching
spectrally negative Lévy processes.

2 An integral equation for P (M > x)

Let

u(x) := P (M > x) and St := sup
s∈[0,t]

ξs

be the tail probability of M and the supremum of ξ up to time t. Let e be an exponential random
variable with parameter 1 independent of ξ. Define

G(x) :=

∞∑

k=0

pk(1− x)k − 1 +mx, x ∈ [0, 1].

It is easy to see that G is a non-negative function in [0, 1].

Proposition 1. The function u is a solution of the integral equation:

u(x) = P0 (Se > x) +E0

[
1{Se<x}u (x− ξe)

]
− Φ0(x)− ΦR(x), (6)

where

Φ0(x) = (1−m)E0

[
1{Se<x}u (x− ξe)

]
and ΦR(x) = E0

[
1{Se<x}G(u (x− ξe))

]
. (7)

(i) If m = 1 and (H) holds, then for any ε > 0, there exists δ > 0 such that

ΦR(x) > (1− ε)C2(γ)E0

[
1{Se<x}u

γ (x− ξe)
]
− (1 − ε)C2(γ)

δ
E0

[
1{Se<x}u

γ+1 (x− ξe)
]

(8)

and

ΦR(x) 6 (1 + ε)C2(γ)E0

[
1{Se<x}u

γ (x− ξe)
]
+

1

δγ+1
E0

[
1{Se<x}u

γ+1 (x− ξe)
]
, (9)

where C2(γ) is defined in (5).
(ii) If m < 1 and c+ > 0, then

lim
x→∞

ΦR(x)

Φ0(x)
= 0. (10)

Proof. Applying the Markov property at the first branching time, we get

P (M < x) = p0P (Se < x) +

+∞∑

n=1

pnP
(
Se < x, ξe +M (1) < x, . . . , ξe +M (n) < x

)
,
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where
(
M (n)

)
n∈N

are independent copies of M , which are also independent of (ξe, Se). Hence,

1− u(x) = p0P0 (Se < x) +

+∞∑

n=1

pnE0

[
1{Se<x} (1− u (x− ξe))

n]

= p0P0 (Se < x) −mE0

[
1{Se<x}u (x− ξe)

]

+E0

[
1{Se<x}

(
+∞∑

n=1

pn (1− u (x− ξe))
n +mu (x− ξe)

)]
.

Therefore,

u(x) =P0 (Se > x) +E0

[
1{Se<x}u (x− ξe)

]
− (1−m)E0

[
1{Se<x}u (x− ξe)

]

−E0

[
1{Se<x}

(
+∞∑

n=1

pn (1− u (x− ξe))
n
+mu (x− ξe)− (1− p0)

)]

=P0 (Se > x) +E0

[
1{Se<x}u (x− ξe)

]
− Φ0(x) − ΦR(x),

where Φ0 and ΦR are given in (7).
We prove (i) first. When m = 1 and (H) holds, from [4, Lemma 3.1] (for γ ∈ (1, 2)) and L’Hopital’s

rule (for γ = 2), we get that

lim
u↓0

G(u)

uγ
= C2(γ). (11)

Therefore, for any ε > 0, there exists δ > 0 such that for all u 6 δ,

(1− ε)C2(γ) 6
G(u)

uγ
6 (1 + ε)C2(γ). (12)

Plugging (12) into the definition of ΦR in (7), we get

ΦR(x) > E0

[
1{Se<x}G(u (x− ξe))1{u(x−ξe)<δ}

]

> (1− ε)C2(γ)E0

[
1{Se<x}u

γ (x− ξe) 1{u(x−ξe)<δ}

]

> (1− ε)C2(γ)E0

[
1{Se<x}u

γ (x− ξe)
]
− (1− ε)C2(γ)

δ
E0

[
1{Se<x}u

γ+1 (x− ξe)
]
,

where in the last inequality we used 1{u<δ} = 1− 1{u>δ} and 1{u>δ} 6 u/δ. Thus (8) is valid. On the
other hand, since G(x) 6 1 for x ∈ [0, 1], we have

ΦR(x) = E0

[
1{Se<x}G(u (x− ξe))1{u(x−ξe)<δ}

]
+E0

[
1{Se<x}G(u (x− ξe))1{u(x−ξe)>δ}

]

6 (1 + ε)C2(γ)E0

[
1{Se<x}u

γ (x− ξe)
]
+

1

δγ+1
E0

[
1{Se<x}u

γ+1 (x− ξe)
]
, (13)

which implies (9).
We now consider the case m < 1 and prove (ii) under the assumption c+ > 0. Note that for any

ε > 0, there exists δ > 0 such that

G(u) 6 εu, for all u 6 δ.

Similar to (13), using the fact that G(x) 6 1, we get that

ΦR(x) = E0

[
1{Se<x}G(u (x− ξe))1{u(x−ξe)<δ}

]
+E0

[
1{Se<x}G(u (x− ξe))1{u(x−ξe)>δ}

]

6 εE0

[
1{Se<x}u (x− ξe)

]
+

1

δ2
E0

[
1{Se<x}u

2 (x− ξe)
]
.

Therefore, to prove (10), it suffices to show that

lim
x→∞

E0

[
1{Se<x}u

2 (x− ξe)
]

E0

[
1{Se<x}u (x− ξe)

] = 0. (14)

Considering the case where the initial particle does not split before time 1 and using (2), we get

u(x) > e−1P0(S1 > x) > e−1P0(ξ1 > x) >
c+
2eα

x−α.
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when x is large enough. Therefore, when x is large enough,

E0

[
1{Se<x}u (x− ξe)

]
> E0

[
1{Se<x}u (x− ξe) 1{|ξe|< 1

2x}
]
>

c+
2eα

E0

[
1{Se<x} (x− ξe)

−α
1{|ξe|< 1

2x}
]

>
c+
2eα

(
3

2
x

)−α

P0

(
Se < x, |ξe| <

1

2
x

)
> c1x

−α, (15)

for some positive constant c1, where we used the fact that limx→∞ P0

(
Se < x, |ξe| < 1

2x
)
= 1. Now

we consider the numerator. Using the fact that u 6 1, we get that that for δ′ > 0 sufficiently small,

E0

[
1{Se<x}u

2 (x− ξe)
]

= E0

[
1{Se<x}u

2 (x− ξe) 1{ξe<(1−δ′)x}

]
+E0

[
1{Se<x}u

2 (x− ξe) 1{(1−δ′)x<ξe<x}

]

6 u(δ′x)E0

[
1{Se<x}u (x− ξe)

]
+P0 ((1− δ′)x < ξe < x) . (16)

Combining (15) and (16), we obtain that

lim sup
x→∞

E0

[
1{Se<x}u

2 (x− ξe)
]

E0

[
1{Se<x}u (x− ξe)

] 6 lim
x→∞

u(δ′x) + c1 lim sup
x→∞

xαP0 ((1− δ′)x < ξe < x)

= c1 lim sup
x→∞

xα

∫ ∞

0

e−zP0 ((1− δ′)x < ξz < x) dz.

From [15, Lemma 2.2], when x is large enough,

xαP0 ((1 − δ′)x < ξz < x) 6 xαP0 (|ξz | > (1− δ′)x) 6 c2z, for all z > 0

for some positive constant c2. Therefore, combining the dominated convergence theorem and (2), we
get that

lim sup
x→∞

E0

[
1{Se<x}u

2 (x− ξe)
]

E0

[
1{Se<x}u (x− ξe)

] 6
c2c+
α

∫ ∞

0

ze−zdz
δ′

(1− δ′)1+α

δ′↓0−→ 0,

which implies (14).

3 Proof of Theorem 1

3.1 The case 0 < α < 1

Define
ηα(λ) := Γ(1− α)λα−1

and ξ+
e
= max (0, ξe). It follows from [12, (2.1)] that

lim
λ↓0

1−E0

[
e−λSe

]

λ · ηα(λ)
= lim

λ↓0

1−E0

[
e−λξ+

e

]

λ · ηα(λ)
=

c+
α
. (17)

We will use L[f ] to denote the Laplace transform of a positive function f :

L[f ](λ) :=
∫ +∞

0

e−λxf(x)dx, λ > 0.

The following lemma is given in [12, Lemma 2.1]

Lemma 1. Assume that α < 1 and that f : [0,∞) → [0,∞) is a positive and decreasing function.
(i) For any λ > 0, it holds that

∫ ∞

0

e−λxE0

[
1{Se<x}f(x− ξe)

]
dx 6 E0

[
e−λSe

]
L[f ](λ).

6



(ii) For any λ > 0, it holds that

∫ ∞

0

e−λxE0

[
1{Se<x}f(x− Le)

]
dx

> E0

[
e−λξ+

e

]
L[f ](λ) + f(0)

E0

[
e−λSe

]
−E0

[
e−λξ+

e

]

λ
−E0

[
1{ξe<0}

∫ −ξe

0

e−λzf(z)dz

]
.

(iii) If in addition that limx→∞ f(x) = 0, then

lim
λ↓0

1

ηα(λ)
E0

[
1{ξe<0}

∫ −ξe

0

e−λzf(z)dz

]
= 0.

The next lemma can be found in [12, Lemma 2.2].

Lemma 2. For any λ > 0, it holds that

λ

1−E0 [e−λSe ]
L [Φ0 +ΦR] (λ) 6 1

and

λ

1−E0

[
e−λξ+

e

]L [Φ0 +ΦR] (λ) > 1− λL[u](λ) − λ

1−E0

[
e−λξ+

e

]E0

[
1{ξe<0}

∫ −ξe

0

e−λzu(z)dz

]
.

Proof of Theorem 1 for α < 1. Recall that u(x) = P (M > x). Using a change of variables and the
monotone convergence theorem, we get

λL[u](λ) =
∫ +∞

0

e−zu
( z
λ

)
dz −→

λ↓0
0.

Combining (17) and Lemma 1 (iii) with f = u and Lemma 2, we get

lim
λ↓0

L [Φ0 +ΦR] (λ)

ηα(λ)
=

c+
α
. (18)

We first consider the case m = 1. In this case, Φ0(x) = 0. Combining (9) and Lemma 1 (i) with
f = uγ and f = uγ+1, we get

L [ΦR] (λ) 6 C2(γ)(1 + ε)L [uγ ] (λ) +
1

δγ+1
L
[
uγ+1

]
(λ). (19)

Since limx→+∞ u(x) = 0, for any ε1 > 0, there exists A1 > 0 such that u(x) 6 ε1 for x > A1. Hence,

L
[
uγ+1

]
(λ) =

∫ A1

0

e−λxuγ+1(x)dx +

∫ +∞

A1

e−λxuγ+1(x)dx

6 A1 + ε1

∫ +∞

A1

e−λxuγ(x)dx 6 A1 + ε1L [uγ ] (λ), (20)

where in the first inequality we used the fact that u 6 1. Thus, combining (18), (19) and (20), we have

c+
α

= lim
λ↓0

L [ΦR] (λ)

ηα(λ)
6 lim inf

λ↓0

(
C2(γ)(1 + ε) + ε1/δ

γ+1
)
L [uγ ] (λ) +A1/δ

γ+1

ηα(λ)

= lim inf
λ↓0

(
C2(γ)(1 + ε) + ε1/δ

γ+1
)
L [uγ ] (λ)

ηα(λ)
.

Letting ε1 → 0 first and then ε → 0, we get that

c+
α

6 lim inf
λ↓0

C2(γ)L [uγ ] (λ)

ηα(λ)
. (21)

7



On the other hand, combining (8), (20), Lemma 1 (ii) with f = uγ and Lemma 1 (i) with f = uγ+1,
we see that

L [ΦR] (λ)

> C2(γ)(1− ε)


E0

[
e−λξ+

e

]
L[uγ ](λ) +

E0

[
e−λSe

]
−E0

[
e−λξ+

e

]

λ
−E0

[
1{ξe<0}

∫ −ξe

0

e−λzuγ(z)dz

]


− C2(γ)(1− ε)

δ
(A1 + ε1L [uγ ] (λ)) .

Dividing both sides by ηα(λ) and using Lemma 1 (iii) with f = uγ , we obtain

c+
α

> lim sup
λ↓0

C2(γ)(1− ε) (1− ε1/δ)L[uγ ](λ)

ηα(λ)
.

Letting ε1 → 0 first and then ε → 0, we conclude that

c+
α

> lim sup
λ↓0

C2(γ)L [uγ ] (λ)

ηα(λ)
. (22)

Combining (21) and (22), we conclude that

lim
λ↓0

L [uγ ] (λ)

ηα(λ)
=

c+
αC2(γ)

.

Hence, by the Tauberian theorem, the above limit is equivalent to

lim
x→+∞

1

ηα
(
1
x

)
∫ x

0

uγ(z)dz =
c+

αΓ(2− α)C2(γ)
.

Applying Karamata’s monotone density theorem [2, Theorem 1.7.2], we get the desired result for
m = 1.

Now we deal with the subcritical case m < 1. For any ε′ > 0, by (10), we see that there exists a
constant A′ such that for all x > A′,

0 6 ΦR(x) 6 ε′Φ0(x). (23)

Similar to (20), using (23), we get that for all λ > 0,

0 6 L[ΦR](λ) 6 A′ + ε′
∫ ∞

A′

e−λxΦ0(x)dx 6 A′ + ε′L[Φ0](λ),

which together with (18) implies that

lim sup
λ↓0

L[Φ0](λ)

ηα(λ)
6

c+
α

6 lim inf
λ↓0

(1 + ε′)L[Φ0](λ) +A′

ηα(λ)
= (1 + ε′) lim inf

λ↓0

L[Φ0](λ)

ηα(λ)
.

Letting ε′ ↓ 0, we get

lim
λ↓0

1

ηα(λ)
L[u](λ) = c+

α(1 −m)
.

Hence, by the Tauberian theorem, we have

lim
x→+∞

1

ηα
(
1
x

)
∫ x

0

u(z)dz =
c+

αΓ(2 − α)(1 −m)
.

Applying Karamata’s monotone density theorem [2, Theorem 1.7.2], we get the desired result.
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3.2 Proof of Theorem 1 for 1 6 α < 2

It follows from [12, (3.3)] that for α ∈ (1, 2),

lim
λ↓0

∫ +∞

0
e−λxxP0 (Se > x) dx

λα−2
= lim

λ↓0

1−E0

[
e−λSe

]
− λE0

[
See

−λSe

]

λ2 · λα−2
=

c+Γ(2− α)

α
. (24)

For α = 1, combining (2), [15, Lemma 2.2] and the dominated convergence theorem, (24) remains true
for α = 1 since Γ(1) = 1. Moreover, (24) also holds with Se replaced by ξ+

e
.

Lemma 3. Assume that α ∈ [1, 2) and that f : [0,∞) → [0,∞) is a positive and decreasing function.
(i) We have the following upper bound

∫ ∞

0

e−λxxE0

[
1{Se<x}f(x− ξe)

]
dx 6 E0

[
e−λSe

]
L[xf(x)](λ) +E0

[
See

−λSe

]
L[f ](λ).

(ii) We have the following lower bound

∫ ∞

0

e−λxxE0

[
1{Se<x}f(x− ξe)

]
dx

> f(0)

∫ +∞

0

e−λxx (P0 (ξe > x)−P0 (Se > x)) dx+E0

[
e−λξe1{ξe>0}

]
L[xf(x)](λ)

+

∫ ∞

0

e−λxxE0

[
1{ξe<0}f(x− ξe)

]
dx.

Proof. For (i), see [12, Lemma 3.1] for the proof of α ∈ (1, 2) and the proof for α = 1 is the same. Now
we prove (ii). Combining the inequalities 1{Se>x} > 1{ξe>x} and f(x) 6 f(0) for all x > 0, we have

∫ ∞

0

e−λxxE0

[
1{Se<x}f(x− ξe)

]
dx

> f(0)

∫ +∞

0

e−λxx (P0 (ξe > x) −P0 (Se > x)) dx+

∫ ∞

0

e−λxxE0

[
1{ξe<x}f(x− ξe)

]
dx. (25)

By Fubini’s theorem, we have

∫ ∞

0

e−λxxE0

[
1{06ξe<x}f(x− ξe)

]
dx =

∫ ∞

0

e−λxx

∫ x

0

f(x− y)P0(ξe ∈ dy)dx

=

∫ ∞

0

P0(ξe ∈ dy)

∫ ∞

y

e−λxxf(x − y)dx >

∫ ∞

0

P0(ξe ∈ dy)

∫ ∞

y

e−λx(x− y)f(x− y)dx

= E0

[
e−λξe1{ξe>0}

]
L[xf(x)](λ). (26)

Now (ii) follows from (25) and (26)

Lemma 4. For any λ > 0, it holds that
(i)

λ2

1−E0 [e−λSe ]− λE0 [See−λSe ]
L [x(Φ0(x) + ΦR(x))] (λ) 6 1+

λ2E0

[
See

−λSe

]

1−E0 [e−λSe ]− λE0 [See−λSe ]
L[u](λ),

(ii)

λ2

1−E0

[
e−λξ+e

]
− λE0

[
ξ+e e−λξ+e

]L [x(Φ0(x) + ΦR(x))] (λ)

> 1−
λ2E0

[
1− e−λξ+

e

]
L[xu(x)](λ)

1−E0

[
e−λξ+

e

]
− λE0

[
ξ+e e−λξ+

e

]

− λ2
(
P0 (ξe 6 0)L(xu(x))(λ) −

∫∞

0 e−λxxE0

[
1{ξe<0}u(x− ξe)

]
dx
)

1−E0

[
e−λξ+e

]
− λE0

[
ξ+e e−λξ+e

] .
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Proof. The proof of (i) for α ∈ (1, 2) can be found in [12, Lemma 3.2] and the case α = 1 can be
treated similarly. Now we prove (ii). Combining (6) and Lemma 3 (ii) with f = u, we see that

L [x(Φ0(x) + ΦR(x))] (λ) + L(xu(x))(λ)

=

∫ +∞

0

e−λxxP0 (Se > x) dx+

∫ ∞

0

e−λxxE0

[
1{Se<x}u(x− ξe)

]
dx

>

∫ +∞

0

e−λxxP0 (ξe > x) dx+E0

[
e−λξe1{ξe>0}

]
L[xu(x)](λ)

+

∫ ∞

0

e−λxxE0

[
1{ξe<x}f(x− ξe)

]
dx.

From the argument of (24) and the fact that ξe = ξ+
e

on the set {ξe > x} for x > 0, we get the lower
bound

L [x(Φ0(x) + ΦR(x))] (λ) + L(xu(x))(λ)

>

∫ +∞

0

e−λxxP0

(
ξ+
e
> x

)
dx−E0

[
(1− e−λξ+

e )1{ξe>0}

]
L(xu(x))(λ)

−
(
P0 (ξe 6 0)L(xu(x))(λ) −

∫ ∞

0

e−λxxE0

[
1{ξe<0}u(x− ξe)

]
dx

)

=
1−E0

[
e−λξ+

e

]
− λE0

[
ξ+
e
e−λξ+

e

]

λ2
−E0

[
1− e−λξ+

e

]
L(xu(x))(λ)

−
(
P0 (ξe 6 0)L(xu(x))(λ) −

∫ ∞

0

e−λxxE0

[
1{ξe<0}u(x− ξe)

]
dx

)
,

which implies the desired result.

In the critical case m = 1, we will need the following a priori upper bound of u.

Lemma 5. If α ∈ (1, 2) and m = 1, then there exists a constant A > 0 such that,

u(x) 6 Ax−α/γ , for all x > 0.

Proof. The proof is similar to that of [12, Lemma 3.3]. The main difference is that we have (29) for

our branching mechanism. Denote by M (t) the maximum of (Zs : s > 0) on [0, t] and by M
(t)

the
maximum of (Zs : s > 0) on [t,+∞]. Since α ∈ (1, 2), we have ρ := P0(ξ1 > 0) ∈ [1− 1

α ,
1
α ]. It follows

that

u(x) = P(M > x) 6 P(M (t)
> x) + P(M

(t)
> x)

6 P(M (t)
> x) + P (Nt > 1) . (27)

Define Tx = inf {t > 0 : ∃u ∈ Nt, Xu(t) > x}. Then {Tx 6 t} =
{
M (t)

> x
}
. Applying strong Markov

property at Tx, we get

E

[
∑

u∈Nt

1{Xu(t)>x} | M (t)
> x

]
> ρ,

which implies that

P

(
M (t)

> x
)
6 ρ−1E

[
∑

u∈Nt

1{Xu(t)>x}

]
6 ρ−1E[Nt]P0 (ξt > x) = ρ−1P0

(
t1/αξ1 > x

)
, (28)

where we used the facts that Nt is independent of the spatial positions, and E[Nt] = 1 for all t > 0. It
follows from (12) that the function

∑∞
k=0 pk(1− x)k − (1− x) is a regularly varying at 0 with index γ.

Hence by [18] [Theorem 4] we know that Q(t) := P(Nt > 1) satisfies the following equation for some
positive constant c:

lim
t→∞

Q(t)

t(γ − 1)cQ(t)γ
= 1,

10



which implies that

P(Nt > 1) ∼
(

1

c(γ − 1)t

) 1
γ−1

. (29)

Taking t = xα(1− 1
γ ) in (28) and (29), using (27), we get that there is some constant A > 0 such that

u(x) 6 Ax−α/γ .

This completes the proof of the Lemma.

Proof of Theorem 1 for α ∈ [1, 2). We first prove that

lim
λ↓0

L [x(Φ0(x) + ΦR(x))] (λ)

λα−2
=

c+Γ(2− α)

α
. (30)

For the upper bound, combining (24) and Lemma 4(i), we have

α

c+Γ(2− α)
lim sup

λ↓0

L [x(Φ0(x) + ΦR(x))] (λ)

λα−2
6 1 + lim sup

λ↓0

λ2E0

[
See

−λSe

]

1−E0 [e−λSe ]− λE0 [See−λSe ]
L[u](λ)

= 1 +
α

c+Γ(2− α)
lim sup

λ↓0
λ2−αE0

[
See

−λSe

]
L[u](λ). (31)

When α ∈ (γ, 2), combining Lemma 5 and the fact that E0(Se) < ∞, we see that

λ2−αE0

[
See

−λSe

]
L[u](λ) 6 E0 [Se]λ

2−α

(
1 +A

∫ ∞

1

x−α/γdx

)
λ↓0−→ 0. (32)

When α ∈ (1, γ], using α ∈ (1, 2) and γ ∈ (1, 2], we have 1+αγ−1 = α+ γ−1 (1− (α− 1)(γ − 1)) > α.
Thus there exists δ ∈ (0, 1) such that 1+αδ/γ > α. Therefore, combining Lemma 5 and E0(Se) < ∞,

λ2−αE0

[
See

−λSe

]
L[u](λ) 6 AE0 [Se]λ

2−α

∫ ∞

0

e−λxx−αδ/γdx

= AE0 [Se]λ
1+αδ/γ−α

∫ ∞

0

e−xx−αδ/γdx
λ↓0−→ 0. (33)

When α = 1, fix a constant δ ∈ (1 − 1/γ, 1). Combining [12, (2.1)] and Markov’s inequality, we have

yδP0(Se > y) 6
yδ

(1− e−1)
E0(1− e−y−1Se) =

yδ−1 ln y

(1− e−1)

E0(1− e−y−1Se)

y−1 ln y

y→∞−→ 0.

Thus there exists cδ > 0 such that P0(Se > y) 6 cδy
−δ for any y > 0, which implies that

λE0

[
See

−λSe

]
L[u](λ) = λ

∫ ∞

0

(1− λy)e−λyP0(Se > y)dy

∫ ∞

0

e−λxu(x)dx

6 Aλ

∫ ∞

0

e−λyP0(Se > y)dy

∫ ∞

0

e−λxx−1/γdx

6 Acδλ

∫ ∞

0

e−λyy−δdy

∫ ∞

0

e−λxx−1/γdx

= Acδλ
δ+γ−1−1

∫ ∞

0

e−yy−δdy

∫ ∞

0

e−xx−1/γdx
λ↓0−→ 0. (34)

Combining (31), (32), (33) and (34), we get

lim sup
λ↓0

L [x(Φ0(x) + ΦR(x))] (λ)

λα−2
6

c+Γ(2 − α)

α
. (35)

Now we prove the lower bound. Similarly, combining (24) and Lemma 4(ii), we see that for any
ε > 0,

α

c+Γ(2− α)
lim inf

λ↓0

L [x(Φ0(x) + ΦR(x))] (λ)

λα−2

> 1− α

c+Γ(2− α)
lim sup

λ↓0
λ2−αE0

[
1− e−λξ+

e

]
L[xu(x)](λ) − α

c+Γ(2− α)

× lim sup
λ↓0

λ2−α

(
P0 (ξe 6 0)L(xu(x))(λ) −

∫ ∞

0

e−λxxE0

[
1{ξe<0}u(x− ξe)

]
dx

)
. (36)
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From Lemma 5, it holds that

L[xu(x)](λ) 6 A

∫ ∞

0

e−λxx1−γ−1αdx = Aλα/γ−2

∫ ∞

0

e−xx1−γ−1αdx.

Since 1 − γ−1α > 1 − 2 = −1, we conclude from the above inequality that for any α ∈ [1, 2), there
exists A′ such that

λ2−αE0

[
1− e−λξ+

e

]
L[xu(x)](λ) 6 A′λα/γ−αE0

[
1− e−λξ+

e

]
.

Note that when α = 1, by [12, (2.1)], limλ↓0
1

λ ln(λ−1)E0

[
1− e−λξ+

e

]
= c+

α , and when α ∈ (1, 2),

limλ↓0
1
λE0

[
1− e−λξ+

e

]
= E0(ξ

+
e
). Using the fact that α/γ − α+ 1 = γ−1(1− (α− 1)(γ − 1)) > 0, we

have

lim sup
λ↓0

λ2−αE0

[
1− e−λξ+

e

]
L[xu(x)](λ) = 0. (37)

Plugging (37) into (36) yields that

α

c+Γ(2− α)
lim inf

λ↓0

L [x(Φ0(x) + ΦR(x))] (λ)

λα−2
> 1− α

c+Γ(2− α)

× lim sup
λ↓0

λ2−α

(
P0 (ξe 6 0)L(xu(x))(λ) −

∫ ∞

0

e−λxxE0

[
1{ξe<0}u(x− ξe)

]
dx

)
. (38)

When α ∈ (1, 2), using the fact that E0(|ξe|) < ∞, we see that
∫ ∞

0

e−λxxE0

[
1{ξe60}u(x− ξe)

]
dx = E0

(
1{ξe60}

∫ ∞

−ξe

e−λ(x+ξe)(x+ ξe)u(x)dx

)

> E0

(
1{ξe60}

∫ ∞

−ξe

e−λx(x+ ξe)u(x)dx

)
> P0 (ξe 6 0)L(xu(x))(λ)

−E0

(
1{ξe60}

∫ −ξe

0

e−λxxu(x)dx

)
−E0(|ξe|)L(u)(λ)

> P0 (ξe 6 0)L(xu(x))(λ) − 2E0(|ξe|)L(u)(λ). (39)

Therefore, combining (32) and (33), we conclude from (39) that

lim sup
λ↓0

λ2−α

(
P0 (ξe 6 0)L(xu(x))(λ) −

∫ ∞

0

e−λxxE0

[
1{ξe<0}u(x− ξe)

]
dx

)

6 2E0(|ξe|) lim sup
λ↓0

λ2−αL(u)(λ) = 0.

Combining the above inequality with (35) and (38), we get (30) holds for α ∈ (1, 2).
Now we consider the case α = 1. For any fixed δ ∈ (0, 1), noticing that E0(|ξe|1−δ) < ∞, we get

that
∫ ∞

0

e−λxxE0

[
1{ξe60}u(x− ξe)

]
dx = E0

(
1{ξe60}

∫ ∞

−ξe

e−λ(x+ξe)(x+ ξe)u(x)dx

)

> E0

(
1{ξe60}

∫ ∞

−ξe

e−λx(x+ ξe)u(x)dx

)
= P0 (ξe 6 0)L(xu(x))(λ)

−E0

(
1{ξe<0}

∫ −ξe

0

e−λxxu(x)dx

)
−E0

(
1{ξe<0}

∫ ∞

−ξe

e−λx|ξe|u(x)dx
)

> P0 (ξe 6 0)L(xu(x))(λ) − 2E0(|ξe|1−δ)L(xδu(x))(λ). (40)

By taking δ < γ−1, we get from Lemma 5 and (40) that

lim sup
λ↓0

λ

(
P0 (ξe 6 0)L(xu(x))(λ) −

∫ ∞

0

e−λxxE0

[
1{ξe<0}u(x− ξe)

]
dx

)

6 2E0(|ξe|1−δ) lim sup
λ↓0

λL(xδu(x))(λ) 6 2AE0(|ξe|1−δ) lim sup
λ↓0

λ

∫ ∞

0

e−λyyδ−1/γdy

= 2AE0(|ξe|1−δ) lim sup
λ↓0

λ1/γ−δ

∫ ∞

0

e−yyδ−1/γdy = 0. (41)
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Combining (35), (38) and (41), we get that (30) holds when α = 1.
The rest of the proof is now similar to the case α ∈ (0, 1). We first consider the case m = 1. In

this case, Φ0(x) = 0. Combining (9) and Lemma 3 (i) with f = uγ and f = uγ+1, we get that

L [xΦR] (λ) 6 (1 + ε)C2(γ) (L [xuγ(x)] (λ) +E0 [Se]L [uγ ] (λ))

+
1

δγ+1

(
L
[
xuγ+1(x)

]
(λ) +E0 [Se]L

[
uγ+1

]
(λ)
)
. (42)

For any ε1 > 0, since limx→+∞ u(x) = 0, there exists A2 > 0 such that u(x) 6 ε1 for x > A2. Similar
to (20), we have

L
[
xuγ+1(x)

]
(λ) 6 A2

2 + ε1L [xuγ(x)] (λ). (43)

Combining (30), (42) and (43), we get

c+Γ(2− α)

α
6
(
(1 + ε)C2(γ) + ε1/δ

γ+1
)
lim inf

λ↓0
λ2−αL [xuγ(x)] (λ).

Letting ε1 → 0 first and then ε → 0, we get that

c+Γ(2− α)

α
6 C2(γ) lim inf

λ↓0
λ2−αL [xuγ(x)] (λ). (44)

Next, combining (43), Lemma 3 (ii) with f = uγ and Lemma 3 (i) with f = uγ+1, it holds that

L [xΦR(x)] (λ) > C2(γ)(1− ε)

∫ +∞

0

e−λxx (P0 (ξe > x)−P0 (Se > x)) dx

+ C2(γ)(1− ε)

{
E0

[
e−λξ+

e

]
L [xuγ(x)] (λ)−E0

[
1{ξe<0}

∫ −ξe

0

e−λzzuγ(z)dz

]
+E0

[
ξee

−λξ+
e

]
L [uγ ] (λ)

}

− 1

δγ+1

{
A2

1 + ε1L [xuγ(x)] (λ) +E0 [Se]L
[
uγ+1

]
(λ)
}
.

Applying Lemma 3 (iii) with f = uγ , we obtain

c+Γ(2− α)

α
>
(
C2(γ)(1− ε)− ε1/δ

γ+1
)
lim sup

λ↓0
λ2−αL [xuγ(x)] (λ).

Letting ε1 → 0 first and then ε → 0, we get that

c+Γ(2− α)

α
> C2(γ) lim sup

λ↓0
λ2−αL [xuγ(x)] (λ). (45)

Combining (44) and (45), we conclude that

lim
λ↓0

L [xuγ(x)] (λ)

λα−2
=

c+Γ(2− α)

C2(γ)α
.

Finally, by the Tauberian theorem, we get

lim
x→+∞

1

x2−α

∫ x

0

zuγ(z)dz =
c+

α(2− α)C2(γ)
.

The desired result now follows from Karamata’s monotone density theorem [2, Theorem 1.7.2].
Next we consider the case m < 1. Combining ΦR > 0, (23) and Lemma 3 (i) with f = u, we get

that for any ε′ > 0, there exists a constant A3 = A3(ε
′), such that for all small λ,

L [xΦ0(x)] (λ) 6 L [x(Φ0 +ΦR)] (λ) 6 (1 + ε′)(1 −m) {L[xu(x)](λ) +E0 [Se]L[u](λ)} +A3,

which, by (30), implies that

(1−m) lim sup
λ↓0

λ2−αL[xu(x)](λ) 6 c+Γ(2− α)

α
6 (1 −m)(1 + ε′) lim inf

λ↓0
λ2−αL[xu(x)](λ).

Letting ε′ ↓ 0, we get that

lim
λ↓0

1

λα−2
L [xu(x)] (λ) =

c+Γ(2− α)

α(1 −m)
.

Finally, by the Tauberian theorem,

lim
x→+∞

1

x2−α

∫ x

0

zu(z)dz =
c+Γ(2− α)

α(1 −m)
.

The desired result now follows from Karamata’s monotone density theorem [2, Theorem 1.7.2].
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4 Proof of Theorem 2

Define ξ̃ = −ξ, τ̃y := inf
{
t : ξ̃t 6 y

}
and

f(u) :=
G(u)

u
=

∑∞
k=0 pk(1− u)k − (1 − u)

u
, u ∈ [0, 1].

According to [4, Lemma 2.3], u has the following representation:

u(x) = Ex

(
exp

{
−
∫ τ̃y

0

f
(
u
(
ξ̃s

))
ds

})
u(y), 0 6 y < x. (46)

Similar to [4], we consider the function

[0,∞) ∋ x 7→
u
(
x+ yu(x)−

γ−1
α

)

u(x)
,

which is bounded between 0 and 1. Therefore, using a diagonalization argument, we can find a
subsequence {xk ∈ [0,∞)} with limk→∞ xk = +∞ such that for all y > 0, y ∈ Q, the following limits
exist:

φ(y) := lim
k→∞

u
(
xk + yu(xk)

− γ−1
α

)

u(xk)
. (47)

Since u(x) is decreasing, we see that φ(0) = 1 and φ(y) ∈ [0, 1] for any y ∈ Q ∩ [0,∞). Moreover, φ is
decreasing in Q ∩ [0,∞). Therefore, for any y > 0, we can define

φ(y) := sup
z∈Q,z>y

φ(z) = lim
z∈Q,z↓y

φ(y).

Lemma 6. The limit (47) holds for all y > 0. Also, it holds that for any K > 0,

lim
k→∞

sup
y∈[0,K]

∣∣∣∣∣∣

u
(
xk + yu(xk)

− γ−1
α

)

φ(y)u(xk)
− 1

∣∣∣∣∣∣
= 0. (48)

Moreover, φ satisfies the equation

φ(y) = Ey

(
exp

{
−C2(γ)

∫ τ̃0

0

(
φ(ξ̃s)

)γ−1

ds

})
, y > 0, (49)

where C2(γ) is defined in (11).

Proof. Fix two arbitrary non-negative rational numbers y1 < y2 and set zi(k) = yiu(xk)
− γ−1

α , i = 1, 2.
Combining the definition of φ and (46), we get that

φ(y1) > φ(y2) = lim
k→∞

u (xk + z2(k))

u(xk)

= lim
k→∞

Exk+z2(k)

(
exp

{
−
∫ τ̃xk+z1(k)

0

f
(
u
(
ξ̃s

))
ds

})
u (xk + z1(k))

u(xk)

= φ(y1) lim
k→∞

Ez2(k)

(
exp

{
−
∫ τ̃z1(k)

0

f
(
u
(
xk + ξ̃s

))
ds

})
. (50)

Combining the scaling property of ξ̃, (11) and (50), we get that there exists c > 0 such that

φ(y1) > φ(y2) > φ(y1) lim
k→∞

Ez2(k)

(
exp

{
−c

∫ τ̃z1(k)

0

(
u
(
xk + ξ̃s

))γ−1

ds

})

= φ(y1) lim
k→∞

Ey2

(
exp

{
−c

∫ u(xk)
−(γ−1)τ̃y1

0

(
u
(
xk + ξ̃su(xk)γ−1u(xk)

− γ−1
α

))γ−1

ds

})

= φ(y1) lim
k→∞

Ey2


exp




−c

∫ τ̃y1

0



u
(
xk + ξ̃su(xk)

− γ−1
α

)

u(xk)




γ−1

ds






 .
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Since u
(
xk + ξ̃su(xk)

− γ−1
α

)
6 u(xk) for all s 6 τ̃y1 , we get from the above inequality that

φ(y1) > φ(y2) > φ(y1)Ey2 (exp {−cτ̃y1}) = φ(y1)E1 (exp {−c(y2 − y1)
ατ̃0}) , (51)

where in the last equality we also used the scaling property of ξ̃. Therefore, for any y > 0 and any
positive rational number y1 6 y < y2, we have

φ(y2) = lim
k→∞

u
(
xk + y2u(xk)

− γ−1
α

)

u(xk)
6 lim inf

k→∞

u
(
xk + yu(xk)

− γ−1
α

)

u(xk)

6 lim sup
k→∞

u
(
xk + yu(xk)

− γ−1
α

)

u(xk)
6 lim

k→∞

u
(
xk + y1u(xk)

− γ−1
α

)

u(xk)
= φ(y1). (52)

Combining (51) and (52), we see that (47) holds for all y > 0.
Taking y1 = 0 in (51), we see that infy∈[0,K] φ(y) > 0. Therefore, using an argument similar to

that leading to [4, (3.9)], we can get (48).

Now we prove (49). Since u(xk + ξ̃s) 6 u(xk) for any s 6 τ̃0, combining (11) and (46), we see that
for any ε > 0,

φ(y) = lim
k→∞

u
(
xk + yu(xk)

− γ−1
α

)

u(xk)
= lim

k→∞
E

yu(xk)
−

γ−1
α

(
exp

{
−
∫ τ̃0

0

f
(
u
(
xk + ξ̃s

))
ds

})

> lim
k→∞

E
yu(xk)

−
γ−1
α

(
exp

{
−C2(γ)(1 + ε)

∫ τ̃0

0

(
u
(
xk + ξ̃s

))γ−1

ds

})
.

Applying the scaling property again, we get from the above inequality that

φ(y) > lim
k→∞

Ey


exp




−C2(γ)(1 + ε)

∫ τ̃0

0




u
(
xk + ξ̃su(xk)

− γ−1
α

)

u(xk)




γ−1

ds








= Ey

(
exp

{
−C2(γ)(1 + ε)

∫ τ̃0

0

(
φ(ξ̃s)

)γ−1

ds

})
,

where in the last equality we used the dominated convergence theorem. Letting ε ↓ 0, we get the lower
bound. The proof of the upper bound is similar and we omit the details.

As a consequence of Lemma 6, we see that φ(y) ∈ (0, 1) for all y > 0.

Proposition 2. (i) φ is the unique solution of of (49).
(ii) The equation

U(z) = Ez

(
exp

{
−C2(γ)

∫ τ̃y

0

(
U(ξ̃s)

)γ−1

ds

})
U(y), z > y > 0 (53)

has a unique solution satisfying the boundary conditions limy↓0 U(y) = +∞ and limy→∞ U(y) = 0.

The proof of Proposition 2 is postponed to Section 5.

Lemma 7. It holds that

lim sup
x→∞

x
α

γ−1u(x) = lim sup
x→∞

x
α

γ−1P (M > x) < ∞.

and that
lim inf
x→∞

x
α

γ−1u(x) = lim inf
x→∞

x
α

γ−1P (M > x) > 0.

Proof. Define w(x) = x
α

γ−1 u(x) and set A = lim infx→+∞ w(x) and B = lim supx→∞ w(x). It suffices
to show that 0 < A 6 B < ∞.
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Combining (48) and Proposition 2, we get that, for any K > 0,

0 = lim
x→+∞

sup
y∈[0,K]

∣∣∣∣∣∣

u
(
x+ yu(x)−

γ−1
α

)

φ(y)u(x)
− 1

∣∣∣∣∣∣

= lim
x→∞

sup
y∈[0,K]

∣∣∣∣∣∣∣

w
(
x
(
1 + yw(x)−

γ−1
α

))

φ(y)w(x)
(
1 + yw(x)−

γ−1
α

) α
γ−1

− 1

∣∣∣∣∣∣∣
. (54)

First we show that A < ∞. If A = ∞, we define bk := sup {x : w(x) < k}. Then bk → ∞ as k → ∞.
Using the the definition of bk and the left-continuity of w, we get that w(bk) 6 k 6 infz>bk w(z).
Therefore, taking x = bk in (54), we get that for any y > 0,

1 = lim
k→∞

w
(
bk

(
1 + yw(x)−

γ−1
α

))

φ(y)w(bk)
(
1 + yw(bk)−

γ−1
α

) α
γ−1

> lim
k→∞

k

φ(y)
(
w(bk)

γ−1
α + y

) α
γ−1

> lim
k→∞

k

φ(y)
(
k

γ−1
α + y

) α
γ−1

=
1

φ(y)
,

which is a contraction to Lemma 6. Hence A < ∞. Similarly we can show that B > 0.
Now we show that B < ∞. Assume that A < B = ∞. Note that for any K > 0,

lim
A1→∞

φ(K)
(
1 +KA

− γ−1
α

1

) α
γ−1

= φ(K) < 1.

Therefore, we may fix an A1 > A and an ε > 0 such that

(1 + ε)φ(K)
(
1 +KA

−γ−1
α

1

) α
γ−1

< 1. (55)

Fix another B1 > A1. Define

a1 := inf {x > 0 : w(x) < A1} , d1 := inf {x > a1 : w(x) > B1 + 1} ,
ak := inf {x > dk−1 : w(x) < A1} , dk := inf {x > ak : w(x) > B1 + k} ,
a∗k := sup {x ∈ [ak, dk] : w(x) < A1} .

By (54), for any ε,K > 0 satisfying (55), there exists N > 0 such that when x > N .

sup
y∈[0,K]

∣∣∣∣∣∣∣

w
(
x
(
1 + yw(x)−

γ−1
α

))

φ(y)w(x)
(
1 + yw(x)−

γ−1
α

) α
γ−1

− 1

∣∣∣∣∣∣∣
< ε. (56)

By the left continuity of w, taking x = a∗k in (56), we see that when k is large enough, for all y ∈ [0,K],

w
(
a∗k

(
1 + yw(a∗k)

− γ−1
α

))
6 (1 + ε)φ(y)w(a∗k)

(
1 + yw(a∗k)

− γ−1
α

) α
γ−1

= (1 + ε)φ(y)
(
w(a∗k)

γ−1
α + y

) α
γ−1

6 (1 + ε)φ(y)
(
A

γ−1
α

1 +K
) α

γ−1

< B1 + k. (57)

Therefore, we see that when k is large enough,

{
a∗k

(
1 + yw(a∗k)

− γ−1
α

)
: y ∈ [0,K]

}
⊂ [a∗k, dk] =⇒ w

(
a∗k

(
1 +Kw(a∗k)

− γ−1
α

))
> A1. (58)

However, combining (55) and (57), we have

w
(
a∗k

(
1 +Kw(a∗k)

− γ−1
α

))
6 (1 + ε)φ(K)

(
A

γ−1
α

1 +K
) α

γ−1

< A1,
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which contradicts (58). Therefore, B < ∞.
Now we prove A > 0. If A = 0 < B, then combining (51) and (4), we see that for any y > 0,

φ(y) > E0 (exp {−cyατ̃−1}) = e−c1y

for some constant c1 > 0, where c is the constant in (51). Note that for any B2 > 0,

φ(y)
γ−1
α

(
1 + yB

− γ−1
α

2

)
> e−c1

γ−1
α y

(
1 + yB

− γ−1
α

2

)
>

(
1− c1

γ − 1

α
y

)(
1 + yB

−γ−1
α

2

)

= 1 +

(
B

− γ−1
α

2 − c1
γ − 1

α

)
y − c1

γ − 1

α
B

− γ−1
α

2 y2.

Thus we can take B2 and K sufficiently small so that for all y ∈ (0,K],

φ(y)
γ−1
α

(
1 + yB

− γ−1
α

2

)
> 1.

Let B2 and K be chosen as above and fix y ∈ (0,K]. Then there exists ε > 0 such that

(1− ε)φ(y)
(
1 + yB

− γ−1
α

2

) α
γ−1

> 1. (59)

Take N large enough so that N−1 < B2 and define

h1 := inf {x > 0 : w(x) > B2} , j1 := inf

{
x > h1 : w(x) <

1

N + 1

}
,

hk := inf {x > jk−1 : w(x) > B2} , jk := inf

{
x > hk : w(x) <

1

N + k

}
,

h∗
k := sup {x ∈ [hk, jk] : w(x) > B2} .

Combining (56) and the left continuity of w, we see that w(h∗
k) > B2 and that, when k is large enough,

for any y ∈ [0,K],

w
(
h∗
k

(
1 + yw(h∗

k)
− γ−1

α

))
> (1− ε)φ(y)w(h∗

k)
(
1 + yw(h∗

k)
− γ−1

α

) α
γ−1

= (1− ε)φ(y)
(
w(h∗

k)
γ−1
α + y

) α
γ−1

> (1− ε)φ(K)B2 >
1

k +N
, (60)

which implies that

{
h∗
k

(
1 + yw(h∗

k)
− γ−1

α

)
: y ∈ [0,K]

}
⊂ [h∗

k, jk] =⇒ w
(
h∗
k

(
1 +Kw(h∗

k)
− γ−1

α

))
6 B2. (61)

However, combining (59) and (60), we get

w
(
h∗
k

(
1 +Kw(h∗

k)
− γ−1

α

))
> (1− ε)φ(K)B2

(
1 +KB

− γ−1
α

2

) α
γ−1

> B2,

which contradicts (61). Therefore, A > 0 and the proof is copmplete.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Define U (x)(y) := x
α

γ−1u(xy), then it follows from Lemma 7 that for some con-
stant γ1, γ2 and A, it holds that

γ1

y
α

γ−1
6 U (x)(y) 6

γ2

y
α

γ−1
, xy > A. (62)

It follows from (11) that for any u0 ∈ (0, 1), f(u)/uγ−1 6 c for all u ∈ [0, u0] for some positive constant
c. Fixing a y0 > 0. Then by (46), when x > A/y0, we see that for any z > y > y0, under Pxz, we have
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u(ξ̃s) 6
γ2

ξ̃
α

γ−1
s

6
γ2

(xy0)
α

γ−1
on the set {s < τ̃xy}. Therefore, by (4), for any y0 < y < z,

U (x)(z) = Exz

(
exp

{
−
∫ τ̃xy

0

f
(
u
(
ξ̃s

))
ds

})
U (x)(y)

> Exz

(
exp

{
−c

∫ τ̃xy

0

(
u
(
ξ̃s

))γ−1

ds

})
U (x)(y)

> Exz

(
exp

{
− cγγ−1

2

(xy0)α
τ̃xy

})
U (x)(y) = E1

(
exp

{
−cγγ−1

2

(y0)α
(z − y)ατ̃0

})
U (x)(y)

= e−c1(z−y)U (x)(y), (63)

for some positive constant c1. Therefore, combining (62) and (63), we see that when x > A/y0, for
any y0 < y < z,

∣∣∣U (x)(z)− U (x)(y)
∣∣∣ = U (x)(y)− U (x)(z) 6 U (x)(y)

(
1− e−c1(z−y)

)
6

γ2

y
α

γ−1

0

c1|z − y|. (64)

Therefore, combining (62) and a diagonalization argument, we can find sequence from {tk : k > 1} ⊂
(0,∞) with tk → ∞ such that

U(y) = lim
k→∞

U (tk)(y), for all y ∈ Q ∩ (0,∞). (65)

Moreover, using a standard argument (for example, see [5, Lemma 3.1]) and with the help of (64), one
can show that (65) holds for all y > 0. taking x = tk in (62) and letting k → ∞, we see that U(y) is
comparable to y−

α
γ−1 , which implies that limy↓0 U(y) = ∞ and that limy→∞ U(y) = 0.

Let z > y > y0. Since u(ξ̃) 6 u(xy) for all s 6 τ̃xy under Pxz, we get from (11) that for any
ε, y0 > 0, when x is large enough, we have,

U (x)(z) > Exz

(
exp

{
−C2(γ)(1 + ε)

∫ τ̃xy

0

(
u
(
ξ̃s

))γ−1

ds

})
U (x)(y)

= Ez

(
exp

{
−C2(γ)(1 + ε)

∫ xατ̃y

0

(
u
(
xξ̃s/xα

))γ−1

ds

})
U (x)(y)

= Ez

(
exp

{
−C2(γ)(1 + ε)

∫ τ̃y

0

xα
(
u
(
xξ̃s

))γ−1

ds

})
U (x)(y)

= Ez

(
exp

{
−C2(γ)(1 + ε)

∫ τ̃y

0

(
U (x)

(
ξ̃s

))γ−1

ds

})
U (x)(y).

Taking x = tk in the above inequality and then letting k → ∞, we get that

U(z) > Ez

(
exp

{
−C2(γ)(1 + ε)

∫ τ̃y

0

(
U
(
ξ̃s

))γ−1

ds

})
U(y)

ε→0−→ Ez

(
exp

{
−C2(γ)

∫ τ̃y

0

(
U
(
ξ̃s

))γ−1

ds

})
U(y).

Similarly, we also have for any y0 6 y < z,

U(z) 6 Ez

(
exp

{
−C2(γ)

∫ τ̃y

0

(
U
(
ξ̃s

))γ−1

ds

})
U(y).

Therefore, U is the solution of the equation in Proposition 2(ii). Now the constant C3(α, β, γ) = U(1)
follows immediately, we are done.
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5 Proof of Theorem 3

Repeating the proof of [4, Lemma 2.3], we can get that, in the case m < 1, u has the following
representation:

u(x) = Ex

(
exp

{
−(1−m)τ̃y −

∫ τ̃y

0

fsub

(
u
(
ξ̃s

))
ds

})
u(y), x > y > 0 (66)

where

fsub(u) =

∑∞
k=0 pk(1− u)k − (1−m)(1 − u)

u

is a continuous function of u ∈ (0, 1] with limu→0+ fsub(u) = 0. Moreover, by [6, Lemma 2.7], fsub is
increasing in u, and that if

∑∞
k=0 k(log k)pk < ∞, then for any c > 0,

∫∞

0 fsub (e
−ct) dt < ∞, which is

equivalent to

∞∑

n=1

fsub
(
e−cn

)
< ∞. (67)

Proof of Theorem 3. For simplicity, define a0 := ((1−m)/C1(α))
1/α

. According to (4), we have for
any x > y > 0,

u(x) 6 Ex (exp {−(1−m)τ̃y})u(y) = e−a0(x−y)u(y).

Therefore, we see that ea0xu(x) is decreasing in x and that limx→∞ ea0xu(x) ∈ [0, 1]. Thus, it remains
to show that the limit is positive.

Taking x = n+ 1, y = n in (66), we see that

u(n+ 1) = En+1

(
exp

{
−(1−m)τ̃n −

∫ τ̃n

0

fsub

(
u
(
ξ̃s

))
ds

})
u(n).

Since under Pn+1, on the set s < τ̃n, we have ξ̃s > n. Therefore, by the monotonicities of fsub and u,
we conclude from the above identity that

u(n+ 1) > En+1

(
exp

{
−(1−m)τ̃n −

∫ τ̃n

0

fsub (u (n)) ds

})
u(n)

> En+1

(
exp

{
−
(
1−m+ fsub

(
e−a0n

))
τ̃n
})

u(n)

= exp
{
−H

(
1−m+ fsub

(
e−a0n

))}
u(n), (68)

where H(a) := (a/C1(α))
1/α. Noticing that for α ∈ (1, 2), by Taylor’s expansion, we have

H(1−m+ v) = a0 +H ′(1 −m)v +O(v2), v → 0.

Therefore, there exists C > 0 such that for all v ∈ (0, 1), H(1 −m + v) 6 a0 + Cv. Combining this
inequality with (67) and (68), we conclude that

ea0(n+1)u(n+ 1) > ea0nu(n) exp
{
−Cfsub

(
e−a0n

)}

> · · · > u(0) exp

{
−C

n∑

k=0

fsub
(
e−a0k

)
}

> exp

{
−C

∞∑

k=0

fsub
(
e−a0n

)
}

> 0,

which implies the desired result.

6 Proof of Proposition 2

The proof of Proposition 2 relies heavily on another important Markov process: super α-stable process.
We will briefly introduce this process and some known results.
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Let MF (R) be the families of finite Borel measures on R. We will use 0 to denote the null measure
on R. Let Bb(R) and B+

b (R) be the spaces of bounded Borel functions and non-negative bounded
Borel functions on R respectively. For any f ∈ Bb(R) and µ ∈ MF (R), we use 〈f, µ〉 to denote the
integral of f with respect to µ. For any α ∈ (1, 2], the function

ϕ(λ) := C2(γ)λ
γ

is a branching mechanism.
For any µ ∈ MF (R), we use X = {(Xt)t>0;Pµ} to denote a super α-stable process with spatial

motion ξ̃ and branching mechanism ϕ, that is, an MF (R)-valued Markov process such that for any
f ∈ B+

b (R),
− logEµ (exp {−〈f,Xt〉}) = 〈vf (t, ·), µ〉,

where (t, x) 7→ vf (t, x) is the unique locally bounded non-negative solution to

vf (t, x) = Ex

(
f(ξ̃t)

)
−Ey

( ∫ t

0

ϕ
(
vf (t− s, ξ̃s)

)
ds
)
.

According to Dynkin [3], for any open set Q of R, there corresponds a random measure XQ such
that, µ ∈ MF (R) with supp µ ⊂ Q, and any f ∈ B+

b (R),

Eµ (exp {−〈f,XQ〉}) = exp
{
− 〈vQf , µ〉

}
,

where vQf (x) is the unique positive solution of the equation

vQf (x) = Ex

(
f(ξ̃τ )

)
−Ex

∫ τQ

0

ϕ
(
vQf (ξ̃r)

)
dr, (69)

with τQ := inf
{
r : ξ̃r /∈ Q

}
.

Proof of Proposition 2. Taking Q = (0,∞) and f = 1 in (69), we see that φ(x) is the unique bounded
solution of the following equation:

φ(x) = 1−Ex

∫ τ̃0

0

ϕ
(
φ(ξ̃r)

)
dr.

Since the above equation is equivalent to (49), we complete the proof of (i).
Now we turn to the proof of (ii). Similarly, let U be an solution to (53) with boundary condition

U(0+) = ∞ and U(∞) = 0. Noticing that for each fixed y, (53) is equivalent to

U(z) = U(y)−Ez

∫ τ̃y

0

ϕ
(
U(ξ̃r)

)
dr, z > y > 0.

Therefore, since ξ̃ is spectrally positive, we see that for Q = (y,∞), is supported on {y}. Therefore,
from (69), we conclude that

U(z) = − logEδz

(
exp

{
−U(y)X(y,∞)({y})

})
= − logEδz−y

(
exp

{
−U(y)X(0,∞)({0})

})
,

where in the last equality we used the spatial homogeneous property of super α-stable process. There-
fore, replacing z by z + y first and then letting y → 0+, we conclude that

U(z) = lim
y→0

U(z + y) = − lim
y→0

logEδz

(
exp

{
−U(y)X(0,∞)({0})

})
= − logPδz

(
X(0,∞)({0}) = 0

)
,

which implies the desired result.

Acknowledgements: We thank Yichao Huang for helpful discussions.
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