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Abstract

In this paper, we study critical and subcritical branching a-stable processes, a € (0, 2).
We obtain the exact asymptotic behaviors of the tails of the maximal positions of all
subcritical branching a-stable processes with positive jumps. In the case of subcritical
branching spectrally negative a-stable processes, we obtain the exact asymptotic behaviors
of the tails of the maximal positions under the assumption that the offspring distributions
satisfy the Llog L condition. For critical branching a-stable processes, we obtain the exact
asymptotic behaviors of the tails under the assumption that the offspring distributions
belong to the domain of attraction of a -distribution, v € (1, 2].
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1 Introduction and main results

1.1 Introduction

A branching Lévy process is a continuous-time Markov process defined as follows. At time 0, there is
a particle at € R and it moves according to a Lévy process (&, P,). After an exponential time with
parameter 1, independent of the motion, it dies and produces k offspring with probability pi, & > 0.
The offspring move independently according to & from the place where they are born and obey the
same branching mechanism as their parent. This procedure goes on. For ¢ > 0, let N; be the collection
of particles alive at time ¢. For u € Ny, we use X, (t) to denote the position of the particle u at time
t. The point process (Z;)i>o defined by

Zy = Z 5Xu(t)7 t > 05
uEN¢

is called a branching Lévy process. We will denote the law of (Z;);>0 by P, and write P for Py for
simplicity. When ¢ is a Brownian motion, (Z;);>¢ is called a branching Brownian motion. When ¢ is
an a-stable process, a € (0,2), (Z;);>0 is called a branching a-stable process.

Let m := Y.~ kpx be the mean of the offspring distribution. When m > 1(=1, < 1), we say that
the branching Lévy process (Z;):>0 is supercritical (critical, subcritical). It is well known that in the
critical and subcritical cases, (Z;)i>¢ will die out in finite time with probability 1. Thus in this case
we can define the maximal position of (Z;):>0 by

M :=sup sup X, ().
t>0 ueN;
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When m = 1 and £ is a standard Brownian motion, Sawyer and Fleischman [17] proved that, under
the assumption Y., k*pi < oo,

lim 2P (M > z) = 5
xr——+00 o
where 0 is the variance of the offspring distribution. Profeta [13] extended the result above to some
critical branching spectrally negative Lévy processes under the same third moment condition on the
offspring distribution. When m =1, £ is an a-stable process with positive jumps and Ziozo k3pi, < oo,
Lalley and Shao [10], and Profeta [12] proved that

zgr}rloo xa/2P (M > I) =a (O[),

where ¢; (@) is an explicit positive constant. For critical branching spectrally negative a-stable processes
with a € (1,2), Profeta [13, Corollary 1.3] proved that, when Y";° , k*pi < oo,

0 < liminf z°P (M > z) < limsupz®P (M > z) < cc. (1)
T—00 T—00
When m < 1 and £ is a standard Brownian motion, Sawyer and Fleischman [17] proved that, under
the assumption Y-, k*pr < 0o, there exists a function ¢(-) bounded between two positive constants
such that
P(M >
lim (M > ) =1

oo (1 — m)c(z)ef\/mz

For subcritical branching a-stable processes with positive jumps, Profeta [12] proved that, under the
assumption Y - k3pj < oo,

lim z°P(M >z) = c2(a)
T—+00 1—-m

for some explicit constant ca(a). For subcritical branching spectrally negative processes, Profeta [13,
Theorem 1] proved that, under the assumption Y-, k%pi, < oo,

lim e“"P (M > x) = c3

xr—r0o0
for some explicit positive constants cs, cy4.

For results on the asymptotic behaviors of the tails of maximal positions of (sub)critical branching
random walks, see [9, 11].

The purpose of this paper is to establish the exact asymptotic behaviors of the tails of the maxi-
mal positions of (sub)critical branching a-stable processes under minimal conditions on the offspring
distributions. More precisely, we will obtain (i) the exact asymptotic behaviors of the tails of the
maximal positions of subcritical branching a-stable processes with positive jumps without any extra
assumption on the offspring distributions; (ii) the exact asymptotic behaviors of the tail of the maximal
positions of subcritical branching spectrally negative a-stable processes under the assumption that the
offspring distributions satisfy the L log L condition; (iii) the exact asymptotic behaviors of the tails of
critical branching a-stable processes under the assumption that the offspring distributions belong to
the domain of attraction of a y-distribution, v € (1, 2].

1.2 Main results

Before we state our main results, we recall some useful facts about stable processes. In this paper,
we always assume that the spatial motion & is a (strictly) a-stable process, a € (0,2). For basic
information on a-stable process, see, for instance, [1, Chap. VIII]. We assume that the Lévy measure
of ¢ is given by

va(dr) = cpa™ T g o) (@)da + e[z~ TO L g ()da,

where ¢ and c¢_ are non-negative numbers with at least one of them being positive. Let ¥(0) :=
—InE(e!%1) be the characteristic exponent of £. It is known (see, for instance [8, Chapter 1.2.6]) that,

(o) = c:|0]* (1 —iBtan Z2 sgnf), for a € (0,1)U(1,2) and B € [-1,1],
] +i6n, fora =1



where n € R, ¢, := — (¢4 + ¢-)T'(—a) cos(ma/2), and 8 = (cy —c_) /(cy +c-) if @ € (0,1) U(1,2).
Here sgn6 = 1(9-0) — 1(9<0). Note that, for (strictly) 1-stable process, c; = c_ (see, for example, [16,
Theorem 14.7 (v)]). It follows from [15, Example 1.1, Lemma 2.1 and the last sentence in Subsection
1.1] (see also [1, Proposition VIII.4]) that, when ¢4 > 0,

lim 2°Pg (&1 > ) = va((1,00)) = —*. 2)

T—00 «

When ¢; =0 and a € (0,1), —€ is a subordinator and M = 0 almost surely. A spectrally negative
1-stable process reduces to the drift —nt. When n > 0, M = 0. Thus in the case of branching spectrally
negative a-stable processes, exclude the above cases and assume either a € (1,2), or « = 1 and 1 < 0.
In this case, it is easy to see that for any A > 0,

Eo(e*!) = exp {C1 ()X}, where C)(a) = —W(—i). (3)

Define 7, = inf{t > 0, > y}. For any = < y, combining (3) with the fact that P, (&, =y) = 1, we
have that for any A > 0,

B, (e77) = exp { ~Ci(a) VAV (y — )} (4)

In the critical case, we will need the following assumption on the offspring distribution:

(H) The offspring distribution {py : k¥ > 0} belongs to the domain of attraction of a ~-stable,
v € (1,2], distribution. More precisely, either there exist v € (1,2) and k- € (0, 00) such that

o0
lim n” g Dk = Koy,

n— oo
k=n

or that (corresponding v = 2)
o0
Z k2pk < Q.
k=0
Recall that o2 is the variance of the offspring distribution. We define

P for v € (1,2);
C = ot T 5
() {%O_z N, 5)

Our first main result is on (sub)critical branching stable processes with positive jumps.

Theorem 1. Suppose that ¢y > 0.
i) If m < 1, then

. a Ct
>p)= —*F
mll)riloox P(M > zx) a—ma

ii) If m = 1 and (H) holds, then

1
li VP(M > 2) = C+ !
m—l>I-|r-loox ( ,T) (OzOz(’Y)) ’

where Ca(7y) is defined in (5).

Remark 1. Theorem 1 (ii) is also contained in Theorem 3 of the recent preprint [14]. Since there
are some differences between the proofs of Theorem 1 (ii) and [14, Theorem 3], we include it here for
completeness. The proof of Theorem 1 is an adaptation of that of the corresponding result in [12]
below. (H) only changes the behaviors of ®g and P, defined in (7). In [12, (1.5)], the third moment
condition on the offspring distribution is used to estimate ® g directly while in the y-stable branching
case, we have to do a more careful analysis.

Our second main result is on the case for critical branching spectrally negative a-stable process
with a € (1,2), and it generalizes and refines (1).



Theorem 2. Suppose ¢ =0 and a € (1,2) ora=1 and n < 0. If m =1 and (H) holds, then there
exists a constant C3(c, B,7) € (0,00) such that

lim z7-1P (M > z) = Cs(a, 8,7).

Tr—00

Remark 2. The constant Cs(«, §8,7) has a probabilistic representation via a super a-stable process,
see the proof of Proposition 2. In the proof of Proposition 2, we use the fact that a superprocess is an
appropriate scaling limit of branching Markov processes.

Our last main result is on subcritical branching spectrally negative a-stable process with « € (1, 2).

Theorem 3. Suppose that ¢y = 0, and that either « € (1,2) oraa =1 and n < 0. If m < 1 and
> k(log k)pi < oo, then there exists a positive constant Cy(cr) such that

lim e((=m/C1eNYap (Af > 2) = Oy ().

Tr— 00

Remark 3. Our proof of Theorem 3 can be easily adapted to a widely class of subcritical branching
spectrally negative Lévy processes.

2 An integral equation for P (M > x)
Let

u(z) =P(M >2z) and S;:= sup &
s€0,t]

be the tail probability of M and the supremum of £ up to time ¢. Let e be an exponential random
variable with parameter 1 independent of £. Define

G(z) = Zpk(l —z)F —14+mx, z€l0,1]
k=0
It is easy to see that GG is a non-negative function in [0, 1].
Proposition 1. The function u is a solution of the integral equation:
u(x) = PO (Se = I) + EO [1{Se<m}u (I - §e)] - (I)O(I) - (I)R(I)a (6)

where

Po(z) = (1 —=m)Eg [1{s.<ayu(z —&)] and Pr(z) =Eo [1{s,<n1G(u(z - &))] . (7)

(i) If m =1 and (H) holds, then for any € > 0, there exists § > 0 such that

(1—-¢)Ca(y)
0

Pr(z) > (1 —€)C2(1)Eo [1{s,<apu” (v = &e)] — Eo [Lis,<oy’™ (@ = &) (8)

and
@r(r) < (1+£)Co(1)Bo [Lsecayt’ (& — )] + =iy Bo [1gsecay?™ @ = &), (9)

where Ca(7y) 1is defined in (5).
(i1) If m <1 and c4 > 0, then
. Pr(x) _

Proof. Applying the Markov property at the first branching time, we get

+oo
P (M < z) = poP (S <:v)+anIP’(Se<:v,§e+M(l) <@y fot M™ <:v),
n=1



where (M (”)) are independent copies of M, which are also independent of (e, Se). Hence,

neN
+oo
1= u(@) = poPo (Se < ) + > puBo [1(scr) (1 — u(z — £))"]
n=1

= poPo (Se < ) — mEg [1{Se<z}u (x — 59)}

+oo
Lis <z} (an (1 —u(r—&))" +mu(r— 59))] .

n=1

+ Eg

Therefore,

u(z) =Po (Se = z) + Eo [1{s,<ate (z — )| — (1 = m)Eq [1{5, <ot (z — &)]

+oo
L{so<a} (an (1 —u(z—E&))" +mu(r—&)— (1 —po)ﬂ

n=1

—E,

=P (Se > ) + Eo [115,<ayu (z — &) — Po(x) — Pr(x),

where &y and ®p are given in (7).
We prove (i) first. When m = 1 and (H) holds, from [4, Lemma 3.1] (for v € (1,2)) and L’Hopital’s
rule (for v = 2), we get that
G
im W ). (11)

ul0  uY

Therefore, for any € > 0, there exists § > 0 such that for all u < 4,
G(u)
uY

(1-¢)Ca(7) < < (1+e)Ca(v). (12)

Plugging (12) into the definition of ® in (7), we get

Pr(z) 2 Eo [1{5,<2}G(u (= — €&)) 1 {u(a—to)<6} )
> (1—e)Co(7)Eo [1{se<ayv” (z — &e) Lu(e—eo)<s}]
> (1—e)C2(7)Eo [1{s,<ayu” (z — &e)| — (1%202(7)130 isecaru”™ (2 = &),

where in the last inequality we used 1p,<53 = 1 — 11y>5y and 1y,>sy < u/d. Thus (8) is valid. On the
other hand, since G(z) < 1 for z € [0, 1], we have

Pr(z) = Eo [15,<2} G (& = €))L fu(o—e0)<6}] + Eo [Lis.<a} Gu (x = €))L fu(o—e)>0)]

< (14¢)Co(VEo [1{s,<ayu” (& — )] + 57—1+1E0 [1{secayu™™ (= &)], (13)

which implies (9).
We now consider the case m < 1 and prove (ii) under the assumption ¢y > 0. Note that for any
g > 0, there exists § > 0 such that
G(u) < eu, for all u < 6.
Similar to (13), using the fact that G(x) < 1, we get that
Pr(z) = Eo [1{5.<2} Gt (z — &)L fu(e—to)<s}] + Eo [L{s.<a1 G (z — &)L {u(w—t0)>6})
1
< eEo [1gs,<ayu (@ — &) + 5—2E0 [1is,<capt® (z — &) -
Therefore, to prove (10), it suffices to show that

1i Eo [1{s,<ayu’ (z — &)
1m
z—o0 Ky [1{Se<z}u (CC - ge)}

= 0. (14)

Considering the case where the initial particle does not split before time 1 and using (2), we get

u(z) > 671P0(51 >x) > 671P0(§1 >x) > 20—+x7°‘.
eq



when x is large enough. Therefore, when z is large enough,

c —
Eo [1{s,<ayu (z —&)] = Eo |:1{Se<z}u (z — &) 1{\£e|<%x}} > ﬁEo [1{se<z} (z = &e) 1{‘£e‘<%z}}
c 3\ “ 1 o
> ﬁ (590) Py (Se <z, |ée| < §$> >z, (15)

for some positive constant ¢, where we used the fact that lim,_,., Pg (Se <, || < %x) = 1. Now
we consider the numerator. Using the fact that u < 1, we get that that for ¢’ > 0 sufficiently small,

Eo [1~[Se<:c}u2 (z — §eﬂ
=Eq [Ls,<apt® (@ — &) Ligo< (162} ] + Bo [1{se<art® (z — &&) 1{a—s)u<to<a})
S u(d'z)Eo [1isecayu (@ — &) +Po (1 —0')z < &e < 7). (16)

Combining (15) and (16), we obtain that

Ep |1 su? (z—
lim sup — Lse<ayt® (2 = &) < lim w(d'x) + ¢1 limsup 2°Pg ((1 — §')z < & < x)
z—o00 B [1{Se<x}u (x — 59)} T—00 T 00

=0 limsupxo‘/ e *Po((1 -0z <& < x)dz.
0

Tr—r00

From [15, Lemma 2.2], when z is large enough,
2Py (1 -6 <& <) <a®Po (€] > (1 —6")x) <oz, forallz>0

for some positive constant c¢o. Therefore, combining the dominated convergence theorem and (2), we
get that

lim sup

Eg [1{Se<x}u2 (iC - §e)} < CaCy /OO ve—*ds o ]
z—oo By [1{Se<z}u (:I: - ge)] « 0 (

1— 5/)1+0¢ — O’

which implies (14). O

3 Proof of Theorem 1

3.1 Thecase0<a<l

Define
Na(N) == T(1 — a)\>!

and £ = max (0,&). It follows from [12, (2.1)] that

et
1-E [e—’\Se] . 1-Eg [e /\Ee} cr
lim —————=lm————— = —. (17)
A0 A (A) MO A (A) «

We will use L[f] to denote the Laplace transform of a positive function f:
—+oo
LI = / e f(z)dz, A >0,
0

The following lemma is given in [12, Lemma 2.1]

Lemma 1. Assume that o < 1 and that f : [0,00) — [0,00) is a positive and decreasing function.
(i) For any A > 0, it holds that

/ooo ¢ N Eo [1is,<o1f (2 — &)] dw < Eo [e 5] L[f](N).



(i1) For any A > 0, it holds that

/ e ME, [1{s.<arf(z — Le)] dz
0

Eo [e35] — B [
A

> Eo [ ] LI + £(0) ~Eq

7‘Ee
1{5e<0}/ eAzf(z)dz] .
0
(111) If in addition that limy o f(x) =0, then

1
Iim ——E
A0 a(V)

_fe
1{5e<0}/0 eAzf(z)dz] =0.

The next lemma can be found in [12, Lemma 2.2].
Lemma 2. For any A > 0, it holds that

A

T{e—we]ﬁ[%Jr@R] () <1

and

A

L@y Ba) (V) > 1 ALY
1-E, {e*Afe}

Eq

7£e
_— Lie.<o / e Mu(z)dz| .
1-E [e*)‘fﬂ (o) 0

Proof of Theorem 1 for o < 1. Recall that u(x) = P(M > z). Using a change of variables and the
monotone convergence theorem, we get

AL[u](N) = /O+OO e *u (;) dz /\—M; 0.

Combining (17) and Lemma 1 (iii) with f = v and Lemma 2, we get

. »C[(I)O‘F(I)R]()\)ic
it o

We first consider the case m = 1. In this case, ®¢(z) = 0. Combining (9) and Lemma 1 (i) with
f=u”and f = u"t!, we get

LI®r](N) < Ca(y)(A +2)L[u](A) + L[ ). (19)

o+l
Since lim, 400 u(z) = 0, for any 1 > 0, there exists A; > 0 such that u(z) < e for > A;. Hence,
Aq —+oo
LW (N = / e My (z)de —I—/ e Ay T (z)da
0 Ay

—+oo
<AL +¢e / e My (z)de < Ay + e, L[u] (N), (20)
A

where in the first inequality we used the fact that u < 1. Thus, combining (18), (19) and (20), we have

o LOR) _ (C0)(+e) e /8 L] (V) + Ar/57H
o A Ty ST T2V

i (C20)(1 4 €) +e0/8T) L] ()

~ Mo Na(A) '

Letting €1 — 0 first and then ¢ — 0, we get that

Co(m L[] (V)
Na(N)

— < liminf
«@ AL0



On the other hand, combining (8), (20), Lemma 1 (ii) with f = «” and Lemma 1 (i) with f = v}
we see that

L[®r](N)
By o=54] — By o247
A

> Co(y)(1—¢) | Eg {e_’\gi} Lu](A) + —Eq

7§e
Tie.<0y /0 e_’\zu”(z)dz]

_W(Al_kglﬁ[uv] (\).

Dividing both sides by 7,(A) and using Lemma 1 (iii) with f = «”, we obtain

& > lim sup Co(y)(1 =€) (1 —1/9) E[u’y](/\)'
@ Mo Ma(A)

Letting €1 — 0 first and then € — 0, we conclude that

~
o+ oy VLB
« ALO 7704(/\)

Combining (21) and (22), we conclude that

i ST) et
M0 1a(A) aCa(y)’

Hence, by the Tauberian theorem, the above limit is equivalent to

. 1 ® C+
hm _— u'y z dZ = -
a=+00 1, (1) / ()= = e wem)

Applying Karamata’s monotone density theorem [2, Theorem 1.7.2], we get the desired result for
m = 1.

Now we deal with the subcritical case m < 1. For any €’ > 0, by (10), we see that there exists a
constant A’ such that for all z > A’,

0 < Pp(z) < /Bo(x). (23)

Similar to (20), using (23), we get that for all A > 0,

0< LOR(N) <A +¢ / e Py (2)dz < A+ &/ L[Bo](N),

’

which together with (18) implies that

P 1+4+&)L[P A P
lim sup £l®]N) < & Climinf (1 +€)£[2o)() + = (14 ¢')liminf M.
A0 T ()‘) « A0 T ()‘) AL0 T ()‘)
Letting ¢’ | 0, we get
1 Cy
lim ——Llu|(\) = ———.
A0 Na(A) k) a(l —m)
Hence, by the Tauberian theorem, we have
. 1 * Cyt
1 —_— dz = .
2400 174 (L) /0 Wz = e o )
Applying Karamata’s monotone density theorem [2, Theorem 1.7.2], we get the desired result. O



3.2 Proof of Theorem 1 for 1 < a <2
It follows from [12, (3.3)] that for « € (1,2),

too z - e - e
limfo e~ xP(i(Se>x)d:v:hm1—Eo [e ’\S]—):Eo [See ’\S] :c+l"(2—04)' (24)
A0 Aa—2 L0 A2 \a—2 o

For o = 1, combining (2), [15, Lemma 2.2] and the dominated convergence theorem, (24) remains true
for a = 1 since I'(1) = 1. Moreover, (24) also holds with S, replaced by &7 .

Lemma 3. Assume that o € [1,2) and that f : [0,00) — [0,00) is a positive and decreasing function.
(i) We have the following upper bound

[ e [y o o)) o < Bo [ g @) + B [Se™] €A1
(i) We have the following lower bound
/0 T enm, [L{se<ay [ (2 — &)] da
> 70) [ e a6 > 0) — P (8> ) do + Bo 5] Llaf @)Y

—|—/ e M rE, [1{5e<0}f(:v — §e)] dz
0

Proof. For (i), see [12, Lemma 3.1] for the proof of a € (1,2) and the proof for a = 1 is the same. Now
we prove (ii). Combining the inequalities 1{g_ >4} = 1{e,>2} and f(z) < f(0) for all z > 0, we have

/0 e MrE, [1{se<z}f($ — §e)} dz
+o0 0
> f(O)/O e Mz (Po (S 2 x) — P (Se > 7)) dz +/O e B [1ig,<a} f (2 — &)] dz. (25)

By Fubini’s theorem, we have

| s e flo =g da= [ e / /(@ ~ y)Po(& € dy)da
= OOP s cd T da > Py(ée € d Ooe*“a:— z —y)dz
| Potec can / ofte = o> [ Poléo e dy) / (@ - 9)f(z—y)
= Eo [e 7 Lie.z01] Lz f (2)](N). (26)
Now (ii) follows from (25) and (26) O

Lemma 4. For any A > 0, it holds that
(i)
N N2E [See 5]
<
T B o 5] By [Soe o] o) F RN ) S R S R e

(ii)

Llul(N),

)\2

1— B [Wg:} T E [ gwg} L [z(Do () + Pr(z))] (\)

N2E, [1 e ] Llzu(@)]) (V)
1-Eo [e_)‘fi] ~ A\Eo { e-red }

A (P (e < 0) L(zu(z)(A) — [ e M2Eg [1ig,<oru(z — &) da) '
1-— EO |:€7>‘§§:| — )\EO [gére*)\fér}

>1-

9



Proof. The proof of (i) for a € (1,2) can be found in [12, Lemma 3.2] and the case « = 1 can be
treated similarly. Now we prove (ii). Combining (6) and Lemma 3 (ii) with f = u, we see that

Lz(Po(x) + Pr(x))] (A) + L{zu(x))(A)

+o0 o0
= / e 2Py (Se > z) dz + / e M2Eq [Lis,<ryu(z — &) do
0 0

WV

+oo
/ e aPy (€o > ) dv + By [T 1 z0p] Llzu(z)](N)
0
+/ e 2B [Ligocay [z — &6)] da.
0

From the argument of (24) and the fact that & = £ on the set {&e > 2} for z > 0, we get the lower
bound

Lz(Po(x) + Pr(x))] (A) + L{zu(x))(A)

—+o0
> / e Py (¢F > z) dz — Eg {(1 - eiAE:)1{£e20}:| L(zu(x))(N)
0

- (Po (e < 0) L(zu(x))(N) — /000 e MK [1{§e<0}u(x - §e)} dx)

) B, [e_xfi] /\_QAEO [Sje—kfi} . [1 B e_m:} L(zu(z))(\)

_ <p0 (€e < 0) L(zu(z))(N) — /0 - e MaEq [1ie.<oyu(z — &) dx) ,

which implies the desired result. o
In the critical case m = 1, we will need the following a priori upper bound of w.
Lemma 5. If a € (1,2) and m = 1, then there exists a constant A > 0 such that,
u(z) < Az—e/, for all z > 0.

Proof. The proof is similar to that of [12, Lemma 3.3]. The main difference is that we have (29) for
our branching mechanism. Denote by M® the maximum of (Z, : s > 0) on [0,] and by T the

maximum of (Z, : s > 0) on [t, +0c]. Since a € (1,2), we have p:=Pg(& > 0) € [1 — 1, 1] Tt follows
that
u(z) = P(M > z) <PM®O > z) + PAI" > 2)
SPMY >2) +P(N, > 1). (27)

Define T, = inf {¢ > 0: Ju € Ny, X, (t) = x}. Then {T, <t} = {M(t) > a:} Applying strong Markov
property at T, we get

E|Y Lxpse | MY > w] Z P,
uEN;
which implies that
P (M(t) > a:) < p_lE [Z 1{Xu(t)2z}] < P_IE[Nt]PO (& >2) = P_1P0 (tl/agl = 17) ) (28)
uE N

where we used the facts that NV; is independent of the spatial positions, and E[N;] =1 for all £ > 0. Tt
follows from (12) that the function Y-, pr(1 —z)* — (1 — z) is a regularly varying at 0 with index .
Hence by [18] [Theorem 4] we know that Q(t) := P(N; > 1) satisfies the following equation for some
positive constant c:

Lo

im

ARG - DQEy

10



which implies that )
1 =1
P(Ny > 1) ~ (W) . (29)
Taking t = 2*0~%) in (28) and (29), using (27), we get that there is some constant A > 0 such that
u(z) < A=/
This completes the proof of the Lemma. O

Proof of Theorem 1 for o € [1,2). We first prove that

. Lz(Po(x) + Pr(x))] (V) T(2—-0)
1;1% 0 )\a—2R _ 2 . (30)

For the upper bound, combining (24) and Lemma 4(i), we have

o , Lx(Po(z) + Prx))] (V) . AN Eq [See 5]
<
C+F(2 — a) hrI;J/SOUP A2 X 14+ hn;foup 1— EO [e*)\Se] _ )\EO [See*ASe] E[U]()\)

a
=14+ ———1i o) [See e . 1
+ T2 =) 1H;f()11p)x 0 [See | LIu}(X) (31)

When « € (,2), combining Lemma 5 and the fact that Eg(Se) < 0o, we see that
N2~OEy [See 5] L[u](A) < Eo [Se] A2 <1+A/ a/de> A8, (32)

When « € (1,7], using a € (1,2) and v € (1,2], we have 1 +ay ' = a+y" 1 (1 - (a = 1)(y - 1)) > «
Thus there exists § € (0, 1) such that 14+ «d/y > a. Therefore, combining Lemma 5 and Eq(Se) < 00,

A2TOE [See %] Lu](N) < AEq [Se] A7 / e Mg dy
0

= AE [So] ALFad/1-a / e2z=8/7dzy 28 . (33)
0
When « = 1, fix a constant 6 € (1 —1/7,1). Combining [12, (2.1)] and Markov’s inequality, we have
§ 5—1 _y-1g
5 Y —y71s Y 'lny Eg(1 —e™¥ 7¢) yooo
Po(Sez2y) < ———=Ep(l —e™¥ 7¢) = 0.
Y 0( y) (1—6_1) 0( e ) (1—6_1) y_l lny —

Thus there exists ¢ > 0 such that P(Se > y) < csy~° for any y > 0, which implies that
AE [Seef)‘s"‘} Llu](\) = )\/ (1 —Ay)e MPy(Se > y)dy/ e My(z)dr
0 0

oo

< A)\/ e_’\yPo(Se > y)dy/ e a1 dy
0 0

< A05)\/ e_’\yy_‘sdy/ e My
0 0

:Ac(;/\5+771_1/0 e_yy_‘sdy/o e~z V7dz 248 0. (34)

Combining (31), (32), (33) and (34), we get

lim sup £ [I((I)O(‘T) +_(fR(‘T))] (/\) < C+F(2 - 04)'
L0 A& o

(35)

Now we prove the lower bound. Similarly, combining (24) and Lemma 4(ii), we see that for any
e >0,

ctI'(2—a) Ao a2
> 1= gy s A2 B [1— e Lfau(@)]) -

X lin;foup AEme (PO (e < 0) L(zu(x))(N) — /0 e MK [Lieo<oru(z — &) da:> . (36)

«
ci (2 —a)

11



From Lemma 5, it holds that
Llzu(z)](N) < A/ eiAmxlf’fladx = A)\O‘/'Y*Q/ e*lef'fladx.
0 0

Since 1 — v ta > 1 —2 = —1, we conclude from the above inequality that for any « € [1,2), there

exists A’ such that
Pl O {1 - efAEi} Llzu(x)](N) < AN/ OR, [1 _ enge*} '

Note that when o = 1, by [12, (2.1)], limyjo xs=rEo {1—6%3} = % and when a € (1,2),
limy o L Eq [1 - e%e*} — Eo(&). Using the fact that a/y — a+1=~"1(1 - (@ — 1)(y — 1)) > 0, we

have

lim sup A>"“E, [1 - 67%:} Llzu(x)](A) = 0. (37)
AL0
Plugging (37) into (36) yields that
a . L[a(Po(x) + Pr(x))] (M) o
ciP(2—a) hrilfonf Ax—2 >1- et I'(2 — )
x lim sup A~ (PO (e < 0) L(zu(x))(N) — /00 e MaEg [1{g,<oyu(z — &) d:v) . (38)
AL0 0

When « € (1,2), using the fact that Eq(|€e]|) < oo, we see that

/ e MK [1ie.<oyu(z — &) dz = Eg (1{5e<0} / e Mot (g 4 §e)u(x)dx>
0 —

e

> Eo (1{5e<o} /j e (x + ée)U(x)dilf) > Py (€e < 0) L(zu(z))(A)

&
—Eo (1{5e<0}/0 G_A””IU(x)dfl?) — Eo(l&e))£(u) (V)

> P (€ < 0) L(zu(z))(A) = 2Eo([Ee|) L(w)(A)- (39)
Therefore, combining (32) and (33), we conclude from (39) that
lim sup A* ™ (Po (€e < 0) L(zu(z))(N) — /00 e MzEq [Lig.<oyu(z — &) dx)
ALO 0
< 2Eo(|&e]) lim sup A2~ L(u)(A) = 0.
AL0

Combining the above inequality with (35) and (38), we get (30) holds for a € (1,2).
Now we consider the case a = 1. For any fixed § € (0,1), noticing that Eq(|&e|' %)
that

< 00, we get

/ e 2By [Lg.<opu(@ — &)] dv = Eo (1{£e<0}/ e M (2 4 €e)u(w)d$>
0 ¢

e

> Eo (1{5e<o} /_:O e M (a+ ée)U(x)dilf) = Py (be < 0) L(zu(z))(V)

_ge o0
— Eo (1{£e<0}/ e_/\%“(fc)dQU) — Eo (1{£e<0}/ e_m|§e|u($)dx)
0 =&

> Po (€ < 0) L(zu())(A) = 2Eo(|€e|' ) L(zu(@))(A). (40)
By taking § < y~!, we get from Lemma 5 and (40) that

lin;foupA (Po (e < 0) L(zu(z))(X) — /0 e M 2Eq [Lig <oyu(z — &) dx)

< 2Eo(|€e] ' 0) lim sup AL(z%u(z))(A) < 24Eq(|€e|'?) lim sup)\/ e NS =1/1dy
ALO AL0 0

= 2AE((|&|' %) limsup /\1/7*5/ e Yy* 7y = 0. (41)
A0 0

12



Combining (35), (38) and (41), we get that (30) holds when o = 1.
The rest of the proof is now similar to the case o € (0,1). We first consider the case m = 1. In
this case, ®¢(z) = 0. Combining (9) and Lemma 3 (i) with f =« and f = u"*!, we get that

Llz®r] (A) < (1+2)Ca(y) (£ [zu?(2)] (A) + Eo [Se] £ [u7] (V)

+ (E [:mﬂ“(:v)] (A) + Eq [Se] £ [u”"’l} (A) - (42)

57+1

For any 1 > 0, since lim,_, 4 u(x) = 0, there exists Az > 0 such that u(z) < &1 for z > Ay. Similar
to (20), we have
L [zu (2)] (\) < 43 + a1 L[z (2)] (). (43)
Combining (30), (42) and (43), we get
re-
# < ((T+e)Ca(y) +e1/67H) hr;\liionf N2TOL [zu ()] (V).
Letting €1 — 0 first and then ¢ — 0, we get that
ciP(2—a)
a

Next, combining (43), Lemma 3 (ii) with f = u” and Lemma 3 (i) with f = u?™!, it holds that

< Ca(7) lirilJ,ionf AL [ru? ()] (). (44)

+oo
Llepa(@] () > Ca)1=2) [ 0 (Po g > 2) = Po (S0 > ) do

. —te
+Ca(y)(1 —e) {EO [ £ 2w (@) () = Eo | Lieo<o0p /O ez (2)dz

+ By [€e™ ] L1 (A)}

1
- 5T {A} +e1Lzw(z)] (A) + Eo [Se] £ [ ] (W)}
Applying Lemma 3 (iii) with f = u?, we obtain
I'(2 -
“TCZ9 5 (- o) e/ fim sup X2 € a7 ()] ().
0
Letting €1 — 0 first and then ¢ — 0, we get that
2= a) > Co(7) limsup A2~ L [zu” (x)] (N). (45)
o ALO
Combining (44) and (45), we conclude that
CLlw@) () e TE-a)
lim =
AL0 Ax—2 Ca(7)a
Finally, by the Tauberian theorem, we get

1 z C+
li Y2z = —F
N /0 au’(z)dz a2 — a)Ca(7)

The desired result now follows from Karamata’s monotone density theorem [2, Theorem 1.7.2].
Next we consider the case m < 1. Combining ®g > 0, (23) and Lemma 3 (i) with f = u, we get
that for any &' > 0, there exists a constant A3 = As(g’), such that for all small A,

Lz®o(z)] (A) < L]z(Po + Pr)] () < (1+&)(1 —m) {Llzu()](N) + Eo [Se] L[u](N)} + As,
which, by (30), implies that

(1 — m) Tim sup X2~ Llzu(x)](\) < FLEZ2)
ALO a

Letting &’ | 0, we get that

<(1-m)(1+¢) lirilJ,ionf N2 Llzu(x)](N).

et T'(2 — )
all —m) -~

lim 15 £ lau(@)] () =

Finally, by the Tauberian theorem,
1 ¥ re-
lim / zu(z)dz = M.
z—to0 227 [, a(l —m)

The desired result now follows from Karamata’s monotone density theorem [2, Theorem 1.7.2]. O
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4 Proof of Theorem 2
Define E: —&, Ty = inf {t : Et < y} and

f(u) — G(u) _ Z;O:Opk(l - u)k - (1 B ’U,)7 = [07 1]

u u

According to [4, Lemma 2.3], u has the following representation:

u(z) = E, (exp {—/OTy f (u (ES)) ds}) u(y), 0<y<ua. (46)

Similar to [4], we consider the function

u (:v + yu(x)_%l)
u(z) ’
which is bounded between 0 and 1. Therefore, using a diagonalization argument, we can find a

subsequence {zj € [0,00)} with limg_,o zx = +00 such that for all y > 0,y € Q, the following limits
exist:

[0,00) 5>z —

o (xk + yu(xk)_%l)
Py) = klggo u(zk) '

(47)

Since u(z) is decreasing, we see that ¢(0) = 1 and ¢(y) € [0, 1] for any y € QN [0, 00). Moreover, ¢ is
decreasing in Q N [0, 00). Therefore, for any y > 0, we can define

d(y) == sup #(z) = lim ¢(y).

2€Q,z>y 2€Qzly

Lemma 6. The limit (47) holds for all y > 0. Also, it holds that for any K > 0,

u (:Ck + yu(:vk)f%l)
lim sup —

k=00 [0, K] d(y)u(xr)

I
s}
—~
N
oo
S~—

Moreover, ¢ satisfies the equation

oly) = E, <eXp {—cm) / " (o@) d}) >0, (49)

where Ca(7) is defined in (11).

Proof. Fix two arbitrary non-negative rational numbers y; < yo and set z;(k) = yiu(xk)_%l, 1=1,2.

Combining the definition of ¢ and (46), we get that

d(y1) = d(y2) = kliglo W

= lim By (exp{_/:xk+zl<k) ; (u (gs)) ds}) W%x:;(k))
= ¢(y1) lim B., ) <exp {_ /O*zww ; (u (Ik + ES)) ds}) . (50)

Combining the scaling property of E, (11) and (50), we get that there exists ¢ > 0 such that

¢(y1) = ¢(y2) = é(y1) lim E., ) <€Xp {—C/:zm (u («Tk + SNS))Wlds})

. “(Ik)i(wil)ﬂq ~ a1 v—1
:¢(y1)kli)r§o E,, | exp —c/o (u (xk + Eou(ap)r—r1ulTr) @ )) ds

T —I—gsu(x )7%1 o
(k u(xk)k ) ds

Ty [U
= é(y1) klim E,, | exp —c/
— 00 0

14



Since u (xk + gsu(xk)*%l) < u(zy) for all s < 7,,, we get from the above inequality that

d(y1) = ¢(y2) = ¢(y1)Ey, (exp{—c7y, }) = d(y1)E1 (exp {—c(y2 — y1)*70}), (51)

where in the last equality we also used the scaling property of 5 Therefore, for any y > 0 and any
positive rational number y; < y < y2, we have

u(:z:k—l—ygu(:z:k)’%l) u(:z:k—l—yu(:z:k)’%l)

_ < Timi
) = T ) T

< limsu < lim = .

kﬁoop u(xy) k—o00 u(xy) n

Combining (51) and (52), we see that (47) holds for all y > 0.
Taking y1 = 0 in (51), we see that inf,cpo,x] #(y) > 0. Therefore, using an argument similar to
that leading to [4, (3.9)], we can get (48).

Now we prove (49). Since u(xy + &) < u(xy) for any s < 7o, combining (11) and (46), we see that
for any € > 0,

P(y) = kli{{.lo . (xk +32;(j)k)a) = ;}EEO Eyu(xk)f%l (exp {— /0?0 f (u (.’L'k + gs)) ds})
> kliglo Eyu(zkr%l <exp {—02(7)(1 +¢) /OFU (u (xk + Es))H ds}) .

Applying the scaling property again, we get from the above inequality that

y—1

T

u(zy)

_ B, <exp {_02(7)(1 o) /:0 (6@))" d5}> ,

where in the last equality we used the dominated convergence theorem. Letting € | 0, we get the lower
bound. The proof of the upper bound is similar and we omit the details. O

o(y) > lim By | exp{ —Ca(y)(1 +2) / i

k—o00

As a consequence of Lemma 6, we see that ¢(y) € (0,1) for all y > 0.

Proposition 2. (i) ¢ is the unique solution of of (49).
(i) The equation

U(z) = E. (eXp {—cz(w /0 (@)™ ds}> Uly), z>y>0 (53)

has a unique solution satisfying the boundary conditions lim, o U(y) = +oo0 and limy_,o, U(y) = 0.
The proof of Proposition 2 is postponed to Section 5.

Lemma 7. It holds that

limsup 27 Tu(z) = limsupz7 1P (M > ) < co.
T—r 00 Tr—r00

and that
lim inf 2777 w(z) = liminf 251 P (M > z) > 0.

Tr—00 r—r00

Proof. Define w(z) = z7-7u(x) and set A = liminf, , o w(z) and B = limsup, . w(z). It suffices
to show that 0 < A < B < .

15



Combining (48) and Proposition 2, we get that, for any K > 0,

(:C—l—yu Wa
0= lim sup
T—+00 ,c[0,K] P(y)u(
u(o (1+yw =)
= lim sup —1]. (54)

200 4 (0, K] o(y)w(z )(1+yw( )& 1)

First we show that A < co. If A = oo, we define by, := sup {z : w(z) < k}. Then by — 0o as k — oo.
Using the the definition of by and the left-continuity of w, we get that w(by) < k < inf,p, w(2).
Therefore, taking x = by in (54), we get that for any y > 0,

N w(b;C (1+yw(:v)_7al))L _— k _
T b (1yeb) )T T s (wb) S +y) T
> lim K — = 1

o) (k) )

which is a contraction to Lemma 6. Hence A < oco. Similarly we can show that B > 0.
Now we show that B < co. Assume that A < B = co. Note that for any K > 0,

lim (k) (1+ KA, ;1)%:¢>(K)<1.

A1—>OO

Therefore, we may fix an A; > A and an ¢ > 0 such that

y—1 —1

(1+ €)p(K) (1 + KA;T) o (55)
Fix another By > A;. Define

ap :=inf{x > 0:w(z) < A1}, di:=inf{x >a;:w(x) > B+ 1},
ap :=1inf{x > dp_1 :w(z) < A1}, di:=inf{z > ar:w(x) > By + k},
ay :=sup{z € [ak, di] : w(x) < A1 }.

By (54), for any e, K > 0 satisfying (55), there exists N > 0 such that when z > N.

w (x (1 + yw(m)_%l))

sup — — 1| <e. (56)

1

Vel K1 g (y)w(x) (1 + yw(x)—%) o

By the left continuity of w, taking x = a}, in (56), we see that when k is large enough, for all y € [0, K],

w (a (14 ) ) < 0+ oputad) (14 yuta) 75 )

o3 1 @

= (1+9)0(y) (w(ap)*= +y)’
< By +k. (57)

Therefore, we see that when k is large enough,
{oi (14 yw() ) sy e 0,K)} Clap,di] = w (of (14 Ku(@)) =) > Ai. (58)

However, combining (55) and (57), we have

w(a;; (1+Kw(a;)*%))<(1+a)¢(m (Ala +K) < Al
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which contradicts (58). Therefore, B < cc.
Now we prove A > 0. If A =0 < B, then combining (51) and (4), we see that for any y > 0,

(y) = Eo (exp{—cy*T_1}) = e Y

for some constant ¢; > 0, where ¢ is the constant in (51). Note that for any Bz > 0,

— 1y) (1 +y32*%1)

—a=t -1 -1 __a1
_1—|—<32 « —clva )y—clva B, © Y.

y—1 y—1

y=1 — —er 271y - Y
o) (L+yBy © )z (14yB, = ) > (1-a

Thus we can take By and K sufficiently small so that for all y € (0, K],
-1 _x—-1
o) (1+yB; = ) > 1.

Let By and K be chosen as above and fix y € (0, K]. Then there exists ¢ > 0 such that

(-2 (149877 )" > 1 (59)

Take N large enough so that N~ < By and define

. ; . 1
hy:=inf{x >0:w(x) > B2}, 75 :—1nf{x>h1:w(x)<N+1},

1
hi :=inf{z > jr_1 : w(z) > B2}, :=inf{:v > hy rw(z) < N—l—k}’
hj, :=sup {x € [hg, ji| : w(z) > Ba}.
Combining (56) and the left continuity of w, we see that w(hj,) > Bs and that, when k is large enough,
for any y € [0, K],

w (n (14 ) 7)) > (1= o) (14 yulh) )

= (1=2)0y) (whi)*= +y) " > (1= 2)$(K)B; > (60)

1
k+ N’
which implies that

{h;; (1+yw(h;;)”%) Ly € [O,K]}c[h;;,jk] — w(h; (1+Kw(h;;)”%)) < By (61)

However, combining (59) and (60), we get

_a-1 =1

w (g (14 Kep) == )) 2 (1 =)o) B, (14 KB, 7 )7 > By,
which contradicts (61). Therefore, A > 0 and the proof is copmplete. O
Now we are ready to prove Theorem 2.

Proof of Theorem 2. Define U™ (y) := z7-1u(xy), then it follows from Lemma 7 that for some con-
stant 71,72 and A, it holds that

N <Uud(y) < -2, ay> A (62)

It follows from (11) that for any ug € (0,1), f(u)/u?~ < ¢ for all u € [0, uo)] for some positive constant
c. Fixing a yo > 0. Then by (46), when 2 > A/yo, we see that for any z > y > yo, under P, we have
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u(€s) < 2= < —22=— on the set {s < 7y }. Therefore, by (4), for any yo <y < z,

&t (wyo) 71

e (o] [ (€)oo
>E,, <eXp {—c /;zy (u (&))V_l dS}) U™ (y)
<exp {— (jyo)%D U ) =By <exp {‘(ZT)( - y)“%oD Uey)

= e~ E(y), (63)

B
&

=
N

S~—"
[

2 EIZ

for some positive constant ¢;. Therefore, combining (62) and (63), we see that when z > A/yo, for
any yo <y < z,

U () = U ()| = U (y) - U (2) <U(y) (1-e ) < Lz =yl (64)
Yo !

Therefore, combining (62) and a diagonalization argument, we can find sequence from {t; : k > 1} C
(0, 00) with ¢t — oo such that

Uly) = lim U®)(y), forall yeQn(0,00). (65)

k—o0

Moreover, using a standard argument (for example, see [5, Lemma 3.1]) and with the help of (64), one
can show that (65) holds for all y > 0. taking z = ) in (62) and letting k — oo, we see that U(y) is
comparable to y~ 7T, which implies that lim, o U(y) = co and that lim, ., U(y) = 0.

Let z > y > yo. Since u(€) < u(zy) for all s < 7,y under P, we get from (11) that for any
€,90 > 0, when z is large enough, we have,

U@ (2) > E,. (exp {—02(7)(1 +e) /Oﬁy (u (ES))M ds}) U@ (y
=E, (exp {—02(’7)(1 +e) /Oxa;y (u (a:gs/ma)) ds )

)

s ) ue)
. (exp {_omm vo [en (u () ds} )
_E. (exp {—02(7)(1 t+o) /O;y (v &) 1d8}> U ).

Taking x = t; in the above inequality and then letting £ — oo, we get that

U(:) > B, <exp {—02(7)(1 +o) [T (&) d}) U()
E. <exp {—Cg(w) /O;y (U (55))771 ds}) Uly).

Similarly, we also have for any yo < y < z,

U(:) < B (exp {—ozm [ (v (Es))”_lds}> UG,

Therefore, U is the solution of the equation in Proposition 2(ii). Now the constant C3(a, 8,v) = U(1)
follows immediately, we are done. O
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5 Proof of Theorem 3

Repeating the proof of [4, Lemma 2.3], we can get that, in the case m < 1, u has the following
representation:

MM—EzGm{4rﬂm@—[fﬂwg4énd%>mw,x>y>o (66)

Sl wE - (L m)(1 )

u

where
fsub (u)

is a continuous function of u € (0, 1] with lim, 0+ fsus(u) = 0. Moreover, by [6, Lemma 2.7], feup is
increasing in u, and that if Y77 ) k(log k)pr < 00, then for any ¢ > 0, [ feus (e7) dt < oo, which is
equivalent to

> Foun (e7) < 0. (67)
n=1

Proof of Theorem 3. For simplicity, define ag := ((1 — m)/C’l(oz))l/a. According to (4), we have for
any x >y = 0,
u(z) < By (exp {~(1 —m)7,}) uly) = e~ u(y).

Therefore, we see that e®?u(x) is decreasing in « and that lim,_,o e***u(z) € [0, 1]. Thus, it remains
to show that the limit is positive.
Taking © = n+ 1,y = n in (66), we see that

u(n+1) =Ep+ (exp {—(1 —m)Ty, — /OTn fsub (u (Es)) ds}) u(n).

Since under P,, 1, on the set s < 7,,, we have 55 > n. Therefore, by the monotonicities of fs,p and u,
we conclude from the above identity that

un+1) 2 Epp <exp {_(1 —m)Tn — /OT" foup (u(n)) ds}> u(n)

> Enp (exp{— (L= m+ fou (e7%")) Tn}) u(n)
=exp{—H (1 —m+ fouw (e7%"))} u(n), (68)

where H(a) := (a/C1 (). Noticing that for o € (1,2), by Taylor’s expansion, we have
H(1—m+v)=ao+ H (1 —-m)v+0@1?), v-—0.

Therefore, there exists C' > 0 such that for all v € (0,1), H(1 — m 4+ v) < ap + Cv. Combining this
inequality with (67) and (68), we conclude that

ey (n 4 1) > e%"u(n) exp {=Cfous (e7*")}

> -+ 2 u(0) exp {—Czn: Jsub (eaok)}
k=0
= exp {_CZ fsub (e—aon)} > 0,
k=0

which implies the desired result. o

6 Proof of Proposition 2

The proof of Proposition 2 relies heavily on another important Markov process: super a-stable process.
We will briefly introduce this process and some known results.
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Let Mp(R) be the families of finite Borel measures on R. We will use 0 to denote the null measure
on R. Let By(R) and B;f (R) be the spaces of bounded Borel functions and non-negative bounded
Borel functions on R respectively. For any f € Bp(R) and p € Mp(R), we use (f, u) to denote the
integral of f with respect to u. For any a € (1,2], the function

p(A) = Co (NN

is a branching mechanism.
For any p € Mp(R), we use X = {(X¢)¢>0;P,} to denote a super a-stable process with spatial

motion £ and branching mechanism ¢, that is, an M p(R)-valued Markov process such that for any
f € By (R),
—logE, (exp {_<f7 Xt>}) = <Uf(t= s /1'>7

where (¢,x) — vf(t,x) is the unique locally bounded non-negative solution to

ustta) =B (1€)) -y ([ o (0stt - .80)) 0s).

According to Dynkin [3], for any open set @ of R, there corresponds a random measure X such
that, 4 € Mp(R) with supp ¢ C @, and any f € B/ (R),

E,, (exp {—(f, Xo)}) = exp { — (v}, )},

where v? (x) is the unique positive solution of the equation

v{(z) = B, (f(gf)) -E, /OTQ p(vF (&) dr, (69)

with 7¢ = inf {r : gr ¢ Q}

Proof of Proposition 2. Taking @ = (0,00) and f =1 in (69), we see that ¢(x) is the unique bounded
solution of the following equation:

plz) =1-E, /0 K o(8(&))dr.

Since the above equation is equivalent to (49), we complete the proof of (i).
Now we turn to the proof of (ii). Similarly, let U be an solution to (53) with boundary condition
U(0+) = oo and U(oo) = 0. Noticing that for each fixed y, (53) is equivalent to

U(z) =U(y) —EZ/OTygo(U(gT))dr, z>y>0.

Therefore, since 5 is spectrally positive, we see that for @ = (y, 00), is supported on {y}. Therefore,
from (69), we conclude that

U(z) = —1ogEs. (exp {=U(y)X(y,00)({y})}) = —1ogEs._, (exp {-U(y)X(0,00)({0})}),

where in the last equality we used the spatial homogeneous property of super a-stable process. There-
fore, replacing z by z + y first and then letting y — 04, we conclude that

U() = lim Uz +y) = — lim log Es. (exp {~U(y)X(0.00({0)}) = ~ g Ps. (X0,00/({0}) = 0).

which implies the desired result. O

Acknowledgements: We thank Yichao Huang for helpful discussions.

20



References

Bertoin, J.: Lévy processes. Cambridge University Press, Cambridge, 1996.

Bingham, N. H., Goldie C. M. and Teugels, J. L.: Regular variation, Encyclopedia Math. Appl.,
27. Cambridge University Press, Cambridge, 1989.

Dynkin, E. B.: Branching exit Markov systems and superprocesses. Ann. Probab. 29 (2001),
1833-1858.

Hou, H., Jiang, Y., Ren, Y.-X. and Song, R.: Tail probability of maximal displacement in critical
branching Lévy process with stable branching. Bernoulli 31 (1) (2025) 630-648.

Hou, H., Ren, Y.-X. and Song, R.: Tails of extinction time and maximal displacement for critical
branching killed Lévy process. arXiv:2405.09019.

Hou, H., Ren, Y.-X., Song, R. and Zhu, Y.: Asymptotic behaviours of subcritical branching killed
Brownian motions with drift. To appear in Adv. in Appl. Probab.

Korevaar, J.: Tauberian theory: a century of developments. Berlin: Springer, 2004.

Kyprianou, A. E.: Fluctuations of Lévy processes with applications: Introductory Lectures.
Springer Science & Business Media, 2014.

Lalley, S. P. and Shao, Y.: On the maximal displacement of critical branching random walk.
Probab. Theory Relat. Fields. 162(1-2) (2015) 71-96.

Lalley, S. P. and Shao, Y.: Maximal displacement of critical branching symmetric stable processes.
Ann. Inst. Henri Poincaré Probab. Stat. 52 (3) (2016) 1161-1177.

Neuman, E. and Zheng, X.-H. : On the maximal displacement of subcritical branching random
walks. Probab. Theory Related Fields 167 (3—4) (2017) 1137-1164.

Profeta, C.: Extreme values of critical and subcritical branching stable processes with positive
jumps. ALEA, Lat. Am. J. Probab. Math. Stat. 19(2) (2022) 1421-1433.

Profeta, C.: Maximal displacement of spectrally negative branching Lévy processes. Bernoulli 30
(2)(2024) 961-982.

Profeta, C.: On the maximal displacement of some critical branching Lévy processes with stable
offspring distribution. arXiv: 2503.18451.

Ren,Y.-X., Song, R. and Zhang, R.: Weak convergence of the extremes of branching Lévy processes
with regularly varying tails. J. Appl. Probab. 61 (2)(2024) 622—-643.

Sato, K.: Lévy processes and infinitely divisible distributions. Cambridge Stud. Adv. Math., 68.
Cambridge University Press, Cambridge, 1999.

Sawyer, S. and Fleischman, J.: Maximum geographic range of a mutant allele considered as a
subtype of a Brownian branching random field. Proceedings of the National Academy of Sciences.
76(2) (1979) 872-875.

Zolotarev,V.-M.: More exact statements of several theorems in the theory of branching processes.
Teor. Veroyatnost. i Primenen. 2 (1957) 256-266.

Haojie Hou: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081,
P. R. China. Email: houhaojie@bit.edu.cn

Yiyang Jiang: School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China.
Email: jyy.0916@stu.pku.edu.cn

Yan-Xia Ren: LMAM School of Mathematical Sciences & Center for Statistical Science, Peking
University, Beijing, 100871, P.R. China. Email: yxren@math.pku.edu.cn

Renming Song: Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL
61801, U.S.A. Email: rsong@illinois.edu

21



	Introduction and main results
	Introduction
	Main results

	An integral equation for P(Mx)
	Proof of Theorem 1
	The case 0<<1
	Proof of Theorem 1 for 1<2

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 2

