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Local properties for 1-dimensional critical branching Lévy process *

Haojie Hou Yan-Xia Ren’ and Renming Song?

Abstract

Consider a one dimensional critical branching Lévy process ((Z;)i>0,Py). Assume that the
offspring distribution either has finite second moment or belongs to the domain of attraction
to some a-stable distribution with o € (1,2), and that the underlying Lévy process (& )i>0 is
non-lattice and has finite 2 + 6* moment for some §* > 0. We first prove that

1oy o o) )

converges as t — oo for any non-negative bounded L1pscht1tz function ¢ and any non-negative
directly Riemann integrable function h of compact support. Then for any y € R and bounded
Borel set of positive Lebesgue measure with its boundary having zero Lebesgue measure, under a
higher moment condition on £, we find the decay rate of the probability P 5, (Z:(A) > 0). As an
application, we prove some convergence results for Z; under the conditional law Pz, (-|Z:(A) >
0).
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1 Introduction and main results

1.1 Background introduction and motivation

A branching random walk is a discrete-time Markov process which can be described as follows. At
time O there is a particle at x € R%. At time 1, this particle dies and gives birth to N offspring
with P(N = k) = pi, for k € N:= {0, 1, ...}, and the relative positions of the offspring to the parent
are given by iid copies of a random variable X. These offspring form generation 1. Given the
information at time 1, at time 2, individuals of generation 1 independently repeat their parent’s
behavior. The procedure goes on. Let Z, be the counting measure of the individuals of generation
n. (Zn)n>o0 is called a branching random walk starting from an initial individual located at x. We
will use Px to denote the law of the branching random walk and Ex to denote the corresponding
expectation.

Assume that the branching random walk is critical, that is, > ;2 qkpr = 1 and p; < 1. It is
well-known that this process will become extinct with probability 1. For any x € R?, we use ||x||
to denote the Euclidean norm. When d > 3, under the assumption

Zk‘2pk < o0 (1-1)
k=0

*The research of this project is supported by the National Key R&D Program of China (No. 2020YFA0712900).
fThe research of this author is supported by NSFC (Grant Nos. 12071011 and 12231002) and LMEQF.
fResearch supported in part by a grant from the Simons Foundation (#960480, Renming Song).


http://arxiv.org/abs/2410.10066v1

and that either X is a standard R%valued Gaussian random variable or X is a bounded symmetric
Z%valued random variable, Rapenne [28, Lemma 2.10] proved that for any closed ball A C R,
there exists a constant Ia such that for all x € Z%, as n — oo,

1 1
lim n%?P Zn(A) >0) = A . {——XTE_IX}, 1.2
ralx (Zn(A) > 0) ) XP 4~ 3 (1.2)

n— o0

where ¥ = (3; )1<i j<d is the covariance metrix of X, i.e., ¥; ; = Cov(X;, X;) for all 1 <4,j <
d. Moreover, under the same assumption, Rapenne [28, Proposition 2.13] proved that for any
a € Z% and closed ball A C R?, there exists a random point process (Ma,P) supported in A and
independent of a such that

Pl a (Zn € | Za(A) > 0) =55 P(Na € ). (1.3)

For critical branching Brownian motions and critical super-Brownian motions in dimension d > 3,
results similar to (L.2) and (L3]) are consequences of [3, (2.8)]. More precisely, taking f = 014 in
[3, (2.8)] and then letting 6 — oo, we get (L2); taking a general f € CF(R) and combining it with
([T2]), we get (L3).

When d = 2, things are quite different. When (L)) holds and X is a Z2-valued random variable
such that P(||X]|| < 1) = 1, Lalley and Zheng [19, Propositions 31 and 33| proved that for any
x € 72, there exists C(x) > 0 such that for all n > 2,

1
m < n(logn)P[\/ﬁ]x(Zn({O}) > 0) < C(x). (1.4)
Recently Chen et al [4] refined the result of (L4). They proved that if > 72, e*pj, < oo for some
€ > 0, then for any x € Z2,

. 4 52
Jim_n(log n)Py /(Zn({0}) > 0) = —ei, (1.5)
where 02 := 72 k*py, — 1. Comparing (L.2)) and (L5)), we see that there is an extra factor logn in
d = 2. In the case of critical continuous-time binary branching random walk (Z;);>0 with branching

rate 2, under a second moment condition on the random walk, Durrett [5, (8.12)] proved that for
any bounded open set A C R? with £(0A) = 0 and any 6 > 0,

lim t(logt) <1 ~-E <exp {—% ZZ(E:‘)) })) =3 j_egﬂ, (1.6)

where ¢ is the Lebesgue measure. As a consequence of (L)), see [5], (8.15)], for any bounded open
set A C R? with £(OA) = 0 and any h > 0, it holds that

- 1 Zy(A) —8rh
lim t(logt)P | — =de™ ", 1.
e s R .

It the case d = 1, it is well-known (for example, see the paragraph below [I7, Theorem 3], or
[T1]) that, if the assumption (LI)) holds and E(X) = 0, E(X?) = 1, there exists a measure-valued
random variable (Y, P) such that as n — oo,

P(Z}") € |Zu(R) > o) L Py e, (1.8)



where Z}n) is the random measure such that [ f(x)Zf")(da:) =1 f(%)Zn(dx) for all bounded
non-negative function f. The random measure Y is related to super-Brownian motion, which will

be introduced later. It is easy to see from (L8] that for any bounded non-negative continuous

function f on R,
s (1 ({1 (G7) 2o}

—1-E <exp{—/f(a:)Y(da;)}>. (1.9)

We will prove a result more general than (L) in Theorem [[.2] below in the continuous time setting.
To the best of our knowledge, there are no d = 1 counterparts yet to the high dimensional results
(C2) and (L3]). In this paper, we will prove the counterparts of (I.2)) and (3] for 1-dimensional
critical branching Lévy processes, see Theorems [I.4] and below.

A branching Lévy process is a continuous counterpart of branching random walk and it can
be described as follows. At time 0, there is an individual at x € R% and it moves according to a
Lévy process (&,Px). After an exponential time with parameter S > 0, this individual dies and
gives birth to k offspring with probability pi, £ = 0,1, ... located at the parent’s death place. The
offspring then independently repeat the parent’s behavior. This procedure goes on. Let Z; be the
point process formed by the individual alive at time ¢. The process (Z;);>0 is called a branching
Lévy process. We will use P, to denote the law of this branching Lévy process and E, to denote
the corresponding expectation. We will assume that the branching Lévy process Z, is critical:

oo
Zk:pk =1and p; < 1.
k=0

The main purpose of this paper is to study the asymptotic behavior of 1-dimensional critical
branching Lévy processes under some conditions. We will assume that

(H1) The offspring distribution {py : £ > 0} belongs to the domain of attraction of an a-stable,
€ (1,2], distribution. More precisely, either there exist a € (1,2) and s(a) € (0,00) such
that

9]
e
Jm ) pe = w(a),

=n

or that (corresponding o = 2)
o0
Z k*py, < oco.
k=0

Under the assumption (H1), it is known (see, for example, [15 B0, B1]) that there exists a constant
C(a) € (0,00) such that

Jim taTP(Zy(R) > 0) = C(a). (1.10)
For the Lévy process (&)¢>0, we will assume that
(H2)

Eo(&) =0, Eo(&) = 1;



(H3) the law of & under Py is non-lattice;

and that
(H4) there exists 6* > 0 such that Eo(|¢1]210) < oo.

The hypothesis (H3) and (H4) will only be used to prove Lemma 2.2l below. For some results,
we will also need the following stronger moment condition on the Lévy process:

(H4’) For the a € (1,2] in (H1), it holds that

2
a—1"

Eo (|61]"°) < 0o for some rg >

When o = 2, the assumption is the same as that in [I7]. For any ¢ > 0, define M; to be the
maximal position of all the particles at time t. We also define

M := sup M,.
>0
Under (H1), (H2) and the weaker moment condition Ey((£1V0)™) < oo than (H4”), it was proved

n [12] (although [12] did not deal with the case a = 2, the proof is actually the same as the case
a € (1,2), see the argument below [12, Theorem 1.1]) that there exists #(«) € (0,00) such that

lim 2o 1P(M > z) = 0(a). (1.11)
T—r00
The assumption (H4”) is only used in the proof of Lemma to control the the overshoot of the
underlying Lévy process.

1.2 Critical super-Brownian motion

In this subsection, we give a brief introduction to super-Brownian motion. Let Mp(R) be the
families of finite Borel measures on R. We will use 0 to denote the null measure on R. Let B; (R)
be the space of non-negative bounded Borel functions on R. For any f € B (R) and u € Mp(R),
we use u(f) to denote the integral of f with respect to p. For any « € (1, 2], the function

p(N) = Cla)X* = { Py when a € (1,2),

SO k- 1) N, a=2 (1.12)

where x(a) is the constant given in (H1) and I'(z) := [, t*"'e~'dt is the Gamma function, is a
branching mechanism. Since ¢'(0) = 0, ¢ is a critical branching mechanism. Let (B, P,) be a
standard Brownian motion.

The critical super-Brownian motion X = {(X;);>0;P,} that we will use in this paper is an
Mp(R)-valued Markov process such that for any f € B, (R),

—1og By, (exp {—Xi(£)}) = p (v (t,-)),

where (¢,z) — vf (t,x) is the unique locally bounded non-negative solution to

oX (t,7) = By (F(BY)) — Ey(/o o (vf (t — 5. B,)) ds). (1.13)



Since 1 < =2+, by [9, Theorem 1.2] and [16], for any u € Mp(R), P,-almost surely, the random

a—1?
measure X; is absolutely continuous with respect to the Lebesgue measure and the density function

Yi(a) : dx

has a version which is continuous in . We will always use Y; to denote this version.

For the probabilistic representation of the weak convergence limit via super Brownian motion
in Theorem below, we will also need the N-measures of super Brownian motion.

Without loss of generality, we assume that X is the coordinate process on

D := {w = (w)>0 : w is an Mp(R)-valued cadlag function}.

We assume that (Foo, (Ft)i>0) is the natural filtration on D, completed as usual with the Foo-
measurable and P,-negligible sets for all u € Mp(R). Let W be the family of M p(R)-valued
cadlag functions on (0,00) with 0 as a trap and with lim; o w; = 0.

Since the super Brownian motion X; is critical and that floo ﬁd)\ < 0o, we see that Py, (X =

0) > 0 for all £ > 0 and y € R, which implies that there exists a unique family of o-finite measures
{Ny;y € R} on W{ such that for any p € Mp(R), if N(dw) is a Poisson random measure on W
with intensity measure

N, (dw) :Z/RNy(dw)u(dy),
then the process defined by
Xo=p, X;:= / wN (dw), t>0,
wg
is a realization of the superprocess X = {(X¢)¢>0;P,}. Furthermore, for any t > 0, y € R and
f € B (R),
N, (1 — exp {—wi(f)}) = —log Es, (exp {~ Xu(/)}) (1.14)

see [7] or |21, Theorems 8.27 and 8.28]. The next useful result says that for any given ¢t > 0 and
y € R, w; has an Ny-a.e. continuous density.
Define

A= {,u € Mp(R): j—g € C’+(R)}.

Lemma 1.1 For anyt >0 and y € R, it holds that
Ny (wt ¢ .A) =0.

The proof is postponed to Section [dl We still use {Y;(z),z € R} to denote the density of wy.

1.3 Main results

We will sometimes use ¢(A) to denote the Lebesgue measure of a Borel set A C R. We use CT(R)
to denote the family of non-negative continuous functions on R and CF'(R) to denote the subfamily
of functions in C*(R) with compact support. For any f € CI(R), we write £(f) := [ f(z)dz.
Let DRIT(R) (DRI} (R)) be the family of non-negative directly Riemann integrable functions (of
compact support). We say that a bounded Borel set A is directly Riemann integrable if the



indicator 14 is a directly Riemann integrable function. It is well known that (i) any directly
Riemann integrable function is bounded; (ii) a non-negative Borel function of compact support is
directly Riemann integrable if and only if it is Riemann integrable and (iii) a bounded Borel set
A is directly Riemann integrable if and only if ¢(0A) = 0. For the definition of directly Riemann
an integrable function, see the beginning of Subsection Let Bzrip(R) be the family of bounded
+

non-negative Lipschitz continuous functions in R. For any g € Bl

its Lipschitz constant.

(R), we use Lip(g) to denote

Theorem 1.2 Assume (H1), (H2), (H3) and (H4) hold. Then for anyy € R, g € Bzrip(R) and
h € DRI} (R), it holds that

tli)ngotﬁ (1 —E 4, <exp {_ﬁ/h(x)Zt(dx) - ta% 9 <%> Zt(dx)}))
= —logEs, (exp {—£(h)Y1(0) — X1(9)})

Remark 1.3 In the special case a = 2, taking h = 0 in Theorem [, we get that

b (o fo(5) )
= —logEs, (exp {—X1(9)}) =N, (1 — exp {—w1(9)}), (1.15)

where in the last equality we used (LI4). Combining (LI0) and (LI5), we get that

i rzmys (2 (o2 o (G7) 7))

— LN, (1 exp {-wi(9)}) (1.16)

c@2) "’
with C(2) = C(2)~! (see [1, Theorem 2.6, p.123]). It follows from (LI4) and [I3, (1.11)] that
Ny (w(1) > 0) = C(2)~!. Therefore, by (LI6)), we conclude that

iz (o0 [0(%) 00}

=Ny (1 —exp {—wi(g)} [w(1) > 0). (1.17)

Combining (L9)) and (LIT), we immediately get that (Y,P) 4 (w1, No(-|lwi (1) > 0)).
In the special case o = 2, taking g = 0 and h(x) = 9;@8‘3) with 8 > 0, A being a bounded Borel

set with £(A) > 0 and £(DA) =0 in Theorem [, we get

Jlim ¢ <1 ~E <exp {—% i’f(%) })) = —logEs, (exp {—0Y1(0)}).

Comparing the result above with (L)) and (LT) for d = 2, we see the differences between the cases
d=2andd = 1. In the case d = 2, there is an extra factor logt in the decay, and also one needs to
normalize with logt instead of V/t. In addition, the limit in d = 2 is related to the Laplace transform
of an exponential random variable while in the case d = 1, the limit is related to super-Brownian
motion.




Theorem 1.4 Assume (H1), (H2), (H3) and (H4’) hold. Then for any y € R and any bounded
Borel set A with ¢(A) > 0 and ¢(0A) = 0, it holds that

1
tgn;lo TP 4, (Zi(A) > 0) = —logPs, (Y1(0) = 0).
Remark 1.5 When oo =2, Theorem[1.7) is the 1-d counterpart to the high dimensional result (I.2])
and ([LB]). We see that branching plays a more important role in dimension 1 while spatial motion
dominates in dimension d > 2. In dimension 1, the limit is related to the density of super-Brownian
motion, while in dimension d > 3, the limit in (L2)) is only related to the local limit of a random
walk (see [28, Proposition 2.1]) and that branching only appears in the constant I5 (see the end
of the proof of [28, Lemma 2.10] on page 14). In dimension 2, both the branching and the spatial
motion effect the limit in (ILB]) in the sense that the limit requires at least second moment due to
. 5 2, . .
the appearance of o2 and that the exponential term e~ 111 s related to the local limit theorem for
the random walk.

For any ¢t > 0, we define a measure th) by

/f(y)th)(dy) = t% f <%> Zy(dy).

The next result is an application of Theorems and [[4]

Theorem 1.6 Assume that (H1), (H2), (H3) and (H4’) hold. Suppose that y € R and A is a
bounded Borel set with £(A) >0 and £(0A) = 0.
(i) Ast — oo, we have

1 d
(2P (204 > 0) 5 (O N, ((0) > 0)
in the sense of vague topology.

(ii) Ast — oo, it holds that

d
(20 Pz, (12(4) > 0)) =L (w1, N, (¥1(0) > 0))
in the sense of weak topology.

Remark 1.7 In the special case o =2, Theorem [1.8 (i) is the 1-d counterpart to the high dimen-
sional result (L3)). There are some differences between the 1-d case and the high dimensional case.
First there is an extra factor \/t in the 1-d case while no normalization in the high dimensional
case d > 3. Also in the 1-d case, the limit is an absolutely continuous random measure (with re-
spect to the Lebesgue measure) with density Y1(0) (the density Y1(x) of super-Brownian motion X1
evaluated at 0), while in the high dimensional case d > 3, the limit N'a is a random point measure
supported on A.

Theorem [1.4 (ii) should be compared with (L8]). (L8]) is about the asymptotic of Z; conditioned
on global survival Z;(R) > 0, while Theorem [L@l (ii) is about the asymptotic of Z; conditioned on
local Zi(A) > 0. As we mentioned in Remark [I.3, in the special case o = 2, the limit (Y,P) in
(L8] is equal in law to (wq,No(-|wy (1) > 0)) which is different from the limit (w1, Ny(-|Y1(0) > 0))
in Theorem [0l (ii).

Theorem (i) describes the local behavior of the counting measure Zy, while Theorem [1.8 (ii)
is about the global behavior of Z;.



We end this section with a brief description of the organization of this paper. In Section 2] we
give some elementary estimates involving the standard normal density and about the underlying
Lévy process. We also derive an integral equation for the Laplace transform of Z; and prove the
existence and uniqueness of solution for the problem (2:25]) below. In Section Bl we give the proofs
of Theorems [[.2] [[.4] and In Section [l we give the proof of Lemma [[1]

For two functions f(z) and g(x) with € E, we use f < g,z € E, to denote that there exists a
constant C' independent of = such that f(z) < Cg(z),z € E.

2 Preliminaries

2.1 Some estimates involving the standard normal density

»

x

Throughout this paper, ¢(x) := 2 is the the standard normal density.

\/;
Lemma 2.1 (i) For any A >0,
sup [¢(y) — ¢y + A)] < (AAVA).

yeR

(ii) For any 0 <r < s with s —r € (0,1), it holds that

b)) (o))

Proof: (i) It is easy to check that

sup
yeR

1 a2
()| = —=|zle" 7 <1
(@) = Z=lale <
Therefore, noticing that ¢(x) \/% < 1, we conclude that
sup [6(y) — ¢y +A)| SANL< (AAVA)

Sl
~—

2)- o)l () 5k ()
S G )
bl ) (- (3]

If 42\/s —r > 2s, then by the inequality ae=® < 1 for all a > 1, we get that

[ RIEE)) R S P

If y2\/s — r < 2s, then

2
Y 1 1 s s—r
ol g (e (o)) = ool )




r

=1 —exp{—m}. (2.3)
Combining ), Z2) and [3), we conclude that
o(3)- () e ({5

which implies the desired result. O
The following inequality will be used several times later:

‘1—6_(x+y) —x—y‘ <az?+y% xy>0. (2.4)
The proof of this inequality is elementary and we omit it.

2.2 Estimates for the Lévy process

We first give a local limit theorem for the underlying Lévy process (&);>0. Before that, we recall
the definition of directly Riemann integrable functions. For more details on properties of directly
Riemann integrable functions, one can refer to [8, Section XI.1] and [10, Section 2.1].

Let f be a non-negative Borel function. For any x > 0, define

= Z 1[mn,(m+1)li) (:E) sSup f(z)a

meZ z€[mk,(m~+1)kK)

- Z L, (me+ 1)) (%) inf f(2).

el z€[mk,(m+1)kK)

We say that f is directly Riemann integrable if [ f.(x)dz < oo for some k > 0 and

lim (?H(x) - L{(:E)) dz = 0.

k—0 R

Recall that we use DRIT(R) to denote the family of non-negative directly Riemann integrable
functions. It is easy to see from the definition that any h € DRIT(R) must be bounded. For
h € DRIT(R), we define ||h||oc := sup,eg |1(2)].

Lemma 2.2 Assume that (H2), (H3) and (H4) hold. For any f € DRI} (R), it holds that

lim sup |VATE, (£(€) — (/)6 (i)' 0,

n—00 rcR \/ﬁ

N

T

where ¢p(z) = \/%6_7 is the standard normal density.

Proof: For any x,9 > 0, define

fro(@):=sup fo(z+y) and f_ (z):= inf f (z+y),
ly|<v ’ ly|<v

then by [10, Lemma 2.2], it holds that

lim lim/|fmg |da: = lim lim

k—09—0 k—09—0

Lw(x) — f(z)| dx = 0. (2.5)



Let ¥ € (0, 3) be sufficiently small, then by [10] (2.6) and Theorem 2.7], there exist a constant K > 0
independent of ¢ and k and a constant Cy > 0 independent of x such that for any k > 0,2 € R,

By (f(o+ ) = [Fuolo+ 200 (S5 ) o< ooty [Fuator i 26)
and that
Eo (f(z+ &) — %/ i g +2) —Kz?f(x+z)) qb(%) dz

1+5* +e)/2 /f T+ 2)d (2.7)
Therefore, by (2.6), we see that

) /fx—I—z < >dz
<K19+ 6/2>/f,“9x+zdz+/‘f,“9 f(x)] da
<K19+ +1>/\f,“9 \dx+<m+ 6/2>/f = T(0,k.m). (2.8)
Similarly, according to (), we have
VAEL (&) ~ [ Flo+200 (=) as
> 5/2/fx+zdz—019/fa:+z <%>dz—/‘imﬁ(x)—f(x) da
<K19+ 5/2>/f dx—/ I,oo(@) — £(@)|dz > ~1(9,2,m). (2.9)

Therefore, combining (Z8)) and (29]), we conclude that

VnE; (f(&)) /fx+z < >d

< lim 1(9,e,n) + hm 1(0,e,n)

n—oo

_ (Kz?—l—l)/‘fmg(x)—f(:n)‘d$+2K19/f(:n)d:E—|—/‘Lw(x)—f(:n)‘dx.

lim sup sup
n—oo zeR

By (235, letting ¥ — 0 first and then x — 0 in the above inequality, we get

lim sup |vnE; (f(&,)) /fx+z < >dz—0
n—oo zeR
Thus, to prove the desired result, it remains to show that
lim sup |¢ < >/f dz—/fa:—i—z ( >dz—0
n—oo zeR

Let E be any bounded interval such that supp(f) C E, then for any = € R,

() row freon ()

10




() from fron(52)e

i o) o e oy () < ()

If || < n?/3, then by the inequality e=® — e~ < |b — a| for any a,b > 0, we see that

o( 7)o (7)< v

2

22— (z — 2)?

sup

z€KR n
1 1 2 1 n—oo

< —— | —supz®+ sup |z — 0.

V27 <n zeg n1/3 p] ‘>

On the other hand, if |z| > n?/3, then for large n, we see that

¢ <%> ~ ¢ (7{)‘ < 6(n'%) + ¢ ("2/3 e 12\) .

The proof is now complete. O

sup
z€EE

Remark 2.3 We mention here that the non-lattice assumption (H3) is only used to prove Lemma
22 If (H3) does not hold, it is possible to get a result similar to Lemma[22. For example, if £
is a compound Poisson process supported on Z with Eo(&) = 0,Eo(¢2) = 1, Eq(|&[%) < oo and
that the support of the Lévy measure contains {n,n+ 1} for some n € N, then by [24, Theorem 13,
p.206], for any a € Z, it is easily seen that

ﬁPw(5n=a>—¢<%>‘=0-

Replace the Lebesgue measure £ by the counting measure £. on Z, and for any bounded function f
with compact support, define
=> £

1€EZL

lim sup
n—oo zEZ

Denote by BF(Z) the class of non-negative bounded functions with compact support. In this case,
we see that for any f € BY (Z),

X

VA, ((6) - te(he (=) ‘ 0

Then the conclusions of Theorems [1.2, and remain true if h € DRI} (R) is replaced by
h € Bf(Z), ¢ replaced by £. and A replaced by B C Z.

lim sup
n—o0 =y

Lemma 2.4 Assume that (H2), (H3) and (H4) hold. For any h € DRI} (R), it holds that

x
lim sup |VtE, —{(h — )| =0.
Jim sup | VEE, () - (0o (2
Proof: We Write t>1last= [ ] + v with v € [0,1). Combining the Markov property and the
=[]
inequality v/t — /[t =75 \/— \/{, we see that for any x € R,

VIE, (h(&)) — L(h)¢ <%>‘

11



& S\ s (2
< (VE= VD hloo + Eo <‘\/HE§y(h(£[t])) —L(h)¢ <—) D + () |Eq <¢ < [ﬂ)) ? (\/Z>

VI
up | VIE: (h(gy)) - f(h)qzs(%) B, ("5(%))‘@(%)

+ ¢(h) sup
z€R

The first term on the right-hand side tends to 0 as ¢ — co. By Lemma [Z2] the second term also

tends to 0 as t — oo. Therefore, it remains to prove that

zER

im su & —o(Z)| = tim su Hte _o ()| =
SR | B (‘b( [t])) ¢<\/E> e <¢< ] )) (b(\/?r)‘ (210
Note that for |z| > t%/3,
= (¢ (5)) 2 @) == (55)) ()
/
<Py (Ss1<111)|§s| > \/¥> + ¢ <t2 i/m\[> +¢< 1/6) 2% 0. (2.11)

For |z| < t2/3, by the inequality |e="" — e7¥"| < |22 — 42|, we have

& +x <x> 1 <a:2—(§a,+x)2> z? <1 1>
E o[ L)< —E + ———
0 <¢ ( 7))\ = 211 NACTIET
1 t1/3 1 75.1/3
< ———E (2 +2 + < +27t3) 4+ ———
= olver ¢ (& + 215 la) 20v27[t] ~ 2[t]v2r <7 VT ) 2y/27[n]
1 t1/3 t—o00
< ——— (1+2t*3) + =x0. 2.12
20tV 2r ( ) 2v/2m]t] (212)
Combining (ZI1]) and ([2.12]), we get (2.10). The proof is complete. O
For h € DRI/ (R), define
ex(h) := sup |VIE, (h(&)) — £(h)¢ <i>‘ and  &(h) := sup ey (h). (2.13)
z€R \/E q>t
By the definition we easily see that, for any t > 0, €;(h) < V/t||hlloo + . Thus
supe(h) < oo and supé(h) < .
>0 >0
It follows from Lemma [Z7] that
tllglo ét(h) = tliglo et(h) = 0. (2.14)
Since £(h)o(xt~1/?) < \/(—_) for any x € R, we have that, for any h € DRI (R) and g € Bsz(R)
Clg,h) = |lgllos + sup VEEL(h(&)) < oo. (2.15)
z€R,t>0
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Lemma 2.5 Assume that (H2), (H3) and (H4) hold. Let h € DRIS(R) and g € Bsz(R)

(i) For any t,r >0 and y,z € R, we have

etr(h) n V ly — 2|
Jr 3/

ma 0(5) 2 () 0+

(ii) For anyt > 0,0 <r <s withs—r € (0,1) and y € R, we have

Vi By, (1) = By (&) <

and

VE[E 3, (h(Ew)) = B, (W) < Gl s:1),

where
Gh(r; ;1)
:qr—\/(?+€ti/(£l)+€(h)<\}_ \1[ \/_<\/—+1—exp{ Sr_r}>>~

Furthermore, for anyt > 0,0 <r < s and y € R, it holds that

b 1(5) -2 ()

Proof: (i) The second inequality follows easily from

(7)) -2 (o () <m0 (o (G o) =0 (B ++)

< Lip(g)ly — 2| S ly — 2|.

)

Now we prove the first inequality. By the definition of €(h), we have

R ORICH

VE [, (h(6r)) — B (hl6n))| < =20+~ 2
Applying Lemma 2.1] (i) and (2.16]), we get the first inequality in (i).
(ii) By Holder’s inequality, we have

penlo (7)) -2 b ()2 (b () = (2))
&ir &s)gJEﬁy(&r s >:m.

VioVi VioVi
The second inequality follows immediately. Now we prove the first inequality of (ii). Combining
Lemma 271 (i) and (ZI6)),

VB 1))~ By )| < G+ S | oo () = 70 ()

13

< Lip(9)E 4, <




Gtr(h) Gts(h)
< N + 5 +€(h)<

which implies the desired result. O

ap
%\ -
3\

N

V2]

i

3

_I_

—_

.

-
f—/H
< V2]

!
——
N———
N——

For = € R, define

rh=inf{t>0:§>2), 7, =inf{t>0:¢& <a}.

T

The following result on the overshoot of £ is proved in in [12] Lemma 2.1].

Lemma 2.6 Assume that (H2) holds.
(i) If Eg (((—&1) V 0)*) < oo for some A > 2, then

A—2
supEx( " > < Q.

>0

(it) If Eo ((&1 V 0)*) < 0o for some A > 2, then

supE_x( )‘I2) < 00.
x>0 To

2.3 Evolution equation for (Z;):>o

In this section, we always assume that (H1)—(H4) hold.
For any f € BT (R), define

wtn) =1-8, (e { [ 1012000 }).

The next lemma gives an integral equation for v. Using [6, Lemma 4.1], its proof is standard and
similar to that in [13, Lemma 2.1}, and so we omit it. Define

(Zpk (1—v)* 1—v)>, ve o, 1].

Since Y ;2o kpr = 1, by Jensen’s inequality, we have that

) 2 (1 - o) =0k — (1-v)) =0,

Lemma 2.7 For any t > 0,y € R, vg(t,y) solves the equation

vy(t.y) = By (1- ) </¢vf _s,6))d )

For any t,r > 0, we define

&ir

7 (2.17)

PO (v) = tﬁw (vt_ﬁ> , ® .=

For any h € C (R),g € Bsz(R)v t,r >0 and y € R, we define

FO0) = L h() ﬁg(ﬁ), o () = 77000 (b1, V). (2.18)



With a slight abuse of notation, we will use the same notation P, to denote the law of 57@ starting

from §ét) =y. It is easy to see that

(t) a1
€.P) L (P, ). (2.19)
It is well-known (for example, see [13, Lemma 2.14(ii)]) that, under (H1), for any K > 0,

tlgn v (v) = C(a)v® uniformly for v € [0, K]. (2.20)

Lemma 2.8 There exists a constant Cy, € (0,00) such that
PO () — O )| < Cyp(u® ™t + v Hu—v|, Yu,ve [O,tﬁ], vt > 0.
In particular, we have
O (v) < Cy®, Yo € [0,ta-1], VYt > 0.
Proof: We first prove that there exists some constant Cy such that
W' (v)| < Cpv® !, Vo € [0,1]. (2.21)

First, using > 22 | kpr, = 1, we have
0 0 k—2
¥ ()] =8 <1—Zk1’k(1—v)k—1> =pv) ke | D_(1—v)
k=1 k=2 =0
= v Z(l — )’ Z kpi,. (2.22)
j=0

k=j+2

Under (H1), we have > 22 pp Sn~@ for all n > 2. Thus, for all j > 0,

Z kpe = (G +1) Z P+ Z an

k=j+2 k=j+2 k=j+2n=k
. (o] (o]
Jj+1 1 1
<= + > =) (2.23)
(5 +2) Pl ko Rl ko

Together with the inequality 1 — (1 —v)*~! < 1 A ((k — 1)v), we obtain that for all v € [0, 1],

/ — 1 > 1 o 1
\w(u)mzﬁ(m((/@—m))g/l x—a(m(m))dx_v/l a_lda:+/ —dz,

k=2 v Lo ®
which implies (Z:2T]).
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Now we assume that v < v. Then there exists { € [u, v] such that

6O (w) = 6O ()| = 427 |w(ut™77) = (ot T)

W(ETTT)| < CueHu — 0] < Cy®Hu— o],

where in the second to last inequality, we used (2.21I]). The proof is complete. O

Lemma 2.9 For any h € DRIJ(R) and g € Bsz( ), it holds that

i) = 78y (1o { V) - e )

ta a—1 2 tozfl

-E, (/0?“ Q[J(t) (vg%(r — s,ﬁﬁ“)) d8> .

Proof: Combining (2.17), (2I8)) and Lemma 2.7 we get that

htra) = 177, (1= e { T h(VEE) ~ ot })

_ tﬁE\/Ey </0“" " (U;%(tr — s, fs)) d8>
=15 B, (1-exp {-OWED)}) - 1R, < / T (e — 5, VEE)) ds>
0
— a1, (1-exp {-7O(Vig") }) — 11, < / K (vl (tr — 15, VEED)) ds)
0

The desired result now follows immediately from the definition of 1. O

2.4 Initial trace theory

For any open set U C R, we denote by CH(U) the family of non-negative continuous functions

with compact support in U. Denote by B;reg( ) the space of positive outer regular Borel measures.

Suppose that A C R is a closed set and that 7 is a non-negative Radon measure on A°. By [22]
pp.1452-1453], the pair (A,7) can be represented by the following measure vy ;) € B, (R):

(B) := 00, BNA#0,
T(Am) n(B), BNA=0.

Define the set of regular points of (4, by
Ray) = {zeR: Yam (T — 2,2+ 2)) =00, Vz> O}C.
For any closed set A C R and non-negative Radon measure 7 on A¢, consider the problem

g X > X X @
0¥ ry) = 20X )<r D= (0 0) " () € (0.00) xR
= A,

r €R:Vz2>0, lim, |, + E)/(\ )(r,y)dy:oo

Vf € CHAY), limpo [ f()0f5 , (rv)dy = [ f(y)i(dy)

(2.24)

/—/HQJ
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Define A := {/v/2: 2 € A} and let  be the Radon measure on A° such that
1

Fn(dy) == ————— [ f(V2y)i(dy).
Ac V20(a) 5T Jhe
Consider the problem
%U&n)(ray):%%vf/{\n)( 7y)_ < > ) XRv
r€R:Vz>0, lim, g [ + (An rydy— }: (2.25)

Vf e CHA°), hmrwff An)(rydy—ffy
It is easy to check that
L ]
X X
ViAo (ry) = ———07% . (7‘,—).
(Am) C(Oé)ﬁ (A7) \/§

is a one-to-one correspondence between the positive solutions of (2:24]) and the positive solutions
of (Z25]). According to [22, Theorem 3.5], (2:24) has a unique positive solution &7 (A )(

quently, the function v@i . (r,y) defined above is the unique solution of (2.25]). We call (A,n) the

y). Conse-

. o). . X
initial trace of the solution V(A

In this section, we give a probabilistic representation of the solution v)f\ . To avoid too much

measure theoretic details, we only deal with the case when A is a bounded closed interval. In the
special case p(\) = %)\2, a probabilistic representation via Brownian snake was given by Le Gall
[20, Theorem 4].

Recall that X is a critical super-Brownian motion with branching mechanism ¢ given in (.12
and {Yy(z) : t > 0,z € R} is the density process of X which, for all y € R, is P, -almost surely
continuous with respect to x for all ¢ > 0. Let fu()f\m) is the solution of the PDE problem (2.23]).

Proposition 2.10 Suppose that A = [a,b] C R is a bounded closed interval and n is a Radon
measure on A€. Then for any r > 0,y € R,

Va1 y) = —logEs, (1{Yr(fﬂ):0, \meA}e_fYT(z)"(dz)> : (2.26)

Before presenting the proof, we first recall the notion of m-weak convergence from [22, Definition
3.9].

Definition 2.11 Let (A,,,n,) be a sequence of initial traces and (A,n) be another initial trace.
We say that the measures 5 converge m-weakly to the measure vy ) if the following two
conditions hold:

ny7n)

(i) If U C R is an open set with v ;) (U) = 0o, then limy, 00 YA, . (U) = 00.

(ii) For any compact set K C R, the sequence of Y, n.)(K) is eventually bounded, i.e.,
there exists N € N and C' € (0,00) such that v, 5.)(K) < C for all n > N, and for any

¢ € CHRam), imp oo [ (@)Y, my (dT) = [ O(2)y(A, ().

According to [2, Section 2.1}, if 7y, ,,,) converges m-weakly to (), then for any r > 0 and
y € R, v@in nn)(r, y) converges to UZ)/{\ ") (r,y) as n — oo. Now we are ready to prove Proposition

17



Proof of Proposition Step 1: In this part we consider the case that A = 0. It is
well-known that for any r» > 0, Y,.() is compactly supported (to see this, one can fix 2 and ¢ and
let the constant A in [29, Lemma 4.3] tend to oo). Therefore, by the Markov property and the
dominated convergence theorem,

Uﬁ)é,n) (r,y) = lsiilol Uﬁ)é,n) (r+s,y) = — lslﬁ)l log K, <exp {—/vfé’n)(s,z)Yr(z)dz}>

— —togs, (timexp { - [ off,y (52w (ehas} ) = 1oy, (e {~ [V }),

which implies (226]) in the case A = ().

Step 2: In this step we consider the case that A C R is a closed subset and that 7 is a Radon
measure on A°. Define np(dz) = 1adz if £(A) = b—a # 0 and np(dx) = d.(dx) if A = {a}. For
each n, define

1
A, =0, B,:= {y € R :dist(y,A) < —} and 1, :=nna +1|Be,
n

then for any n, n, is a Radon measure on R. By the result obtained in Step 1, we have

(i) = 1085, (e {= [Vitemias) | )

= —logE;, <exp {—n/ Y, (2)na(dz) — K(z)n(dz)}) . (2.27)
A Bg
Since BE 1 A€ as n — 0o, combining the dominated convergence theorem and (2.27]), we see that
Jim. V) (15 y) = —log Es, <1{fA Yy (2)na (2)=0} €XP {— " Yr(z)ﬁ(dz)}>

= —logE;, <1{Yr(z):0, VzeA} €XD {—/E(z)n(dz)}) :

where in the last equality we used the fact that the support of 1 is equal to A and that the
support of 7 is a subset of A°. Therefore, to complete the proof, it suffices to show that (A, n,)
converges m-weakly to (A,n). Now we check the conditions in Definition 211l For (i), suppose
that y(a,,) (U) = oo for an open set U C R. If U N A # (), then by the definition of 75, we can find
a Borel set B C U N A such that nx(B) > 0. In this case,

mn(U) = 1 (B) = nia(B) =3 oc.
On the other hand, if U N A = ), then
n(U) =00 =nUNA°) = li_>m n(UNB,) < li_>m nn(U),
as desired. Now we check (ii). Note that R, = A°. For any compact set K C A¢, n,(K) =

n(K N BE) < n(K) < oo is bounded. Besides, for any ¢ € C.f(A°), by the monotone convergence
theorem,

lim [ é(x)y(a, ) (de) = lim P(z)n(dr) = " ¢(z)n(dr) = / (2)v(A,y) (dz),

n—oo n—oo Jpge
n

which implies (ii). This completes the proof of the proposition.
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Remark 2.12 We will need the following result later: for any r > 0,y € R,

lim U([ el 0)( rYy) = —giir(l]logE(;y (Yr(z) =0, Vx € [—¢,¢])

e—0

= v{{0},0)(¥) = —log Es, (¥;(0) = 0). (2.28)

To prove [Z.28)), we only need to show that vy(_ce0) converges m-weakly to 7(oy,0)- Condition
(i) of Definition 2111 is easy to check since -z ,0)(U) = Yjo1,0)(U). For (ii), for conpact set
K C Rjoy,0) = R\ {0}, let g9 > 0 sufficient small so that K C [—eo,e0]®. Then vy(—c.,0)(K) =0
when & < 9. Furthermore, for any ¢ € CH(R\ {0}), suppose that the support of ¢ is a subset of
[—€0,€0]°, then for any e < e, it holds that [ ¢(x)y(—c.e,0)(dz) = 0 = [ ¢()V(j0,0)(dx). Hence
223) is true.

3 Proof of the main results

In this section, we always assume that (H1)—(H4) hold.

Lemma 3.1 Let h € DRI (R) and g € Bz'ip(R), and let v;tzl be given in (2I8]). Suppose r > 0.
Then there ezists a constant C1 = C1(g, h) such that for anyt > 1,y € R and s € [0,7],

a—1 a—1 1 a—
Ey((vﬁw—s,s@)) >s(Ey(v§fL(r—s,£§“>)) < (WM ”/2> (3.1)

and that

C
Ey <¢(t) ('UA((;ZL(T — S,ggt)))) < (T — S)(al—l)/2\/?‘ (32)

Proof: The first inequality of (B.1]) follows directly from Jensen’s inequality. Now we prove the

second inequality of [BI). Combining Lemma 29 &IH), @I9) and the fact that 1 — e~ 1*l < |z|,
we get that for all t > 1,y € R and r > 0,

o) < VB, (h(VEED) ) + By (9(¢))

C(g,h) 1
s( o ) AVl + ) S 72 A VR (3:3)

Therefore, combining ([B.3]) and the Markov property, for any ¢t > 1,y € R, s € [0, 7],
E, (v} = 5.6M) < B, (VB (h(vVEg2)) +Ego (9(62))))
= VB, ((ViE") + B, (0(6) £ 2= A VA,
which implies (B]). For (8:2)), combining Lemma 28 31 and B3],
E, (v (vih0r—s.60))) S B, ({0 5,60 )) )
1
e

t
S Tl)ﬂEy (U;}L(T - S,fst )) <
The proof is now complete. O

(r —s)(
Recall the definition of €(h) defined in (2.13)).
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Proposition 3.2 Assume h € DRIS(R), g € B}, ip(R) and T'> 0. Let o) on be defined as in (2.18).
(i) There exists a constant Ny = N1(g, h, T, ¢) > 0 such that for allt > 1,r€(0,T] andy,z € R
with |y — z| < 1,

Ny (. 1
‘fugf) (r,y) — Ug(]t;L(T z)‘ < 743—/14 <6\/{T(h) + 0y —z|+ t1/4> (3.4)

(ii) There exists a constant No = Na(g,h,T,1) > 0 such that for allt > 1, r € (0,T], q € (0,1)
and y € R,

Ny [ 1
o) ~ o + 0| < 52 <eﬂr<h>+q1/8+t17> (3.5)

Proof: (i) Without loss of generality, we assume that y < z. Combining (2.4]) with Lemmas [2.§]
and 2.9, we get that for all t > 1,y,2 € R and r € (0,71,

‘vg%(r, y) — fug;l (r,2) ‘

2 (m (200i) 3. (9060 L (5 (0600) 8. (160))

to-1 ta-1
+VEsup [Bo(h(VEE!)) ~ By o (H(VEE) | + 5up [Bal9(6) ~ Bury—-(9(6")|

e (Ey ((vgf,m - s,s@))a‘l) +E. ((vff,%v - s,éﬁ“>>a_l>>

xsug vf]%( S,$)—U§f%(’r’—8,$+2—y)‘ds.
Tre

Define
t t
sz_y(r) = sgg fué}l(r, x) — ULL(]}L(T, r+z— y)‘ .

Combining Lemma 2.5(i), .13, (Z19), Lemma 3.1l and the fact that =5 > 1, we conclude from
the above inequality that for any y,z € R,r € (0,7] and ¢t > 1,

1 1 r(h 0y — 1 "
0

Jr 73/4

Define Gg_y(r) = r(a_l)/zef_y(r). Then there exists a constant K; = Ki(g,h,9,T) € (0,00) such
that for all y,z € R with |y — 2] < 1, ¢t > 1 and r € (0,77,

f (=12 [ 1 1 fen(h) | Vly—2 B
G,_,(r) < Kir (ﬁ/\1+t+< NG + 37 AVE+ |y — 2|

T 1 f
+K1/0 S( —1)/2 G ( )dS

T 1
= a(r +K/ Gf ds.
f() 1 0 (a 1)/2 ()

It follows then from Gronwall’s inequality that for all y, z € R with |y —z| < 1, ¢ > 1 and r € (0,7],
Gl (" <o)+ K ' exp{ K ! d ay(s) ds
=—y\") = af L, EP10Y ), e 02 e/
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< apr) + /O " (13))/2d3. (3.6)

s
Note that
_ 1 1 € r(h) V |y - Z|
< pla=1)y/2 | = Z ¢ -
af(r) Sr <\/t_r/\1+t+<ﬁ + 3 AVE+ |y — 2|
cplen2 (1 VT L) Vv —2 T3/4\/’?J—Z’
= /A e A e \/— r3/4 r3/4
< T(a_l)/2 1 4 Etr(h) + V ‘y - Z’ (3 7)
~ t1/4\/; \/77 7,3/4 ’
and
" e1s(h) " &s(h) /7”/\/E 1 _ /T 1
ds < ds < h —ds + h —d
/0 \/5 8_0 Vs s_iggq()o \/58 E\/Er()o \/_s
1 -
< \/_t1/4 +VTe . (h) S a7 teva(h). (3.8)

Therefore, combinng (B.6]), (3.7), (3.8)) and the fact that e;-(h) <€ 5, (h), we see that for all y, z € R
with |y — 2| < 1, ¢ > 1 and r € (0,7,

GI_,(r)
<plevz (L per) V=) 1L g M) o PV~
~ /A /r NG r3/4 o tY4/s 0 g3/

1 T/ -~

o TG=20/4c(T) (2T
g ptomye, T2 O (VT <t1/4 +e\/r(h)> ATV fy =]

which implies (3.4]).
Now we prove (ii). Define

F\f(r) —Sl€l£ U(L(r :L")—v()(r+q, )‘

Then combining (2.4), Lemmas 2829 and —5 > 1, we get that for all y € R,q € (0,1), ¢t > 1
and r € (0,77,

o y) = o +a,9)] < tt; (B (n(vEM) + By (n2(VE)))
+ ti (B (4°E) + By (4€)) ) + Visup [Ba(h(VEED)) ~ Ba(h(VE,)
sup B.(a(62) ~ Butol€2, )| + By ([0 (o + - 5.60)) as)
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w8 ([ 00 (0= s.e) as) ~y ([ 00 (sfhir o - s.6) as)|

E, (12(/i6) + By (Vi) ) + i o + Vsup [Bo(h(VEED) ~ Bu(h(ViEL,)

+ sup Ex(g( ﬁt))) - E; (g(iﬁlq))‘ +E, </T ¢(t ( gh(T Tq—s S(t )> )

zeR

" a—1 a1 N
+Cy /0 (Ey <<v§t,2(r -, £§t>)) > +E, ((vﬁ(r +q—s, 5§t>)) >> Fl(r — s)ds.
Combining Lemma 2.5 (Z.I5]) and Lemma [3.11 for any ¢q € (0,1),¢ > 1 and r € (0,7],

~ 1
Ff() Al +— +Gh(r7’+q7)+\/§

1
v

1 Ff
/T+ T‘i’q )(a 1)/ a 1 /2
2

1 1 1 T
< B/ f
< \/ﬁ/\1+ + Gr(r,r +q;t) + q + \/Fq +r(a—1)/2 /0 FJ(s)ds.

Define é{;(r) = T(a_l)/2ﬁqf(7‘). Then there exists a constant K9 = Ka(g, h,T,1) such that for all
€ (0,1),t > 1 and r € (0,7,

~ 1 1 1 {IPN
f (a—1)/2 (8—a)/2 f
G()<Kr (x/t_r/\1+ —|—Gh(rr+q7)+\/(_1+—\/;q +7r(°‘ 1)/2/017[1(8)ds>

- " Gi(s)
= Oéf(T) + KQ/(] st

Therefore, by Gronwall’s inequality, we get that for all ¢ € (0,1),¢ > 1 and r € (0,77,
Al <& " T s (s)
Gy (r) < ay(r) + K | P Ko @ dp oppds
" ay(s)
£(r) —i—/o ~-D)/2 ds. (3.9)

Using an argument similar to that leading to ([8.7) and the fact that (3 — «)/2 > 1/8, we get that
for all ¢ € (0,1),t > 1 and r € (0,77,

A
Q)

1 VT VT 1
™~ < pla=1)/2 . V4 oq8, Lo 1/8
ag(r)Sr <t1/4\/;+t1/4\/;+Gh(r,r+q,t)+\/;q —i—\/;q >
< pla=1)/2 1
~ t1/4\/?

1
+ Gp(r,r +¢;t) + qu;) . (3.10)
Moreover, by the definition of G}, we know that for all » € (0,7],¢q € (0,1) and ¢t > 1,

o < 2 q 1 v
e =T Mh)( T(T+Q)(x/?+\/—r+q)+\/—r+Q<\/a+ ))

PN AN A 1 1 /.

sl (1) s (B + ), (311)

22



Combining ([B.10)) and (B.I1)), we see that for all t > 1, r € (0,7] and ¢q € (0,1),

~ o 1 /1 _

Using (3.10), we get that for all t > 1, r € (0,7] and ¢ € (0,1),

r af(s) < r 1 T ' T’ql/8
/0 WdSN/O 1/4\/_(18-1- Gr(s,s+q;t)ds + i %ds

1 T
< 7 +/ Gh(s,s+q;t)d8—|—q1/8. (3.13)
0

Note that by (3.8]),

/GhSSJrq? )ds < 0 2618/(_h)d Jr/T<%_\/sl+q \/erq(\/_Jrl_e f))ds
s (o)« [ (G- v v (1) ) o0

and that

<\[ \/s—i—q \/S+q<\f+1—e s)>ds
:2(\/?—\/7Tq+\/§)+/r(\/1_<\/§+1—e‘@>>ds

gl/4 1 rvgl/4 q
<2 2 ~—)d
<2Va+ /0 \/F /1/4 7t s )ds
< 9g/8 1 4 /q+q1/4+(\/§+q1/4)/0 ﬁdsgql/& (3.15)

Combining B.13), (3.14) and (B.I5), we get that for all t > 1, ¢ € (0,1) and r € (0,T],
" oay(s) 1 ~ 1/8 (a—1)/2 1 1 1/8 | ~
/0 73(‘1—1)/2(185“ m—i-e\/;r(h)—kq <r ey m—i—q +€s,.(h) ). (3.16)

Now combining (3:9), (312)) and (B10), we get (B.3)). O

By [.3), we see that for any r > 0, h € DRI/ (R) and g € Bsz(R)v we have sup,cg ;1 fugle(r, y) <
oo. Therefore, by a diagonalization argument, for any sequence of positive reals increasing to oo,
we can find a subsequence {t; : k € N} such that limy_, tx = 0o and that the following limit
exists:

lim o )(r y) = X w(ry),  forallr € Qp:=(0,00)NQ,y € Q. (3.17)

k—o00 gh

Of course, the choice of {t;} may depend on the functions h and g. Using (ZTI4]), taking ¢t = ¢ in
Proposition first and then letting £ — oo, we see that vgfh(r, y) is continuous in Q4 x Q. Now
for each r > 0,y € R, for any sequence {(ry,,ym),m € N} C Q4 x Q with r,,, —» r and y,,, = y as

m — 00, we see that the sequence of v;fh(rm, ym),m € Nt is a Cauchy sequence. Therefore, for
each r > 0 and y € R, we can define
X . X
vi(ry) = lim U (T, Y ) -
g7h( ) (vaym)eQJrXQy(vaym)—}(ny) g7h( " m)

Our next result shows that (3.I7)) also holds for all » > 0,y € R.
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Lemma 3.3 The limits (3.17) holds for all v > 0 and y € R.

Proof: Let (rm,ym) € Qi+ x Q be such that (ry,,ym) — (r,y). Without loss of generality, we
assume that 2r > r,, > %r for all m. Then by Proposition with T' = 2r,
t t
[0 y) = o5 ()| < [0 y) = 0 s )| + 0350 ) = 08 G )|
+ ‘ gh Tmyym) - U;];L)(T y)‘

t
< ‘Ugh T, y) - ’UXh(rmyym)‘ + "Ugfh(rmyym) - U; Z)(vaym)‘

N 23/4 1 Nj23/2 1
+7~7/<6\fr/2 )‘*‘V’Tm—T"Fth) T exﬁr/z()‘i‘\ym—y’lm‘Ftlﬁ :
k

k

Letting k — oo in the inequality above and using ([B3.17]), we get

limsup [0, (r, y) — o4 ()

k—o00
2 3/4 93/2, _ y|1/8
< [ua(r ) = v (s )| + S N VT — 71+ NfM

Letting m — oo, we arrive at the desired result. This completes the proof of the lemma.

Define
Ng,n(dx) := £(h)do(dz) + g(z)dz.

oy . L t . .
Proposition 3.4 Any subsequential limit Ugfh(r, Y) of{vf(]’%(r, y)} is equal to the solution v()é’ng’h)(r, Y)
of (Z28) with initial trace (0,ny1) whose probabilistic representation is given in Proposition [2.10.

Proof: By the uniqueness of solutions to (2.25)) and Proposition 210, we only need to prove that
any subsequential limit vgfh(r, y) is the solution of ([2.25]). We divide the proof to two steps.

Step 1: In this step we derive the integral equation for any subsequential limit U;fh(r,y).
Noticing that —5 > 1, by (2.4)), for each » > 0 and y € R, it holds that

TR, (1 —exp{ p—— Th(VEE) - — g(&ﬁ”)}) - ViB, (h(ViE")) - E, (g(&(f’)>'

< lim sup (L (hz(\/fr )) te —Ey (92(57@)))

lim sup
t—o00

t—00 tal tal

j Clo.h) 1,
- Bl 1 — 0, 3.18
<timsup (il x 2 4 21 (3.18)

where C(g, h) is defined in (2ZI5]). Note that by (2.19)),

VB, (h(Vig)) - % (%) = \if <ﬁEﬂyh(&r) —U(h)¢ <%>) :
Thus by Lemma [24]

i VB, (Vi) = Lo (%) | (3.19)
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By the central limit theorem we know that 57@ converges weakly to B,. Then, combining (B.I8])
and (3.19]), we get that

thm = 1R, <1—exp{ (\/_f ) — ! 9(5&”)})
—00 ta ta—l

t(h) ( >
= —= +E, (9(B;)). 3.20
NAAW (9(Br)) (3:20)
Now letting ¢ = ¢, in Lemma 2.9 first and then & — oo, by ([.20), for each r > 0 and y € R,
l(h
v (ry) = % (%) +Ey (9(B,)) - lim E, (/ () ) d8> - (3:21)

Combining (2.20) and (3.3), for any € > 0, there exists N € N such that for all s € (0,7 —¢) and
yeR,

1 =e)p (v —s,9)) < v (o —s9)) <@ +p (W -sy). 322

Thus, for k£ > N, we have

B (] (il = wen) an) 2, ([0 (o ) )
> (-, < / T (v;’f;? (r—s.6) as). (3.23)
0

Similarly, combining Lemma 2.8 B.3) and (322]), we get that for k& > N,

E /T ¢(tk) o) (g — s,ﬁgtk) d8>
Y < 0 ( g:h ( ))
e ) (0 o olte) " c \*
< (1 E d d
<(1+e¢) y</0 cp(vg’h(r s, &l )) s>—|—C’¢/r_€< r—s) s

=498, ([0 (- 5. 60) as) 4 160 (3.24)

where C' is a positive constant, and f(¢) is a function of ¢ satisfying lim._,¢ f(¢) = 0. We claim
that for each r > e > 0 and y € R,

kh_)ngoE </0 ) © (”gz)(T - Syggtk))) ds) =E, </0 ) © (fu;fh(r — s, Bs)) ds> . (3.25)

To prove ([B.23]), fix two large constants R and T' > r, since vgfh(r, y) is continuous in (r,y) €
[e,T] x [-R, R], for any 7 € (0,1), thereexist Le Nandrp=e < .. <rp=T,yp:=—-R< ... <
yr = R such that max;eqy . 1y [ri — ri-1] <0, maX;eqr, . 1y [¥i — Yi-1| < 0 and that

X X
max max v (i, Yi) — o (1Y) < Yo- 3.26
i7j€{17---7L}TE[T’ifl,T’iLyE[yjflvyj}| g’h( ‘ J) g’h( )‘ 7 ( )

Now we take N, sufficiently large so that when k& > N,,

o ry) =) < 0. (3:27)

m
r€{ro,..,rL},y€{Y0,--,yL}
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Combining Proposition B.2] (3:26]) and 327, we get that, if k¥ > N,, then for any r € [¢,T],y €
[—R, R], suppose that r;,_1 <r <1 and y;,—1 <y < y;, for some i, jo € {1, ..., L},

‘ (tk)(

r) = o )| <0 + [l () = v (i o)

tr
< 2/70 + ‘,Ug,h Tvy) - ,U;h) (ri())yjo)

Ny 1 No | _ 1
<27+ 23/4 (E\fa( )+ \/ ly — yj0| + W) + 63—/22 (6\/71«3( )+ [r— TJ0|1/8 W)
k

k
1/8 M No ~ 1/8 1
< 27, < 3/4+83/2> (6\/55(}1)4‘7 +1—/4

Note that lim¢ o€ . (h) = 0 by (ZI4). Therefore, for any 70 € (0,1), there exists a constant
C' = C'(e,T, R) such that when k is large enough,

t 1/8
‘U;Ifi) (T7 y) - Ug)fh(ra y)‘ < C/’YO/ )

for any r € [,T] and y € [-R, R]. Therefore, combining ([B.3)) and the fact that |o(u) — p(v)| <
Cop.elu —v| for all u,v € [0, \/—] we obtain that for any v € (0,1), R>1and T > r,

r—¢& r—¢&
s B ([ (o) = s as) By ([0 (s - s.) as)|
k—oo 0 ’ 0 ’
T—& C
< 21i P, (€% > R)d
= lin_?olip/o\ (10 <\/7TS> y <‘€S ‘ > S
- T ) By _ X (o elte)
+ Cpe hkm_)supEy (/0 o (7= 8. 8F)) —vgy (r — s, 6% )‘ 1{§£tk)e[_R’R]}dS>

C s+ y? , 1/8 700, R1
<20 = 22 ds — ’ .
< <,O<\/g>/0 R 5§+ CpClvy/ (r—e) "= 0

g

By the functional central limit theorem we know that (£ © )o<s<r—e converges weakly to (Bs)o<s<r—e,

thus ([B.23)) is valid.
Plugging (3:25) into (B.23]) and (B.24]), we conclude that for any € > 0,

(1—-¢)E, </0 ) © (Ugfh(r — s, BS)) ds)
< lilgiorgf E, </0T w(tk) <q)g2)(r — s,ggtk))) ds> < hm supE </ w(tk tk 7€§tk))) ds>
< (1+¢)E, </0T_6 © (fu;fh(r —s,By)) ds) + f(e).

Letting € | 0 in the inequality above and plugging the resulting inequality into ([B.2I]), we get that
for any r > 0 and y € R,

it = o (L) +Byam) - By ([ e @ -sBo)as). G2s)

Step 2: In this step we show that [B28]) is equivalent to (225) with initial trace (0,744).
Combining ([B.28)) and the Markov property, we see that for w € (0,7),

0 y) + By (/Ow o (v (r — 5, B) ds)
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T

- (L) +mom) -y ([ - 5.8 as)
Y

_ @qﬁ (W) +E, (EBw (9(Br-w)) — Ep, (/Or_w @ (0glr = 5, By)) d8>>

_ &\/}? (%) ~E, (\/i(’i)wqb (\/ff w)) +B, (v (r —w, By)). (3.29)
Routine computations yield that
7 (7) - (e (=)
- % (%e—zﬂ/(%’) B 27rw1r V2mw(r —w) /eXp{ 2w (r— ) ﬁ B %} dz)
e iy B G D
—o. (3.30)

Therefore, combining (3:29]) and (3.30]), we conclude that

fu;fh(r, y) +E, (/Ow © (vgfh(r — s, Bs)) ds) =E, (vgfh(r —w, Bw)) . (3.31)

For any fixed w > 0, set u(r,y) := v;fh(r +w,y), then we see from ([B.31I]) that u solves (ILI3]) with

f= vgfh(w, -). Now it suffices to check the boundary condition. By (B.:28]), for any j € C:F (R) and
any r > 0,

/ J(y)vg (r,y)dy
=) [0 (L) + [, o as— [, ( [ o @i —s.5) s ay
— (B0 G(B) + [ J0E, 0B, ds— [ W, ( / "o (v, — 5, BY)) ds) dy.

Since lim, o Eq (j(B,)) = j(0) and lim, o [ j(y)E, (9(B;))ds = [j(y)g9(y)dy by the dominated
convergence theorem, to prove the desired result, we only need to prove that

lriﬁ)l J()Ey </0 ® (vgfh(r — s, Bs)) d8> dy = 0.

Combining ([B.3]) and the definition of ¢, we see that

[, ([ o= s8)as) ay
s [iwe, ( / T ﬁﬁ( - s,Bs>ds> dy
_ /0 Hﬁ / i) Ey (vX,(r — 5, By)) dyds
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< [ o om0 (i) e taBa) ) dus, @32

where in the last inequality we used (328]). Combining ([B30) and ([B32), we get

i, ([ o= s.5) as) ay
<[ m [ ("o (L) + ol ) v

~ [ s (AR B + ol [ i)

. . " 1 rl0
< (U ]lo0 + L)1) / s S0,
o S

which implies the desired result. O
Proof of Theorem Theorem [L.2] follows directly from Proposition [3.4

Od

Now we are going to prove Theorem [[.4l Before the proof, we need to prove an upper bound

for maximal position M; := max,c () Xu(t) and the minimal position M;" := min, ey Xu(t) of

all the particle alive at time ¢ with the convention that M; = —oco and M, = oo when N(t) = (.
In the next lemma, we will need (H4”) to control the overshoot of Lévy process.

Lemma 3.5 Assume (H1), (H2), (H3) and (H4’) hold. For any q,0 > 0, there exist constants
C(q),T(0) € (0,00) such that fort > T(9),

tﬁ]P’o (Mt5 > q\/i) <C(q)d and tﬁ]P’o (Mtg < —q\/i> < C(q)o.
Proof: We only prove the first inequality, the proof for the second one is similar. Set

QW(r,z) = ta1P ; (My > 0) = lim pamT (1 ~E., (exp{—@Ztr((O,oo))})) .

Then tﬁ]P’o (Mt(; > q\/i) = Q(t)(é, —q), and we only need to prove that there exist constants
C(q),T(0) € (0,00) such that for t > T(9),

Q" (5, —q) < C(q)é. (3.33)

By Lemma (with h = 019 o), g = 0 first and then 6 1 00), we see that QW (r, x) solves

Q(t)(nx) _ tﬁPx ( ﬁt) S 0) _E, </T »® (Q(t)(r — s,ggt))) ds> .
0

By the Markov property, for any w < r, the above equation can also be rewritten by

QU (r,z) = B, (QU(r —w,€0)) ~ Ea ( / 40 (QU(r — 5,60 ds) :
0

It follows from the Feynman-Kac formula that for any 0 < w < r,

QU(r,z) = E, (exp {— |50 (@06 - 5.60) ds} QU —w, &S?)) |
0
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where

and ¢® (v) is defined in @I7). Also by the Markov property of £®), we see that for all y € R and
w € [0,7], it holds that

Y=o {= [7 KO QO - 5.60) ds} QO — wel?)
=E, (exp {— /0 KO (QU(r — s.6)) ds} QWO )& s < w> :

Therefore, {(Yw)we(o,, Py} is a non-negative martingale, which implies that for any stopping time

S,
Q(t) (7”,33) = Em(TwAS)
O (o0 (0 (0 (1
_E, (exp{—/o K (Q (r — s, )) ds} QW (r —w/\S,ﬁwAS)> .

In particular, set S = T(t)/; := inf {7‘ >0: 57@ > —q/2} and r = w = §, we see that

Q(t)(é,—Q)SE—Q@(t @ =anTlsg, ““))

-E, <Q(t) (5 — 7060, +> Lo S5}> , (3.34)

where in the last equality we used the fact that on the event {§ < Tit;/;} = {SUPSS(S fgt) < —q/ 2},
it holds that

t 1
QUG = nTIh 60 0:) = QU067 = 7T 10 ) =0

Note that QM) (8, —q) < ta-1 . Note also that, by (IL.I1)), for any z < —¢/4 and r > 0,

QW (r,2) < ta-1P, <M > —z\/E) < ta-1P, <M > q\/i/4> < g

Comparing & ((t) . with —¢/4, using (3:34]) and the two facts above, we get that

T_q/2

q -2 t
QW (5,—q) StaTP_, <§(% > 7) +q TIP_, (5 > T<;/2)

= t=1P_, <£ ;> ‘M) +q =Py <sup & > qﬁ/2> -

4 s<td

Now combining the above inequality, Lemma and Doob’s maximal inequality, we get that
1

_ 1
QW (6,—q) < supE_; (f:(i 2) + TJ’%EO (1&s1?)

ta-1
(qﬁ)r0_2 >0 0 qafl
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1 )
S ro—2 1 + 2a0

ro—2 02 a—1 a—1
q t q

rog—2
Since -2 — L > 0 under (H4’), letting T(5) be sufficiently large so that 7 a1 > 51 for

all t > T'(9), we get the desired ([B.33]). O

Proof of Theorem .4t By Theorem [L.2], for any 6 > 0, we have the following lower bound
for the liminf:

N I 0
htrggjlfta*lpﬁy (Zi(A) >0) > tli,n;lotMl <1 -E, (exp {—mZt(A)}>>

= —log s, (exp {—00(A)Y1(0)}) 75 —logPs, (Y1(0) = 0). (3.35)

Now we prove the lim sup is no larger than the right-hand side above. By the branching property,
for k > 0, it holds that

Pz, (Zatmi(A) > 0) = E <1 — exp {/log]P’a(Zm(A) = O)Zt(da)}> .
Noticing that for all a € R,
t—00

Po(Zi(A) = 0) > Po(Zuo(R) = 0) = Po(Z(R) = 0) =3 1.

Using the fact that logz ~ x — 1 as ¢ — 1, we see that there exists N (k) such that as t > N(k),
1
P iy (Zasmi(A) > 0) <E 4, (1 — exp {—5 / Po(Zis(A) > O)Zt(da)}> : (3.36)

Now we fix a small € > 0. Suppose that ¢ is large enough such that A C [—ev/t,eV/1]. For a < —2eV/t,
by Lemma 3.5, when ¢ is large enough, we have

Po(Zun(A) > 0) < P_y_ s(Mys > —eVE) < (’;(f)f (3.37)
Similarly, for a > 2ev/t, when ¢ is sufficient large, it holds that
mwum>méﬁmwmsw®s?2? (3.38)
When |a| < 2/, by (LI0), we have
PJ@AAﬁﬂDSPM@AR%>®§(Ji% (3.39)
(o) as

for some constant C, € (0,00). Combining (3.30), (3.37), (338), (339) and the inequality 1 —
e~l#l=lwl < (1 — e~I#l) + |y|, we obtain that

tTP g, (Zasnp(4) > 0) < taIE g (1 —exp {_ﬁz’f([_%ﬂ’ 25\/%])})
+ S (o0, 22V U 20V 0))
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<taTE ;) (1 —exp {—%Zt([—zmﬁ, 2&:\/%])}) 0Ly (3.40)

Opa=Tta-T1 2
where in the last inequality we used the fact that E 5 (Z;(R)) = 1. Now define a function

f(z):= C*l <<2 — i]az\) A 1> ,x €R,
2K a1 2e +

then we see f is a bounded continuous function with support equal to [—4e, 4e] and f = C for
2k =1
x € [—2¢,2¢]. Plugging this observation into ([3.40), we get that for large ¢,
1
ta=1P s, (Z(14rp(A) > 0)
1 1 a C(e)k
<tea-1[K 1— — — | Z
e () ) -
1 t C(c?)K/
— t=TE <1 —exp{—/f(a) Z§>(da)}> + 5 (3.41)
Letting t — oo in (B.41]), using Theorem [[2 with h = 0 and g = f, we get that
. _1_ 1 1
h?isogp toTP 5, (Zi(A) > 0) = (1 + k)T h?isogp TP g iy (Za1mi(A) > 0)
B S B 1 _C(e)k
< (1+rk)aT t&r&ta*lEﬁ\/my <1 — exp {—/f(a) th)(da)}> +(1+k)a-T 5

=—(1 +/{)ﬁ logEs <exp{—/f(a)X1(da)}> + C(g)u;ﬁ)all/{
Cle)(1+ w)TT
2

where in the last inequality we used the fact that f is supported in [—4e, 4¢]. Letting £ — 0 in the
above inequality, we see that

< —(1+r)TT logPs . (X1([—4e, 4e]) = 0) +

V1+Ky ’%7

limsuptﬁp\/zy (Zi(A) > 0) < —logPs, (X1([—4e,4e]) = 0) = —logPs, (Yi(x) = 0, V|z| < 4e).

t—o00

Taking ¢ — 0 and using Remark 212 we conclude that
limsupta-iP ; (Z(A) > 0) < —logPs, (¥1(0) = 0). (3.42)
t—o00

Combining (3.35) and (B.42]), we complete the proof of Theorem [I.41

Proof of Theorem (i) For any f € CF(R), it holds that

E, (exp{—%/f(:n)Zt(da:)} Z,(A) > 0>

ta—1"2

- Pﬂy(ZiA) 5 E <<1 —exp{—#/f(x)zt(dx)b 1{zt(A>>0}> L (343)

Let B = (a,b) be a bounded interval such that supp(f) € B and A C B. Then by Theorem [I.4],
we see that

Pﬂy(ZttA) = O)E\/gy <<1 — exp {-%/f(m)&(dx)}) (Liz:(B)>0) — 1{Zt(A)>0})>'
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: P\ﬂy(Z;A) 57 (BvalZ(B)> 0 =P (2i(4) > 0)) = o (3.44)

Further, combining Theorem and Theorem [[.4] we get that

S%E, (ZiA) =0) <<1 - {_ﬁ;—é / I (x)Zt(dx)D 1{2“3)”})
= fim Pﬁy(ZiA) =0) Vi <1 - {_ﬁ / ﬂx)zt(d:p)b

1
= logEs, | expq—Yi(0 / T dm}) 3.45
= B (e {0 [ (3.45)
Therefore, combining ([8.43)), (8:44]) and (B.45]) we see that

im E g (exp{—ﬁ/f(m)Zt(da:)} 1Z,(A) > 0>

-1 (Yll e <exp {—Yl(o) / f(a;)dx}) . (3.46)

For any 6,e > 0, taking f = h + %1[—5,51 in (LI4) and letting ¢ — 0, by Lemma [[.T] we have
N (1 - e_‘gyl(o)_wl(h)> =lmN, (1—exp —iwl([—s e]) —wi(h)
Y 0 7 2e ’

~ — tiylog s, (0 { X1 - i)} )
= —log E;, (exp {—0Y1(0) — X1(h)}). (3.47)

Letting h = 0 and 6 T oo, we also see that
N, (Y1(0) > 0) = —logEs, (Y1(0) =0). (3.48)

Combining ([B:46), (B47) and ([348), we have that

hm%<exp{ L [z} izm > o)

A R (1—exp{—Y1(0)/f(:E)d:p}>
(el o)
=N, (exp{ Y1(0 /f(:n d:n}|Y1 >

which implies (i).
(ii) To prove the convergence in distribution in the weak topology, it suffices to prove that for
any g € B} (R) (for example, see [I3, Lemma 3.4]),

s (o e [ () o)
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= Ny (exp {—wi(g)} [Y1(0) > 0).

1
cafonl 2 o)} o
- 1 By (@ _L/ L) Zu(dy) p1 (3.49)
P, (Z(A) > 0) VW AT IR A a0 ) .
Since 101 =2 1 — e~7l for @ > 0, by Theorem [.2 and Theorem [[4] for any # € (0, 00), we have
that
e G e K ) K R
* X — <
t—>oop Vity p ta : g \/E t\dy {Z:(A)>0}

ol fo ()l o] s

< lim t77|P  (Z(A) > 0) ~E 4, <1 - exp{—%zt(A)D ‘
ta—_

Note that

t—o00

= |— log Ps, (Y1 (0) =0) + log Es, (exp {—6£(A | -

Therefore, combining the above inequality and Theorem EIZL we conclude that for each 6 € (0, 00),

1
h?iiljpta 1E\/y <exp{ tail /g <%> Zt(dy)} 1{Zt(A)>0}>
< G(0) — logEs, (exp {—0£(A)Y1(0) — X1(9)}) +log Es, (exp {—X1(9)})

7% logEs, (exp {—X1(9)} Lyi(0)=0y) + log Es, (exp {~Xi(g)}). (3.50)

Similarly, we also have that

lit@)j}.gftﬁE\/gy (eXP{ 1 / (%) Zt(dy)} 1{zt(A)>o}>
> —G(0) — logEs, (eXP{—W( )Y1(0) — X1(g)}) + log Es, (exp {—X1(9)})

GToo
—log Es, (exp {=X1(9)} v (0)=0}) + 108 Es, (exp {—X1(g)}). (3.51)
Combining Theorem [[4] (3:49) (3.50) and (351), we conclude that

. 1
i (ow{ = fo () zan 12 >0)

- &1(0) g7 (~108Es, (e {(=X1(0)} L w=y) + log Es, (e {~X1(9)}) (3:52)

Combining ([B3:47), (B:48) and ([B52), we get that

o e () i} -

_ m (Ny (1= e Oy 020y) =Ny (1 - @)
= mNy <e‘w1(g)1{y1(0)>0}> =N, (e—w1(g)|y1(0) > 0) ’

which implies the desired result.
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4 Proof of Lemma 1.1

Proof of Lemma [I.Tk Suppose that Q; is the transition semigroup of the super Brownian motion,
i.e.

Qt(l/l, dI/Q) = Pul (Xt S dl/g).
Let Q5 be the restriction of @Q; on Mp(R)\ {0}. By [2I, A.41 or (8.46)], for every y e R, 0 < 11 <
W <rpm <ooand vy, .., vy, € Mp(R)\ {0}, we have

Ny (wy, € dvy, ., wy, € dvy) =Ny (wyy, € dvr) Q. (v1,die) - Q7 L (Wm—1,dv).

Tm—Tm—

In particular, for any s < t,

N, (w € Me(®)\ {0}, i € 4 = [ N, (wr € dvn) @5, (1, A°)
Mp(R)\{0}

- / Ny (w, € dv)Py, (Xi—r € A°),
Mp(R)\{0}

where in the last equality we used the fact that 0 ¢ A°. Since P, (X;—, € A) = 1forall v; € Mp(R)
and t > r, we obtain that

Ny (w, € Mp(R)\ {0}, w; € A°) = 0. (4.1)

Moreover, wy € A€ impllies that w; # 0, therefore, it must hold that w, € Mp(R)\ {0}. Therefore,
by ([@I]), we get that

N, (w, € Mp(R)\ {0}, w; € A9) = N, (w, € A°) =0,

which implies the desired result.
O
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