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Abstract

Suppose X = {X;,t > 0} is a supercritical superprocess. Let ¢ be the non-negative eigenfunction
of the mean semigroup of X corresponding to the principal eigenvalue A > 0. Then M:(¢) =
e M(p, X;),t > 0, is a non-negative martingale with almost sure limit Mso(¢). In this paper we
study the rate at which M;(¢) — Mso(¢) converges to 0 as + — oo when the process may not have finite
variance. Under some conditions on the mean semigroup, we provide sufficient and necessary conditions
for the rate in the almost sure sense. Some results on the convergence rate in LP with p € (1,2) are
also obtained.
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1. Introduction and main results

Let {Z,,n > 0} be a Galton—Watson process with Zy = 1 and offspring mean m := EZ; >
1, and let W,, ;== m™"Z,. Then {W,,, n > 0} is a non-negative martingale with almost sure limit
Weo. It is well-known that W,, converges to W, in L' if and only if E(Z, logJr Z1) < 00. In the
case E(Z;log" Z;) < oo, it is natural to consider the rate at which W, — W, converges to 0. In
this paper we are mainly concerned with the convergence rate in the almost sure sense, when
the process may not have finite variance. This type of results first appeared in Asmussen [2],
and then in the book of Asmussen and Hering [3]. The following result is from [3, Theorem
IL.4.1, p. 361

Theorem A. (i) Let p € (1,2) and 1/p+ 1/q = 1. Then
Woo — W, = 0o(m™1)  a.s. as n — 00 (1.1)

if and only ifE(Zf) < o0.
(i) Let a > 0. Then

o0
E n* YWy — W,)  converges a.s.
n=1

if and only if E(Z,(log™ Z,)'**) < oo.
(iii) Let « > 0. Then Woo — W,, = 0o(n™%) a.s. as n — oo if and only if

E[Zl(log Z — logn>l{zl>n}] =o0((logn)™), asn— oo.

Asmussen [2] also discussed corresponding results for finite type Galton—Watson pro-
cesses, and continuous time Galton—Watson processes. For multigroup branching diffusions
on bounded domains, convergence rate corresponding to Theorem A(i) is considered in
[3, VIII.13]. A sufficient condition, corresponding to E (le ) < 00, is given for (1.1) to hold,
see [3, Theorem VIII.13.2, p.343]. The goal of this paper is to prove the counterparts of the
results in Theorem A for a class of superprocesses.

Before we give our model and results, we first review some related work in the literature. For
any p > 1, the L? convergence rate of W, — W, to 0 is obtained in Liu [32, Proposition 1.3].
Huang and Liu [17] obtained L?” convergence rates for similar martingales in quenched and
annealed senses for branching processes in random environment. In [1,18,19], a class of non-
negative intrinsic martingales W, for supercritical branching random walks were investigated.
Let W, be the almost sure limit of W, as n — oo. Necessary and sufficient conditions for the
LP-convergence, p > 1, of the series

oo

D e Woo = W), a >0, (12)

n=1
were obtained in [1], which may be viewed as the exponential rate of convergence of
E|Ws — W,|? to 0 as n — oo. In [18], sufficient conditions for the almost sure convergence
of the series

D FM(Wao — W) (1.3)

n=0
were obtained, where f is a function regularly varying at oo with index larger than —1.
[19] investigated sufficient conditions for (1.2) to converge in the almost sure sense. For
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general supercritical indecomposable multi-type branching processes, sufficient conditions for
polynomial rate of convergence in the sense of convergence in probability were given in [20].

We now introduce the setup of this paper. We always assume that £ is a locally compact
separable metric space. We will use Ey := E U {0} to denote the one-point compactification
of E. We will use B(E) and B(E,) to denote the Borel o-fields on E and Ej respectively.
By(E) (respectively BY(E), respectively B;(E )) will denote the set of all bounded (respectively
non-negative, respectively bounded and non-negative) real-valued Borel functions on E. All
functions f on E will be automatically extended to E by setting f(d) = 0.

We will always assume that & = {(§);>0; II,,x € E} is a Hunt process on E and
¢ =1inf{t > 0 : & = 0} is the lifetime of §&. We use (P;);>0 to denote the semigroup of &
acting on functions defined on E and (FZ),ZO to denote the semigroup of & acting on functions
defined on E3. We mention in passing that it is important that we take Ej to be the one-point
compactification of E. For example, if E is a bounded smooth domain of R4, & is the killed
Brownian motion in E and d was added as an isolated point, then £ will not be a Hunt process.
Let the branching mechanism v be a function on E x R, given by

Y(x,z) = —B(x)z+ %ot()c)z2 +/ (e —14+zr)n(x,dr), x€ E,z>0, (1.4)
(0,00)

where ¢ > 0 and B are both in B,(E), and 7 is a kernel from (E, B(E)) to (Ry, B(R,))
satisfying

/Oo(r AT (-, dr) € B (E). (1.5)
0

Note that this assumption implies that, for any fixed z > 0, ¥ (-, z) is bounded on E. We extend
¥ to a branching mechanism ¢ on E; by defining (3, z) = 0 for all z > 0.

Let M(E) (resp. M(Ej)) denote the space of all finite Borel measures on E (resp. Ej)
equipped with the topology of weak convergence. Any u € M(E) will be identified with
its zero extension in u € M(Ej). Denote by 0 the null measure on E and Ej;. Write
MOUE) = M(E)\ {0} and MO(Ey) = M(E;)\ {0}. For any u € M(E;) and f € B(Ej), we
use (f, u) or u(f) to denote the integral of f with respect to u whenever the integral is well-
defined. For f € B;(Ea), there is a unique locally bounded non-negative map (¢, x) vV, fx)
on R, x Ej such that

t

Voo + I [ V(e Viess@)ds] = IIFGL 12 0.5 € (1.6)

Here, local boundedness of the map (¢, x) — V, f(x) means that for any T > 0,

sup V. f(x) < 0.

0<t<T,xcE

Similarly, for f € B;(E ), there is a unique locally bounded non-negative map (¢, x) — V; f(x)
on R, x E such that

IAC
Vi) + IL| /0 V(s Vins FE)ds | = I F @1 e], 1206 € E. (1)

Then we can define a Markov transition semigroup (Q;);>0 on M(Ej) by

/ e DO, (. dv) = e V1D e M(Ey), f € Bf (Ey).
M(Ey)
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If X = {(Y,)tio; P., u € M(E;)} is a Markov process in M(Ej) with transition semigroup
(Q1)i=0, we call it a Dawson—Watanabe superprocess with parameters (£, ¥). Since & is Hunt,
X has a Hunt realization. We will always assume that X is a Hunt process. See [31, Section 2.3
and Theorem 5.11] for more details. For other sources on the constructions of superprocesses
and more basic facts on superprocesses we refer the reader to [8,10,14,15,31,36]. Let ¢(u) be
the restriction of a measure u € M(Ej) to E and X, = «(X,). It follows from the proof of [31,
Theorem 5.12] that X = {(X;);>0; Py, u € M(E)} is an M(E)-valued Markov process such
that

Pu[efxl(f)] — e*ll(vlf)’ t > 0’ f c BZ"(E)

However, since we have taken Ej to be the one-point-compactification of E, X is in general
not a Hunt process and does not have good regularity properties. Since X,(f) = X,(f) for any
function f on E and we are only interested in quantities of the form X;(f), we can work with
the Hunt process X when necessary.

The process X may be loosely described as a scaling limit of branching particle systems as
follows. Let u € MO(E). Suppose that, at time zero, a random number of particles are set in E,
according to a Poisson random measure with intensity N . The particles move independently
according to the law of £ in E. A given particle lives an exponential amount of time with mean
lifetime by, and upon its death gives birth to a random number of offspring. The offspring
wander and propagate in the same fashion. Offspring are born at the death site of their parent,
and the distribution ( p,i\' (x); K = 0) of the number of offspring is allowed to depend on the
death site x, and on the parameter N. The mass distribution of particles alive at time ¢ may
be viewed as a random measure X ,(N) (each particle being given weight 1/N). Under suitable
hypotheses this sequence of measure-valued process converges in distribution, as N — oo, to
a limit measure-valued Markov process X with Xy = w. The typical conditions are by — 0
and

ik [Z V@ =2/ N = (1 - z/N)} (N/by) = Y(x.2). 220,
k=0

For details on superprocesses as limits of branching particle systems we refer to Dynkin [10]
and Li [31].

When the initial value is §,,x € E, we write P, for Ps . We use (Ptﬂ )i>0 to denote the
following Feynman—Kac semigroup

PP f(x) = II, (eXP </ ﬂ(és)dS) f(éz)l{z<;;> , x€E, feBE).
0
Then it is known (see [31, Proposition 2.27]) that for any u € M(E),
P X)) =wuPlf), t=0,feBE. (1.8)

(P,’S )i>0 1s called the mean semigroup of X. For this mean semigroup, we will always assume
that

Assumption 1. There exist a constant A > 0, a positive function ¢ € B,(E) and a probability
measure v with full support on E such that for any ¢ > 0, P’¢ = e*¢, vPP = e*'v and
v(g) = 1.

Denote by L} (v) the collection of non-negative Borel functions on E which are integrable
with respect to the measure v. We further assume that the following assumption holds:
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Assumption 2. For all > 0, x € E, and f € LT(\)), it holds that Ptﬂf(x) =eMp(x)v(f)(1 +
Cix, r) for some C, . r € R, and that lim,_, . ¢, = 0, where ¢; := SUP,c. feLt ) ICox,rl-

Note that lim,_, o, ¢, = 0 implies that there exists 7y > 0 such that

sup sup |Cix,r| < 00.
1>10 xeE, feLT (v)

Without loss of generality, throughout this paper we will assume 7y = 1.
Here are two classes of examples satisfying Assumptions 1 and 2. For more examples,
see [35, Section 1.3] and [37, Section 1.4].

Example 1.1. Suppose that E is the closure of a bounded connected C? open set in R¢ and that
m denotes the Lebesgue measure on E. Let £ be the reflecting Brownian motion in E. Then
& has a transition density p(¢, x, y), with respect to the Lebesgue measure, which is a strictly
positive, continuous and symmetric function of (x, y) for any ¢ > 0 and that there exists ¢ > 0
such that

p(t,x,y) <ct 42, (t,x,y) € (0,00) x E x E.

The largest eigenvalue of the generator of the semigroup {P, : 7 > 0} of & is % = 0 and
the corresponding eigenfunction ¢y is a positive constant. Using this and the argument on
[37, pp. 241-243], one can easily see that Assumptions 1 and 2 are satisfied.

Example 1.2. Suppose that E is an open subset of R? with finite Lebesgue measure and that m
denotes the Lebesgue measure on E. Let & be the subprocesses in E of any of the subordinate
Brownian motions studied in [23,24]. Brownian motion and isotropic «-stable processes,
a € (0, 2), are special cases of subordinate Brownian motions. Then it is known (see [4,5]) that
& has a transition density p(¢, x, y), with respect to the Lebesgue measure, which is a strictly
positive, continuous, bounded, symmetric function of (x, y) for any ¢ > 0. It follows from [22]
that the semigroup {P, : + > 0} of & is intrinsic ultracontractive and that the eigenfunction
bo corresponding to the largest eigenvalue of the generator of {P, : + > 0} is bounded. Using
this and the argument on [37, pp. 241-243], one can easily see that Assumptions 1 and 2 are
satisfied.

Define
M) =e (¢, X,), t>0. (1.9)

It follows from (1.8) and Assumption 1 that {M,(¢), t > 0} is a non-negative cadlag martingale,
see (2.11). By the martingale convergence theorem, M;(¢) has an almost sure limit as t — oo.
We denote this limit as My (¢). In this paper, we study the rate at which M;(¢) converges to
My (@) as t — oo.

To state our results we need to introduce some notation. Define a new kernel 7?(x, dr) from
(E, B(E)) to (R, B(R,)) such that for any non-negative Borel function f on R,

/00 f(r)rr¢(x,dr) = /00 frox)rm(x,dr), xe€E. (1.10)
0 0
By (1.5) and the boundedness of ¢, 7? satisfies
00 1/¢(x) oo
/ rna r2)7r¢(x, dr) = qb(x)[/ r2¢(x)7r(x, dr) + / rm(x, dr)]
0 0 1/¢(x)
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1 00
< ¢(x) <II¢/ P2, dr)lle + 2| rn(x,dr)lloo).
0 LA/ [$llo
Let C = ||¢ [, r’m (-, dr)lloo + 2| S igta T dr)llco. Then
/oo(r AP ?(x, dr) < Co(x). (1.11)
0

In [33], we studied the relationship between M.,(¢) being a non-degenerate random variable
and the following function [:

o0
1(y) :=/ rinrn®(y,dr), ye€E, (1.12)
1

and established an L log L criterion (see Proposition 1.3) for a class of superdiffusions with
a=0.

Proposition 1.3 (/33, Theorem 1.1]). Suppose that Assumptions 1-2 hold and u € MO(E).
Then P,(Mx(¢)) = (¢, 1) if and only if the following Llog L condition holds:

/ I)w(dy) < o (L13)
E

Moreover, if (1.13) holds, then for any u € MO(E),
{(Moo(9) > 0} ={X; >0, Vt >0}, Py-as.
Otherwise, Moy(¢) = 0, Py-a.s. for any u € MO(E).

If @ # 0, from the stochastic integral representation (2.11) of the martingale M,(¢), one
can see that the continuous part (the part corresponding to the term %oz()c)z2 of the branching
mechanism 1) is a martingale bounded in Lz(PM), so it converges almost surely under our
setting. And thus the criterion (1.13) still holds for the superprocesses with general branching
mechanism .

The non-degeneracy of the limit M, (¢) is closely related to the convergence of e X, as a
process in M(E), which can be regarded as a law of large numbers. The earliest work along this
line dates back to 1970’s when Watanabe [42,43] studied the asymptotic properties of branching
symmetric diffusions. Since then, many people have worked on this topic, see, for instance,
Chen and Shiozawa [7] for branching Hunt processes, Englidnder et al. [12] for branching
diffusions, Engldander and Kyprianou [13] for branching diffusions and superdiffusions, and
Eckhoff, Kyprianou and Winkel [11] for superprocesses. In the paper mentioned above, the
branching Markov processes or superprocesses, under some conditions, increase exponentially.
Recently, some papers, for example, Kouritzin and Ren [27] and Wang [41], investigated
the strong law of large numbers of super-stable processes and super-Brownian motion with
branching mechanism ¥ (x,z) = —fz + %azz with 8, > 0 being constants. It turns out
that in this case X;(f) grows with exponential rate multiplied by a polynomial of time ¢,
where f is some test function. Kouritzin and Lé [25] studied the long-time behavior of o-
stable (o € (0, 2]) Fleming—Viot process, and got asymptotic expansions for t%Xt( f) with f
being some test function. Similar expansion for super-Brownian motion was given in L& [29].
The law of large numbers for branching Gaussian processes, including fractional Brownian
motion and fractional Ornstein—Uhlenbeck processes with large Hurst parameters, was obtained
in Kouritzin et al. [26].
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In the Appendix, we will state an almost sure convergence of the superprocesses which is
used in our proof. We will give a proof since the result is not available in the literature.

Throughout this paper, we assume that (1.13) holds. Thus M,(¢) converges to My (¢)
P,-almost surely and in L'(P,) for any u € M(E).

Since M, (¢) is right continuous, for any a* > 0, we can define

Ada®) = / e (Mas(d) — My@)ds. 1 € [0, 00). (1.14)
0
Note that

Aa®) = Aya) = / e (Moo($) — My(@))ds, 1> 1.

1
The convergence of A;(a*) — A;(a*) as t — oo is related to the rate at which M. (¢) — M,(¢)
converges to 0 as + — oo. Our first result is the following criterion for the L? convergence
rate of Moo(¢) — M;(¢) to 0 as t — oo. We use the usual notation || - ||, to denote the L”
norm with p > 1.

Theorem 1.4. Assume that Assumptions 1-2 and (1.13) hold. Let 1 < a < p < 2 and
1 1
-t =1

m If
/ v(dy)/oo rPr?(y,dr) < oo, (1.15)
E 1

then for any n € MO(E), (A,(a*) — A\(a*)) converges in LP(P,) and P, -almost surely
ast — oo.

(2) If for some u € MO(E), (A,(a*) — Ai(a*)) converges in LP(P,) as t — oo, then it must
converge P, -almost surely and (1.15) holds.

) If (1.15) holds, then |Mqy.(¢) — M,(q>)||p = 0(6’7%) ast — oo.

@ If IMoo(@) — Mi(P)Il, = o(1) as t — oo, then (1.15) holds.

For a Galton—Watson process Z, it is proved in [32, Proposition 1.3] that if E(Z!) < oo
for some p > 1, then there exists some ¢ > 0 such that

_1,
W, = Waoll, < cm 4, if pe(l,?2],
n ocollp =

_1 .
cem™ 2", if p > 2,

where 1/g+1/p = 1. The above result implies that | W, — Wu ||, = o(m_ai*) forl <a<p<
2, which corresponds to our Theorem 1.4(3), and [|W, — Wxoll, = 0(p™") for any p < m'/2.

If f ]oo r2m(x, dr) is bounded (which implies that (1.15) holds for p = 2), by the central
limit theorem (see [38, Theorem 1.4]), e */2(M,(¢) — Moo()) converges to Z+/ My (¢) with
Z being a normal random variable with mean zero and independent of My (¢). In [38], the
mean semigroup P,ﬁ is assumed to be symmetric with respect to some measure m, and the
assumptions on (P,ﬁ )i>0 are slightly different, but the central limit theorem also holds in the
nonsymmetric case, see [39] for the corresponding results for branching Markov processes. A
question related to Theorem 1.4 is whether the results still holds for a = p < 2. The following
theorem gives necessary and sufficient conditions for the almost sure convergence for the case
ofa=p<?2.

Theorem 1.5. Suppose that Assumptions 1-2 and (1.13) hold. Let 1 < p <2, 1/p+1/q = 1.
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(1) If (1.15) holds, then for any u € MOE), as t — oo, A;(q) converges P-a.s. and
_
Mi(¢) — Moo(p) = 0(e 7)), Py-as.
(2) Suppose there exist B > 0 and Ty > 0 such that

sup —— oon¢(x,dr) < B/ v(dy)foon¢(y,dr), t>T. (1.16)
xeE O(X) J; E r

If
/ v(dy)/oo rPr?(y,dr) = oo, (1.17)
E 1

then for any | € MOUE), M,(¢) — Moo(p) = 0(67%) P,-a.s. does not hold as t — oc.

Theorem 1.6. Assume that Assumptions 1-2 and (1.13) hold.

(1) For any y > 0,
fEu(dx)floo r(nr) M'7?(x, dr) < oo (1.18)

implies that, for any u € M°(E),

/O t 57 (Moo(§) — Mi())dss

converges P, -almost surely as t — oo, and

Moo(9) — Mi(9) = o(t™7), P,-a.s.
If (1.18) holds with y > 1, then [, (Mso(¢) — M(¢))dt exists P,,-almost surely for any

w e MYE).
(2) Suppose that there exist b > 0, Ty > 0 and a Borel set F C E with v(F) > 0 such that
1 o0 o0

inf—/ ra?(x, dr) zb/ v(dx)/ ra?(x,dr), t>T. (1.19)
xeF ¢(x) J, E t

If there is y € (0, 0o0) such that
/ v(dx)/ r(nr) M (x, dr) = oo, (1.20)

E 1

then for any u € MOE), fot Y (Muso(p) — M(¢))ds does not converge P,-as. as
t - oo. If, ast — oo,

/ v(dx)/Oo r(nr —InH)n®(x,dr) = o ((]n t)_V) (1.21)
E '

does not hold, then My (¢) — M, (¢) = o(t™7), P,-a.s. does not hold as well.
It was noted in [3, Theorem II.4.1, p.36] that (1.18) implies (1.21), and (1.21) implies that

o0
/ v(dx)/ r(nr) ™' ¢n?(x,dr) < oo forall 0 <& < y.
E 1

This says that (1.18) is slightly stronger than (1.21).
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We make a few remarks about (1.16) and (1.19). Note that by definition,

foon%c, dr) = foo w(x,dr) =7 (x, (t/p(x), 00)) .
t t/p(x)

If w(x, dr) = y(x)r~'=%dr with @ € (1, 2) and y a bounded non-negative Borel function, then
o0
1
/ 7?(x, dr) = —y ()t "¢ (x)”.
p o
Hence
1 > ¢ 1 —a o—1
— 7?(x,dr) = —yx)t “¢(x)
o(x) J; (o4

and
/v(dx)foond’(x,dr): i/ v(dx)y (x)p(x)~.
E t a Jg

Since y and ¢ are bounded, (1.16) is satisfied. Similarly, by definition,

oo

/ ra®(x, dr) = ¢(x) ra(x,dr).
t t/$(x)

Hence, we similarly have

L /oo }"JT¢(}C d}") — L (x)¢(x)°‘71t17°‘
600 ), B

and

o0 l—a
/ v(dx)/ ra?(x,dr) = ! / y(xX)Pp(x)*v(dx).
E t a—1Jg
Thus (1.19) is satisfied if v({x : y(x) > 0}) > 0. It is easy to generalize the remarks above on
(1.16) and (1.19) to the case when 7 (x, dr) = y(x)r~'~*s(r)dr with « € (1, 2), y a bounded
non-negative Borel function, and s a local bounded non-negative Borel function (0, co) which
is slowly varying at oo.

The remainder of this article is organized as follows. In Section 2.1, we present a stochastic
integral representation of superprocesses which will be used in later sections. In Section 2.2, we
introduce the spine decomposition of superprocesses which is used in the proof of Lemma 3.5.
The main results are proved in Section 3. Lemma 3.5 plays a key role in the proof of
Theorem 1.5.

In this paper, we use the convention that an expression of the type a < b means that there
exists a positive constant N which is independent of a and b such that a < Nb. Moreover, if
a < b and b < a, we shall write a < b.

2. Superprocesses

2.1. Stochastic integral representation of superprocesses

Without loss of generality, we assume that our process X is the coordinate process on

D = {w = (w;);>0 : w is an M(Ejy)-valued cadlag function on [0, 00).}.
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We assume that (Fo, (F;);>0) is the natural filtration on D, completed as usual with the
Foo-measurable and P, -negligible sets for every u € M(Ep). Let W; be the family of M(E;)-
valued cadlag functions on (0, co) with 0 as a trap and with lim, ;o w, = 0. W can be regarded
as a subset of D.

Throughout this paper assume that P,(X;(1) = 0) > 0 for any x € E and ¢t > 0, which
implies that there exists a unique family of o-finite measures {N,; x € E} on W(‘f such that
for any u € M(E), if N(dw) is a Poisson random measure on Wg’ with intensity measure

Nu(dw) = [ No@wpiax),
E
then the process defined by

Xo=u, 5(:,:/ wN(dw), t>0
We
is a realization of the superprocess X = {(Y,)tzo; P., n € M(E)}. Furthermore, N, ({f, w;)) =
P.(f, X,) for any f € B*(E) (see [31, Theorem 8.22] and [40, Section 2.2]). {N,; x € E} can
be regarded as measures on I carried by W .
Let us recall the stochastic integral representation of superprocesses, for more details
see [16] or [31, Chapter 7]. Let (A, ©(A)) be the weak infinitesimal generator of & as defined
in [15, Section 4]. For any f € ©(A),

P —
M — A f(x), bounded and pointwisely as t — 0.

We will use the standard notation AX, = X, — X,_ for the jump of X at time s. Let Cé(R)
denote the set of all twice continuously differentiable functions on R vanishing at infinity. It is
known (cf. [15, Theorem 1.5]) that the superprocess X is a solution to the following martingale
problem: for any ¢ € ®(A) and & € Cg(R),

h(((ﬁ,fﬁ)—h(((ﬁ,u))—fo W (@, XA + g, X,)ds

1
/ 1 (o, ) g™, Xy )ds

///(0 : (hp, X) +ro)) — h((p, X;))

— W ({p, X;)re(x) ) 7(x, dr)X,_(dx)ds

2.1

is a P,-martingale for any u € MOEy).
By [16, Proposition 2.1] (also see [31, Theorem 7.13]), for any ¢ € D(A) and . € MO(Ey),

(0. %) = g, 18) + 57 (@) + SS(0) + /0 (A + B)p. X, )ds. 22)

where SE(¢) is a continuous P,,-local martingale and S/ (¢) is a P,-pure jump martingale. The
quadratic variation process of the continuous local martingale S¢(p) is given by

(SC()), = /0 (@ X.)ds. 23)

Next, we characterize the pure jump martingale (S/(¢),t > 0). Let J denote the set of all
jump times of X and § denote the Dirac measure. From the last part of (2.1), we see that the
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only possible jumps of X are point measures of the form r8, with » > 0 and x € Ej, see
[30, Section 2.3]. Thus the predictable compensator of the random measure (for the definition
of the predictable compensator of a random measure, see, for instance [8, p. 107])

N = Z S(S,AYS)
seJ

is a random measure N on R, x M(Ejy) such that for any nonnegative predictable function F
on R, x 2 x M(Ey),
oo oo [o.¢]
/ / F(s, w, U)]V(ds, dv) = [ ds[ Y‘Y,(dx)/ F(s, w,ré)m(x,dr), (2.4)
0 JM(EY 0 E 0

where 7 (x, dr) is the kernel of the branching mechanism . Therefore we have

P, |:Z F(s, w, AYS):| =P, /wds/ Ys_(dx)/oo F(s,w, ré,)m(x,dr). 2.5)
0 E 0

sedJ

See [8, p.111].
Let F be a Borel function on R x M(E}) satisfying

12
Pu[( Z F(s, AY.,.)2> j| < 00, for all u € M(Ej).

s€[0,t],s€J

Then the stochastic integral of F' with respect to the compensated random measure N — N

f / F(s, v)(N — N)(ds, dv)
0 JM(Ey)

can be defined (cf. [30] and the references therein) as the unique purely discontinuous
martingale (vanishing at time 0) whose jumps are indistinguishable from 1,(s)F (s, AXj).
Suppose that g is a Borel function on R, x E. Define

Fo(s,v) = / g(s, x)u(dx), v e M(Ey), (2.6)
E

whenever the integral above makes sense. When g is a bounded Borel function on R} x E,
for any u € M(E),

— up o o\ 1/2
Py [(Zse[o,r],sej Fy(s, AX,)) ] =Fu [(Z%IOJJJEJ (/i 8. N AX)(d)) )
— 12
< lglleoPy Yo LAX Lgaxgen + D, (LA Ly ax,-)
s€l0,t],seJ s€l0,t],seJ
172
< lglePy Do (L AX) g Az
s€l0,t],seJ
- 2
+ lIgllooPy > (L ARy axge
s€l0,t],seJ
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Using the first two displays on [30, p.203], we get
1/2

P, Y Fy(s. AX,) < . 2.7)

s€l0,t],seJ

Therefore, if g is bounded on R, x E, then the integral fo’ fM(Ea) Fo(s, v)(N — N)(ds, dv) is
well defined and is a martingale. Define the martingale measure S”(ds, dx) by

/ /g(s,x)SJ(ds,dx) ::/ / Fy(s, U)(N—ﬁ)(ds,dv). 2.8)
0o JE 0 JM(Ey)

Thus the pure jump martingale S/(¢) in (2.2) can be written as

S{(<p)=/ /gz)(x)S](ds,dx).
0 E

A martingale measure S€(ds, dx) can be defined (see [16] or [36] for the precise definition)
so that the continuous martingale in (2.2) can be expressed as

t
SC(@) = / / 9(x)SC(ds, dx).
0o JE
Summing up these two martingale measures, we get a martingale measure
M(ds,dx) = S’(ds, dx) + S(ds, dx). (2.9)

Using this, [16, Proposition 2.14] and applying a limit argument, one can show that for any
bounded Borel function g on E,

(¢, X,) = (Plg, )+ / / PP g(x)S’(ds, dx) + / / PP g(x)S¢(ds, dx). (2.10)
0 E 0 E

In particular, taking g = ¢ in (2.10), where ¢ is the positive eigenfunction of P,ﬂ given in
Assumption 1, we get the expression for the martingale (M,(¢));>0:

M,(p) = <¢,u>+/ e—“/ ¢(x)sf(ds,dx)+f e—“/ d(x)SC(ds, dx). (2.11)
0 E 0 E

Therefore the limit My, (¢) of M,(¢) can be written as

Moo (9) = (¢,M>+/we—“/ ¢(x)SJ(ds,dx)+/oo e—“/ d(x)SC(ds, dx). (2.12)
0 E 0 E

For the jump part above, we always handle the ‘small jumps’ and the ‘large jumps’
separately. Now we give the precise definitions of ‘small jumps’ and ‘large jumps’. Given

p € (0, oo]x, a jump at time s is called ‘small’ if 0 < Afs(qb) < er’, and ‘large’ if
AX,(¢p) > e?’, where AX,(¢) = r¢p(x) when AX, = r8, with r > 0 and x € E. Define

Lp) ._ _ 2.0) ._ _
NP = Z 8¢5, 0%,y NP = Z 858X,

_ Ay _ Ay
0<AX(p)<eP AXs(p)=e P

and denote the compensators of N#) and N®# by NU-» and NU-» respectively. Then for
any non-negative Borel function F on R, x M(Ej),

/ / F(s, v)ﬁ(l’p)(ds,dv)=/ ds/Ys_(dx)/ F(s, r¢(x)"'8)m®(x, dr)
0 M(Ey) 0 E 0
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and

/ / F(s, v)N®P(ds, dv) = / ds / X, (dx) |, F(s,ro(x)"'8)m%(x,dr),
0 M(Ey) 0 E eh’

p

where 7% was defined in (1.10). Let JU-#) denote the set of jump times of N4, and let J )
denote the set of jump times of N>#). Then

f f F(s,u)N"(ds,dv)= " F(s,0X,),
0 M(Ey)

seJ.p)

/ / F(s, v)N®?(ds, dv) = Z F(s, AX,).
0 JM(Ey)

s€J@p)

Similar to the way we constructed S7(ds, dx) from N(ds, dv), we can construct two martingale
measures U2 (ds, dx) and S?”(ds, dx) respectively from N!-#(ds, dv) and N*P(ds, dv).
Then for any bounded Borel function g on R, x E, we can obtain the following martingales,
fort > 0,

t t
'@ = [ [ sonstdsan= [ [ Fe ot - 800y, dv)
0 JE 0 JM(Ey)
(2.13)

and

t t
S,(Z"O)(g) — f / g(s, x)S(z’p)(ds, dx) = / / Fg(s, U)(N(Z.,p) _ N(z’p))(ds, dv),
0 JE 0 JM(Ey)

(2.14)
where Fy(s, v) = [, (s, x)u(dx).

2.2. Spine decomposition of superprocesses

Recall that {(§);>0; II;, x € E} is the spatial motion. Let (.7-'tS )i>0 be the natural filtration
of (§):>0. For each x € E, let II, be the probability measure defined by

Al = i BEds g )]
e é(&r) T (2.15)
dIl| e P(x)

It can be verified (see [21] for example) that the process {(&):>o0; ﬁx,x € E} is a time
homogeneous Markov process. For any u € M(E), define (¢pu)(dx) = ¢(x)u(dx). For any
u e MOE), we define

1,() = u(E)! /E LOudy)  and  Th() = p(EY /E T ().

For any u € M°(E), we define the probability measure E’M by
dP.|r,  M(9)
dPulr @)’

To prove Theorem 1.5, we will use the spine decomposition of (X;; HNDM), which says that
(X:; P,) has the same distribution as the sum of three different kinds of immigration along

(2.16)
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a spine process. This decomposition has been used for studying limit properties of super-
processes, see for example Englidnder and Kyprianou [13], Liu et al. [33] in the case of
o = 0, Kyprianou et al. [28] and Chen et al. [6] to mention some. Now we state the spine
decomposition. On some probability space with probability measure QQ,,, we have the following
processes:

(1) {(&)r=0; Q) is a Markov process, called the spine process, with

{EDiz0; Qub £ {E)iz0: gk

(i1) Conditioned on (&);>0, the continuum immigration {(XC’”)(,Epc;QM(-|(§,),20)} is a
D-valued point process such that
n(ds. dw) = Y 8§, yco(ds, dw) (2.17)
0eDC

is a Poisson random measure on R, x D with intensity
n(ds, dw) = a(é)ds - N (dw),

where D€ stands for the jumping time set of the point process (X©?). Given &, {X¢7 :
o € D€} are independent.

(iii) Conditioned on (&),>0, the discrete immigration {(X’°),cps; QuC1(E)i=0)} is a D-valued
point process such that m(ds, dw) = ) _ps (5. x7.0y(ds, dw) is a Poisson random
measure on R, x D with intensity

m(ds, dw) :=ds - / YPys. (X € dw)m (&, dy); (2.18)
(0,00)

and D’ stands for the jumping time set of the point process (X’?). Given &, {X/9,0 €
D’} are independent, and independent of {X¢? : ¢ € DF}.

(iv) {(X1)i>0; Qu}, known as the immigration at time t = 0, is a copy of the superprocess
{(X)=0; P}, and is independent of (& )0, (X7),epc and (X79), cpi.

{(&)i>0, (XC’“)GeDc, (XJ"’)[,Epj, (X1)i=0; Q,} is called a spine decomposition of {(X;);>0; ﬁﬂ}.
The spine decomposition theorem says that

= d
(x:B)L(x+ Y xS+ Y X)) (2.19)
oeDCN[0,1] oeD/N0,1]

see, for instance, [33] for the case o« = 0, [11, Proposition 2.17] and [6, Proposition 3.1] for
general branching mechanism . Put

z€ = Z XEo and  Z = Z X/, t>0.

t
oeDCN[0,1] oeD/N[0,1]

Then the spine representation (2.19) of X can be simplified as for any # > 0,
(xt; ﬁu) 4 (x, +2¢+ 7, @M). (2.20)
3. Proofs of main results
3.1. Some lemmas
Recall the definition (1.14), i.e.,

Ag) = fo ¢ (Muo($) — My($))ds, 1 € [0, 00).
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Let Ax(g) denote the almost sure limit of A;(q) as t — oo whenever it exists. Recall the
definition (2.9) of the martingale measure

M(ds, dx) = S’ (ds, dx) + Sc(ds, dx).

Forany p > 0, g(s, x) := e%s(p(x) is bounded on R x E, and thus we can define a martingale
(A/(p))iz0 by

Z,(p):f e%“/¢(x)M(ds,dx), t>0. 3.1)
0 E

When the almost sure limit of this martingale exists as ¢ — 0o, we denote the limit by Aso( D)

and write it in the integral form Zoo(p) = fooo eTAle ¢(x)M(ds, dx). It follows from the
representation (2.11) of M;(¢) that M;(¢)— (¢, u) = A;(1). When the moment condition (1.13)
holds, we have shown that the limit M., (¢) exists. Thus we have the following expression of
Moo () — M;(¢) in terms of the martingale measure M(ds, dx):

Mao(@) — My(@) = Ane(1) — A(1) = / e /E $()M(ds. dx).

Lemma 3.1. Assume that (1.13) holds. Suppose p € (1,2], 1/p +1/q = 1, r > 1, and
n e ME).
(1) A/(p) converges P, -almost surely as t — oo if and only if A,(q) converges P,,-almost
At
surely and Moo(¢p) — M, (¢p) = 0 (6_7), P, -almost surely as t — oo. In this case, we have

A
Anolq) =1 A(p ) _ ‘X’(Moo(qs) — My(#)), P-as. (3.2)

_(2) A(q) — Ai(q) is in L"(P,) and converges in L"(Py) as t — oo if and only if
Ai(p) — Ai(p) is in L"(P,) and converges in L' (IP,) as t — oo. In this case, we have

An(q) — Ai(g) = %(%(p) —A(p) — ‘x’eﬁ(Moow) —Mi(#) inL' (B,  (33)

where Ax(q) — Ai(q) (resp. Axc(p) — A1(p)) is the L"(P,)-limit of A(q) — Ai(q) (resp.
Adp) — Ai(p) as t — oo.

Proof. The assumption (1.13) implies the uniform integrability of M,(¢),t € [0, oo]. Conse-
quently, M,(¢) is bounded on [0, oo] IP,-almost surely. By the bounded convergence theorem
and the stochastic Fubini theorem for martingale measures (c.f. [31, Theorem 7.24]), for any
T >0,

T Iy 1
Ar(g) = lim / e dt / e / d(x)M(ds, dx)

=llim/ /q‘)(x)M(ds dx)/ e‘idt

- 1)/ ()M (ds, dx)

= = lim “(e T
A l—oo Jy

T —As
— CX]/ er / $()M(ds, dx) + Xe?(Moo(dﬂ — M1 (@) = T(Mac($) = Mo())
0 E

- %XT(P) + ;lﬁ (Mao($) — My () — %(Moo«p) — My(@)). (3.4)
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dA(q) _
d

A
—ed

Note that Aj(g) ==
(3.4) can be rewritten as

(Moo(qb) — M, (¢)) for almost every ¢ € (0, co). Therefore

A ~
- gAt(q) + Aj(q) = (Moo(@) — Mo(#)) — Ai(p), ae. t>0. (3.5)

From this we get that

e 1" Ag) = L(Moo(@) — Mo@)(1 = 7i") - [ e P Ay(p)ds, ae.t >0,
0

Combining this with (3.5), we get that for almost every ¢ € (0, 00),
—kr . A ! _Ag~
e 1A (q) = (Mx(p) — Mo(p))(1 —e ") — 5/ e 1 Ay(p)ds
0
_X ke~
+e 4" (Moo(¢) — Mo(9)) — e 1" Ay(p)

Ay~ AT i~
= (Mx(p) — Mo(®)) —e 4 A(p) — ;/{; e 1 As(p)ds. (3.6)

Since for a.e. t > 0, e_%’A;(q) = My (¢) — M,(¢), we have for almost all T, ¢ > 0,
i Ag) — e IT AL (@) = My (@) — Mi@).

Using (3.6), we get that for almost all 7, ¢ > 0,
et” (Mr () — Mr(9)

BN ~ Al g~
=e 9 Ary(p)— Ar(p) +; e " Arids
0
_3, ~ ~ ~ AT g~
=(e 7 — 1)AT+z(P)+(AT+z(P)—AT(P))+6—1/ e 4" Aris(plds. 3.7
0

ki~ A Lo~
Since (1 —e 4"H)Ar,, = c_] fot e 4°Ar,,ds, (3.7) can be written as: for almost all 7, ¢t > 0,

A ~ ~ A 4 Ao~ ~
ei” (My4(¢) — Mr(9) = Ar4,(p) — Ar(p) — 5/0 e 4" (Arp(p) — Arss(p)) ds.
(3.8)

() If Ar(g) convergesf)ﬂ—almost surely as 7 — oo and limy_, o e% (Moo(qb) — MT(¢)) =
0 Py-a.s. then by (3.4), Ar(p) converges P, -almost surely as T — oo, and (3.2) follows.
Conversely, if Zr(p) converges P,-a.s. as T — oo, then for any ¢ > 0, there is T(w) >0
such that for T > T(a)) and t,s > 0, AVTH(p) — XTH(p)| < ¢. Using (3.8) and the right
continuity of M,(¢), we have for any ¢, T > 0,

A

A ~ ~ AN iy~ ~
ea’ (Mr44(9p) — M7()) ’ < |Ar4:(p) — Ar(p)| + g/ e T |AT+z(17) - AT+s(p)| ds
0

A

AT _ag
e+e— e 1°ds < 2e¢.
qJo
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ei’ (Moo(¢) — Mr(¢)) | < 2e. Since ¢ > 0 is

Letting t — oo, we get that for T > f
arbitrary, we have

P, (Tlgr;o eiT (Mool@) — M7(9)) = 0) =

Thus by (3.4), Ar(q) converges PP, -almost surely as T — oo.
(2) Now we consider the L"(IP,) convergence. For any 7 > 1, note that

T+1 2
/T et (Moo(¢) — My())dt

T+, T+,
= /T e1' (Meo() — Mr1(@))d1 + /T et (My41(#) — M(@))d:
= L(Mecl@) = Mro1(@)ed " (1= 1)

+ P, ( /T e M) - Mt(¢))df|]:T+1) ,
which can be written as
Ary1(q) — Ar(q)
= %(Moo@) — M (@)t T (1= e9) 4B, (Arsa(@) — Ar@)| Frar) . (3.9)
By Jensen’s inequality,
PPy (Ar41(@) — Ar(@)| Fre)|” < PulArii(q) — Ar(g)l” .

If Aj(g) — Ai(q) is in L"(P,) and has an L"(P,) limit as t — oo, then by (3.9), {(My(¢) —

Mr(q‘)))eq T > 1} is bounded in L"(PP, ). We obtain from (3.4) that the martmgale {(A (p)—
Al(p)) t > 1} is L"(P,) bounded as well. Thus the martingale A, (p)— Al(p) has an L"(P,)
limit as t — o0.

Conversely, if A,(p)—A(p) is in L"(P,) and has an L"(P,) limit A, (p)—A;(p) as 1 — o0,
then thanks to (3.8) and Jensen’s inequality, for r > 1,

P [le7 (Ma(@d) — M,(9)|']
~ ~ oA [ _hy ~ ~ r
S Euldtp) = )l + /0 e Py | Acp) = Kpss(p)|"ds. (3.10)

Applying the dominated convergence theorem to the second term of the right-hand above, we
get

tlirgome%(Moo(@ — M,@)| =0. 3.11)
By Minkowski’s inequality, for any ¢, # > 1, in (3.4), we deduce that

1A (@) — An (@)l

= [nﬁq () = Bl + lle T (Mool — My, @D + lle T (Moc() — Mt2(¢>>||,} .

Therefore, A;(q) — Ai(g) is in L"(IP,) and has an L"(P,) limit as t — co. [
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Lemma 3.2. Suppose 1 € M°(E) and y > 0 is a constant. Define for t > 0,

Ciy) = / e / SOM(ds. dx),  Ci(y) = / 7 (Moo() — My(6))ds.
0 E

0

Then 5,()/) converges P,-almost surely as t — oo if and only if C,(y) converges and
"W My(@) — Mi(@)) = o(t™h), P, -almost surely as t — oo. When C,(y) (resp. Ci(y))
converges as t — 00, we denote its limit by Cy(y) (resp. Coo(v)). Then we have

YCoo(y) = Coo(y), Py-as. (3.12)

Proof. The proof is similar to that of Lemma 3.1. Similar to (3.4), we have for any T > 0,
1 b
Cr(y) = — lim / e M AT / d(xX)M(ds, dx)
)4 =00 Jo E

| 1
— | e | ¢(M(ds, dx) + —T7 (Mu() — Mr(¢))
v Jo E 14
1~ 1
= ;CT(V) + ;TV[Moo(fﬁ) — Mr(9)]. (3.13)
Suppose C;(y) converges and 1" N (Moo(@p) — My(9)) = o(t™") as t - o0 P, -almost surely,
then using (3.13), we get C7(y) converges P, -almost surely and (3.12) holds. We now deduce

tile almost sure convergence of C,(y) and t¥ [Moo(qb) — M,(¢)] from the a.s. convergence of
Ci(y). From (3.13), we get

T" [Moo(®) — Mr(¢)] = yCr(y) — Cr(y)

and

TY ~
T [Moo(9p) — Mr1i(9)] = Txoy [¥Cre:(¥) — Cras(¥)].

It follows from the two displays above that

T"[Mrii(p) — Mr($)] = yT” |:CT(J/) _ cm(y)]

Ty (T + 1)y
TV  ~ ~
+ [mcrﬂ()/) - CT(V)i| . (3.14)
dC(y)

Noticing that t¥ (Moo (¢) — M, (¢h)) = ¢
be written as

yCi(y) —tCli(y) = Ci(y), ae.t>0.

=1tC/(y) for a.e. t > 0, one has that (3.13) can

From this we get that for any 7, T > 0,

C C T+ ¢,
r(v)  Cru(y) :/ ¥4 (3.15)
v (T+ty  Jp svt]
Simple calculations yield
TY T 5T+t(y)

Cr(y) = Cr(y) = Cryu(y) — Crly) — yT? f ds. (3.16)
T
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Combining (3.14)-(3.16), we get

T+ Cryi(y) = Cs(y)

s, (B7)

T? [Myy,(¢p) — Mp($)] = Cryi(y) — Cr(y) — yT? /T

If a(y) converges P, -almost surely as t — oo, by using the argument in the proof of
Lemma 3.1(1) after (3.8), we get

lim 17 [Moo($) = Mi($)] =0, P-as. (3.18)

Therefore, it follows from (3.13) that C,(y) converges IP,-almost surely and (3.12) holds as
well. [

Remark 3.3. Suppose that L(ds, dx) is a random measure on [0, 0o) x E such that, as t — oo,

t
L, = / e / ¢(x)L(ds,dx) — Lo, P,-as.
0 E

where Lo is a finite random variable. Usin% arguments similar to those in the proof of
Lemma 3.2, we can show that for any y > 0, [ e™'s? [, ¢(x)L(ds, dx) converges P,,-almost
surely as T — oo if and only if

T o0 T
/ tV_ldt/ e‘“/q&(x)L(ds,dx):/ " NLo — Ly)dt
0 t E 0

converges and Lo, — Ly = o(T77), IP,-almost surely as T — oo.

Lemma 3.4. Assume that Assumptions 1-2 and (1.13) hold. Let 1 <a < p < 2.

(1) If (1.15) holds, then for any u € MO(E), (Xt(a) — Zl(a)) is in LP(P,) and converges in
LP(P,) and therefore P, -almost surely as t — oo.

(2) Suppose that for some n € M°(E), (Z,(a)—gl (a)) is in LP(P,) and converges in LP(P,)
as t — oo, then it must converge P, -almost surely as t — oo and (1.15) holds.

Proof. (1) Suppose condition (1.15) holds. From the definition (3.1) of Zt(a) and (2.9), we
only need to consider the convergences of

/ e_%sffﬁ(x)Sj(ds,dx) and / e—%S/q)(x)SC(ds,dx)
i E ! £

as t — 0o. Recall that definitions of S">” and $*°” given in (2.13) and (2.14) with p = cc.
For the “small jump” part, by the Burkholder-Davis—Gundy inequality, we have

P, [(sups,“*mke-?'as))ﬂ < Py ( /0 ) /M F, G, v)ﬁ““)(ds,dv))
(E3)

>0 e a'¢g

o0 1
IP’M/ @ / X (dx) / F2, (s, r¢(x)'80m?(x, dr)
0 E 0 €99

oo ” 1
f e” (P! ( / rzn"’(-,dr)),u)ds.
0 0

(
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Thanks to (1.11), we have

2 00
0

>0
a
= m/;ﬂy)u(dﬂ < 00, (3.19)

where in the last equality, we used the fact thaAt e pf ¢ = ¢ for s > 0. Applying the
Burkholder-Davis—Gundy inequality to sz’oo)(e_ﬁ'q}), we obtain that for 1 < p <2,

|

=< ]PM|: Z F67%'¢(S7 Ayv)pj|

se[1,00)NJ (2,20

p
2

(st v - st | sm X R 6o

1zl sell,00)NJ2:0)

a'gp

=/ e‘pTAS(PS’3 (/ r”nqﬁ(',dr)),y,)ds.
1 1

Set h(x) = [ rPw?(x,dr). Condition (1.15) says that h € L} (v). Note that p > a. If
w € MOE), by Assumption 2,

/ "ot ps ( / s dr))  w)ds
1 1

Su@wa(1+ sup (Coual) [ G Das <o,

t>1,xeE

=P, /oo ds/ Xs(dx)/oo FP, (s,r¢p(x) '8)m(x, dr)
1 E 1 e

Therefore,

P

Combining (3.19) and (3.20), we get

P |

We also have

suplP, (/ e_%S/ ¢(x)SC(ds,dx)>2 =P, /OO e—%/\sm(pz’xs)ds
t>0 0 E 0

oo

:/ e_%hds/ PP @) (u(dy) < APl

0 E 2—an
Consequently, by (3.21) and (3.22), sup,., P, (1A;(a) — Ai(a)|”) < co. Thus A,(a) — Ai(a) is
in LP(P,) and converges in L”(IP,) and IP,-almost surely as t — oo.

(2) Suppose that, for some u € M°(E), Xt(a) — Zl(a) — Zoo(a) - Xl(a) in LP(P,) as
t — oco. Then sup,., P, (|Z,(a) — Zl(a)|p) < o0. Since A,(a) is a P,-martingale, by the
L? convergence theorem for martingales, it must converge P, -almost surely as t — o0o. By

sup(S> (e~ ) — s{z""’)(e—é-qs))"’} < 0. (3.20)

t>1

sup/ e*%S/ ¢(x)Sj(ds,dx)’p] < 0. (3.21)
1 E

>1

(#, 1) < oo. (3.22)
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Jensen’s inequality, for any ¢ > 1,
Pu(|Ai(a) — A1@)]") = Py (|Py (Ax(@) — Ar(@)]F)|")
< Pu(|Ax(a) — Ai(a)]”) < oo.
We have shown in (3.19) and (3.22) that

2 t 2
P, [(S,(L"")(e—i'¢)) } <00 and P, [(/ e—%“f ¢(x)SC(ds,dx)> } <00
0 E
Therefore, by the definition of K,(a) given in (3.1), we have that for any ¢ > 0,
A, _ho P
P, ( SC) (e ) — S (e ¢)‘ ) < 0. (3.23)

Note that it follows from (3.10) that P, (| M (¢) — M1(¢)|”) < oo when ]PM(|AVOQ(a) — Zl (a)|p)
< 00. Therefore,

Pu [Mec@) |71 S P [ IMec6) = M@V 1| + M@ < 0.

Since {M;(¢); t > 1} is a martingale with respect to (F;);>; under P, (-|F;), we have almost
surely

P, [ sup M,(d))”‘]-'l} <P, [Moo(qb)”‘]-'l] < 0.

L1>1

Thus for the compensator N of the “big jumps”, we have P, -almost surely
_ R )
P, (/ / F s (s, 0N®ds,dv)) ‘]—“1}
LN Sy @0

=P, [(/lte_zsds/ Xs(d)c)/OO ra?(x, dr))p‘}"li|

<P [( / et M(@ds ) \fl] = S0P, (SUpM <¢)P\f1]

1 s<t

S froP, (M@ | 7] < 120P, (M)

a*

1 1 il
where — + —=1land f,(t) = { X
ar t, a=1,
moment assumption (1.5) and (1.11). It follows from (3.23) and (3.24) that for any ¢ > 1,

[ / / (s V)N@®)(ds, dv)) ‘]-'1:| < 00.
M(Ey) fot

Since p > 1, {X,} is Markov and Fe_x.d)(s, v) > 0, for any ¢ > 0,

c ,
0 > Py, (/ / F o, (s+1, U)N(Z’w)(ds,dv)> }
LMo Smy €00

=Py | (X F,6+1.4%))

L se,r1) J@+00)

=P | Y (F,e+1.4%))

| 5€(0,¢11) J2+00)

]:1] <00, t>1, (3.24)

A
Lt
e, a>1 . . .
and in the first inequality we used the
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t . 00
= Py, (f eﬁ(””ds/ Xs(dx)/ rpn¢(x,dr)>
0 E 1
t [o¢)
= / e H s / PY( / PP dr)) ()X (dy),
0 E 1

which implies that for any 7 > 1,

T
/ e’TSds/ PPh(y)X (dy) < oo,
T

where h(x) = f rPr®(x, dr) as before. Since v is a probability measure, i A L € L+(v)
for any L > 0. Let ¢, = SUP ek, feLt ) |C,,x,f’ be as in Assumption 2. Then lim;— o ¢; = 0.
Choose T > 0 such that when t > T, ¢, < 1/2. Applying Assumption 2 again, we get that for
t>T,

Hp(y)w(h A L) < 2P h(y).

Integrating both sides of the above inequality with respect to e~ aMdtX 1dy)yon [T, T+1]xE,
we obtain

T+1
—v(h ANDXi(@) - (1 — e’(g’m> < / e’g“dtf v(h A L)e* $(y)X1(dy)
— DA T E

14T
= 2/ e‘g“dtf PPh(y)X (dy) < oo.
T E
Since the last term in the above inequality does not depend on L, letting L — oo we get
o0
iy = [ v [ reatan < oo,
E 1

The proof is now complete. [

Lemma 3.5. Suppose (1.16) holds and Ty is the constant in (1.16). Then there is a constant
K > 0 such that, for any u € MY%E), and any t,n,a,b > 0 satisfying 0 < b < a and
e’ > Ty,

o0
P.((p, X;) > ™) < 3(p, whe ™™ + K@ 4 Kt f v(dy) / ra?(y, dr).
E eb”

Proof. It follows from the spine decomposition that

Bu(g. X)) = e = Qu( (6, X)) + (@, Z0) + (6. Z!) > )

1 1 1
<Qu<¢xt §ean>+(@u<(¢vztc>>3 >+QM(¢ ZJ 3M)

C
<30 X | 30u.Z0) o ((«1), 70y > %e> (3.25)

e(m ean

Noting that Q, (¢, X;) = P, (¢, X;) = " (¢, ), we get
3Qu(e, Xi)

ean

< 3(¢, et
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2||orgp | o™
A

Since Q, (¢, Z€) = Tl [ I a(é‘v)¢(é‘s)e*(’”)ds] < . it follows that

3Qule, ZF) - 6llag e e
ean - )\’ M

(3.26)

Recall that the process (X tJ “7)i=0 for o € D’ is the discrete immigration at time o in the spine
decomposition. Let m, = X({ "“(E) be the mass immigrated at time o at the spine position &,.

From the construction of ZtJ , we can estimate the third term in (3.25) as follows:

1 1
Q (<¢>» z/) > g) SQ| Y X e

oeDJN[0.1]
Mg ¢(E0)>ebn

1
J,
Q| Y @ X > e
oeDIN[0,1]
m,,([)(ég)feh"

By the Markov inequality, (1.10) and (2.18),

1
J, - J,
Q/L Z (¢, Xz—?r) > gean < 6e an@u Z (&, Xz—?r)
seD/N[0,1] seD/N[0,1]
mo p(Ex)<eb" me P(Es)<eb”

t ehn
= 6e’””H¢M |:[ 3A(t75)¢71(§.v)d5/
0 0

t 1
= 6" II, /0 MG (Eds ( /0 rm? (&, dr) + /1

< 6e~ @I, , / Mg (&) ds / Oo(r/\rz)n'"’(és,dr). (3.27)
0 0

ra? &, (m}

ebn

r2a?&,, dr))

Thus by (1.11) and (3.27),

1 6C
Q| Do 19X > e [ < = M= A, (3.28)
oD’ N[0,1]
me p(Es)<eb”

6C
where A = — and C is the constant in (1.11). It is obvious that A is independent of w, t, a

1
and b. When the event { >~ _ 170, (s X,J;f,) > gean oceurs, £{o € D! A0, 11; my ¢(E,) >
mo $(Ex)>eb"
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e’} > 1. Thus

| Y extnscer|zo| X1z

oeDIN0,1] oeDIN[0,1]
Mo d(Eg)>eb" Mo $(Eq)>ebn
~ t o0
<Qu Z 1| =1, ds r? (&, dr)|.
0 ebn
oD’ N[0,1]

Mg $(&q)>ebn

When " > Ty, by (1.16), we have that [, rr®(&, dr) < Bo(&,) [, v(dy) [ rm®(y, dr) for
some constant B > 0, and thus,

Ty, [ f ds / mrn‘i’(ss,dr)} < BII,, [ / $(E,)ds / v(dy) f Oorn‘i’(y,dr)]
0 ebn 0 E ebn

Therefore,
1 o0
G| ¥ wxrn s e | < sol [ vy [ rrto.an. (3.29)
oeD’ N[0,1] E e
me P(Es)>eb"
6llad |l o -
Put K = ———— + A + B||¢||o0, Which is independent of wu, ¢, a and b. Combining (3.25),

(3.26), (3.28) and (3.29), we obtain

o0
Pu((¢, X1) > ™) < 3(¢, u)e ™ + KM~ 4 Kt / v(dy) / rr?(y,dr). O
E ebn

3.2. Proofs of main results

In this subsection, we give the proofs of our main results.

Proof of Theorem 1.4. (1) Suppose (1.15) holds. Using Lemma 3.4(1) with 1 <a < p <2,
(Z,(a) — Zl (a)) converges in LP(P,) and P,-almost surely as ¢t — oo. Then by Lemma 3.1(2),
(A;(a*) — Ai(a*)) converges in LP(P,) as t — oo.

(2) Suppose that for some pu € M%E), (A,(a*) — A;(a*)) converges in LP(P,) ast — oo.
By Lemma 3.1(2), (A,(a) — A (a)) converges in L”(P,) as t — co. Applying Lemma 3.4(2),
we get that it converges P, -almost surely as ¢ — oo and (1.15) holds. It now follows from
Lemma 3.1(1) that (A,(a*) — A (a*)) converges [P,-almost surely as t — oo.

(3) According to (1), (Z,(a*) — Zl(a*)) converges in L”(IP,) as t — oo. Repeating the
argument leading to (3.11), we get

11_13?0 P/A|e‘%(Moo(¢) - Mt(¢))|p =0.

Thus the assertion of (3) holds.
(4) This is the result of Lemma 3.4(2) witha =1. [
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Proof of Theorem 1.5. (1) Suppose (1.15) holds and u € MO(E). Since (Z,(p)) is a
martingale, it converges P,,-almost surely as ¢+ — oo if it is uniformly integrable. Note that

1 As 4 —As
Z,(p):/ 6_7/¢(x)M(ds,dx)+/ 67/¢(x)M(ds,dx), t>1.
0 E 1 E

We only need to consider the convergence of

f e%“/¢(x)M(ds,dx)
1 E

as t — oo.
For the “small jumps” part, we have, for ¢ > 0,

IP’M[</1 e_;s/Eqﬁ(x)S(l”’)(ds,dx))z]

S / T ds / P ( f Pt dn) ()
1 E 0

A
00 eP
< ,u(d))/ e(l_%)“ds/ v(dx)/ r2x®(x, dr)
1 E 0

00 1
5/ e}‘s(l_%)ds/ v(dx)/ r2a?(x, dr)
1 E 0

o2 7
+/ ™ _E)ds/ v(dx)/ r2a®(x, dr)
1 E 1

=141l

where in the second inequality we used Assumption 2. Since p < 2, we have I < co. When
(1.15) holds, by Fubini’s theorem, we get

11 < / v(dx)/ r2a®(x,dr) MU0 ds
E 1

P
)Llnr

< / v(dx)/ rPr®(x, dr) < oo.
E 1

It follows that

supP,, [(/1 e_%s'/ ¢(x)S("”)(ds,dx))2:| < 0. (3.30)
E

t>1

For the “big jumps” part, by (2.14),

)/ e*%S/ ¢(x)S(2’p)(ds,dx)‘
1 E

t t
52/ ds/ X, dx) [ F . (s ré0o0) 800, dr).
1 E ers/p e P

Then using Assumption 2 and Fubini’s theorem again, we get

¢ Ao
P, sup‘ /1 e 5 /E ¢(x)S(2'p)(ds,dx)‘

t>1

o0 o0
< Z}P’M/ ds/ X,(dx) F . (s, rd)(x)*le)JT‘p(x, dr)
1 E es/p ¢

e P
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5/ e%sds/ \J(a'x)/A ra®(x, dr)
1 E er?

§/v(dx)/ rPr?(x, dr) < oc. (3.31)
E 1

For the continuum part, we have the following estimates:

t N 2 S N
su}l)]P’M |:(/1 eP‘Y/)Eqb(x)SC(ds,dx)) j| = Pu/} ef%xds/Eot(x)d)(x)sz(dx)

< /‘00 e_“(z/”_l)ds/ a(x)p(x)*v(dx).
1 E

Since p < 2,

t 2
upP, [(/1 e‘§‘/E¢(x)sC(ds,dx)> } < 0. (3.32)

Combgling (3.30)—(3.32), we obtain that flte_TM fE ¢(x)M(ds, dx) is uniformly integrable.
Thus A,(p) converges IP,,-almost surely as ¢t — oo. By Lemma 3.1, A,(q) converges P, -almost
surely as + — oo and

Mos(9) — Mi(9) =0 (efgt) , P,-a.s. as t — oo.

(2) Now we suppose
/Ev(dy) /100 rPr?(y, dr) = oo (3.33)
and pu € MOE). By Assumption 2, there is #y > 0 such that for any f € L]L(v) and t > 1y,
Ptﬁf(x) > %e“¢(x)v(f), x e E. (3.34)

Without loss of generality, we assume fy = 1/2. Set p, = e*/4(My(¢) — M,(¢)), t > 0. For
any n € N and 1/2 < < 1, note that

Appyy = _e_)\(n+t)/pAYn+z(¢),
and thus AX,,(¢) > 2¢*"/P implies that
r/p

—A —
[Onse| > e P or |,0(n+z)—| >e

Define

Bi=1 2 Lskupw-2eaim > O

1
y<t<l

Then we have {B,, i.0.} implies p;, = o(1) does not hold as t — oo. Therefore, we only need
to prove P, (B,,i.0.) > 0. If we can prove that

im (Bn
n=1

.7-',,) — 0o, as. on {My(¢)> O}, (3.35)
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then by the second conditional Borel-Cantelli lemma (see, [9, Theorem 5.3.2]),

o0
P,(B,.i.0) =P, (Z P, (B,, f,,) - oo) >P, (Moo(¢) > 0) > 0.
n=1
Therefore, we only need to prove (3.35).
To prove (3.35), we will estimate the probability P(Y > 0) for the non-negative random
variable Y == Licntl L{ A%, (p)>2¢2n/py defined on some probability space with probability

P. Our basic idea is to use the inequality P(Y > 0) > %, which follows trivially from
the Cauchy—Schwarz inequality. However, ¥ may not have second moment. Thus we consider
Dt lj2<t<ntl Lia%, @¢)>202n/py N cpry TOT some appropriate events CA(t). We will prove (3.35)
in 4 steps.

Step 1. We first prove that

oo
Z Py ( Z 1{AY,(¢)>2W/P}
n=1

n+%§t<n+l

Using (3.34) with #) = 1/2, we have

1 oo
B X ) <[ e[ an).x)
2

]-"n) =00 a.s.on {My(¢) > 0}. (3.36)

ntl<r<nt1
o0
2 (¢, X,) / v(dx) / 7 (x, dr). (3.37)
E 2eM/p

Therefore,

SR Tamwerenn|Fa) 2 (@ X0) f vdx) [ 70Ce,dr). (3.38)

n=l1 n+%§t<n+l n=1 E 2kl
Since lim,_ oo e (¢, X,) = Mu(¢) almost surely, on the event {M(¢) > 0}, the

convergence of the right-hand side of (3.38) is equivalent to the convergence of the series
o 00
D e / v(dx) 7?(x, dr).
el E 2eAiz/p

As

. . . . o0 . . .
Since e** is increasing and fzeM/P 7?(x,dr) is decreasing in s, we have

oo

Ze’\”/ v(dx) 7%(x, dr)
n=1 E

2¢41/p

o0 o0
3/ e“ds/ v(dx) 7%(x, dr)
0 E

2er/Pers/p
% In(2e*/P)

00 Linr—
:/ v(dx) n¢’(x,dr)/ eMds
E 2e4/p 0
o0

> f v(dx) rPa?(x, dr).
E 2¢+/P

Therefore (3.36) follows from (3.33).
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Step 2. Suppose A > 0 is an arbitrary fixed constant. For any integer n > 1, define

<f An/p 7T¢('7dr)7yf—> 1
CAt) =1 =% <L}, n+-<t<n+l, (3.39)
e)tn(f2ekn/p n(ﬁ(’ dr)s V) 2
and
n ¢ 'sd 7Y7 1
C () = %@””( DX ppl Lo (3.40)
e n(fze)»n/p 7T¢(a dr)v U> 2

where L is chosen large enough so that for any u € M°(E) satisfying (¢, u) < A,
) 1 1
PAwﬂmﬁ<I nZLn+§§t<m (3.41)
and for any u € MO(E) satisfying (¢, u) < Ae*",
- 1 1
P, (Cn (t)) < 5 n>1,1¢€ [5’ 1]. (3.42)

The existence of such an L is guaranteed by

P'U_ ( (f2ekn/p nd’(’ dr), th) - L) < Pu ((fzekn/p 7T¢(v dr)’ th>)

e)tn<f26kn/p n‘f’(-,dr), U> - Lexn<fzekn/p 7T¢('7dr)7 U)

At A
_Uta)dpon) _ Ad(l+e)
- Len - L

)

ifn—i—l <t<n+1and (¢, u) <A, or if% <t <1and (¢, u) < Ae**. The first inequality
above 1s the Markov inequality, and ¢, is the quantity in Assumption 2 which is bounded for
t > 1/2. Thus L can be chosen large enough to assure both (3.41) and (3.42) hold. In this step,
we will prove that there is N € N such that when n > N, P,-almost surely on {M,(¢) < A},

)

Pﬂ( Z LisXi@=20mryn i

n+1/2<t<n+1
1
= ZPH Z LaX@y=20mimy | Fu | - (3.43)
n+1/2<t<n+1
We divide X, into [¢*"] disjoint parts each with value [¢*"]7!X,. Fori = 1,2, ..., [¢*], let
(X%, 0 < s < 1) be the superprocess with the ith part as its initial mass. By the branching

property of superprocesses, X, i = 1,2, ..., [¢*"], are independent and identically distributed

as P -1y, under P, (~‘]—",,) = Px, (). Thus for any i = 1,2, ..., [¢*],

9. %
(€AY = { Uaomsp 270 d1), X, ) L}

>
ekn <fzekn/p 7T¢(a dr)v V>
<)

Soginsp 7. dr). K Y i foginsp 70Cdr), X))
C{e*"uzexn/pnw-,dr), 0 U e

> L/2

1

=cloUJa @, n+ s

<s<n+1l,n>1.
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Consider the conditional expectation:
Ey = Pﬂ( Y. laxws2emimeio

)
n+%§t<n+l

1 o)
=Py, ( / 1 (s)eds / X, (dx) | , 7%, dr)>
1 " E 2eP"

2

An] .
- Z]P’Xn ( ﬁ Lcpyeds f X @ |, 7, dr)>

> 2e 1"

[e*”]

< Z]P’Xn (f (Letng, + Lotz ))ds/ X [ L o, dr))

2e0"

w]

<Z]P’Xn (ﬁ C@()dsf ) (dx) A ¢(x,dr))
2 e

An]

[o.¢]
()
+2Pxn ( ﬁ %0 yds /E X, dx) |, 70, dr))
2

2eP"
— 7 (2)
T In + In .
Since X and X#) =3, X are independent,

[eA"]

1 oo
(D)
W= ly? = In@=aiPx, <ﬁ s )dS/ Xo-dx) |, ”¢(x’dr)>
2

i=1 2P
[e*]

- Z/ ds 1 ay)=a1Px, (CF0(5)) Py (/ X (dx) T (x, dr))

"

[e*]

< Z/ dsl M,,(¢>)<A}]P)X,1(C (S) PXn (/ _(l)(dx) A T ()C dr)>

On the event {M,(¢) < A}, we have (¢, X,) < Ae*". Therefore, from the setting (3.42) of
C.(s)forn >1and 1/2 <s < 1, it follows that

Py, (C;(s)) < 1/2.

As a consequence,

1 1 o o0
L,y < L)z 5P, <ﬁ dS/EX-v—(dx) b ”¢(x’dr))
2 e

. (3.44)

1
= 1{Mn(¢)§A}§IP)M Z LAX, (¢)=2e2/ )

n+%§t<n+1

As for 1,51), when Ze%" > Ty, by assumption (1.16),

/ (l)(dx) OZ 7% (x,dr) < B{¢, X )/ v(dx) Oj 7%(x,dr), se [%, 1).
E

2eP" 2eP"
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Therefore,
i L 1
CO(s) C {($, Xy)) = ==}, selz,1)
2B 2
and
An] (l) 0o
IV = prn (ﬁ s )ds/ @) | o (x, dr))
2 e

00 1
< Be,\n/Ev(dx) o, 000 dr)Prny iy, f (@, Xs M5 %0 ys L omydS

207" 3

o0
— BeH / vdx) [, . dr) P[exn] PRID SR
E

2eP"

o ~ L
= BeM' [ X, (¢) [ v(dx) | , n¢(x,dr) / e dsPin-1y, | (9. X)) = == ).
E 2¢P" % " 2B

Note that we may choose L large enough that % > 1. From Lemma 3.5, for any 0 < b < A,
and any 1/2 < s < 1, on the set {M,(¢) < A}, there is a constant K > 0 such that almost
surely

™ L An o An
P[e)\"]*lxn <¢9 X&) Z ﬁe E ]P)[e)”']*lxn ((d” Xb) 2 e )
(o]
< 3L, Xa)e T + KT + Ks / v(dy) / ra?(y. dr)
E ebn

o0
< Ke b +K[ v(dy)/ ra®(y, dr).
E ebn
Therefore,

1
Luirzay I3

oo

S Lot )< Xn(@) ( /E v | n¢<x,dr)) [e-“-‘”u /E vy | rn"’(y,dr)}
fn> [e_(k_b)” —+—f v(dy)/Oo ra?(y, dr)],
E ebn

5 1{Mn(¢)§A}]Pu< Z 1{AY,(¢)>23M/P}
n+%§t<n+1

where the last inequality follows from (3.37). Since lim, 0o e=*~?" + [ v(dy) [ r7®(y, dr)

=0, we can choose N > 0 such that when n > N, we have ¢”* > T, and

1
1
Lyl < Zl{Mn@)sA}Pu( D LaXgm2einy
n+%§t<n+1

f,,), P, -as. (3.45)

Combining (3.44) and (3.45), we get, when n > N, on {M,(¢) < A},

3
1 2
E, <"+ 1 < Zl{Mn(zﬁ)sA}]Pu( E  LaX@=2emn)

n+%§t<n+1

f,,), P,-as.
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)

Therefore, when n > N, on {M,(¢) < A},

Pﬂ( Z LaXi@y=2emimycia

n+1/2<t<n+1
= Pu< Z 1{AY,(¢)>2eAn/p; ]:n) —E,
n+1/2<t<n+1
1
= ZPM Z I{AYI(¢)>2€)‘"/1’}|‘FH , Py-as.

n+1/2<t<n+1

This proves (3.43).
Step 3. In this step, we prove that, on {M(¢) > 0, sup, M,(¢) < A},

[e¢]

) I DI > 0|, | =oc, Pas. (3.46)
X, N A ’ m
n=1 1ozt <nyl (BX1@)>2e 7 ALY

Let N be a number large enough so that (3.43) almost surely holds on {M,(¢) < A} for
any n > N. Then on the event {M(¢) > O, sup, M,(¢) < A},

)

NE

1{/‘4'«“1’)5/*}1[1)“( Z LaXi@=2em/my N e

n=N n+1/2<t<n+1
1 m
Z 7 > litpr=aP D Luxigrsaemin | Fa
n=N n+1/2<t<n+l1
1 m
1 > Pu Y laxaenn|Fa ), Paas
n=N n+1/2<t<n+1

By (3.36), letting m — oo in the display above, we get that, on {sup,.; M,(¢) < A, Mo (¢) >
0},

[ee]

Z PM( Z LaX @)=2emimy e

n=1 n+1/2<t<n+1

]-'n> =o00, P,-as.

~ — An
Let C,(¢) = {AX (@) > 2e7} N C,f‘(t). Now we consider the second moments:

2
P ( > . ) ‘J—"
n - & A n
b1/ 2= <nt1 {AX (P)>2e P} C/ (1)
:21[»[ g ooz ]—']+IP’[ 1 . ]-'].
n+1/2<t;<tp<n+1 n+1/2<t<n+1

3) . ~ ~
Define 1,5 ) — 2P, I:Zn+l/2§ll<t2<n+l 1C,,(zl)1cn(r2)

fn] , then

1® = 2]P>M[ DR FE P I SRS PR VA ‘]:n]
n+1/2<ty<n+1 t<ty<n+l1
n+l1 o 00
SZIP’H[ Yo IgaPx, ( [ Lepgds / X [ n¢(x,dr)) ]—',,]
n+1/2<t;<n+1 il E 2eM/ P
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gzLeM/Eu(dx) 2Mpn¢(x,dr).IPM[ Z 12, ]-‘n]
e n+1/2<t <nt1
An —1m2
S g, Xa) P”[ Z {AY11(¢)>26%}‘F”:|’

n+1/2<t;<n+1

where the last inequality comes from (3.37) and L is the constant in the definition of CA(s),
see (3.39). Consequently

2
g ( 1 \ ) ‘J-'
. Z (X207 1 cAw) 17"

n+1/2<t<n+1

5Mnl(qﬁ)]P)i[ 2 1{AE(¢)>2e%ﬂ}’Fn]

n+1/2<t<n+1

+ P“[ Z 1{AY,(¢)>2e'\7n}mcf,‘(z) ]:"]' (3.47)

n+1/2<t<n+1

Now by the Cauchy—Schwarz inequality, when n > N, on the event {M,.(¢) > 0, sup, M, (¢)

= A},
;n)
7)

2
P ( 1 \ ) ‘
I < Zn+1/2§t<n+l {AYI(¢)>26%}HC,¢(t) Fn

1
E]Plzt <Zn+l/2§t<n+l 1

Mn(‘p)_]Pi I:Zn+l/2§t| <n+1 1{

Py 2 : L n >0
N A
(n+1/25t<n+1 {8X(P)>2e P} CA (D)

P2 ! ;
. (Zn+1/2st<n+1 (6%, 0)>2 7 ) N Ch0

Y

(AY,<¢>>2e%1

H)

_ \ ]-‘] IP’[ 1
AX,1(¢)>29%} |+ Fu Zn+l/25n<n+1 {

]Pll (Zn+]/2§t<n+l 1 ‘7:”)

-1 )
Mn(@) HDM I:Zn+l/2§t1 <n+l I{AYII (¢)>23% } ‘]:n] +1

Vv

— An .F ]
A%y ()>2e 7 } ‘ "

{AY1(¢)>2€%”)

vV

> M, P 1 wm | Ful, Py-as.
2 n(¢)/\ 1 Z BT 2e s
n+1/2<t<n+1

where the second inequality comes from (3.43) and (3.47), and the last inequality comes from
the fact that ﬁ > 2(yx/\1) b ;—‘ A x for any x, y > 0. Since we are working on {My(¢) > 0}
and we have proved (3.36), (3.46) follows from the inequalities above.

Step 4. By the second conditional Borel-Cantelli lemma (see, [9, Theorem 5.3.2]), (3.46)

implies that

P, (B,, i.0. ‘Moo(qb) = 0, sup M, (¢) < A) 1.
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Note that sup, ., M,(¢) < oo P,-almost surely. The above equation holds for any constant
A > 0. Letting A — oo, we get (3.35). Consequently,

limsup [¢*/9 (Moo(¢) — Mi(¢))] = €77

1—>00

with positive probability. The proof is complete. [J
For y > 0, define
f(s)=es77,5s>0. (3.48)
Direct computation shows that
f1&) = f$)0—ys™h.
Thus when s > y /XA, f(s) is a strictly increasing function. If g is the inverse function of f on

(y /X, 00), then

, 1
(8(r)) =

r(—ygr)~)’
It is obvious that

lim g(r) = oo.
r—0o0

Therefore, there is a constant R > y /A such that for r > R,

1 2
< < 2 3.49
o = (g(r)) = o (3.49)
Consequently, when r — oo,
g(ry=<lInr. (3.50)

Proof of Theorem 1.6. (1) The main idea is similar to that of the proof of Theorem 1.2 . We
will use Lemma 3.2 and different truncating functions to analyze the convergency of C(y).
First, for the continuous part, by the Burkholder-Davis—Gundy inequality,

t 2
P, |:<supf e’“sy/ qb(x)SC(ds,dx)) :|
1 J1 E

t
< supIPu/ e_z}‘sszyds/ a(x)p(x)* X (dx)
1 E

t>1

[o.¢]
< / e s ds / a(x)p(x)*v(dx) < oo. (3.51)
1 E
For the jump part, we still handle the ‘small jumps’ and the ‘large jumps’ separately. Define
N = Z 8 %,y and N® = Z 3(s.A%,)
0<AXg(Pp)<erss—v AX(p)=erss™Y

and denote the compensators of N and N@ by N and N@ respectively. We write SV/:D
and S"*? for the corresponding martingale measures. For the ‘large jumps’,

IF’M‘ /1 oMY /E ¢>(x)S(J’2)(ds,dx)‘

o0 o0
<2P, / e Ms7ds / X,(dx) ra®(x,dr)
1 E

erS gV
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o0 [e.e]
< / syds/ v(dx) ra®(x, dr)
1 E erssy

Rv1 e8] e8] e8]
:/ sVds/ v(dx) rn"’(x,dr)—}—/ syds/ v(dx) ra®(x, dr)
1 E E

erss—V Rv1 erss—y
=1+11,

where R > y /A is a number such that (3.49) holds for r > R. It is obvious that I < oo, we
only need to investigate the finiteness of /7. Recall that f is defined by (3.48) and g is the
inverse of f on (y /X, 0o). Applying Fubini’s Theorem,

0 8(r)

II < / v(dx) rn¢(x,dr)/ sVds
E fw/» 0
It follows from (3.50) that

g(r) y+1
/ s¥ds = g(r_)l_ T < (Inr)y+! for r > R.
0 Y

Thus when (1.18) holds, we have

t
sup]P’,L’/ e‘“s’”[q)(x)S”’z)(ds,dx)‘ < 00.
1 E

t>1

Therefore the process [| e ™s” [, ¢(x)SV2(ds, dx) converges P,-a.s. and in L'(P,). Now
let us analyze the ‘small jumps’ part.

t 2
P, [(sup f e Mg / ¢(x)s<f~‘>(ds,dx)) }
t>1 J1 E
00 f(s)
= [ emsras [ pp([ ratean)oma
1 E 0

0 f(s)
< f s7 /f(s)ds / v(dx) / r27?(x, dr)
1 E 0

00 1
5/ sV/f(s)ds/ v(dx)/ r2a?(x, dr)
: IVR £ ’ 1V £(s)
+/ s”/f(s)ds/ v(dx)/ r2a®(x, dr)
1 E 1

0 1V f(s)
+/ sV/f(s)ds/ v(dx)/ r27?(x, dr)
1 E 1

VR
=111+ 1V+V.

It is easy to check that both /71 and IV are finite. Applying Fubini’s theorem in V, we get

Vf/v(dx)/ r’7?(x, dr) sY/f(s)ds.
E 1

8(r)
Let H(r) = fgo(c;)sy/f(s)ds, then lim,_, oo H(r) = 0. Note that as r — oo,
gr)’g'(r) _ (Inry

flgry — 2
(Inr)”

H'(r) =

Thus H(r) < as r — o0o. Therefore, V < oo when (1.18) holds. Hence it follows that
the martingale [} e ™**s? [, ¢(x)SV"V(ds, dx) converges P,-a.s. and in L*(P,,) as t — oc. In
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conclusion, when the moment condition (1.18) holds, the martingale C 1(y) converges P, -almost
surely and in LI(IP’M) as t — oo. It follows from Lemma 3.2 that

/‘SV’I(MOO((}&)—MX@))ds converges [P -a.s.
0

and Moo(¢) — M,(¢) = o(t™7), P,-as. as t — oo. In particular, when y > 1,
o0
/ (Moo(9p) — M (¢))dt < o0, Py -as.
0

(2) Now let us consider the case that fE v(dx) floo r(n )"t 7?®(x, dr) = oo. Without loss
of generality, we may assume that

/U(dx)/ r(Inr)’ 7 (x, dr) < oo. (3.52)
E 1
In fact, if

/ v(dx)/ r(nr) 7 (x, dr) = oo,

E 1

then by assumption (1.13), y > 1. Therefore there is some y > 0 and some integer n > 0
such that y =n + y,

/ v(dx)/wr(lnr)1+fn¢(x,dr) = 00 (3.53)
E 1
and

/ v(dx)/wr(lnr)7n¢(x,dr) < 0.

E 1

If we can prove that C;(¥) does not converge as t — oo, then C,(y) does not converge either.
Let N® be the compensator of N®. Then for any non-negative Borel function F on
Ry x M(Ej),

/ / F(s, v)ﬁ(z)(ds,dv)zf ds/ X,(dx) F(s,r¢(x)_13x)n¢(x,dr).
0 JM(E 0 E £(s)

Define a measure L(ds, dx) on [0, 0c0) x E such that for any non-negative Borel function g on
R, x E,

/ /g(s,x)L(ds,dx):/ / Fo(s, v)N?(ds, dv),
0 E 0 M(Ey)

which is equivalent to

/Oo/ g(s, x)L(ds, dx) = /Oods/ d)_l(x)XS(dx)/oo rg(s, x)m?(x, dr).
0 E 0 E fs)

Suppose u € MPO(E). We claim that as t — oo,
t
K.(y) = / e‘“s”/ @(x)[M(ds,dx)+ L(ds,dx)] converges P,-a.s. (3.54)
1 E

In fact, for the continuous part of M, by (3.51), flt es? [ p(x)SC(ds, dx) converges P,
almost surely as + — oo. For the ‘small jump’ part, using the arguments for the ‘small jumps’
in (1), assumption (3.52) is enough to guarantee that flt e™s? [ p(x)SYD(ds, dx) converges

320



R. Liu, Y.-X. Ren and R. Song Stochastic Processes and their Applications 154 (2022) 286-327

IP,,-almost surely as t — oo. We are left to analyze the ‘big jumps’ part. Thanks to assumption
(3.52),

Pl D> 1|=P (/1 ds/EXs(dx) f(s)n‘i’(x,dr))

AXs ()= f(s)
s>1

= / udy) / dst(f 7, dr)) )
E 1 f)

S M(¢)/ U(dx)/oo eMds /00 7%(x, dr)
E 1 £(s)

) 8(r)
S/V(dx) 7{¢(x,dr)[ eMds
E 7 0

5/ v(dx)/ r(nt r) 7®(x, dr) < oo,
E 1

where the second to last inequality comes from (3.50) and the fact that

8() 1 " 1
/0 Mds = Xf(s)sy‘z = (rg(r) = D).

Thus N is a finite measure. Consequently we have as t — oo,

t
/ / F sy g0 (s, VNP (s, dv) — Z e s AX(¢) < 00, (3.55)
1 M(E)

AXs5 ()= f(s)
s>1

since the sum is a finite sum. Now (3.55) implies our claim (3.54).
Set L, = fot e [ ¢p(x)L(ds, dx) and let Lo, denote its increasing limit. Then

Lo =/Oo e—“/ d(x)L(ds, dx).
0 E

We first claim that Lo, < oo, P,-a.s. In fact, by the definition (3.48) of f, f(s) > f(y/A) for
any s > 0. Thus it follows from (1.11) that for any s > O,

o0 o0
/ ra®(x, dr) < / ra®(x, dr) < o(x).
f(s) fr/n)

Thus

y/h vin = oo
/ e‘“/ ¢(x)L(ds,dx)=/ e‘“dsf X, (dx) ra?(x, dr)
A . 0 E £65)

v/A v/A
< / e Mds / d(xX)X,(dx) = M(¢)ds < oo, P,-as.
0 E 0

By Assumption 2,

P, ( / Ten / ¢(x)L(ds,dx)) =P, ( / e / X,_(dx) oomm,dr))
y/A E y/h E fs)

_ / e ds / u(dy)P? ( / rn‘f’(~,dr)> )
v/x E ()

321



R. Liu, Y.-X. Ren and R. Song Stochastic Processes and their Applications 154 (2022) 286-327

5/ ds/ v(dx) ra®(x, dr)
y/A E ()

00 g(r)
= / v(dx) ra®(x, dr) f ds
E fy/x) y/r

< / v(dx)/ rg(r)n"’(x,dr) < 00,
E f/y)

which implies our claim.
Now using Lemma 3.2 and Remark 3.3, (3.54) implies that

fr 5771 (Moo() — My(¢) + Loo — Ly) ds

0

converges and (Moo(¢) — M, (¢p))+ (Lo —L;) = 0o(t™7) P,-a.s. Thus the IP,-almost sure conver-
gence of fot "7V (Myo(@p) — M(¢))ds as t — oo is equivalent to that fot sV V(Lo — Ly)ds
converges P, -almost surely to a finite random variable as t — 00, and M (¢p) — M;(¢) =
o(t™7) if and only if (Ls — L,) does. Since the integrand is non-negative, we always have
limit floo §7 "1 (Lo — Lg)ds < 0o. Suppose we can prove that, under the assumption (1.19),

P, (/Oosy—' (Loo — Ly)ds = oo) > 0. (3.56)
1

Then fot "1 (My(¢) — My(¢)) ds does not converge P, -almost surely as 1 — oco. Now we
are left to prove (3.56). Note that by (1.19), there exists 7, > max(7;, y/A) such that for
t>1,

oo

Lo — L, =/ e‘“ds/fs,(dx) ra®(x, dr)
t E f(s)

> /OO e*“dsf ¢(x)?s_(dx)/oo r/ v(dy)m?(y, dr).
t F f() E

Put p(dr) = [, v(dy)7®(y,dr). Then for t > T,
o0

o0
Loo— L, z/ e_“Xs(¢1F)ds/ rp(dr)
' f(s)

o n+1 0
z ) f dse ™™ X,(§1r) /f rp(dr)

(s)

n=1+(t]
o0 [e9) n+1

> Z / rp(dr) f e M X (plp)ds. (3.57)
n=l4[7 Y O+ n

The third inequality comes from the fact that f(s) is an increasing function for s > y/A. It is
easy to check that fOHTz ey f;.erl)rp(dr) f:“ e ™ Xs(¢pIr)ds < oo P,-almost
surely. So flosz Y f;an) rp(dr) fn"H e ™ X,(¢p1r)ds have the same conver-
gence property as [, 7' dt Y 07, f;fnﬂ) ro(dr) f:H e ™ X (¢1r)ds. By Theorem A.1 in
the Appendix, the two integrals above converge almost surely on {My(¢) > 0} if and only if
the following integral

/oozy"dt Z
0

n=1-+[t]

/ ro(dr)
f(n+1)
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is finite. Exchanging the order of integration, we obtain

/ " dt Z / rp(dr)>/ - 'dl/ ds/ rp(dr)
0 n=14[7] Y f+D) +1 0]

s—1
/ ds/ dt/ rp(dr) = / (s — l)yds/ rp(dr)
f(s) f(s)

gVl
> —/ (s — 1)’ds
4 f(y/M (y/wl
1
=— rl(g(r) — D" —(y/a v 1 = 1 p(dr)
v+ 1D Jrgm

= Q.

The last equality is due to that g(r) < Inr as r — oo and (1.20). Thus on the event
{Ms(¢) > 0}, which has positive probability,

o0
f 7 N (Lo — Ly)ds = o0
0

almost surely. Thus (3.56) is valid and the proof is complete.
Now we analyze the convergence rate of Lo, — L,. It follows from (3.57), Theorem A.l and
the monotonicity of f that, on {M..(¢) > 0}, almost surely when ¢t > T,

Lo — L, Z/ dS/ rp(dr)=/ rlg(r) — tlp(dr).
' ) o

If Leo — L, = o(t™7), then f;f,)r[g(r) — tlp(dr) = o(t™"), or equivalently, [ r[g(r) —
g)]p(dr) = o(g(t)™") as t — oo. From (3.49),

/ rlg(r) — g(®)]p(dr) =/ r,o(dr)/ g (w)du x/ r[lnr —Int]p(dr).

By (3.50), [ rlg(r) — g)]p(dr) = o(g(t)™") is equivalent to [ r[Inr — Int]p(dr) =
o((Int)~7). Conversely, when f r[Inr — Int]p(dr) = o((Int)™7) as t — oo does not hold,
Lo — L, = o(t™7) does not hold almost surely. Consequently M..(¢) — M,(¢) = o(¢~") does
not hold almost surely. [J
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Appendix
In this Appendix, we prove the following result used in the proof of Theorem 1.6.

Theorem A.l. For any Borel subset F of E and u € M(E),

n+1
lim e M (Plr, Xs)ds = (Plp, V)Moo(p), P,-as.

—
n—oo [,

The proof of this theorem is based on the following five results. The idea of the proof is
mainly from [34]. For any n € N,u > 0, and h € B,';(E), define

n+u
Hypy(h) == e+ f f Pl - @m)(x)SMD(ds, dx),
0 E

n—+u
Lyiu(h) = e—)»(n+u)/ / P(”’;Jru)ix(gbh)(x)sc’])(ds,dX),
0 E

and

n+u
Corulh) = €00 / / (Pl 0y #@)SC(ds, dx).
0 E
Lemma A.2. IffE [(x)v(dx) < oo, then for any u > 0, u € M(E) and h € B;’(E),

> By [Huu(h) = PulHypu ()| F)] < o0 (A.1)
n=1

and
lim (Hn+u(h) — IPM[Hn+u(h)|]:,,]) =0, in Lz(IP),L) and P,-a.s. (A2)
Moreover,

1
lim [ (Hyu(h) = PulHupu(W)|Fol)du =0, P-as. (A3)

n—0o0 0

Lemma A.3. IffE [(x)v(dx) < oo, then for any u >0, u € M(E) and h € BJ(E) we have

lim (Lyu(h) — Py [Lysu(h)|Fa]) =0, in L'(P,) and P,-a.s. (A.4)
and
1
lim (Luva(h) = Py [Lysu(W)|Fu]) du =0,  Py-as. (A.5)
n—0oQ 0

Lemma A.4. For any u >0, u € M(E) and h € BZ(E) we have

lim (C,H,,(h) — IP’N[C,1+M(h)|fn]) =0, in Lz(]P’M) and P, -a.s. (A.6)
and
1
lim (C,H_u(h) — ]PM[C,,+,,(h)|]-'n]) du =0, Py-as. (A7)
n—0oQ 0

The proofs of the above three lemmas are similar to those of corresponding results in [33,
Section 3]. We omit the details here. Combining the three lemmas above, we have
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Lemma A.5. IffE [(x)v(dx) < oo, then for any u >0, u € M(E) and h € B:(E) we have

lim (e " (ph, Xyiu) — Py [e T Ph, Xuia)|Fa]) =0, in L'(P,) and Py-a.s.
n—oo

(A.8)

Using the arguments similar to that of [33, Theorem 3.5], we have
Theorem A.6. IffE [(x)v(dx) < oo, then for any u € M(E) and h € B;(E) we have

lim e ™ (ph, X,) = Moo() / ¢(2)h(2)v(dz), in L'(P,) and P,-a.s.
E

n—00

Proof of Theorem A.1. For any s > n
e (Pl Xs)
= e (PL(®17), X,) +e*“/ PL($15)(x)M(du, dx)

n

=e™(PL (¢1F), X,) + (Hy(p1F) — PL[Hy($1F)|F0])
+ (Ls(@1F) — B, [Ly($1F)IF])
+ Cs(@1F) — Py [Cs(@1p)IF].

Hence,

n+1
/ e (D1 p, X,)ds

n

n+1 n+l1
2/ e (Pl (p1p), Xn)dS+/ (Hy(p1p) — Pu[Hy(p1F)|F]) ds

n+

n+1 1
+ / (Lo(@15) — B, [Ly(@1 )| Fo]) ds + f Co(@15) — P, [Co(1 )| ] ds

1 1
- eW( / e“P_f(qslp)ds) Xu) + / (Huts(@1p) — Pu[Hyyi(915)|Fu1) ds
0 0
1
+ /0 (Ls+n(¢1F) -P, [Ls-‘rn((blF)l}—n]) ds

1
+ / Crns(@15) — P, [Cos (b1 )| ] ds.
0
=+ I, + 111, +1V,.
It has been shown in Lemmas A.2—A.4 that

lim I, +111,+1V,=0.

n—00

Since fol e PP(¢p1r)(x)ds < ¢p(x), by Theorem A.6,

1 1
lim e‘*"<( / e—“Pf‘(mF)ds),Xn)=Moo<¢>>< / e PP(p1p)(x)ds, v)
0 0

= Moo()(PlF,v). O
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