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Chapter 1

Measure Theory

In this chapter, we will recall some definitions and results from measure theory. Our
purpose here is to provide an introduction for readers who have not seen these concepts
before and to review that material for those who have. Harder proofs, especially those
that do not contribute much to one’s intuition, are hidden away in the appendix.
Readers with a solid background in measure theory can skip Sections 1.4, 1.5, and
1.7, which were previously part of the appendix.

1.1 Probability Spaces

Here and throughout the book, terms being defined are set in boldface. We begin
with the most basic quantity. A probability space is a triple (Q,F, P) where
is a set of “outcomes,” F is a set of “events,” and P : F — [0,1] is a function that
assigns probabilities to events. We assume that F is a o-field (or o-algebra), i.e., a
(nonempty) collection of subsets of Q that satisfy

(i) if A € F then A° € F, and
(ii) if A; € F is a countable sequence of sets then U; 4, € F.

Here and in what follows, countable means finite or countably infinite. Since N;A4; =
(U; AS)€, it follows that a o-field is closed under countable intersections. We omit the
last property from the definition to make it easier to check.

Without P, (2, F) is called a measurable space, i.e., it is a space on which we
can put a measure. A measure is a nonnegative countably additive set function; that
is, a function p : F — R with

(i) p(A) > p(0) =0 for all A € F, and

(ii) if A; € F is a countable sequence of disjoint sets, then
(Ui A;) = ZU(Ai)
i

If u(2) = 1, we call u a probability measure. In this book, probability measures
are usually denoted by P.

The next result gives some consequences of the definition of a measure that we
will need later. In all cases, we assume that the sets we mention are in F.
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Theorem 1.1.1. Let 1 be a measure on (2, F)
(i) monotonicity. If A C B then u(A) < u(B).
(ii) subadditivity. If A C UX_, A, then pu(A) <> 0 u(Ap).
(iii) continuity from below. If A; T A (i.e., Ay C Ay C ... and U;A; = A) then
((Ai) T p(A).
(iv) continuity from above. If A; | A (i.e., Ay D Ay D ... and N;A; = A), with
1(Ar) < oo then p(A;) | p(A).
Proof. (i) Let B — A = BN A° be the difference of the two sets. Using + to denote
disjoint union, B = A+ (B — A) so

w(B) = p(A) + u(B — A) = p(A).

(ii) Let A/, = A,NA, By = A} and for n > 1, B,, = A/, —U"_} A/ . Since the B,, are
disjoint and have union A we have using (ii) of the definition of measure, B,,, C 4,,,
and (i) of this theorem

wA) =" w(Bm) < u(An)

(iii) Let B, = A, — An—1. Then the B, are disjoint and have US*_;B,, = A,
Up _1Bm = A, so

p(A) =Y (By) = Jim > u(Bp) = lim p(Ay)

m=1 m=1 e
(iv) Ay — A, 1 Ay — A so (iii) implies u(A; — A,) T u(A; — A). Since A; D B we have
w(A; — B) = pu(A1) — u(B) and it follows that u(A,) | u(A). O

The simplest setting, which should be familiar from undergraduate probability, is:

Example 1.1.1. Discrete probability spaces. Let {2 = a countable set, i.e., finite
or countably infinite. Let F = the set of all subsets of 2. Let

P(A) = Z p(w) where p(w) > 0 and Z plw) =1

weA weN

A little thought reveals that this is the most general probability measure on this space.
In many cases when (Q is a finite set, we have p(w) = 1/|Q| where |Q)| = the number
of points in .

For a simple concrete example that requires this level of generality consider the
astragali, dice used in ancient Egypt made from the ankle bones of sheep. This die
could come to rest on the top side of the bone for four points or on the bottom for
three points. The side of the bone was slightly rounded. The die could come to rest
on a flat and narrow piece for six points or somewhere on the rest of the side for one
point. There is no reason to think that all four outcomes are equally likely so we need
probabilities p1, ps3, p4, and pg to describe P.

To prepare for our next definition, we need

Exercise 1.1.1. (i) If F;, i € I are o-fields then N;ecrF; is. Here I # () is an arbitrary
index set (i.e., possibly uncountable). (ii) Use the result in (i) to show if we are given
a set 2 and a collection A of subsets of (2, then there is a smallest o-field containing
A. We will call this the o-field generated by A and denote it by o(A).
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Let R? be the set of vectors (z1,...z4) of real numbers and R? be the Borel sets,
the smallest o-field containing the open sets. When d = 1 we drop the superscript.

Example 1.1.2. Measures on the real line. Measures on (R,R) are defined by
giving probability a Stieltjes measure function with the following properties:

(i) F is nondecreasing.
(ii) F is right continuous, i.e. limy), F(y) = F(z).

Theorem 1.1.2. Associated with each Stieltjes measure function F' there is a unique

measure p on (R, R) with p((a,b]) = F(b) — F(a)
ul(a,b)) = F(b) - Fla) (L11)

When F(z) = x the resulting measure is called Lebesgue measure.

The proof of Theorem 1.1.2 is a long and winding road, so we will content ourselves
to describe the main ideas involved in this section and to hide the remaining details
in the appendix in Section A.1. The choice of “closed on the right” in (a, b] is dictated
by the fact that if b,, | b then we have

ﬂn(a, bn] = (CL, b]

The next definition will explain the choice of “open on the left.”

A collection S of sets is said to be a semialgebra if (i) it is closed under inter-
section, i.e., S, T € S implies SNT € S, and (ii) if S € S then S¢ is a finite disjoint
union of sets in S. An important example of a semialgebra is

Example 1.1.3. S§; = the empty set plus all sets of the form
(a1,b1] X -+ x (ag,bq] C R? where — oo < a; < b; < 00

The definition in (1.1.1) gives the values of p on the semialgebra &;. To go from
semialgebra to o-algebra we use an intermediate step. A collection A of subsets of
) is called an algebra (or field) if A, B € A implies A° and AU B are in A. Since
ANB = (A°UB°)°, it follows that AN B € A. Obviously a o-algebra is an algebra.
An example in which the converse is false is:

Example 1.1.4. Let 2 = Z = the integers. A = the collection of A C Z so that A
or A€ is finite is an algebra.

Lemma 1.1.3. If S is a semialgebra then S = {finite disjoint unions of sets in S}
is an algebra, called the algebra generated by S.

Proof. Suppose A = +;5; and B = +;T;, where + denotes disjoint union and we
assume the index sets are finite. Then ANB = +;; S;NT; € S. As for complements,
if A =+4,5; then A° = N;S{. The definition of S implies S¢ € S. We have shown
that S is closed under intersection, so it follows by induction that A¢ € S. O

Example 1.1.5. Let Q@ = R and S = S; then S; = the empty set plus all sets of the
form
Ule(ai,bi] where — oo < a; < b; <00

Given a set function p on S we can extend it to S by

p(+imAi) = Zu(Ai)
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By a measure on an algebra A, we mean a set function u with
(i) p(A) > p(0) =0 for all A € A, and

(ii) if A; € A are disjoint and their union is in A, then

°1AD) =D A
i=1

 is said to be o-finite if there is a sequence of sets A,, € A so that u(A4,) < oo and
UnAy, = Q. Letting A} = Ay and for n > 2,

Al =Ur 1A, or Al =A,N (ﬁ%;ﬁAfn) €A

we can without loss of generality assume that A, T € or the A,, are disjoint.
The next result helps us to extend a measure defined on a semi-algebra S to the
o-algebra it generates, o(S)

Theorem 1.1.4. Let S be a semialgebra and let p defined on S have () = 0.
Suppose (i) if S € S is a finite disjoint union of sets S; € S then pu(S) = >, u(Si),
and (i) if S;, S € S with S = +;>15; then u(S) < >°,~; 1(S;). Then p has a unique
extension i that is a measure on S the algebra generated by S. If i is sigma-finite
then there is a unique extension v that is a measure on o(S)

In (ii) above, and in what follows, i > 1 indicates a countable union, while a plain
subscript ¢ or j indicates a finite union. The proof of Theorems 1.1.4 is rather involved
so it is given in Section A.1. To check condition (ii) in the theorem the following is
useful.

Lemma 1.1.5. Suppose only that (i) holds.
(a) If A,B; € S with A =47 B, then i(4) =Y, i(B;).
(b) If A, B; € S with A C U, B; then i(A) <Y, i(B;).

Proof. Observe that it follows from the definition that if A = +;B; is a finite disjoint
union of sets in S and B; = +;5; ;, then

A) = Zu(Si,j) = Zﬂ(B )

To prove (b), we begin with the casen = 1, By = B. B = A+(BNA°) and BNA® € S,
S0
A(A) < i(4) + i(B N A%) = i(B)
To handle n > 1 now, let Fj, = B{N...N B;_; N By and note
UiB; = Iy + -+ Iy
A=ANUB)=(ANF)+---+(ANE,)

so using (a), (b) with n =1, and (a) again

=Y MANF) <Y A(Fy) = i(UiBy) O
k=1 k=1
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Proof of Theorem 1.1.2. Let S be the semi-algebra of half-open intervals (a,b] with
—00 < a < b< oo. To define p on S, we begin by observing that

F(o0) = ilTlglo F(z) and F(—o0)= mlliinoo F(x) exist

and p((a,b]) = F(b) — F(a) makes sense for all —oo < a < b < oo since F(o0) > —00
and F(—o0) < 0.

If (a,b] = +7,(a;,b;] then after relabeling the intervals we must have a; = a,
b, = b, and a; = b;_ for 2 < i < n, so condition (i) in Theorem 1.1.4 holds. To check
(ii), suppose first that —oco < a < b < o0, and (a, b] C U;>1(a;, b;] where (without loss
of generality) —oo < a; < b; < 0o. Pick 6 > 0 so that F(a+ §) < F(a) + ¢ and pick
7; so that

F(b; +m;) < F(b;) +e27"

The open intervals (a;,b; + 1;) cover [a + 4, b], so there is a finite subcover (a;, 5;),
1<j < J. Since (a+ 6,0 C U/ (o, 3], (b) in Lemma 1.1.5 implies

J oo
F(b) = Fla+6) <> F(B;) = Flay) <Y (F(bs +mi) — F(as))
=1 ‘
So, by the choice of § and n;,
F(0)— F(@) < 2+ 3 (F(B) — Flar)
i=1
and since € is arbitrary, we have proved the result in the case —co < a < b < co. To
remove the last restriction, observe that if (a,b] C U;(a;,b;] and (A, B] C (a,b] has

—o0 < A < B < o0, then we have

F(B)—F(A) < ) (F(b)— Fl(a))

i

=1

Since the last result holds for any finite (A, B] C (a, b], the desired result follows. O
Measures on R4

Our next goal is to prove a version of Theorem 1.1.2 for R?. The first step is
to introduce the assumptions on the defining function F. By analogy with the case
d =1 it is natural to assume:

(i) It is nondecreasing, i.e., if x < y (meaning z; < y; for all i) then F(z) < F(y).
(ii) F is right continuous, i.e., lim, , F(y) = F(x) (here y | x means each y; | z;).
However this time it is not enough. Consider the following F’

1 if 1,29 > 1

2/3 ifxy>land0<2as<1

2/3 ifzg>land0<z <1

0 otherwise

F(xh.%‘g) =

See Figure 1.1 for a picture. A little thought shows that

(a1, b1] X (a2, ba]) = p((—00, b1] X (=00, bo]) — p((—=00, a1] x (=00, bs])
— (=00, br] X (=00, as]) + p((—o00, ar] x (=00, as])
= F(bl, b2) — F(al, bQ) — F(bl, az) —+ F(al, (12)
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0 2/3 1
0 0 2/3
0 0 0

Figure 1.1: Picture of the counterexample

Using this with a3 = a2 =1 — € and by = by = 1 and letting € — 0 we see that
p({1,1})=1-2/3-2/3+0=-1/3

Similar reasoning shows that p({1,0}) = u({0,1} = 2/3.
To formulate the third and final condition for F' to define a measure, let

A= (al,bl] X X (ad,bd]
V = {a1,b1} X X {ad,bd}

where —oo < a; < b; < 0. To emphasize that co’s are not allowed, we will call A a
finite rectangle. Then V = the vertices of the rectangle A. If v € V', let

sgn (v) = (_1)# of a’s in v
ApF = Z sgn (v)F(v)

veV

We will let u(A) = A4F, so we must assume

(iii) AaF > 0 for all rectangles A.

Theorem 1.1.6. Suppose F : R — [0,1] satisfies (i)-(iii) given above. Then there
is a unique probability measure u on (R4, R?) so that u(A) = AAF for all finite
rectangles.

Example 1.1.6. Suppose F(z) = H:-l:l F;(z), where the F; satisfy (i) and (ii) of
Theorem 1.1.2. In this case,

d
ALF = H (Fi(b;) — Fi(as))

i=1
When Fj(x) = x for all 4, the resulting measure is Lebesgue measure on R,

Proof. We let u(A) = A4F for all finite rectangles and then use monotonicity to
extend the definition to Sy. To check (i) of Theorem 1.1.4, call A = 4By a regular
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subdivision of A if there are sequences a; = a0 < @1 ... < &, = b; so that each
rectangle By, has the form

(14 —1,015,] X - X (Qa,jy-1,dj,] where 1 <j; <n;

It is easy to see that for regular subdivisions A(A) = >, A(By). (First consider the
case in which all the endpoints are finite and then take limits to get the general case.)
To extend this result to a general finite subdivision A = +;A;, subdivide further to
get a regular one.

Figure 1.2: Conversion of a subdivision to a regular one

The proof of (ii) is almost identical to that in Theorem 1.1.2. To make things
easier to write and to bring out the analogies with Theorem 1.1.2; we let

(Z‘,y) = (3317?/1) Koeee X (xdayd)
(iE?y] = (55171/1} X X ($d7yd]
['Jf,y] = [‘Tlayl] X X [xdvyd]
for z,y € R?. Suppose first that —oo < a < b < 0o, where the inequalities mean

that each component is finite, and suppose (a,b] C U;>1(a’,b’], where (without loss
of generality) —co < a’ < b® < co. Let 1 = (1,...,1), pick 6 > 0 so that

p((a+01,0]) < p((a,b]) + €

and pick 7; so that 4 - 4
p(a, b+ mil]) < p((a’,0']) + €27

The open rectangles (a’, b +m;1) cover [a+01,b], so there is a finite subcover (a/, 37),

1<j<J. Since (a+01,b] C UJ_ (o, 7], (b) in Lemma 1.1.5 implies

p([a + 61, b])

HM&.

p((e?, #7]) < p((a?, b + 1))
i=1
So, by the choice of § and n;,

pl(a,b]) < 2e+ Y p((a’,b])

i=1
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and since € is arbitrary, we have proved the result in the case —oco < a < b < co. The
proof can now be completed exactly as before. O

EXERCISES

1.1.2. Let Q = R, F = all subsets so that A or A° is countable, P(A) = 0 in the first
case and = 1 in the second. Show that (2, F, P) is a probability space.

1.1.3. Recall the definition of S; from Example 1.1.3. Show that o(S;) = R?, the
Borel subsets of R%.

1.1.4. A o-field F is said to be countably generated if there is a countable collection
C C F so that 0(C) = F. Show that R? is countably generated.

1.1.5. (i) Show that if /1 C F» C ... are og-algebras, then U;F; is an algebra. (ii)
Give an example to show that U;F; need not be a o-algebra.

1.1.6. A set AC {1,2,...} is said to have asymptotic density 6 if

lim |[AN{1,2,...,n}|/n=20
n—oo

Let A be the collection of sets for which the asymptotic density exists. Is A a o-
algebra? an algebra?

1.2 Distributions

Probability spaces become a little more interesting when we define random variables
on them. A real valued function X defined on 2 is said to be a random variable if
for every Borel set B C R we have X 1(B) = {w: X(w) € B} € F. When we need
to emphasize the o-field, we will say that X is F-measurable or write X € F. If Q2
is a discrete probability space (see Example 1.1.1), then any function X : Q@ — Ris a
random variable. A second trivial, but useful, type of example of a random variable
is the indicator function of a set A € F:

A
la(w) = {(1) zZA

The notation is supposed to remind you that this function is 1 on A. Analysts call this
object the characteristic function of A. In probability, that term is used for something
quite different. (See Section 3.3.)

(Q, F, P) (R,R) p=PoX"!

X A
X1y 0 ——

Figure 1.3: Definition of the distribution of X

If X is a random variable, then X induces a probability measure on R called its
distribution by setting u(A) = P(X € A) for Borel sets A. Using the notation
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introduced above, the right-hand side can be written as P(X~!(A)). In words, we
pull A € R back to X~1(A) € F and then take P of that set.

To check that u is a probability measure we observe that if the A; are disjoint then
using the definition of p; the fact that X lands in the union if and only if it lands in
one of the A;; the fact that if the sets A; € R are disjoint then the events {X € A;}
are disjoint; and the definition of x4 again; we have:

p(Uid) = P(X € UiA;)) = P(U{X € A4;}) =Y P(X € A;) = > p(Ay)

The distribution of a random variable X is usually described by giving its distri-
bution function, F(z) = P(X < x).
Theorem 1.2.1. Any distribution function F has the following properties:
(i) F is nondecreasing.
(ii) limy, 0o F(z) = 1, lim, o F(z) = 0.
(i11) F is right continuous, i.e. limy|, F(y) = F(z).
() If F(z—) = limy, F(y) then F(z—) = P(X < x).
(v) P(X =xz) = F(z) — F(z—).

Proof. To prove (i), note that if # <y then {X <z} C {X <y}, and then use (i) in
Theorem 1.1.1 to conclude that P(X < z) < P(X <y).

To prove (ii), we observe that if z T oo, then {X < a2} 1 Q, while if x | —oo then
{X <z} | 0 and then use (iii) and (iv) of Theorem 1.1.1.

To prove (iii), we observe that if y | =, then {X <y} | {X <=z}.
To prove (iv), we observe that if y T x, then {X <y} 1 {X < z}.
For (v), note P(X =z) = P(X <x) — P(X < z) and use (iii) and (iv). O

The next result shows that we have found more than enough properties to char-
acterize distribution functions.

Theorem 1.2.2. If F satisfies (i), (ii), and (i) in Theroem 1.2.1, then it is the
distribution function of some random variable.

Proof. Let Q = (0,1), F = the Borel sets, and P = Lebesgue measure. If w € (0, 1),
let

X(w) =sup{y: F(y) <w}
Once we show that
(%) {w: X(w)<z}={w:w < F(x)}

the desired result follows immediately since P(w : w < F(z)) = F(x). (Recall P is
Lebesgue measure.) To check (%), we observe that if w < F(x) then X (w) < z, since
x ¢ {y: F(y) <w}. On the other hand if w > F(z), then since F is right continuous,
there is an € > 0 so that F(z +¢) <w and X(w) >z +€ > z. O
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F=(z) F~l(y)

Figure 1.4: Picture of the inverse defined in the proof of Theorem 1.2.2.

Even though F' may not be 1-1 and onto we will call X the inverse of F' and denote
it by F~!. The scheme in the proof of Theorem 1.2.2 is useful in generating random
variables on a computer. Standard algorithms generate random variables U with a
uniform distribution, then one applies the inverse of the distribution function defined
in Theorem 1.2.2 to get a random variable F'~!(U) with distribution function F.

If X and Y induce the same distribution p on (R, R) we say X and Y are equal
in distribution. In view of Theorem 1.1.2, this holds if and only if X and Y have
the same distribution function, i.e., P(X < z) = P(Y < z) for all z. When X and Y
have the same distribution, we like to write

X<y

but this is too tall to use in text, so for typographical reasons we will also use X =5 Y.
When the distribution function F(z) = P(X < x) has the form

F) = [ " )y (1.2.1)

we say that X has density function f. In remembering formulas, it is often useful
to think of f(x) as being P(X = z) although

x+e
P(X =z)=1lim fly)dy=0

R
60175

By popular demand we have ceased our previous practice of writing P(X = x) for the
density function. Instead we will use things like the lovely and informative fx (z).

We can start with f and use (1.2.1) to define a distribution function F'. In order
to end up with a distribution function it is necessary and sufficient that f(x) > 0 and
J f(z)dz = 1. Three examples that will be important in what follows are:

Example 1.2.1. Uniform distribution on (0,1). f(z) =1 for € (0,1) and 0
otherwise. Distribution function:

0 z<
Flz)=<z 0<z<1
1 z>1

Example 1.2.2. Exponential distribution with rate \. f(z) = Ae™* for x > 0
and 0 otherwise. Distribution function:

F(I){o <0

l—e™® >0
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Example 1.2.3. Standard normal distribution.
f(a) = (2m) 7% exp(—a?/2)

In this case, there is no closed form expression for F'(z), but we have the following
bounds that are useful for large x:

Theorem 1.2.3. For xz > 0,

oo

(27" — =¥ exp(~2%/2) < / exp(—y?/2)dy < 7 exp(—a2/2)

x

Proof. Changing variables y = x + 2 and using exp(—22/2) < 1 gives

/OO exp(—y?/2) dy < exp(—22/2) /OOO exp(—zz) dz = v~ ' exp(—2?%/2)

For the other direction, we observe
/ (1 -3y Hexp(—y?/2)dy = (x7" — 273) exp(—2?/2) |
xr

A distribution function on R is said to be absolutely continuous if it has a den-
sity and singular if the corresponding measure is singular w.r.t. Lebesgue measure.
See Section A.4 for more on these notions. An example of a singular distribution is:

Example 1.2.4. Uniform distribution on the Cantor set. The Cantor set C
is defined by removing (1/3,2/3) from [0,1] and then removing the middle third of
each interval that remains. We define an associated distribution function by setting
F(z)=0forx <0, F(z)=1forax > 1, F(z) =1/2 for x € [1/3,2/3], F(x) = 1/4 for
x €[1/9,2/9], F(x) = 3/4 for x € [7/9,8/9], ... There is no f for which (1.2.1) holds
because such an f would be equal to 0 on a set of measure 1. From the definition, it
is immediate that the corresponding measure has u(C*¢) = 0.

Figure 1.5: Cantor distribution function

A probability measure P (or its associated distribution function) is said to be
discrete if there is a countable set S with P(S°) = 0. The simplest example of a
discrete distribution is

Example 1.2.5. Point mass at 0. F(z) =1 for z > 0, F(z) =0 for z < 0.
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In Section 1.6, we will see the Bernoulli, Poisson, and geometric distributions. The
next example shows that the distribution function associated with a discrete proba-
bility measure can be quite wild.

Example 1.2.6. Dense discontinuities. Let ¢1, g2, ... be an enumeration of the
rationals. Let a; > 0 have >_.°; a1 =1 and let

F(:E) = Z ail[qi,oo)
i=1
where 1[p o) (z) = 1 if # € [#,00) = 0 otherwise.

EXERCISES

1.2.1. Suppose X and Y are random variables on (Q,F, P) and let A € F . Show
that if we let Z(w) = X(w) for w € A and Z(w) = Y(w) for w € A°, then Z is a
random variable.

1.2.2. Let x have the standard normal distribution. Use Theorem 1.2.3 to get upper
and lower bounds on P(y > 4).

1.2.3. Show that a distribution function has at most countably many discontinuities.

1.2.4. Show that if F(x) = P(X < z) is continuous then ¥ = F(X) has a uniform
distribution on (0,1), that is, if y € [0,1], P(Y < y) = v.

1.2.5. Suppose X has continuous density f, Pla < X < ) =1 and g is a func-
tion that is strictly increasing and differentiable on (a, 3). Then ¢g(X) has density
fla7 ) /d' (g7 (y)) for y € (g(a), g(B)) and 0 otherwise. When g(x) = az + b with
a>0,g Yy) = (y — b)/a so the answer is (1/a)f((y — b)/a).

1.2.6. Suppose X has a normal distribution. Use the previous exercise to compute
the density of exp(X). (The answer is called the lognormal distribution.)

1.2.7. (i) Suppose X has density function f. Compute the distribution function
of X? and then differentiate to find its density function. (ii) Work out the answer
when X has a standard normal distribution to find the density of the chi-square
distribution.

1.3 Random Variables

In this section, we will develop some results that will help us later to prove that
quantities we define are random variables, i.e., they are measurable. Since most of
what we have to say is true for random elements of an arbitrary measurable space
(S,S) and the proofs are the same (sometimes easier), we will develop our results in
that generality. First we need a definition. A function X : Q@ — S is said to be a
measurable map from (2, F) to (S,S) if

X 'B)={w:X(w)eB}eF foral BES

If (5,S) = (R%,R%) and d > 1 then X is called a random vector. Of course, if
d =1, X is called a random variable, or r.v. for short.
The next result is useful for proving that maps are measurable.
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Theorem 1.3.1. If {w: X(w) € A} € F for all A € A and A generates S (i.e., S
is the smallest o-field that contains A), then X is measurable.

Proof. Writing {X € B} as shorthand for {w : X(w) € B}, we have
{X euiBi} =Ui{X € Bi}
{X € B°} ={X € B}¢

So the class of sets B={B : {X € B} € F}is a o-field. Since B D A and A generates
S,BDS. O

It follows from the two equations displayed in the previous proof that if S is a
o-field, then {{X € B} : B € S} is a o-field. It is the smallest o-field on Q that
makes X a measurable map. It is called the o-field generated by X and denoted
o(X). For future reference we note that

o(X)={{X €B}:BeS} (1.3.1)

Example 1.3.1. If (5, S) = (R, R) then possible choices of A in Theorem 1.3.1 are
{(=00,2] : x € R} or {(—o0,z) : x € Q} where Q = the rationals.

Example 1.3.2. If (5,S) = (R?,R?), a useful choice of A is
{(ahbl) X e X (ad,bd) T—oo < a; < b < OO}

or occasionally the larger collection of open sets.

Theorem 1.3.2. If X : (,F) — (S,S) and f : (S,S) — (T,T) are measurable
maps, then f(X) is a measurable map from (Q,F) to (T, T)

Proof. Let B € T. {w : f(X(w)) € B} = {w : X(w) € f~YB)} € F, since by
assumption f~1(B) € S. O

From Theorem 1.3.2, it follows immediately that if X is a random variable then so
is X for all ¢ € R, X2, sin(X), etc. The next result shows why we wanted to prove
Theorem 1.3.2 for measurable maps.

Theorem 1.3.3. If Xi,...X,, are random variables and f : (R",R™) — (R, R) is
measurable, then f(X1,...,X,) is a random variable.

Proof. In view of Theorem 1.3.2, it suffices to show that (Xi,...,X,) is a random
vector. To do this, we observe that if Aq,..., A, are Borel sets then

{(Xl,...,Xn)EAl><~-~><An}=ﬂi{Xi€Ai}€]:

Since sets of the form A; x --- x A, generate R", the desired result follows from
Theorem 1.3.1. O

Theorem 1.3.4. If X;,..., X, are random variables then X1+ ...+ X, is a random
variable.

Proof. In view of Theorem 1.3.3 it suffices to show that f(x1,...,2,) =21+ ...+ 2
is measurable. To do this, we use Example 1.3.1 and note that {z : 21 +...+ 2, < a}
is an open set and hence is in R"™. O
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Theorem 1.3.5. If X1, X5, ... are random variables then so are

inf X, sup X, lim sup X, lim inf X,

Proof. Since the infimum of a sequence is < « if and only if some term is < a (if all
terms are > a then the infimum is), we have

{inf X, <a}=Up{Xp, <a}eF

A similar argument shows {sup,, X, > a} = U,{X,, > a} € F. For the last two, we
observe

liminf X,, = sup ( iI;f Xm>

n—oo

limsup X, = inf (sup Xm)
n

n— oo m>n

To complete the proof in the first case, note that Y,, = inf,,>,, X,, is a random variable
for each n so sup,, ¥, is as well. O

From Theorem 1.3.5, we see that

Q, ={w: lim X, exists } = {w : limsup X,, — liminf X,, = 0}
n— 00 n—00 n— 00
is a measurable set. (Here = indicates that the first equality is a definition.) If
P(Q,) = 1, we say that X, converges almost surely, or a.s. for short. This type
of convergence called almost everywhere in measure theory. To have a limit defined
on the whole space, it is convenient to let

X = limsup X,
n—oo

but this random variable may take the value 400 or —oo. To accommodate this and
some other headaches, we will generalize the definition of random variable.

A function whose domain is a set D € F and whose range is R* = [—00, 00] is said
to be a random variable if for all B € R* we have X }(B) = {w: X (w) € B} € F.
Here R* = the Borel subsets of R* with R* given the usual topology, i.e., the one
generated by intervals of the form [—o0,a), (a,b) and (b, 00| where a,b € R. The
reader should note that the extended real line (R*, R*) is a measurable space, so
all the results above generalize immediately.

EXERCISES

1.3.1. Show that if A generates S, then X ~}(A) = {{X € A} : A € A} generates
o(X)={{XeB}:BeS}.

1.3.2. Prove Theorem 1.3.4 when n = 2 by checking {X; + X» < a2} € F.

1.3.3. Show that if f is continuous and X,, — X almost surely then f(X,) — f(X)
almost surely.

1.3.4. (i) Show that a continuous function from R¢ — R is a measurable map from
(R4, R%) to (R,R). (ii) Show that R? is the smallest o-field that makes all the
continuous functions measurable.
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1.3.5. A function f is said to be lower semicontinuous or ls.c. if

liminf f(y) > f(z)

Yy—x

and upper semicontinuous (u.s.c.) if —f is L.s.c. Show that f is L.s.c. if and only if
{z: f(z) < a} is closed for each a € R and conclude that semicontinuous functions
are measurable.

1.3.6. Let f : R? — R be an arbitrary function and let f°(z) = sup{f(y) : l[y—=z| < 6}
and f5(z) = inf{f(y) : |y — x| < 6} where |z| = (27 + ...+ 22)"/2. Show that f? is
Ls.c. and fs is ws.c. Let fO = lims | f°, fo = limg|o f5, and conclude that the set of
points at which f is discontinuous = {f° # fo} is measurable.

1.3.7. A function ¢ : Q — R is said to be simple if

p@) =Y emla, (@)

where the ¢, are real numbers and A,, € F. Show that the class of F measur-
able functions is the smallest class containing the simple functions and closed under
pointwise limits.

1.3.8. Use the previous exercise to conclude that Y is measurable with respect to
o(X) if and only if Y = f(X) where f : R — R is measurable.

1.3.9. To get a constructive proof of the last result, note that {w : m2™™ <Y <
(m+1)27"} ={X € By, ,} for some B,,,, € R and set f,(x) =m2~" for z € By, ,,
and show that as n — oo f,,(z) — f(z) and Y = f(X).

1.4 Integration

Let p be a o-finite measure on (2, F). We will be primarily interested in the special
case p is a probability measure, but we will sometimes need to integrate with respect
to infinite measure and and it is no harder to develop the results in general.

In this section we will define [ fdu for a class of measurable functions. This is a
four-step procedure:

1. Simple functions

2. Bounded functions

3. Nonnegative functions
4. General functions

This sequence of four steps is also useful in proving integration formulas. See, for
example, the proofs of Theorems 1.6.9 and 1.7.2.

Step 1. ¢ is said to be a simple function if p(w) = Y7 | a;14, and A; are disjoint
sets with p(A;) < co. If ¢ is a simple function, we let

/SDdM = iaiN(Ai)
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The representation of ¢ is not unique since we have not supposed that the a; are
distinct. However, it is easy to see that the last definition does not contradict itself.

We will prove the next three conclusions four times, but before we can state them
for the first time, we need a definition. ¢ > 9 u-almost everywhere (or ¢ > 9 u-
a.e.) means pu({w: p(w) < (w)}) = 0. When there is no doubt about what measure
we are referring to, we drop the pu.

Lemma 1.4.1. Let ¢ and v be simple functions.
(i) If ¢ > 0 a.e. then [@du > 0.
(i) For any a € R, [apdp=a [pdp.
(iii) [ +bdp= [edu+ [¢dpu.

Proof. (i) and (ii) are immediate consequences of the definition. To prove (iii), suppose

= iailAi and ¢ = zn:bjlgj
i=1

Jj=1

To make the supports of the two functions the same, we let Ay = U;B; — U; A;, let
By = U;A; — U;B;, and let ag = bg = 0. Now

Py =23 (ai+b)lann,
i=0 j=0
and the A; N B; are pairwise disjoint, so
[tovrdn- S°S" (a4 by (A 1 By)

=0 j=0
m

bju(A;i N B;)

m n
ZZGiM(Ai ﬂBj) +
—0 j=0

n
i= §=0 i=0

n

ai p(Ai) + ) bju(By) = [ pdp+ [ du
St = [eaus [

i=0

In the next-to-last step, we used A; = +;(A; N B;) and B; = +;(A; N B;), where +
denotes a disjoint union. O

We will prove (i)—(iii) three more times as we generalize our integral. As a conse-
quence of (i)—(iii), we get three more useful properties. To keep from repeating their
proofs, which do not change, we will prove

Lemma 1.4.2. If (i) and (iii) hold then we have:
(iv) If ¢ < a.e. then [@dp < [ dp.
(v) If ¢ = a.e. then [@du= [ du.

If, in addition, (ii) holds when a = —1 we have
(vi) | [ odul < [leldp

Proof. By (iil), [ du = [du+ [( — ¢)dp and the second integral is > 0 by
(i), so (iv) holds. ¢ = v a.e. implies p < 9 ae. and ¢ < @ a.e. so (v) follows
from two applications of (iv). To prove (vi) now, notice that ¢ < || so (iv) implies
Jedn < [leldp. —p < |p], so (iv) and (i) imply — [¢du < [|e|dp. Since
ly| = max(y, —y), the result follows. O
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Step 2. Let E be a set with u(E) < oo and let f be a bounded function that vanishes
on E°. To define the integral of f, we observe that if ¢, are simple functions that
have p < f <1, then we want to have

[eins [rans [van

diu=s dy = inf d 1.4.1
/fu WI;I}/QOM erzlf/wu (1.4.1)

Here and for the rest of Step 2, we assume that ¢ and ¢ vanish on E°. To justify
the definition, we have to prove that the sup and inf are equal. It follows from (iv) in

Lemma 1.4.2 that
su dp < inf d
wsli/(p M‘wzf/w a

To prove the other inequality, suppose |f| < M and let

so we let

Ek:{er:Ii\L/‘[>f(x)>(k_nl)M} for —n<k<n
b= 3 Bl = 3 ES0,
By definition, ¢, (z) —_%(m) — (M/n)1p, so _
[ nta) = (@) dn = ()

Since @, (z) < f(z) < ¢, (), it follows from (iii) in Lemma 1.4.1 that

M
sup/sﬁdﬂz/wndu:*;u(EH/%du

o< f
M
> ——u(FE inf d
- nu( )+1/1J1§f/1/1 :

The last inequality holds for all n, so the proof is complete. O

Lemma 1.4.3. Let E be a set with u(E) < oco. If f and g are bounded functions that
vanish on E€ then:

(i) If f > 0 a.e. then [ fdu > 0.

(it) For any a € R, [afdu=a [ fdp.

(i) [ f+gdu= [ fdu+ [gdpu.

(w) If g < f a.e. then [gdp < [ fdpu.

(v) If g= [ a.e. then [gdu= [ fdu.

(vi) | [ fdul < [|f|dp.

Proof. Since we can take ¢ = 0, (i) is clear from the definition. To prove (ii), we
observe that if a > 0, then ap < af if and only if ¢ < f, so

/afd,u:Sup/agpd,u:supa/cpdu:asup/gpduza/fdu
e<f e<f p<f

For a < 0, we observe that ayp < af if and only if ¢ > f, so

/afdﬂ:Sup/acpd,uzsupa/godﬂ:ainf/god,u:a/fd,u
p>f p>f p>f
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To prove (iii), we observe that if ¢»; > f and 19 > g, then 1)1 + 13 > f + g so

inf /M < inf /1/)1+1/12du

>f+g P12 fiba>g

Using linearity for simple functions, it follows that

/f—i—gdu: inf /wd,u
f d d d d
w1>1fnw2>g/w1 u+/wz u= /f u+/g U

To prove the other inequality, observe that the last conclusion applied to —f and —g

and (ii) imply
/f+gdu< /fdu /Qdﬂ

(iv)—(vi) follow from (i)—(iii) by Lemma 1.4.2. O

Notation. We define the integral of f over the set E:

/Efduz/f~1Edu

Step 3. If f > 0 then we let

/fdu—sup{/hd,u:Oghgf,his bounded and p({z : h(z) > 0}) < oo}

The last definition is nice since it is clear that this is well defined. The next result
will help us compute the value of the integral.

Lemma 1.4.4. Let E, T have pu(E,) < 0o and let a Ab = min(a,b). Then
/ f/\nduT/fd,u asn T oo
En

Proof. It is clear that from (iv) in Lemma 1.4.3 that the left-hand side increases as n
does. Since h = (f An)lg, is a possibility in the sup, each term is smaller than the
integral on the right. To prove that the limit is [ f du, observe that if 0 < h < f,
h <M, and p({z : h(z) > 0}) < oo, then for n > M using h < M, (iv), and (iii),

/f/\nduz/ hdu:/hdu—/ hdu
E, E, n

Now 0 < [, hdp < Mu(ES N {z: h(z) > 0}) — 0 as n — oo, s0

lim inf f/\nd,u>/hd,u

n—oo E
n

which proves the desired result since h is an arbitrary member of the class that defines
the integral of f. O
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Lemma 1.4.5. Suppose f, g > 0.
(i) [ Fdu>0
(ii) If a > 0 then [afdu=a [ fdp.
(ir) [ f+gdu=[fdu+ [gdu
() If 0 < g < f a.e. then [gdu < [ fdp.
(v) If0<g=f ae. then [gdu= [ fdpu.

Here we have dropped (vi) because it is trivial for f > 0.

Proof. (i) is trivial from the definition. (ii) is clear, since when a > 0, ah < af if and
only if h < f and we have [ahdu = a [ hdu for h in the defining class. For (iii), we
observe that if f > h and g > k, then f + g > h + k so taking the sup over h and k
in the defining classes for f and g gives

/f+gdu2/fdu+/gdu

To prove the other direction, we observe (a +b) An < (a An)+ (bAn) so (iv) from
Lemma 1.4.3 and (iii) from Lemma 1.4.4 imply

/(f+g)Andu§/ f/\ndu—l—/ gAndu

Letting n — oo and using Lemma 1.4.4 gives (iii). As before, (iv) and (v) follow from
(i), (iii), and Lemma 1.4.2. O

Step 4. We say f is integrable if [ |f]dp < co. Let
fH@)=f(x)v0 and f~(z)=(-f(x)) VO
where a V b = max(a,b). Clearly,
f@)=f"(z) = f(x) and [f(z)|=/f"(2)+ [ (2)

We define the integral of f by

[tan=[sran- [ a

The right-hand side is well defined since f*, f~ < |f| and we have (iv) in Lemma
1.4.5. For the final time, we will prove our six properties. To do this, it is useful to
know:

Lemma 1.4.6. If f = fi — fo where f1, fo >0 and [ f; dp < oo then

[tan= [ fidu— [ fan

Proof. fi1+ f~ = fo+ fT and all four functions are > 0, so by (iii) of Lemma 1.4.5,

[tdus [5au=[fiesan= [ fosrran= [ pans [ £ a

Rearranging gives the desired conclusion. O
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Theorem 1.4.7. Suppose f and g are integrable.

(i) If f > 0 a.e. then [ fdu > 0.

(i) For alla € R, [afdu=a [ fdu.

(ir) [ f+gdp=[fdu+ [gdu

(iv) If g < f a.e. then [gdu < [ fdpu.

(v) If g= [ a.e. then [gdu= [ fdpu.

(vi) | [ fdul < [|f|dp.
Proof. (i) is trivial. (ii) is clear since if a > 0, then (af)t = a(f7), and so on. To
prove (iii), observe that f+¢ = (f* +g¢%) — (f~ +¢7), so using Lemma 1.4.6 and
Lemma 1.4.5

/f+ydu=/f++g+du—/f‘+g‘du

:/f*d,,wr/g*du—/f’du—/g’du

As usual, (iv)—(vi) follow from (i)—(iii) and Lemma 1.4.2. O

Notation for special cases:

(a) When (2, F, u) = (R4, R, N), we write [ f(z)dx for [ fdA.

(b) When (Q, F,u) = (R,R,\) and E = [a, ], we write f; f(x)dx for [, fd.

(¢) When (Q,F,u) = (R,R,u) with p((a,b)) = G(b) — G(a) for a < b, we write
J f(x)dG(z) for [ fdp.

(d) When Q is a countable set, F = all subsets of 2, and p is counting measure, we
write Y, f(i) for [ fdp.

We mention example (d) primarily to indicate that results for sums follow from those

for integrals. The notation for the special case in which p is a probability measure
will be taken up in Section 1.6.

EXERCISES
1.4.1. Show that if f > 0 and [ fdu =0 then f =0 a.e.
1.4.2. Let f >0 and E, ,, = {x:m/2" < f(z) < (m+1)/2"}. Asn T oo,

oo

> o i(Bam) 1 /fdu

m=1

1.4.3. Let g be an integrable function on R and € > 0. (i) Use the definition of the
integral to conclude there is a simple function ¢ = Y, byla, with [|g — ¢|dz < e.
(ii) Use Exercise A.2.1 to approximate the Ay by finite unions of intervals to get a

step function
k
9= chl(a_,»_l,a_,»)
j=1

with ag < a1 < ... < ag, so that [|p —¢| < e. (i) Round the corners of ¢ to get a
continuous function r so that [|¢ —r|dx <e.

1.4.4. Prove the Riemann-Lebesgue lemma. If g is integrable then

lim [ g(z)cosnzdx =0

n—oo

Hint: If g is a step function, this is easy. Now use the previous exercise.
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1.5 Properties of the Integral

In this section, we will develop properties of the integral defined in the last section.
Our first result generalizes (vi) from Theorem 1.4.7.

Theorem 1.5.1. Jensen’s inequality. Suppose ¢ is convez, that is,
Ap(@) + (1= Ne(y) = e(A z+ (1 - A)y)

for all X € (0,1) and z, y € R. If p is a probability measure, and f and o(f) are

integrable then
@(/fdu> S/w(f)du

Proof. Let ¢ = [ fdp and let £(x) = ax + b be a linear function that has £(c) = ¢(c)
and ¢(x) > £(x). To see that such a function exists, recall that convexity implies

fim o(c) — p(c—h) < lim p(c+h) —p(c)
h10 h h10 h

(The limits exist since the sequences are monotone.) If we let a be any number between
the two limits and let £(z) = a(z — ¢) + ¢(c), then £ has the desired properties. With
the existence of ¢ established, the rest is easy. (iv) in Theorem 1.4.7 implies

/@(f)dMZ/(aerb)dua/fdqubK(/fdu) cp(/fdu)

since ¢ = [ fdp and (c) = p(c). O

Let || fll, = ([ |f|P du)*/P for 1 < p < oo, and notice ||cf, = |e|- || f||, for any real
number c.

Theorem 1.5.2. Hélder’s inequality. If p, ¢ € (1,00) with 1/p+1/q =1 then

J/\fgldu <1 £ 11l

Proof. If || f||, or |lgllg = O then |fg| = 0 a.e., so it suffices to prove the result when
[ fllp and [lgllq > 0 or by dividing both sides by |[f|[p[lgllq, when [[f], = llglly = 1.
Fix y > 0 and let

p(x) =2 /p+y?/g—=zy for >0
Plx)=a"""—y and ¢"(z)=(p—1)aP"?
s0 ¢ has a minimum at z, = y'/®=Y. ¢ =p/(p — 1) and 22 = y?/(P=1) = 49 50
(o) = y"(1/p+1/q) —y"/ "Ny =0

Since z, is the minimum, it follows that xy < «P/p + y?/q. Letting = |f|, y = |¢g|,
and integrating

1 1
J1toldn <=+ 2 =1=17lblal :

Remark. The special case p = ¢ = 2 is called the Cauchy-Schwarz inequality.
One can give a direct proof of the result in this case by observing that for any 6,

OS/(f+99)2du:/f2du+9(2/fgdu)+92 (/deu)
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so the quadratic a§?+4bf+c on the right-hand side has at most one real root. Recalling
the formula for the roots of a quadratic

—b 4+ Vb% — dac
2a

we see b? — 4ac < 0, which is the desired result.
Our next goal is to give conditions that guarantee

iy [ potu= [ (i 1) do

First, we need a definition. We say that f,, — f in measure, i.e., for any € > 0,
u{z o |fu(z) — f(z)] > €}) — 0 as n — oo. On a space of finite measure, this is
a weaker assumption than f,, — f a.e., but the next result is easier to prove in the
greater generality.

Theorem 1.5.3. Bounded convergence theorem. Let E be a set with u(E) < oo.
Suppose f, vanishes on E°, |fn(x)] < M, and f, — f in measure. Then

[ rau= tm [ fuin

Example 1.5.1. Consider the real line R equipped with the Borel sets R and
Lebesgue measure A. The functions f,(z) = 1/n on [0,n] and 0 otherwise on show
that the conclusion of Theorem 1.5.3 does not hold when p(FE) = oo.

Proof. Let € > 0, G, = {z : |fu(z) — f(z)] < €} and B,, = E — G,,. Using (iii) and
(vi) from Theorem 1.4.7,

’/fdu—/fndu‘z‘/(f—fn)du’S/If—fnldu

= — fuld — fald
/Gnlf ful u+/an ful di
< eu(E) +2Mp(By)

fn — f in measure implies pu(B,) — 0. € > 0 is arbitrary and u(E) < oo, so the proof
is complete. O

Theorem 1.5.4. Fatou’s lemma. If f,, > 0 then

liminf [ f,dp > / <lim inf fn) du

n—oo

Example 1.5.2. Example 1.5.1 shows that we may have strict inequality in Theorem
1.5.4. The functions f,(z) = nl(,1/n(x) on (0,1) equipped with the Borel sets and
Lebesgue measure show that this can happen on a space of finite measure.

Proof. Let gn(x) = infy,>n f(z). fo(x) > gn(z) and as n 1 oo,

Since [ fndp > [ gndp, it suffices then to show that

liminf/gnduZ/gd,u
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Let E,, T €2 be sets of finite measure. Since g,, > 0 and for fixed m
(gn Am)-1g, — (gAm)-1g, a.e.

the bounded convergence theorem, 1.5.3, implies

liminf/gnd,uz/ gn/\mdu—>/ gAmdu
E Em

n—oo
m

Taking the sup over m and using Theorem 1.4.4 gives the desired result. O

Theorem 1.5.5. Monotone convergence theorem. If f, > 0 and f, T f then

[ wint [ sau

Proof. Fatou’s lemma, Theorem 1.5.4, implies liminf [ f,, du > [ fdp. On the other
hand, f,, < f implies limsup [ f, du < [ fdu. O

Theorem 1.5.6. Dominated convergence theorem. If f,, — f a.e., |fn]| < g for
all n, and g is integrable, then [ f,du— [ fdp.

Proof. f, + g > 0 so Fatou’s lemma implies

liminf/fn—kgd,uZ/f—kgd,u

n—oo

Subtracting [ g dp from both sides gives

liminf/fnd,uszd,u

Applying the last result to —f,,, we get

limsup/fnduS/fdu

n—oo

and the proof is complete. O

EXERCISES

1.5.1. Let || f|loo = inf{M : u({z : |f(z)| > M}) = 0}. Prove that

/ Faldu < [ F1l1llgllso

1.5.2. Show that if y is a probability measure then
[flloe = lim [|f]l,
p‘}OO

1.5.3. Minkowski’s inequality. (i) Suppose p € (1,00). The inequality |f + g|P <
29(|f|? + |g|?) shows that if || ], and |g], are < oo then | f + gll, < co. Apply
Hélder’s inequality to | f[[f +g["~" and |g||f +g[P~" to show ||f +gllp < [If]l, + llgll,-
(i) Show that the last result remains true when p =1 or p = oo.
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1.5.4. If f is integrable and F,, are disjoint sets with union E then

ni)/Emfdu:/Efdu

So if f >0, then v(E) = fE f du defines a measure.

1.5.5. If g, T g and [ g7 du < oo then [ g, du 1 [ gdp.

1.5.6. If g,, > 0 then [ > gmdp=> " [ gmdpu.

1.5.7. Let f > 0. (i) Show that [ fAndu 1 [ fdpasn — co. (ii) Use (i) to conclude
that if ¢ is integrable and € > 0 then we can pick § > 0 so that u(A4) < § implies

fA lgldp < e.
1.5.8. Show that if f is integrable on [a,b], g(z) = f[a 2] f(y)dy is continuous on
(a,b).

1.5.9. Show that if f has ||f||, = ([ | f[Pdu)*/P < oo, then there are simple functions
©p, so that ||o, — fl|, — 0.

1.5.10. Show that if >° [|fuldp < oo then > [ fudu= [, fudp.

1.6 Expected Value

We now specialize to integration with respect to a probability measure P. If X > 0
is a random variable on (Q,F, P) then we define its expected value to be EX =
J X dP, which always makes sense, but may be oo. To reduce the general case to the
nonnegative case, let 7 = max{x, 0} be the positive part and let 2= = max{—z, 0}
be the negative part of z. We declare that EX exists and set EX = EXT — EX~
whenever the subtraction makes sense, i.e., EXT < oo or EX~ < co.

E X is often called the mean of X and denoted by . FX is defined by integrating
X, so it has all the properties that integrals do. From Theorems 1.4.5 and 1.4.7 and
the trivial observation that E(b) = b for any real number b, we get the following;:

Theorem 1.6.1. Suppose X,Y >0 or E|X|, E|Y| < co.
(o) E(X+Y)=EX+EY.

(b) E(aX +b) =aE(X) + b for any real numbers a,b.
(¢) If X >Y then EX > EY.

In this section, we will restate some properties of the integral derived in the last
section in terms of expected value and prove some new ones. To organize things, we
will divide the developments into three subsections.

1.6.1 Inequalities

For probability measures, Theorem 1.5.1 becomes:
Theorem 1.6.2. Jensen’s inequality. Suppose ¢ is convex, that is,
Ap(z) + (1= Ne(y) = e(Az + (1= A)y)
for all A € (0,1) and x, y € R. Then
E(p(X)) = ¢(EX)
provided both expectations exist, i.e., E|X| and E|p(X)| < 0.
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Eg(X)

9(EX)

0

05 1 15 2 25 3 35
Figure 1.6: Jensen’s inequality for g(z) = 2? =3z +3, P(X = 1) = P(X =3) = 1/2.
To recall the direction in which the inequality goes note that if P(X = z) = X\ and
P(X =y) =1— A then
Ep(X) = Ap(2) + (1 = Np(y) = Az + (1 = Ny) = ¢(EX)
Two useful special cases are |[EX| < E|X| and (EX)? < E(X?).
Theorem 1.6.3. Hélder’s inequality. If p,q € [1,00] with 1/p+1/q =1 then
EIXY] < [|X]pYq
Here | X ||, = (B|X|")Y" for r € [1,00); | X||oo = inf{M : P(|X| > M) = 0}.

To state our next result, we need some notation. If we only integrate over A C €,
we write

E(X;A) = /AXdP

Theorem 1.6.4. Chebyshev’s inequality. Suppose ¢ : R — R has ¢ > 0, let
A€ER and let iy = inf{p(y) : y € A}.

iaP(X € A) < E(p(X); X € A) < Ep(X)
Proof. The definition of i4 and the fact that ¢ > 0 imply that
ialixea) < 0(X)l(xea) < @(X)

So taking expected values and using part (c) of Theorem 1.6.1 gives the desired
result. O

Remark. Some authors call this result Markov’s inequality and use the name
Chebyshev’s inequality for the special case in which p(z) = 2% and A = {z : |z| > a}:

a’*P(|X| > a) < EX? (1.6.1)

1.6.2 Integration to the Limit

Our next step is to restate the three classic results from the previous section about
what happens when we interchange limits and integrals.
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Theorem 1.6.5. Fatou’s lemma. If X,, > 0 then
liminf £X,, > E(liminf X,,)

n—oo n—o0

Theorem 1.6.6. Monotone convergence theorem. If0 < X, 1T X then EX, |
EX.

Theorem 1.6.7. Dominated convergence theorem. If X,, — X a.s., |X,,| <Y
for alln, and EY < oo, then EX,, — EX.

The special case of Theorem 1.6.7 in which Y is constant is called the bounded
convergence theorem.

In the developments below, we will need another result on integration to the limit.
Perhaps the most important special case of this result occurs when g(x) = |z|P with
p>1and h(z) = .

Theorem 1.6.8. Suppose X,, — X a.s. Let g, h be continuous functions with

(i) g > 0 and g(z) — oo as |z| — oo,

(i) [h(x)|/g(x) — 0 as |z| — oo,

and (iii) Eg(X,) < K < oo for all n.

Then Eh(X,) — Eh(X).

Proof. By subtracting a constant from h, we can suppose without loss of generality
that h(0) = 0. Pick M large so that P(|X| = M) = 0 and g(x) > 0 when |z| > M.
Given a random variable Y, let Y = Y'1(jy|<ars). Since P(|X|= M) =0, X,, — X as.

Since h(X,,) is bounded and h is continuous, it follows from the bounded convergence
theorem that

(a) Eh(X,) — Eh(X)
To control the effect of the truncation, we use the following:
(b) |[EMY) - Er(Y)| < EIMY) = W(Y)| < E(JM(Y);[Y] > M) < enr Eg(Y)

where ey = sup{|h(z)|/g(z) : |z] > M}. To check the second inequality, note that
when |Y| < M,Y =Y, and we have supposed h(0) = 0. The third inequality follows
from the definition of €.

Taking ¥ = X, in (b) and using (iii), it follows that
(c) |Eh(X,) — Eh(X,)| < Keyn
To estimate |Eh(X) — Eh(X)|, we observe that g > 0 and g is continuous, so Fatou’s

lemma implies

Eg(X) <liminf Eg(X,) < K

Taking Y = X in (b) gives o
(@) [BR(X) — Bh(X)| < Kear
The triangle inequality implies
|[Eh(X,) — ER(X)| < |Eh(Xa) — BR(X,)|
+|Eh(X,) — ER(X)| + |EW(X) — ER(X)|
Taking limits and using (a), (c), (d), we have
limsup |ER(X,) — Eh(X)| < 2Key

n—oo

which proves the desired result since K < oo and €3y — 0 as M — oo. O
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1.6.3 Computing Expected Values

Integrating over (£, F, P) is nice in theory, but to do computations we have to shift
to a space on which we can do calculus. In most cases, we will apply the next result
with § = R%.

Theorem 1.6.9. Change of variables formula. Let X be a random element of
(S,8) with distribution u, i.e., u(A) = P(X € A). If f is a measurable function from
(S,8) to (R,R) so thatf>0 or E|f(X)] < oo, then

X) = [ swu

Remark. To explain the name, write h for X and P o h~! for p to get

/f ))dP = /f d(Poh™h)

Proof. We will prove this result by verifying it in four increasingly more general special
cases that parallel the way that the integral was defined in Section 1.4. The reader
should note the method employed, since it will be used several times below.

CASE 1: INDICATOR FUNCTIONS. If B € § and f = 1p then recalling the relevant
definitions shows

Elp(X) = P(X € B) = u(B) = /S 15(y) p(dy)

CASE 2: SIMPLE FUNCTIONS. Let f(z) = Y. _ ¢nlp,, where ¢, € R, By, € S.
The linearity of expected value, the result of Case 1, and the linearity of integration
imply

n

Ef(X)= Y cmElp, (X)

m=1
=> e J 1o ntan) = [ 1) utay
CASE 3: NONEGATIVE FUNCTIONS. Now if f > 0 and we let

fu(@) = (2" f(2)]/2") Am

where [z] = the largest integer < z and a A b = min{a, b}, then the f, are simple
and f,, T f, so using the result for simple functions and the monotone convergence
theorem:

BFC) = lim B£,() = tim [ £ tdn) = [ 1) tay)

CASE 4: INTEGRABLE FUNCTIONS. The general case now follows by writing f(z) =
f(x)™ — f(x)~. The condition E|f(X)| < co guarantees that Ef(X)* and Ef(X)~
are finite. So using the result for nonnegative functions and linearity of expected value
and integration:

Ef(X) = Bf(X)* - Ef(X) = /S o)t uldy) - /S fw)

= / f(y) n(dy)
S

which completes the proof. O
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A consequence of Theorem 1.6.9 is that we can compute expected values of func-
tions of random variables by performing integrals on the real line. Before we can
treat some examples, we need to introduce the terminology for what we are about to
compute. If k is a positive integer then FXF is called the kth moment of X. The
first moment EX is usually called the mean and denoted by u. If EX? < oo then
the variance of X is defined to be var (X) = E(X — p)?. To compute the variance
the following formula is useful:

var (X) = E(X — p)?
=EX? - 2uEX 4+ p?> = EX? — 1i? (1.6.2)
From this it is immediate that
var (X) < EX? (1.6.3)

Here EX? is the expected value of X2. When we want the square of EX, we will
write (EX)?. Since E(aX +b) = aEX + b by (b) of Theorem 1.6.1, it follows easily
from the definition that

var (aX +b) = E(aX +b— E(aX +b))?
= @®B(X = BX)? = a” var (X) (1.6.4)

We turn now to concrete examples and leave the calculus in the first two examples to
the reader. (Integrate by parts.)

Example 1.6.1. If X has an exponential distribution with rate 1 then
EXF = / zFe dr = k!
0

So the mean of X is 1 and variance is EX? — (EX)?2=2-12=1. If we let Y = X/,
then by Exercise 1.2.5, Y has density Ae™*¥ for y > 0, the exponential density
with parameter A\. From (b) of Theorem 1.6.1 and (1.6.4), it follows that ¥ has mean
1/X and variance 1/)\2.

Example 1.6.2. If X has a standard normal distribution,

EX = / x(2r) "2 exp(—2?/2)dz =0 (by symmetry)
var (X) = EX? = / 22(2m) Y2 exp(—2%/2) dx = 1

Ifwelet o >0, p € R, and Y = 0 X +p, then (b) of Theorem 1.6.1 and (1.6.4), imply
EY = p and var (Y) = 0. By Exercise 1.2.5, Y has density

(2m0®) 72 exp(—(y — n)*/20°)
the normal distribution with mean u and variance o2.

We will next consider some discrete distributions. The first is very simple, but
will be useful several times below, so we record it here.

Example 1.6.3. We say that X has a Bernoulli distribution with parameter p if
P(X =1)=pand P(X =0) =1—p. Clearly,

EX=p-1+(1—-p)-0=p
Since X? = X, we have EX? = EX = p and
var (X) = EX? — (EX)? = p—p* = p(1 - p)
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Example 1.6.4. We say that X has a Poisson distribution with parameter X\ if
P(X =k)=e /K for k=0,1,2,...

To evaluate the moments of the Poisson random variable, we use a little inspiration
to observe that for £ > 1

E(X(X—1)~'~(X—k+1))Zij(j—l)“'(j—kﬂ%)e”;?
=k :
_ kooef,\ A F \k
SR DR v e

where the equalities follow from (i) the facts that j(j —1)---(j — k 4+ 1) = 0 when
j <k, (ii) cancelling part of the factorial, and (iii) the fact that Poisson distribution
has total mass 1. Using the last formula, it follows that EX = X\ while

var (X) = EX? - (EX)? =BE(X(X - 1)+ EX — )\ =)
Example 1.6.5. N is said to have a geometric distribution with success proba-
bility p € (0,1) if
P(N=k)=p(l—-p*rt fork=1,2,...

N is the number of independent trials needed to observe an event with probability p.
Differentiating the identity

oo

d(-pF=1/p

k=0

and referring to Example A.5.3 for the justification gives

k(1-p)*t=—1/p?

M

~
Il
-

k(k—1)(1—p)*=2 =2/p?

M2

=~
||

2

From this it follows that

EN =Y kp(l—p)* ' =1/p
k=1

EN(N—1)=> k(k—1)p(l—p)* " =2(1-p)/p*
k=1

2(1—p) 1-p
== —

var (N) = EN? — (EN)> = EN(N —1) + EN — (EN)?
p
P 2

1
P p? p
EXERCISES

1.6.1. Suppose ¢ is strictly convex, i.e., > holds for A € (0,1). Show that, under the
assumptions of Theorem 1.6.2, o(EX) = Ep(X) implies X = EX a.s.
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1.6.2. Suppose ¢ : R™ — R is convex. Imitate the proof of Theorem 1.5.1 to show
E@(le s aXrL) Z QO(Ele L 7EXrL)
provided E|o(X1,...,Xy)| < oo and E|X;| < oo for all 4.

1.6.3. Chebyshev’s inequality is and is not sharp. (i) Show that Theorem 1.6.4
is sharp by showing that if 0 < b < a are fixed there is an X with EX? = b? for which
P(|X| > a) = b?/a?. (ii) Show that Theorem 1.6.4 is not sharp by showing that if X
has 0 < EX? < oo then

lim a?P(|X| > a)/EX? =0

1.6.4. One-sided Chebyshev bound. (i) Let a > b> 0,0 < p < 1, and let X have
P(X =a)=pand P(X = —b) =1—p. Apply Theorem 1.6.4 to ¢(z) = (z +b)? and
conclude that if YV is any random variable with EY = EX and var(Y) = var (X),
then P(Y > a) < p and equality holds when ¥ = X.

(ii) Suppose EY =0, var (Y) = 02, and a > 0. Show that P(Y > a) < 0%/(a® + o2),
and there is a Y for which equality holds.

1.6.5. Two nonexistent lower bounds.
Show that: (i) if € > 0, inf{P(|X| >¢): EX =0, var (X) =1} =0.
(i) if y > 1, 02 € (0,00), inf{P(|X| > y) : EX =1, var (X) = 0%} = 0.

1.6.6. A useful lower bound. Let Y > 0 with EY? < co. Apply the Cauchy-
Schwarz inequality to Y'1(y~¢) and conclude

P(Y >0) > (EY)?/EY?

1.6.7. Let Q = (0,1) equipped with the Borel sets and Lebesgue measure. Let

€ (1,2) and X, = n%1(1/(n41),1/n) — 0 a.s. Show that Theorem 1.6.8 can be
applied with h(z) = z and g(x) = |z|>/®, but the X,, are not dominated by an
integrable function.

1.6.8. Suppose that the probability measure p has u(A) = fA f(x)dx for all A € R.
Use the proof technique of Theorem 1.6.9 to show that for any g with ¢ > 0 or
J 1g(x)| u(dx) < co we have

[ s utd) = [ gta) (e ds

1.6.9. Inclusion-exclusion formula. Let A;, Ag,... A, be events and A = U}, 4;.
Prove that 14 = 1—[[\~,(1—14,). Expand out the right hand side, then take expected
value to conclude

P (UL A) = ZP(Ai) - ZP(Ai N A4;)
i=1 1<J
+ > PANA;NA) — .+ ()" P(N, Ay)
i<j<k
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1.6.10. Bonferroni inequalities. Let A, As,... A, be events and A = U} | A;.
Show that 14 < Z?:l 14,, etc. and then take expected values to conclude

P(Up A < P(A)
=1

P (U A) > i P(4;) =Y P(Ain 4;)
=1

1<j
P(U A) <Y P(A) =Y P(A;NAj)+ > P(AiNA;NAy)
i=1 1<J 1<j<k

In general, if we stop the inclusion exclusion formula after an even (odd) number of
sums, we get an lower (upper) bound.

1.6.11. If E|X|* < oo then for 0 < j < k, E|X|/ < oo, and furthermore
EIX| < (B|X|*)/*

1.6.12. Apply Jensen’s inequality with ¢(z) = €* and P(X = log y,,) = p(m) to
conclude that if 3" _, p(m) =1 and p(m), y,, > 0 then

n

> pm)ym = T o™
m=1

m=1
When p(m) = 1/n, this says the arithmetic mean exceeds the geometric mean.
1.6.13. If EX; < oo and X,, | X then EX,, T EX.
1.6.14. Let X > 0 but do NOT assume E(1/X) < oo. Show

Yy—0o0

lim yE(1/X;X >y) =0, lifgyE(l/X;X >y) =0.
y

1.6.15. If X,, > 0 then E(YX00 ( X,,) = 300 BX.

n=0 n-

1.6.16. If X is integrable and A,, are disjoint sets with union A then
S E(X;A,) = B(X; A)
n=0

i.e., the sum converges absolutely and has the value on the right.

1.7 Product Measures, Fubini’s Theorem

Let (X, A, u1) and (Y, B, u2) be two o-finite measure spaces. Let

Q=X xY={(zr,y):z€eX,yeY}
S={AxB:Ac A BeB}

Sets in S are called rectangles. It is easy to see that S is a semi-algebra:

(AxB)N(CxD)=(ANC) x (BND)
(Ax B)=(A°x B)U (A x B°)U (A° x B)

Let F = A x B be the o-algebra generated by S.
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Theorem 1.7.1. There is a unique measure pu on F with

(A x B) = pu1(A)p2(B)
Notation. p is often denoted by p1 X ps.

Proof. By Theorem 1.1.4 it is enough to show that if A x B = +;(A; x B;) is a finite
or countable disjoint union then

u(A x B) = ZH(Ai x B;)
For each x € A, let I(x) = {i:x € As}. B = +ici(2)Bi, s0
La(e)ua(B) = 3" 1, (@)pia(B:)
i
Integrating with respect to p; and using Exercise 1.5.6 gives

1 (A)pe(B) = ZMl(Ai)M(Bi)

which proves the result. O

Using Theorem 1.7.1 and induction, it follows that if (£;, F;, ui), ¢ = 1,...,n, are
o-finite measure spaces and 2 = € x --- X ),,, there is a unique measure y on the
o-algebra F generated by sets of the form A; x --- x A,,, A; € F;, that has

AL X - x Ap) = H P (Am)

m=1

When (Q;, Fi, i) = (R, R, \) for all 4, the result is Lebesgue measure on the Borel
subsets of n dimensional Euclidean space R™.

Returning to the case in which (Q,F, u) is the product of two measure spaces,
(X, A, ) and (Y, B,v), our next goal is to prove:

Theorem 1.7.2. Fubini’s theorem. If f >0 or [|f|du < oo then

0 [ [ senmanman) = [ pai= [ ] s ma

Proof. We will prove only the first equality, since the second follows by symmetry.
Two technical things that need to be proved before we can assert that the first integral
makes sense are:

When z is fixed, y — f(z,y) is B measurable.
z— [, f(z,y)p2(dy) is A measurable.

We begin with the case f = 1g. Let E, = {y : (z,y) € E} be the cross-section at
x.

Lemma 1.7.3. If E € F then E, € B.
Proof. (E€), = (E.)¢ and (U;F;), = U;(E;),, so if € is the collection of sets E for

which E, € B, then £ is a o-algebra. Since £ contains the rectangles, the result
follows. O
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Lemma 1.7.4. If E € F then g(z) = p2(E;) is A measurable and

/X gdp = p(E)

Notice that it is not obvious that the collection of sets for which the conclusion is
true is a o-algebra since u(Fy U Ea) = p(E1) + p(E2) — p(F1 N Ey). Dynkin’s 7 — A
Theorem (A.1.4) was tailor-made for situations like this.

Proof. If conclusions hold for F,, and F,, T E, then Theorem 1.3.5 and the monotone
convergence theorem imply that they hold for E. Since py and po are o-finite, it is
enough then to prove the result for E C F x G with puq(F) < oo and pa(G) < oo, or
taking Q = F' x G we can suppose without loss of generality that () < co. Let £
be the collection of sets E for which the conclusions hold. We will now check that £
is a A-system. Property (i) of a A-system is trivial. (iii) follows from the first sentence
in the proof. To check (ii) we observe that

p2((A — B)z) = pa(Az — By) = p2(Az) — p2(Bz)

and integrating over x gives the second conclusion. Since £ contains the rectangles,
a m-system that generates F, the desired result follows from the m — A theorem. [

We are now ready to prove Theorem 1.7.2 by verifying it in four increasingly more
general special cases.
Case 1. f E € F and f = 1p then (x) follows from Lemma 1.7.4

Case 2. Since each integral is linear in f, it follows that (*) holds for simple functions.

Case 3. Now if f > 0 and we let f,(x) = ([2"f(x)]/2") A n, where [z] = the largest
integer < x, then the f, are simple and f, T f, so it follows from the monotone
convergence theorem that (x) holds for all f > 0.

Case 4. The general case now follows by writing f(x) = f(z)* — f(z)~ and applying
Case 3 to fT, f~, and | f]. O

To illustrate why the various hypotheses of Theorem 1.7.2 are needed, we will now
give some examples where the conclusion fails.

Example 1.7.1. Let X =Y ={1,2,...} with A = B = all subsets and 1 = po =
counting measure. For m > 1, let f(m,m) = 1 and f(m + 1,m) = —1, and let
f(m,n) =0 otherwise. We claim that

ZZf(mm) =1 but ZZf(m,n):O

A picture is worth several dozen words:

0 0
T 0 0 1 -1
n 0 1 -1 0
1 -1 0 0
m —

In words, if we sum the columns first, the first one gives us a 1 and the others 0, while
if we sum the rows each one gives us a 0.
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Example 1.7.2. Let X = (0,1), Y = (1, ), both equipped with the Borel sets and
Lebesgue measure. Let f(z,y) = e %Y — 2e =229,

1 oo 1
/ / flz,y)dyde = / e ™™ —e ) dx > 0
0o J1 0
oo 1 ]
/ / fx,y) de dy = / y e —e ) dy <0
1 Jo 1

The next example indicates why p; and pe must be o-finite.

Example 1.7.3. Let X = (0,1) with A = the Borel sets and p; = Lebesgue measure.
Let Y = (0,1) with B = all subsets and po = counting measure. Let f(z,y) = 1 if
x =y and 0 otherwise

/Yf(%y)uz(dy)=1 for all 2 so /X/Yf(xyy)uz(dy)m(dx):l
/X f(@,y) p(dz) =0 for all y so /Y /X £z, ) 1 (dy) pa(dr) = 0

Our last example shows that measurability is important or maybe that some of
the axioms of set theory are not as innocent as they seem.

Example 1.7.4. By the axiom of choice and the continuum hypothesis one can
define an order relation <’ on (0,1) so that {z : <’ y} is countable for each y. Let
X =Y = (0,1), let A = B = the Borel sets and p; = pe = Lebesgue measure.
Let f(z,y) = 1if z <’ y, = 0 otherwise. Since {z : z <’ y} and {y : © <’ y}© are
countable,

/X f(x,y) pa(dx) =0 for all y

/Yf(l“,y) uo(dy) =1 for all x

EXERCISES

1.7.1. If [y [y |f(2,y)|pe(dy)pi(de) < oo then

/X/Yf(x,y)ﬁbz(dy),ul(dx):/Xxyfd(ul X/‘LQ):/y/xf(xay)ul(dx)uz(dy)

Corollary. Let X = {1,2,...} , A = all subsets of X, and p; = counting measure.
IE>, [Ifaldp < oo then Y, [ fodu= [>, fndpu.

1.7.2. Let g > 0 be a measurable function on (X, A, pu). Use Theorem 1.7.2 to
conclude that

/nguzwxxx{(x,y):os@/<g<x>}>=/0°ou<{x:g<w>>y}>dy

1.7.3. Let F, G be Stieltjes measure functions and let u, v be the corresponding
measures on (R, R). Show that

() fop{F @) = F(a)}dG(y) = (n x v){(z,y) :a <2 <y <b})
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(i) Siup FW) dG(y) + [, Gy) dF (y)

= F(b)G(®) - Fa)G(a)+ Y n({z}h)v({z})
z€(a,b]
(iii) If F' = G is continuous then [, ., 2F(y)dF(y) = F2(b) — F%(a).
To see the second term in (ii) is needed, let F(x) = G(r) = 1jg,0)(7) and a < 0 < b.

1.7.4. Let u be a finite measure on R and F(z) = p((—o0, z]). Show that
[ et - P do =)

1.7.5. Show that e”®Ysinz is integrable in the strip 0 < x < a, 0 < y. Perform the
double integral in the two orders to get:

a . o0 —ay oo —ay
/ ST g = arctan(a) — (cos a)/ 672 dy — (sina) / e 5 d
o T o 1+y o 1+y

and replace 1+ y® by 1 to conclude | [ (sinz)/z dx — arctan(a)} <2/afora>1.
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Chapter 2

Laws of Large Numbers

2.1 Independence

Measure theory ends and probability begins with the definition of independence. We
begin with what is hopefully a familiar definition and then work our way up to a
definition that is appropriate for our current setting.

Two events A and B are independent if P(AN B) = P(A)P(B).
Two random variables X and Y are independent if for all C, D € R,

P(XeCYeD)=PXeC)P(Y € D)

i.e., the events A = {X € C'} and B = {Y € D} are independent.

Two o-fields F and G are independent if for all A € F and B € G the events A and
B are independent.

As the next exercise shows, the second definition is a special case of the third.

Exercise 2.1.1. (i) Show that if X and Y are independent then o(X) and o(Y") are.
(ii) Conversely, if F and G are independent, X € F, and Y € G, then X and Y are
independent.

The first definition is, in turn, a special case of the second.

Exercise 2.1.2. (i) Show that if A and B are independent then so are A° and B, A
and B¢, and A° and B¢. (ii) Conclude that events A and B are independent if and
only if their indicator random variables 14 and 1 are independent.

In view of the fact that the first definition is a special case of the second, which
is a special case of the third, we take things in the opposite order when we say what
it means for several things to be independent. We begin by reducing to the case of
finitely many objects. An infinite collection of objects (o-fields, random variables, or
sets) is said to be independent if every finite subcollection is.

o-fields Fi,Fs, ..., F, are independent if whenever A; € F; for i = 1,...,n, we

have
n

P (N, Ay) =[] P(A)

i=1

37
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Random variables X7,..., X,, are independent if whenever B; € R fori=1,....n
we have .
P (N {Xi € Bi}) = [[ P(Xi € B)
i=1

Sets Ay,..., A, are independent if whenever I C {1,...n} we have
P(NierA;) = HP(Az')
il

At first glance, it might seem that the last definition does not match the other two.
However, if you think about it for a minute, you will see that if the indicator variables
14,, 1 <i < n are independent and we take B; = {1} fori € I, and B, =R for i ¢ I
then the condition in the definition results. Conversely,

Exercise 2.1.3. Let Ay, As,..., A, be independent. Show (i) A§, As,..., A, are
independent; (ii) 14,,...,14, are independent.

One of the first things to understand about the definition of independent events is
that it is not enough to assume P(A4;NA;) = P(A4;)P(A;) for all i # j. A sequence of
events Ay, ..., A, with the last property is called pairwise independent. It is clear
that independent events are pairwise independent. The next example shows that the
converse is not true.

Example 2.1.1. Let X;, X5, X3 be independent random variables with
P(X;,=0)=P(X;=1)=1/2
Let A1 = {Xy = X3}, As = {X3 = X1} and A3 = {X; = X5}. These events are
pairwise independent since if ¢ # j then
P(A;NAj)=P(X: =Xy =X3)=1/4=P(A;)P(4))
but they are not independent since
P(A1NA2NA3) =1/4#1/8 = P(A1)P(A2)P(A;3)

In order to show that random variables X and Y are independent, we have to
check that P(X € A, Y € B) = P(X € A)P(Y € B) for all Borel sets A and B.
Since there are a lot of Borel sets, our next topic is

2.1.1 Sufficient Conditions for Independence

Our main result is Theorem 2.1.3. To state that result, we need a definition that
generalizes all our earlier definitions.

Collections of sets Ay, As,..., A, C F are said to be independent if whenever
A;€ Ajand I C{1,...,n} we have P (Nierdi) = [[;c; P(4:)

If each collection is a single set i.e., A; = {A4;}, this definition reduces to the one for
sets.

Lemma 2.1.1. Without loss of generality we can suppose each A; contains §). In
this case the condition is equivalent to

P (NP, A;) = H P(A;) whenever A; € A;

i=1

since we can set A; = fori & I.
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Proof. 1f A1, As, ..., A, are independent and A; = A, U{Q} then A, Ay, ..., A, are
independent, since if A; € A; and I = {j : A; = Q} M;A; = NierAs. O

The proof of Theorem 2.1.3 is based on Dynkin’s m — A theorem. To state this
result, we need two definitions. We say that A is a m-system if it is closed under
intersection, i.e., if A, B € A then AN B € A. We say that £ is a A\-system if: (i)
el (i) IfA,BeLand AC Bthen B— A€ L. (iii) If 4, € £ and A,, T A then
Ael.

Theorem 2.1.2. m — A Theorem. If P is a m-system and L is a A-system that
contains P then o(P) C L.

The proof is hidden away in Section A.1 of the Appendix.

Theorem 2.1.3. Suppose A1, As, ..., A, are independent and each A; is a w-system.
Then o(A1),0(Az),...,0(A,) are independent.

Proof. Let As,..., A, be sets with A; € A;, let F = AsnN---NA, and let £ =
{A: P(ANF) = P(A)P(F)}. Since P(QNF) = P(Q)P(F), Q € L. To check
(ii) of the definition of a A-system, we note that if A,B € £ with A C B then
(B—A)NF=(BNF)—(ANF). So using (i) in Theorem 1.1.1, the fact A,B € L
and then (i) in Theorem 1.1.1 again:

P(B-—ANF)=PBNF)—P(ANF)=P(B)P(F)— P(A)P(F)
={P(B) = P(A)}P(F) = P(B - A)P(F)
and we have B — A € L. To check (iii) let By € £ with By T B and note that

(BLNF) 1 (BNF) so using (iii) in Theorem 1.1.1, the fact that By € £, and then
(iii) in Theorem 1.1.1 again:

P(BNF) = lim P(B, N F) = lim P(B,)P(F) = P(B)P(F)
Applying the m — A theorem now gives £ D o(A;y). It follows that if A; € o(A;)

and A; € A; for 2 < i <n then

P A) = P(A) POy A)) = [[ P(A)

i=1

Using Lemma 2.1.1 now, we have:
(x) If Ay, As, ..., A, are independent then o(A4;), As,..., A, are independent.

Applying (%) to Ag, ..., A,, (A1) (which are independent since the definition is un-
changed by permuting the order) shows that o(Az), As, ..., A, 0(A;1) are indepen-
dent, and after n iterations we have the desired result. O

Remark. The reader should note that it is not easy to show that if A, B € £ then

ANBe L, or AUB € L, but it is easy to check that if A, B € £ with A C B then
B—-AelL.

Having worked to establish Theorem 2.1.3, we get several corollaries.
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Theorem 2.1.4. In order for X1,...,X, to be independent, it is sufficient that for
all z1,...,2, € (—00, ]
P(Xy<m,...,X, <mp,) = HP(Xi <)
i=1

Proof. Let A; = the sets of the form {X; < z;}. Since
{Xi <z} n{X; <y} ={Xi <z Ay},

where (z Ay); = z; Ay; = min{z;,y;}. A; is a m-system. Since we have allowed
x; = 00, 1 € A;. Exercise 1.3.1 implies 0(A;) = o(X;), so the result follows from
Theorem 2.1.3. O

The last result expresses independence of random variables in terms of their distri-
bution functions. The next two exercises treat density functions and discrete random
variables.

Exercise 2.1.4. Suppose (X1,...,X,) has density f(z1,22,...,2,), that is
P((X1,X2,...,Xn) € A) = / f(z)dx for Ae R"
A

If f(x) can be written as ¢;(x1) - - - gn(xy) where the g,, > 0 are measurable, then
X1, Xo,..., X, are independent. Note that the g,, are not assumed to be probability
densities.

Exercise 2.1.5. Suppose X1, ..., X,, are random variables that take values in count-
able sets Si,...,S,. Then in order for X1,..., X, to be independent, it is sufficient
that whenever x; € S;

n
P(Xy =a1,...,Xp = 25) = [[P(Xi = )
i=1
Our next goal is to prove that functions of disjoint collections of independent

random variables are independent. See Theorem 2.1.6 for the precise statement. First
we will prove an analogous result for o-fields.

Theorem 2.1.5. Suppose F;;,1 < i < n,1 < j < m(i) are independent and let
Gi =0(U;F; ;). Then Gi,...,Gy are independent.

Proof. Let A; be the collection of sets of the form N;A; ; where A; ; € F; ;. A; is a
m-system that contains € and contains U;F; j so Theorem 2.1.3 implies o(A;) = G;
are independent. O

Theorem 2.1.6. If for 1 < i < n, 1 < j < m(i), X;, are independent and f; :
R™% — R are measurable then Ji(Xi1, ..., Xim()) are independent.

PT’OOf. Let fi,j = O'(Xl'yj) and QZ = J(Ujf@j). Since fi(Xi,lw .. ,Xi,m(’i)) S gi, the
desired result follows from Theorem 2.1.5 and Exercise 2.1.1. O

A concrete special case of Theorem 2.1.6 that we will use in a minute is: if
X1,...,X, are independent then X = X; and Y = X5 --- X,, are independent. Later,
when we study sums S,, = X1+ - -+X,, of independent random variables X1, ..., X,,
we will use Theorem 2.1.6 to conclude that if m < n then S,, — S,, is independent of
the indicator function of the event {maxi<g<m Sk > z}.
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2.1.2 Independence, Distribution, and Expectation

Our next goal is to obtain formulas for the distribution and expectation of independent
random variables.

Theorem 2.1.7. Suppose X1,...,X,, are independent random variables and X; has
distribution p,;, then (X1,...,X,) has distribution g X -+ X iy,

Proof. Using the definitions of (i) A; X -+ x A,, (ii) independence, (iii) p;, and (iv)
Ml X o0 X un

P((Xl,...,Xn)EAlX"'XAn)ZP(XlEAl,...,XHEAn)

=[[P(Xi € A) = [ ma(Ai) = pa x -+ X pn(Ar 5 -+ - x Ay)
=1 =1

The last formula shows that the distribution of (Xi,...,X,) and the measure pq %
-+ X g, agree on sets of the form Ay x -+ X A, a m-system that generates R™. So
Theorem 2.1.2 implies they must agree. O

Theorem 2.1.8. Suppose X and Y are independent and have distributions p and v.
If h: R? — R is a measurable function with h >0 or E|h(X,Y)| < co then

E(X.Y) = [ [ ho.y) uldo) viay)

In particular, if h(x,y) = f(z)g(y) where f,g: R — R are measurable functions with
frg>0or E|f(X)| and E|g(Y)| < co then

Ef(X)g(Y) = Ef(X) - Eg(Y)

Proof. Using Theorem 1.6.9 and then Fubini’s theorem (Theorem 1.7.2) we have

Eh(X,Y) = /

R

i xv) = [ [ haw) o) vidy)

To prove the second result, we start with the result when f,g > 0. In this case, using
the first result, the fact that g(y) does not depend on x and then Theorem 1.6.9 twice
we get

Bf(X)oV) = [ [ 1@)ats) wtdo) vidy) = [ 9(w) [ 160 ) vidy)
— [ B£(X)g0) v(dy) = EFCOEg(Y)
Applying the result for nonnegative f and g to |f| and |g|, shows E|f(X)g(Y)| =

E|f(X)|E|g(Y)| < oo, and we can repeat the last argument to prove the desired
result. O

From Theorem 2.1.8, it is only a small step to

Theorem 2.1.9. If Xy,..., X,, are independent and have (a) X; > 0 for all i, or (b)

E|X;| < oo for all i then
E (H XZ-> =1Izx
i=1 i=1

i.e., the expectation on the left exists and has the value given on the right.
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Proof. X = X; and Y = Xs---X,, are independent by Theorem 2.1.6 so taking
f(x) = |z| and g(y) = |y| we have E|X;--- X,,| = E| X |E|Xs--- X,|, and it follows
by induction that if 1 <m <n

E|Xp - Xu| = [ EIXl
=m
If the X; > 0, then |X;| = X; and the desired result follows from the special case
m = 1. To prove the result in general note that the special case m = 2 implies
E|Y| = E|Xs - X,| < 00, so using Theorem 2.1.8 with f(z) = z and g(y) = y shows
E(Xy,---X,)=FEX; -E(Xs---X,), and the desired result follows by induction. [

Example 2.1.2. It can happen that E(XY) = EX - EY without the variables being
independent. Suppose the joint distribution of X and Y is given by the following
table

1
X

Q@00 ok
I
—_

o Tt O
o ot O

-1

where a,b > 0, ¢ > 0, and 2a + 2b + ¢ = 1. Things are arranged so that XY = 0.
Symmetry implies EX = 0 and FY = 0, so E(XY) = 0 = EXEY. The random
variables are not independent since

PX=1Y=1)=0<ab=P(X =1)P(Y =1)

Two random variables X and Y with EX?2, EY? < oo that have EXY = EXEY are
said to be uncorrelated. The finite second moments are needed so that we know
E|XY| < oo by the Cauchy-Schwarz inequality.

2.1.3 Sums of Independent Random Variables

Theorem 2.1.10. If X and Y are independent, F(z) = P(X < z), and G(y) =
P(Y <vy), then

P(X+Y§z):/F(z—y)dG(y)

The integral on the right-hand side is called the convolution of F' and G and is
denoted F' * G(z). The meaning of dG(y) will be explained in the proof.

Proof. Let h(x,y) = 1(34y<»). Let p and v be the probability measures with distri-
bution functions F' and G. Since for fixed y

/ Wz, ) uldr) = / Lsorsmy) (@) pd) = Fz — )

using Theorem 2.1.8 gives
POC+Y <) = [ [ Lryen ulde) vidy)

= [Fe—ywian) = [ FG-yacw

The last equality is just a change of notation: We regard dG(y) as a shorthand for
“integrate with respect to the measure v with distribution function G.” O
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To treat concrete examples, we need a special case of Theorem 2.1.10.

Theorem 2.1.11. Suppose that X with density f and Y with distribution function
G are independent. Then X +Y has density

o) = [ o~ ) d6(w)

When Y has density g, the last formula can be written as

h(z) = /f(af —y)g(y) dy

Proof. From Theorem 2.1.10, the definition of density function, and Fubini’s theorem
(Theorem 1.7.2), which is justified since everything is nonnegative, we get

Pex+y <2 = [Fe-yice) = [ [ sy dsdce)

/;/f(zy)dG(y)dw

The last equation says that X + Y has density h(z) = [ f(z — y)dG(y). The second
formula follows from the first when we recall the meaning of dG(y) given in the proof
of Theorem 2.1.10 and use Exercise 1.6.8. O

Theorem 2.1.11 plus some ugly calculus allows us to treat two standard examples.
These facts should be familiar from undergraduate probability.

Example 2.1.3. The gamma density with parameters a and A is given by
Az~ 1e=2 /T(q) for 2 >0
() = fHe)
0 for x < 0
where I'(a) = [~ 2% e "dx.

Theorem 2.1.12. If X = gamma(a, ) and Y = gamma(B, \) are independent then
X +Y is gamma(a+ G, ). Consequently if X1,...X,, are independent exponential(\)
r.v.’s, then X1 + -+ + X,,, has a gamma(n, \) distribution.

Proof. Writing fx 4y (z) for the density function of X +Y and using Theorem 2.1.11
A —y)* T e MY
[x+y (z =/ S M) T2 em Mgy
w0 = [T NG

_ AT [ a1 g
= Tt J, v

so it suffices to show the integral is z*t8~1T'(a)T'(8)/T'(a + 3). To do this, we begin
by changing variables y = zu, dy = x du to get

1 x
gotot / (1—w)* '’ du = / (x—y)* 'y’ dy (2.1.1)
0 O

There are two ways to complete the proof at this point. The soft solution is to
note that we have shown that the density fx iy (7) = cage A Fz+8-1 where

71 ' — ) Py
@ J, v I

Ca,5 =
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There is only one norming constant c, s that makes this a probability distribution,
so recalling the definition of the beta distribution, we must have ¢, g = 1/T'(ac + ).

The less elegant approach for those of us who cannot remember the definition of
the beta is to prove the last equality by calculus. Multiplying each side of the last
equation by e™*, integrating from 0 to oo, and then using Fubini’s theorem on the
right we have

1
F(oz—|—ﬂ)/0 (1—w)* w1 du

= / yﬁ_le_y(x — y)a_le_(m_y) dy dzx
o Jo

which gives the first result. The second follows from the fact that a gamma(1,\) is
an exponential with parameter A and induction. O

Example 2.1.4. Normal distribution. In Example 1.6.2, we introduced the nor-
mal density with mean p and variance a,

(27a) /2 exp(— (& — u)?/2a).

Theorem 2.1.13. If X = normal(p,a) and Y = normal(v,b) are independent then
X +Y = normal(pp + v,a + b).

Proof. Tt is enough to prove the result for 4 = v = 0. Suppose Y7 = normal(0, a) and
Y> = normal(0,b). Then Theorem 2.1.11 implies

1 —2?/2a_—(2—)%/2b
z) = e e \? dx
fY1+Y2( ) o /*ab/

Dropping the constant in front, the integral can be rewritten as

/ ( bx? + az? — 2axz + az2>
exp | — dx

2ab

B a+b | , 2a a
_/exp< 5ab {x aerxz—i—aerz}) dx
/e a+b a 2+ ab 9 d
= X — - -
P 2ab R (a—&—b)QZ v

since —{a/(a +b)}*> + {a/(a + b)} = ab/(a + b)?. Factoring out the term that does
not depend on z, the last integral

= ex —L /ex _a+b T — @ 22 dx
~ P\ T30 1) P\ " 20 atb

2
z
=e _— 2mab b
since the last integral is the normal density with parameters p = az/(a + b) and
0? = ab/(a + b) without its proper normalizing constant. Reintroducing the constant
we dropped at the beginning,

2

fY1+Y2 (Z) = #M\/mexp (_Z> O

2(a+0)
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2.1.4 Constructing Independent Random Variables

The last question that we have to address before we can study independent random
variables is: Do they exist? (If they don’t exist, then there is no point in studying
them!) If we are given a finite number of distribution functions F;,1 < i < n, it is
easy to construct independent random variables X7, ..., X,, with P(X; < x) = F;(z).
Let Q =R", F = R", X;(w1,...,w,) = w; (the ith coordinate of w € R™), and let P
be the measure on R™ that has

P((a1,b1] x -+ X (an, by]) = (F1(b1) — Fi(ay)) - -+ (Fn(bn) — Fn(an))

If p; is the measure with distribution function F; then P = pg X -+ X puy,.

To construct an infinite sequence X7, X, ... of independent random variables with
given distribution functions, we want to perform the last construction on the infinite
product space

RN = {(w1,ws,...) s w; € R} = {functions w: N — R}

where N = {1,2,...} and N stands for natural numbers. We define X;(w) = w;
and we equip RN with the product o-field RN, which is generated by the finite
dimensional sets = sets of the form {w : w; € B;,1 <i < n} where B; € R. It is
clear how we want to define P for finite dimensional sets. To assert the existence of
a unique extension to RN we use Theorem A.3.1:

Theorem 2.1.14. Kolmogorov’s extension theorem. Suppose we are given prob-
ability measures p, on (R™,R™) that are consistent, that is,

MnJrl((ahbl] X X (an7bn] X R) = /’Ln((CLl?bl] X X (a'rubn])
Then there is a unique probability measure P on (RN, RN) with
P(w:w; € (ai,bi], 1 <i <n) = pp((ar,b1] X -+ X (an, b))

In what follows we will need to construct sequences of random variables that take
values in other measurable spaces (S, S). Unfortunately, Theorem 2.1.14 is not valid
for arbitrary measurable spaces. The first example (on an infinite product of different
spaces {23 X g X ...) was constructed by Andersen and Jessen (1948). (See Halmos
(1950) p. 214 or Neveu (1965) p. 84.) For an example in which all the spaces ; are
the same see Wegner (1973). Fortunately, there is a class of spaces that is adequate for

all of our results and for which the generalization of Kolmogorov’s theorem is trivial.
(S,8) is said to be nice if there is a 1-1 map ¢ from S into R so that ¢ and ¢! are

both measurable.

Such spaces are often called standard Borel spaces, but we already have too many
things named after Borel. The next result shows that most spaces arising in applica-
tions are nice.

Theorem 2.1.15. If S is a Borel subset of a complete separable metric space M, and
S is the collection of Borel subsets of S, then (S,S) is nice.

Proof. We begin with the special case S = [0, 1)N with metric

p(x,y) =Y e —yal/2"
n=1
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If v = (2,22, 23,. . .), expand each component in binary z7 = x{mémé ... (taking the
expansion with an infinite number of 0’s). Let

_ 1.1,2.1.2 3 1 2 3 4
©Vo(T) = X1 TR XXX THTZT52T - . .

To treat the general case, we observe that by letting

d(z,y) = p(z,y)/(1 + p(z,y))

(for more details, see Exercise 2.1.6), we can suppose that the metric has d(z,y) < 1
for all x,y. Let q1,qq, ... be a countable dense set in S. Let

1/)(@ - (d(iﬂ, Q1)a d({E, q2)a < )
S — [0,1)Y is continuous and 1-1. ¢, o9 gives the desired mapping. O

Exercise 2.1.6. Let p(z,y) be a metric. (i) Suppose h is differentiable with h(0) = 0,
h'(x) > 0 for z > 0 and h'(x) decreasing on [0,00). Then h(p(z,y)) is a metric. (ii)
h(z) = z/(x + 1) satisfies the hypotheses in (i).

Caveat emptor. The proof above is somewhat light when it comes to details. For
a more comprehensive discussion, see Section 13.1 of Dudley (1989). An interesting
consequence of the analysis there is that for Borel subsets of a complete separable
metric space the continuum hypothesis is true: i.e., all sets are either finite, countably
infinite, or have the cardinality of the real numbers.

EXERCISES

2.1.7. Let Q = (0,1), F = Borel sets, P = Lebesgue measure. X, (w) = sin(2rnw),
n =1,2,... are uncorrelated but not independent.

2.1.8. (i) Show that if X and Y are independent with distributions p and v then

P(X+Y =0)=) u({~yHr({y})

(ii) Conclude that if X has continuous distribution P(X =Y) = 0.

2.1.9. Prove directly from the definition that if X and Y are independent and f and
g are measurable functions then f(X) and ¢g(Y") are independent.

2.1.10. Let K > 3 be a prime and let X and Y be independent random variables
that are uniformly distributed on {0,1,...,K — 1}. For 0 < n < K, let Z, =
X +nY mod K. Show that Zy, Z1,...,Zx_1 are pairwise independent, i.e., each
pair is independent. They are not independent because if we know the values of two
of the variables then we know the values of all the variables.

2.1.11. Find four random variables taking values in {—1,1} so that any three are
independent but all four are not. Hint: Consider products of independent random
variables.

2.1.12. Let Q = {1,2,3,4}, F = all subsets of 2, and P({i}) = 1/4. Give an example
of two collections of sets A; and A5 that are independent but whose generated o-fields
are not.
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2.1.13. Show that if X and Y are independent, integer-valued random variables, then

P(X+Y =n)=Y P(X=m)P(Y =n—m)

2.1.14. In Example 1.6.4, we introduced the Poisson distribution with parameter
A, which is given by P(Z = k) = e *\¥/k! for k = 0,1,2,... Use the previous
exercise to show that if X = Poisson()) and Y = Poisson(u) are independent then
X +Y = Poisson(A + ).

2.1.15. X is said to have a Binomial(n,p) distribution if

P =m) = (1) pr

(i) Show that if X = Binomial(n,p) and Y = Binomial(m, p) are independent then
X +Y = Binomial(n+m, p). (ii) Look at Example 1.6.3 and use induction to conclude
that the sum of n independent Bernoulli(p) random variables is Binomial(n, p).

2.1.16. It should not be surprising that the distribution of X + Y can be F % G
without the random variables being independent. Suppose X,Y € {0, 1,2} and take
each value with probability 1/3. (a) Find the distribution of X + Y assuming X and
Y are independent. (b) Find all the joint distributions (X,Y") so that the distribution
of X +Y is the same as the answer to (a).

2.1.17. Let X,Y > 0 be independent with distribution functions F' and G. Find the
distribution function of XY

2.1.18. If we want an infinite sequence of coin tossings, we do not have to use Kol-
mogorov’s theorem. Let 2 be the unit interval (0,1) equipped with the Borel sets F
and Lebesgue measure P. Let Y, (w) = 1 if [2"w] is odd and 0 if [2"w] is even. Show
that Y7,Ys,. .. are independent with P(Y;, =0) = P(Y, =1) =1/2.

2.2 Weak Laws of Large Numbers

In this section, we will prove several “weak laws of large numbers.” The first order
of business is to define the mode of convergence that appears in the conclusions of
the theorems. We say that Y,, converges to Y in probability if for all e > 0,
P(Y,,—Y|>¢) - 0asn — oo.

2.2.1 [? Weak Laws

Our first set of weak laws come from computing variances and using Chebyshev’s
inequality. Extending a definition given in Example 2.1.2 for two random variables,
a family of random variables X;, i € I with EX? < oo is said to be uncorrelated if
we have

E(Xsz) = EXzEX] whenever ¢ 7& ]

The key to our weak law for uncorrelated random variables, Theorem 2.2.3, is:

Theorem 2.2.1. Let X1,..., X, have E(X?) < oo and be uncorrelated. Then
var(X; + -+ Xp) = var(X1) + -+ + var(X,)

where var(Y) = the variance of Y.
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Proof. Let p; = EX; and S, = 1", X;. Since ES, = >_"_, j1;, using the definition
of the variance, writing the square of the sum as the product of two copies of the sum,
and then expanding, we have

var (S,) = E(S, — ES,)* =FE (Z (Xi — Mz‘))

— Z B(X; — ) +2) iE((Xi — ki) (X — py)

where in the last equality we have separated out the diagonal terms ¢ = j and used
the fact that the sum over 1 < i < j < n is the same as the sum over 1 < j < i <n.

The first sum is var (X7)+. ..+ var (X,,) so we want to show that the second sum
is zero. To do this, we observe

E((Xi = pi)(Xj — py)) = EXiXj — i EXj — p; EXG + papu
= EX;Xj — pip; =0
since X; and X are uncorrelated. O

In words, Theorem 2.2.1 says that for uncorrelated random variables the variance
of the sum is the sum of the variances. The second ingredient in our proof of Theorem
2.2.3 is the following consequence of (1.6.4):

var (¢Y) = ¢? var (Y)
The third and final ingredient is
Lemma 2.2.2. If p > 0 and E|Z,|P — 0 then Z,, — 0 in probability.

Proof. Chebyshev’s inequality, Theorem 1.6.4, with ¢(x) = 2P and X = |Z,,| implies
that if € > 0 then P(|Z,| > ¢€) < e PE|Z,|P — 0. O

We can now easily prove

Theorem 2.2.3. L? weak law. Let X1, Xs,... be uncorrelated random variables
with EX; = p and var(X;) < C < co. If S, = Xi + ...+ X, then as n — oo,
Sn/n — p in L* and in probability.

Proof. To prove L? convergence, observe that E(S,,/n) = u, so

1 Cn
E(S,/n — p)? = var(S,/n) = ﬁ(var (X1) + -+ var (X,,)) < — = 0
To conclude there is also convergence in probability, we apply the Lemma 2.2.2 to
Zp = Sp/n — p. O
The most important special case of Theorem 2.2.3 occurs when X, X,,... are

independent random variables that all have the same distribution. In the jargon,
they are independent and identically distributed or i.i.d. for short. Theorem
2.2.3 tells us in this case that if EX? < oo then S, /n converges to u = EX; in
probability as n — oco. In Theorem 2.2.9 below, we will see that F|X;| < oo is
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sufficient for the last conclusion, but for the moment we will concern ourselves with
consequences of the weaker result.

Our first application is to a situation that on the surface has nothing to do with
randomness.

Example 2.2.1. Polynomial approximation. Let f be a continuous function on
[0,1], and let

fn@i(”)xmax)”m]f(m/n) where (1) = "

(n —m)!
= \m ml(n —m)!
be the Bernstein polynomial of degree n associated with f. Then as n — oo

sup |[fn(z) = f(z)] — 0

xz€[0,1]

Proof. First observe that if S;, is the sum of n independent random variables with
P(X;=1)=pand P(X; =0)=1—p then EX; =p, var(X;) = p(l —p) and

P(S, =m) = (:@)1@(1 e

so Ef(Sn/n) = fn(p). Theorem 2.2.3 tells us that as n — oo, S,,/n — p in probability.
The last two observations motivate the definition of f,(p), but to prove the desired
conclusion we have to use the proof of Theorem 2.2.3 rather than the result itself.

Combining the proof of Theorem 2.2.3 with our formula for the variance of X; and
the fact that p(1 — p) < 1/4 when p € [0, 1], we have

var (Sn/n) _ p(1—p) 1
— < = <
P(Sn/n =pl>0) < —5 noZ = ing?

To conclude now that Ef(S,/n) — f(p), let M = sup,¢joq7[f(z)], let € > 0, and
pick 6 > 0 so that if |x — y| < 6 then |f(x) — f(y)| < e. (This is possible since a
continuous function is uniformly continuous on each bounded interval.) Now, using
Jensen’s inequality, Theorem 1.6.2, gives

[Ef(Sn/n) = f(p)] < Elf(Sn/n) — f(p)| < €+ 2MP(|Sn/n — p| > 9)

Letting n — oo, we have limsup,,_, . |[Ef(Sn/n) — f(p)| < ¢, but € is arbitrary so this
gives the desired result. O

Our next result is for comic relief.

Example 2.2.2. A high-dimensional cube is almost the boundary of a ball.
Let X1, Xa,... be independent and uniformly distributed on (—1,1). Let Y; = X2,
which are independent since they are functions of independent random variables.
EY; =1/3 and var (V;) < EY? <1, so Theorem 2.2.3 implies

(X2 4...+X2)/n — 1/3  in probability as n — oo

Let A, .= {z € R": (1—¢)\/n/3 < |z| < (1+€)\/n/3} where |z| = (z}+- - -+22)/2,
If we let |S| denote the Lebesgue measure of S then the last conclusion implies that
for any € > 0, |A,. N (—1,1)"|/2" — 1, or, in words, most of the volume of the cube

(—1,1)" comes from A, ., which is almost the boundary of the ball of radius y/n/3.



50 CHAPTER 2. LAWS OF LARGE NUMBERS

2.2.2 Triangular Arrays

Many classical limit theorems in probability concern arrays X, i, 1 < k < n of
random variables and investigate the limiting behavior of their row sums S, =
Xp1+ -+ X, n. In most cases, we assume that the random variables on each
row are independent, but for the next trivial (but useful) result we do not need that
assumption. Indeed, here S,, can be any sequence of random variables.

Theorem 2.2.4. Let p, = ES,,, 02 = var(S,). If 02 /b2 — 0 then

Sn - HMn . .1
On b, 0 in probability
bn
Proof. Our assumptions imply E((S,, — in)/bn)? = b, %2 var (S,,) — 0, so the desired
conclusion follows from Lemma 2.2.2. O

We will now give three applications of Theorem 2.2.4. For these three examples,
the following calculation is useful:

-1 /” dz _ <~ 1
LRSS
m=1 m 17 m=2 m
“ 1
1 < — < 2.
ogn_zm_lJrlogn (2.2.1)
m=1
Example 2.2.3. Coupon collector’s problem. Let X, X5, ... bei.i.d. uniform on
{1,2,...,n}. To motivate the name, think of collecting baseball cards (or coupons).

Suppose that the ith item we collect is chosen at random from the set of possibilities
and is independent of the previous choices. Let 7 = inf{m : [{X1,..., X }| = k}
be the first time we have k different items. In this problem, we are interested in the
asymptotic behavior of T,, = 7,7, the time to collect a complete set. It is easy to
see that 7{* = 1. To make later formulas work out nicely, we will set 7' = 0. For
1<k<n, X, =1 — 7, represents the time to get a choice different from our
first £ — 1, so X,, , has a geometric distribution with parameter 1 — (k — 1)/n and is
independent of the earlier waiting times X, ;, 1 < j < k. Example 1.6.5 tells us that if
X has a geometric distribution with parameter p then EX = 1/p and var (X) < 1/p%.
Using the linearity of expected value, bounds on Y " _, 1/m in (2.2.1), and Theorem
2.2.1 we see that

n —1 n
ETn:Z(l—k;1> :an_lwnlogn
m=1

k=1
var (T,,) < ; (1—k1>_2:n2im2<n2§:m2
! i " - =

Taking b, = nlogn and using Theorem 2.2.4, it follows that

T,—ndy _ m!

nlogn

— 0 in probability

and hence T, /(nlogn) — 1 in probability.

For a concrete example, take n = 365, i.e., we are interested in the number of
people we need to meet until we have seen someone with every birthday. In this case
the limit theorem says it will take about 365 log 365 = 2153.46 tries to get a complete
set. Note that the number of trials is 5.89 times the number of birthdays.
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Example 2.2.4. Random permutations. Let (), consist of the n! permutations
(i.e., one-to-one mappings from {1,...,n} onto {1,...,n}) and make this into a prob-
ability space by assuming all the permutations are equally likely. This application of
the weak law concerns the cycle structure of a random permutation m, so we begin
by describing the decompostion of a permutation into cycles. Consider the sequence
1,7(1),7(m(1)),... Eventually, 7%(1) = 1. When it does, we say the first cycle is
completed and has length k. To start the second cycle, we pick the smallest integer
i not in the first cycle and look at 4,7 (i), m(7(7)),... until we come back to i. We
repeat the construction until all the elements are accounted for. For example, if the
permutation is

1 2 3 4 5 6 7 8 9
wi) 3 9 6 8 2 1 5 4 7
then the cycle decomposition is (136) (2975) (48).

Let X, = 1if a right parenthesis occurs after the kth number in the decomposi-
tion, X, ;, = 0 otherwise and let S,, = X,, 1 + ...+ X,, , = the number of cycles. (In
the example, X9 3 = X9 7 = X9 9 = 1, and the other X, =0.) I claim that
Lemma 2.2.5. X, 1,..., X, are independent and P(X, ; = 1) = ﬁ
Intuitively, this is true since, independent of what has happened so far, there are
n — j + 1 values that have not appeared in the range, and only one of them will

complete the cycle.

Proof. To prove this, it is useful to generate the permutation in a special way. Let
i1 = 1. Pick j; at random from {1,...,n} and let w(i1) = j1. If j1 # 1, let iy = j;.
If j1 = 1, let i = 2. In either case, pick jo at random from {1,...,n} — {j1}. In
general, if 41,71,...,%k—1,7jk—1 have been selected and we have set 7(iy) = jp for
1 <<k, then (a) if jx—1 € {i1,...,ik—1} so a cycle has just been completed, we let
i =inf({1,...,n} —{i1,...,ik—1}) and (b) if jr—1 & {i1,...,0k—1} we let ip = jr_1.
In either case we pick j; at random from {1,...,n}—{j1,...,jk—1} and let w(ix) = jg.

The construction above is tedious to write out, or to read, but now I can claim
with a clear conscience that X, 1,..., X, are independent and P(X,, = 1) =
1/(n—k+1) since when we pick j;, there are n—k+1 valuesin {1,...,n}—{j1,...,jk—1}
and only one of them will complete the cycle. O

To check the conditions of Theorem 2.2.4, now note

ES,=1/n+1/(n—1)+---+1/241
var (S,) =Y var (Xpx) <D E(X2,) =Y E(Xnx) = ES,
k=1 k=1 k=

1

where the results on the second line follow from Theorem 2.2.1, the fact that var (V) <
EY?, and thk = X, Now ES, ~ logn, so if b, = (logn)>T¢ with ¢ > 0, the
conditions of Theorem 2.2.4 are satisfied and it follows that

S =1 m "

(log n) o+ — 0 in probability (%)

Taking ¢ = 0.5 we have that S,,/logn — 1 in probability, but (%) says more. We will
see in Example 3.4.6 that (x) is false if ¢ = 0.
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Example 2.2.5. An occupancy problem. Suppose we put r balls at random in n
boxes, i.e., all n” assignments of balls to boxes have equal probability. Let A; be the
event that the ith box is empty and N,, = the number of empty boxes. It is easy to
see that

P(4;)=(1-1/n)" and EN, =n(l-1/n)"

A little calculus (take logarithms) shows that if r/n — ¢, EN,/n — e ¢ (For a
proof, see Lemma 3.1.1.) To compute the variance of N,,, we observe that

n 2
EN,%:E(ZlAm> = > P(A.NAyp)
m=1

1<k,m<n

var (N) = EN; — (EN,)> = Y P(Ax N Ap) — P(A)P(Ap)

ol — D{(L—2/n)" — (1— 1/m)?} +nf(1— 1/n) — (1— 1/n)")

The first term comes from k # m and the second from k = m. Since (1—2/n)" — e=2¢
and (1 —1/n)" — e~ ¢, it follows easily from the last formula that var (N,/n) =
var (N,,)/n? — 0. Taking b, = n in Theorem 2.2.4 now we have

N, /n — e ¢ in probability

2.2.3 Truncation

To truncate a random variable X at level M means to consider

X if|X|<M

X =Xlgxizm = {0 if [ X| > M

To extend the weak law to random variables without a finite second moment, we will
truncate and then use Chebyshev’s inequality. We begin with a very general but also
very useful result. Its proof is easy because we have assumed what we need for the
proof. Later we will have to work a little to verify the assumptions in special cases,
but the general result serves to identify the essential ingredients in the proof.

Theorem 2.2.6. Weak law for triangular arrays. For eachn let X, 1 <k <n,
be independent. Let b, > 0 with b, — oo, and let X, = Xn,kl(IXn,kISbn)- Suppose
that as n — oo

(i) >r_i P(| X0k > bn) — 0, and
(i) b2 Sy BX2, — 0.
Ifwelet Sy =Xp1+ ...+ Xpn and put a,, =Y p_ EX,, i then
(Sn — an)/bn — 0 in probability

Proof. Let S, = Xml 4+t Xn,n- Clearly,

Sp — an
P _-

To estimate the first term, we note that

> e> < P(S,#8,)+P (’Sb_“"

>6>
n

P(Sy # Sn) < P (Up_{ X0k # Xni}) <D P(1 Xkl > by) =0
k=1
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by (i). For the second term, we note that Chebyshev’s inequality, a,, = ES,,, Theorem
2.2.1, and var (X) < EX? imply

2

P <‘Snban > e> <e’FE ‘Snban = 6721);2 var (S,,)
= (bne) 2 var (Xp) < (bne) 2> E(Xpi)® =0
k=1 k=1
by (ii), and the proof is complete. O

From Theorem 2.2.6, we get the following result for a single sequence.

Theorem 2.2.7. Weak law of large numbers. Let X1, X5, ... be i.i.d. with
zP(|X;|>z) -0 asz— o0

Let Sp = X1+ -+ Xy, and let p, = E(X11(x,<n)). Then Sp/n — p, — 0 in
probability.

Remark. The assumption in the theorem is necessary for the existence of constants
an so that S, /n —a, — 0. See Feller, Vol. II (1971) p. 234-236 for a proof.

Proof. We will apply Theorem 2.2.6 with X,, , = Xy and b, = n. To check (i), we
note

> P(IXnk| >n) =nP(Xi| >n) =0
k=1

by assumption. To check (ii), we need to show n=2 - nEX2, — 0. To do this, we
need the following result, which will be useful several times below.

Lemma 2.2.8. IfY >0 and p > 0 then E(Y?) = fooo pyP LP(Y > y)dy.

Proof. Using the definition of expected value, Fubini’s theorem (for nonnegative ran-
dom variables), and then calculating the resulting integrals gives

/ pyPLP(Y > y)dy :/ /prpfll(y>y) dP dy
0 0

:// pyp_ll(y>y)dydp
QJ0

Y
:// pyp’ldydP:/Yde:EYp
QJ0 Q

which is the desired result. ]

Returning to the proof of Theorem 2.2.7, we observe that Lemma 2.2.8 and the
fact that Xn71 = X11(|X1\§n) imply

n

o L
B0 = [ P %aal >y < [ 20P(X0] > ) dy
0 0

since P(|X,,1| > y) =0 for y > n and = P(|X1| > y) — P(|X1| > n) for y < n. We
claim that yP(|X1]| > y) — 0 implies

_ 1 [
BE)/n = [ 2P0 > pydy =0
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as n — oo. Intuitively, this holds since the right-hand side is the average of g(y) =
2yP(|X1| > y) over [0,n] and ¢g(y) — 0 as y — oo. To spell out the details, note that
0 < g(y) <2y and g(y) — 0 as y — oo, so we must have M = supg(y) < oo. Let
9n(y) = g(ny). Since g, is bounded and g,(y) — 0 a.s.,

n 1
(1/71)/0 9(y) dy:/o gn(z)dz — 0

which completes the proof. U

Remark. Applying Lemma 2.2.8 with p = 1 — € and € > 0, we see that zP(|X;| >
x) — 0 implies E|X1|'7¢ < oo, so the assumption in Theorem 2.2.7 is not much
weaker than finite mean.

Finally, we have the weak law in its most familiar form.

Theorem 2.2.9. Let X1, Xa,... be i.i.d. with E|X;| < co. Let S, = X1+ -+ X,
and let p = EXy. Then S, /n — u in probability.

Proof. Two applications of the dominated convergence theorem imply

rP(|X1| > x) < E(|X1]1(x,|5>2)) 0 asx — o0
pn = E(X11(x,1<n)) = E(X1) =p asn— o0

Using Theorem 2.2.7, we see that if € > 0 then P(|S,,/n — u,| > €/2) — 0. Since
tn — W, it follows that P(|S,/n — p| >€) — 0. O

Example 2.2.6. For an example where the weak law does not hold, suppose X1, X, ...
are independent and have a Cauchy distribution:

* dt
R e

As x — oo,

> dt 2 [ 2
P(|X =2 ———~ = [ t%dt= 22!
(| 1| >£I}) A 7T(1+t2) ’/T/z ﬂ_.%‘

From the necessity of the condition above, we can conclude that there is no sequence
of constants (i, so that S, /n — u, — 0. We will see later that S,,/n always has the
same distribution as X;. (See Exercise 3.3.8.)

As the next example shows, we can have a weak law in some situations in which
E|X|=oc.

Example 2.2.7. The “St. Petersburg paradox.” Let X7, X, ... be independent
random variables with

P(X;=2)=279 forj>1

In words, you win 27 dollars if it takes j tosses to get a heads. The paradox here is
that FX; = oo, but you clearly wouldn’t pay an infinite amount to play this game.
An application of Theorem 2.2.6 will tell us how much we should pay to play the game
n times.



2.2. WEAK LAWS OF LARGE NUMBERS 95

In this example, X,, ; = X}. To apply Theorem 2.2.6, we have to pick b,. To do
this, we are guided by the principle that in checking (ii) we want to take b,, as small
as we can and have (i) hold. With this in mind, we observe that if m is an integer

o0

P(X;>2m) =Y 277 =27
j=m

Let m(n) = logy n+ K(n) where K (n) — oo and is chosen so that m(n) is an integer
(and hence the displayed formula is valid). Letting b, = 2" we have

nP(Xy > b,) =n2 mWHL — o= K+l _,
proving (i). To check (ii), we observe that if X, = X1(x,|<p,) then

EX2, = 2%.277 <om( N "9k —9p,
j=1 k=0

So the expression in (ii) is smaller than 2n/b,, which — 0 since
by = 2™ = 2K and K(n) — oo

The last two steps are to evaluate a,, and to apply Theorem 2.2.6.

m(n)

EX, )= Z 29279 = m(n)

j=1

so a, = nm(n). We have m(n) = logn+ K(n) (here and until the end of the example
all logs are base 2), so if we pick K(n)/logn — 0 then a,/nlogn — 1 as n — oc.
Using Theorem 2.2.6 now, we have

Sn*an

W — 0 in probablhty
n

If we suppose that K(n) < loglogn for large n then the last conclusion holds with the
denominator replaced by nlogn, and it follows that S, /(nlogn) — 1 in probability.

Returning to our original question, we see that a fair price for playing n times is
$ log, n per play. When n = 1024, this is $10 per play. Nicolas Bernoulli wrote in
1713, “There ought not to exist any even halfway sensible person who would not sell
the right of playing the game for 40 ducates (per play).” If the wager were 1 ducat,
one would need 24 =~ 10'? plays to start to break even.

EXERCISES

2.2.1. Let X1, X5, ... be uncorrelated with EX; = p; and var (X;)/i — 0 as i — oo.
Let S, = X1 + ...+ X,, and v,, = ES,,/n then as n — oo, S,,/n — v, — 0 in L? and
in probability.

2.2.2. The L? weak law generalizes immediately to certain dependent sequences.
Suppose EX,, = 0 and EX,X,, < r(n —m) for m < n (no absolute value on the
left-hand side!) with r(k) — 0 as k — oo. Show that (X; + ...+ X,,)/n — 0 in
probability.



o6 CHAPTER 2. LAWS OF LARGE NUMBERS

2.2.3. Monte Carlo integration. (i) Let f be a measurable function on [0, 1] with
fol |f(z)|dx < co. Let Uy, Us,... be independent and uniformly distributed on [0, 1],
and let

Ly =n" (f(U) + ...+ f(Un))
Show that I,, — I = fol f dx in probability. (ii) Suppose fol |f(x)|?dz < oo. Use
Chebyshev’s inequality to estimate P(|I,, — I| > a/n'/?).
2.2.4. Let X1, Xa,... beiid. with P(X; = (—1)*k) = C/k*log k for k > 2 where C

is chosen to make the sum of the probabilities = 1. Show that E|X;| = oo, but there
is a finite constant u so that S, /n — p in probability.

2.2.5. Let X1, Xs,... be i.i.d. with P(X; > z) = e/zlogz for & > e. Show that
E|X;| = oo, but there is a sequence of constants p,, — co so that S, /n — p, — 0 in
probability.

2.2.6. (i) Show that if X > 0 is integer valued EX =3 -, P(X >n). (ii) Find a

similar expression for EX?2.

2.2.7. Generalize Lemma 2.2.8 to conclude that if H(z) = f(_oo 2] h(y) dy with h(y) >
0, then

EHX) = [ WP zy)dy
An important special case is H(x) = exp(6x) with § > 0.

2.2.8. An unfair “fair game.” Let p, = 1/2Fk(k + 1), k = 1,2,... and py =
1- 21@1 Dk-

> 1 1 1
k = —_ = _— — =
> 2k =(1 St -3+ =1
k=1
so if we let X7, Xo, ... be i.i.d. with P(X, = —1) = pg and
P(X,=2"-1)=p, fork>1

then EX, =0. Let S, = X; + ...+ X,,. Use Theorem 2.2.6 with b,, = 2(") where
m(n) = min{m : 27™m=3/2 < n~"'} to conclude that

Sn/(n/logsn) — —1 in probability

2.2.9. Weak law for positive variables. Suppose X;, Xo,... are i.i.d.,, P(0 <
X; < 00) =1and P(X; > x) > 0 for all z. Let pu(s) = [J xdF(z) and v(s) =
u(s)/s(1 — F(s)). It is known that there exist constants a, so that S, /a, — 1 in
probability, if and only if v(s) — oo as s — oo. Pick b,, > 1 so that nu(b,,) = b, (this
works for large n), and use Theorem 2.2.6 to prove that the condition is sufficient.

2.3 Borel-Cantelli Lemmas
If A, is a sequence of subsets of 2, we let
limsup A, = lim U2, A, = {w that are in infinitely many A,}

(the limit exists since the sequence is decreasing in m) and let

liminf A, = lim N2, A, = {w that are in all but finitely many A, }

m—00
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(the limit exists since the sequence is increasing in m). The names lim sup and lim inf
can be explained by noting that

lim sup 1a, = 1(lim sup Ay) lim inf la, = ]-(lim inf A,,)
n— 00 n—oo
It is common to write limsup A4, = {w: w € A, i.0.}, where i.0. stands for infinitely
often. An example which illustrates the use of this notation is: “X,, — 0 a.s. if and
only if for all € > 0, P(|X,,| > € i.0.) = 0.” The reader will see many other examples
below. The next result should be familiar from measure theory even though its name
may not be.

Theorem 2.3.1. Borel-Cantelli lemma. If > ° , P(A,) < co then
P(A,, i.0.)=0.

Proof. Let N =", 14, be the number of events that occur. Fubini’s theorem implies
EN =", P(Aj) < 00, so we must have N < 00 a.s. O

The next result is a typical application of the Borel-Cantelli lemma.

Theorem 2.3.2. X,, — X in probability if and only if for every subsequence X, ()
there is a further subsequence Xy, (y,, ) that converges almost surely to X.

Proof. Let €, be a sequence of positive numbers that | 0. For each k, there is an
n(my) > n(mg—1) so that P(|Xy(m,) — X| > ) < 27F. Since

oo

ZP(an(mk) - X| > ek) < o0
k=1

the Borel-Cantelli lemma implies P(|X,,(y,,) —X| > € i.0.) = 0, i.e., Xp (1, ) — X a.s.
To prove the second conclusion, we note that if for every subsequence X, (,,) there is
a further subsequence X,,(,,,) that converges almost surely to X then we can apply
the next lemma to the sequence of numbers y,, = P(|X,, — X| > ¢) for any § > 0 to
get the desired result. O

Theorem 2.3.3. Let y, be a sequence of elements of a topological space. If every
subsequence Yy (m) has a further subsequence Yy (m,) that converges to y then y, — y.

Proof. If y, # y then there is an open set G containing y and a subsequence Y, ()
with y,(m) € G for all m, but clearly no subsequence of y,(,,) converges to y. O

Remark. Since there is a sequence of random variables that converges in probability
but not a.s. (for an example, see Exercises 2.3.13 or 2.3.14), it follows from Theorem
2.3.3 that a.s. convergence does not come from a metric, or even from a topology.
Exercise 2.3.8 will give a metric for convergence in probability, and Exercise 2.3.9 will
show that the space of random variables is a complete space under this metric.

Theorem 2.3.2 allows us to upgrade convergence in probability to convergence
almost surely. An example of the usefulness of this is

Theorem 2.3.4. If f is continuous and X,, — X in probability then f(X,) — f(X)
in probability. If, in addition, f is bounded then Ef(X,) — Ef(X).
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Proof. If X, () is a subsequence then Theorem 2.3.2 implies there is a further sub-
sequence X,y — X almost surely. Since f is continuous, Exercise 1.3.3 implies
J(Xo(myy) — f(X) almost surely and Theorem 2.3.2 implies f(X,,) — f(X) in proba-
bility. If f is bounded then the bounded convergence theorem implies E f(X,,(n,)) —
Ef(X), and applying Theorem 2.3.3 to y,, = Ef(X,,) gives the desired result. O

As our second application of the Borel-Cantelli lemma, we get our first strong law
of large numbers:

Theorem 2.3.5. Let X1, X5,... be i.i.d. with EX; = p and EXZ4 < oo. IfS, =
X1+ -+ X, then S, /n — p a.s.

Proof. By letting X! = X, — u, we can suppose without loss of generality that pu = 0.
Now

n 4
ES}=E (Z XZ-> =E Y XX;XpX,

i=1 1<d,7,k,6<n
Terms in the sum of the form E(X}X;), BE(X?X;Xy), and E(X;X;XX,) are 0
(if 4,4, k, ¢ are distinct) since the expectation of the product is the product of the
expectations, and in each case one of the terms has expectation 0. The only terms
that do not vanish are those of the form EX} and EX?X? = (EX})*. There are n
and 3n(n — 1) of these terms, respectively. (In the second case we can pick the two
indices in n(n — 1)/2 ways, and with the indices fixed, the term can arise in a total
of 6 ways.) The last observation implies

ES} =nEX] +3(n* —n)(EX})? < Cn?
where C' < co. Chebyshev’s inequality gives us
P(|Sn| > ne) < B(S,)/(ne)* < C/(n*e)

Summing on n and using the Borel-Cantelli lemma gives P(|S,,| > ne i.0.) = 0. Since
€ is arbitrary, the proof is complete. O

The converse of the Borel-Cantelli lemma is trivially false.

Example 2.3.1. Let Q = (0,1), F = Borel sets, P = Lebesgue measure. If A4, =
(0,a,) where a,, — 0 as n — oo then limsup A,, = 0, but if a, > 1/n, we have

> a, = oo.

The example just given suggests that for general sets we cannot say much more than
the next result.

Exercise 2.3.1. Prove that P(limsup 4,) > limsup P(A,) and
P(liminf A,,) <liminf P(A,)

For independent events, however, the necessary condition for P(limsup A,) > 0 is
sufficient for P(limsup A,,) = 1.

Theorem 2.3.6. The second Borel-Cantelli lemma. If the events A, are inde-
pendent then Y P(A,) = oo implies P(A, i.0.) =1.
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Proof. Let M < N < oco. Independence and 1 — z < e™* imply

N N
PR ,A0) = T )< I[ ew(-P(40)
n=M n=M
N
= exp (— Z P(An)> —0 as N — o0
n=M

So P(US 4,A,) = 1 for all M, and since U3 ,,A4, | limsup A, it follows that
P(hm sup An) =1. ]

A typical application of the second Borel-Cantelli lemma is:

Theorem 2.3.7. If X1, Xo,... are i.i.d. wzthE\X|—oo then P(| X, | > n i.0.) =1.

(
So if S, = X1+ -+ + X, then P(im S, /n exists € (—o0,00)) = 0.

Proof. From Lemma 2.2.8, we get
E|X,| —/ P(|X1| > z)dz < ZP |X1| > n)
0 n=0

Since E|X;| = oo and X7, Xo,... are i.i.d., it follows from the second Borel-Cantelli
lemma that P(]X,| > n i.o.) = 1. To prove the second claim, observe that

& _ S7z+1 _ Sn _ Xn+1
n n+l nn+l) n+l

and on C = {w : lim,_ Syp/n exists € (—o00,00)}, S,/(n(n + 1)) — 0. So, on
CN{w:|X,| >nio.}, we have

Sn Sn+1

n n+1

>2/3 io.

contradicting the fact that w € C. From the last observation, we conclude that
{w: | Xy Z2nio}nC=0
and since P(|X,| > n i.0.) =1, it follows that P(C) = 0. O

Theorem 2.3.7 shows that E|X;| < oo is necessary for the strong law of large
numbers. The reader will have to wait until Theorem 2.4.1 to see that condition is
also sufficient. The next result extends the second Borel-Cantelli lemma and sharpens
its conclusion.

Theorem 2.3.8. If Ay, A, ... are pairwise independent and - | P(A,) = o then

as n — oo
n n
Z 1a,, Z P(A,)—1 as.
m=1 m=1

Proof. Let X,, = 14, and let S, = X; + --- + X,,. Since the A,, are pairwise
independent, the X, are uncorrelated and hence Theorem 2.2.1 implies

var (Sp,) = var (X1) + -+ var (X,,)
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var (X,,) < E(X2) = E(X,,), since X,,, € {0,1}, so var (S,,) < E(S,). Chebyshev’s
inequality implies

(%) P(|S,, — ES,| > 6ES,) < var (S,)/(6ES,)* < 1/(6*ES,,) — 0

as n — oo. (Since we have assumed ES,, — c0.)

The last computation shows that S, /FES,, — 1 in probability. To get almost
sure convergence, we have to take subsequences. Let ny = inf{n : ES, > k?}. Let
T, = Sy, and note that the definition and EX,, < 1 imply k* < ET), < k* + 1.
Replacing n by ny, in (%) and using ET} > k? shows

P(|Ty — ETy| > 0ETy) < 1/(6%k?)

So > pe, P(|Ty, — ETy| > 6ET},) < oo, and the Borel-Cantelli lemma implies P(|T}, —
ETy| > 6ETy i.0.) = 0. Since ¢ is arbitrary, it follows that Ty /ET), — 1 a.s. To show
Sn/ES, — 1a.s., pick an w so that Ty (w)/ET), — 1 and observe that if n, < n < ng4q

then
Tk (w) < Sy (w) < Tit+1(w)
FEly., — ES, = FET}

To show that the terms at the left and right ends — 1, we rewrite the last inequalities
as

ETy  Ti(w) _ Sn(w) _ Tepa(w)  ETjn
ETyw FET, — ES, — ETyqq ET,

From this, we see it is enough to show ET}1/ETy; — 1, but this follows from
k* < ET, < ETjpy1 < (k+1)2 41
and the fact that {(k+1)2 +1}/k?> =1+ 2/k +2/k? — 1. O

The moral of the proof of Theorem 2.3.8 is that if you want to show that X, /¢,, — 1
a.s. for sequences c¢,, X, > 0 that are increasing, it is enough to prove the result for
a subsequence n(k) that has ¢ (x41)/cn ) — 1. For practice with this technique, try
the following.

Exercise 2.3.2. Let 0 < X; < X5... be random variables with FX,, ~ an® with
a,a >0, and var (X,,) < Bn? with 8 < 2a. Show that X,,/n® — a a.s.

Exercise 2.3.3. Let X, be independent Poisson r.v.’s with FX,, = \,, and let
Sp = X1+ -+ X,,. Show that if Y A, = oo then S,,/ES,, — 1 a.s.

Example 2.3.2. Record values. Let X7, X, ... be a sequence of random variables
and think of X} as the distance for an individual’s kth high jump or shot-put toss so
that Ay = {Xy > sup,;, X;} is the event that a record occurs at time k. Ignoring
the fact that an athlete’s performance may get better with more experience or that
injuries may occur, we will suppose that X7, Xo, ... are i.i.d. with a distribution F'(z)
that is continuous. Even though it may seem that the occurrence of a record at time
k will make it less likely that one will occur at time k£ + 1, we

Claim. The Ay, are independent with P(Ay) = 1/k.

To prove this, we start by observing that since F' is continuous P(X; = X}) = 0 for
any j # k (see Exercise 2.1.8), so we can let Y{* > YJ* > --- > Y, be the random
variables X1,..., X, put into decreasing order and define a random permutation of
{1,...,n} by m, (i) = j if X; =Y}, i.e., if the ith random variable has rank j. Since
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the distribution of (X1,...,X,) is not affected by changing the order of the random
variables, it is easy to see:

(a) The permutation 7, is uniformly distributed over the set of n! possibilities.

Proof of (a) This is “obvious” by symmetry, but if one wants to hear more, we can
argue as follows. Let 7, be the permutation induced by (Xi,...,X,), and let o, be
a randomly chosen permutation of {1,...,n} independent of the X sequence. Then
we can say two things about the permutation induced by (X, (1, ..., Xom)): (i) it is
Tn © 0y, and (ii) it has the same distribution as 7,,. The desired result follows now by
noting that if 7 is any permutation, 7 o g, is uniform over the n! possibilities. O

Once you believe (a), the rest is easy:
(b) P(A,) = P(mp(n) =1)=1/n.
(¢) If m <n and 441, ... iy are distinct elements of {1,...,n} then
P(Ap|mn(j) =i form+1<j<n)=1/m

Intuitively, this is true since if we condition on the ranks of X,,+1,...,X,, then this
determines the set of ranks available for Xy, ..., X,,, but all possible orderings of the
ranks are equally likely and hence there is probability 1/m that the smallest rank will
end up at m.

Proof of (¢) If we let o, be a randomly chosen permutation of {1,...,m} then (i)
T © 04y has the same distribution as m,, and (ii) since the application of ¢, randomly
rearranges mp(1),...,m,(m) the desired result follows. |

If we let my < ma... < my then it follows from (c) that
P(Apm,|Am, N N A, ) = P(Amy)
and the claim follows by induction.

Using Theorem 2.3.8 and the by now familiar fact that Y _, 1/m ~ logn, we
have

Theorem 2.3.9. If R, = Y. _ 14, is the number of records at time n then as
n — oo,
R,/logn —1 a.s.

The reader should note that the last result is independent of the distribution F (as
long as it is continuous).

Remark. Let X, Xo,... be i.i.d. with a distribution that is continuous. Let Y; be
the number of j < ¢ with X; > X;. It follows from (a) that ¥; are independent
random variables with P(Y; = j) =1/ifor 0 < j <4 — 1.

Comic relief. Let Xy, X1,... be i.i.d. and imagine they are the offers you get for
a car you are going to sell. Let N = inf{n > 1: X,, > Xp}. Symmetry implies
P(N > n) > 1/(n+1). (When the distribution is continuous this probability is
exactly 1/(n + 1), but our distribution now is general and ties go to the first person
who calls.) Using Exercise 2.2.7 now:

oo oo 1
EN = P(N >n) > =00
2PN Z 2

so the expected time you have to wait until you get an offer better than the first one is
00. To avoid lawsuits, let me hasten to add that I am not suggesting that you should
take the first offer you get!
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Example 2.3.3. Head runs. Let X,,, n € Z, be i.i.d. with P(X,, = 1) = P(X,, =
—1) =1/2. Let £, = max{m : X;,_41 = ... = X;, = 1} be the length of the run of
+1’s at time n, and let L,, = maxi<y<n fm be the longest run at time n. We use a
two-sided sequence so that for all n, P(¢, = k) = (1/2)¥*! for k > 0. Since ¢; < oo,
the result we are going to prove

L,/logon —1 as. (2.3.1)
is also true for a one-sided sequence. To prove (2.3.1), we begin by observing
P(l, > (14 €)logyn) < n~(1+9

for any € > 0, so it follows from the Borel-Cantelli lemma that £,, < (1 + €)logy n for
n > N.. Since € is arbitrary, it follows that

limsup L, /logon <1 as.

n—oo

To get a result in the other direction, we break the first n trials into disjoint blocks
of length [(1 — €) log, n] 4+ 1, on which the variables are all 1 with probability

27 [(=)logy nl=1 > =(1-¢) j9
to conclude that if n is large enough so that [n/{[(1 — €)logy n] + 1}] > n/logyn
P(L, < (1 —€)logyn) < (1 —n~179/2)n/(0827) < exp(—n€/2log, n)
which is summable, so the Borel-Cantelli lemma implies

liminf L,,/logon >1 a.s.
Exercise 2.3.4. Show that limsup,,_, . ¢,/logon =1, liminf, . ¢, =0 a.s.

EXERCISES
2.3.5. Prove the first result in Theorem 2.3.4 directly from the definition.

2.3.6. Fatou’s lemma. Suppose X, > 0 and X,, — X in probability. Show that
liminf,, .. EX, > EX.

2.3.7. Dominated convergence. Suppose X,, — X in probability and (a) | X,| <Y
with EFY < oo or (b) there is a continuous function g with g(z) > 0 for large x with
|z|/g(x) — 0 as |z| — oo so that Fg(X,,) < C < oo for all n. Show that EX,, — EX.

2.3.8. Show (a) that d(X,Y) = E(|X —Y|/(1 + |X —Y])) defines a metric on the
set of random variables, i.e., (i) d(X,Y) =0 if and only if X =Y a.s., (ii) d(X,Y) =
Ay, X), (iii) d(X,Z) < d(X,Y) +d(Y, Z) and (b) that d(X,,,X) — 0 as n — oo if
and only if X,, — X in probability.

2.3.9. Show that random variables are a complete space under the metric defined
in the previous exercise, i.e., if d(X,,, X,,) — 0 whenever m, n — oo then there is a
r.v. Xo so that X,, — X, in probability.

2.3.10. If X, is any sequence of random variables, there are constants ¢, — 0o so
that X,,/c, — 0 a.s.
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2.3.11. (i) If P(A,) — O and >_,°, P(AS N A,41) < oo then P(A, i.0.) = 0. (ii)
Find an example of a sequence A,, to which the result in (i) can be applied but the
Borel-Cantelli lemma cannot.

2.3.12. Let A, be a sequence of independent events with P(A,,) < 1 for all n. Show
that P(UA,) =1 implies P(4,, i.0.) = 1.

2.3.13. Let X7, X5,... be independent. Show that sup X,, < oo a.s. if and only if
>, P(X, > A) < oo for some A.

2.3.14. Let X1, Xo,... be independent with P(X,, = 1) = p, and P(X,, = 0) =
1 — p,. Show that (i) X,, — 0 in probability if and only if p,, — 0, and (ii) X,, — 0
a.s. if and only if Y p, < occ.

2.3.15. Let Y7,Y5,... be i.i.d. Find necessary and sufficient conditions for
(i) Y, /n — 0 almost surely, (ii) (max,;,<n Y )/n — 0 almost surely,
(iii) (maxm<n Yim)/n — 0 in probability, and (iv) Y;,/n — 0 in probability.

2.3.16. The last two exercises give examples with X,, — X in probability without
X, — X a.s. There is one situation in which the two notions are equivalent. Let
X1, Xa,... be a sequence of r.v.’s on (Q,F, P) where Q is a countable set and F
consists of all subsets of (2. Show that X,, — X in probability implies X,, — X a.s.

2.3.17. Show that if X, is the outcome of the nth play of the St. Petersburg game
(Example 2.2.7) then limsup,, ., X,/(n logyn) = co a.s. and hence the same result
holds for S,,. This shows that the convergence S,,/(nlog, n) — 1 in probability proved
in Section 2.2 does not occur a.s.

2.3.18. Let X1,Xs,... be i.i.d. with P(X; > z) = e %, let M,, = maxi<m<n Xm.
Show that (i) limsup,,_,., X,/logn =1 a.s. and (ii) M,,/logn — 1 a.s.

2.3.19. Let X, Xo,... be ii.d. with distribution F', let A, T oo, and let A, =
{maxi<m<n Xm > A,}. Show that P(A, i.0.) = 0 or 1 according as >, ~,(1 —
F(\,)) < 0o or = o0. -

2.3.20. Kochen-Stone lemma. Suppose Y P(Aj) = co. Use Exercises 1.6.6 and
2.3.1 to show that if

" 2
lim sup (Z P(Ak)> / Z PAjNAy) | =a>0
7o \g=1 1<j,k<n

then P(A, i.0.) > . The case o = 1 contains Theorem 2.3.6.

2.4 Strong Law of Large Numbers

We are now ready to give Etemadi’s (1981) proof of

Theorem 2.4.1. Strong law of large numbers. Let X1, X5, ... be pairwise inde-
pendent identically distributed random variables with E|X;| < co. Let EX; = p and
Spn=X1+...+X,. Then S,/n — p a.s. as n — oco.

Proof. As in the proof of the weak law of large numbers, we begin by truncating.

Lemma 2.4.2. Let Yy = Xyl x,|<p) and T, = Y1 +---+Y,. Il is sufficient to prove
that T, /n — 1 a.s.
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Proof. >°07 1 P(|Xk| > k) < [° P(|X1| > t) dt = E|X1| < 00 so P(Xy # Yy i.0.) =0.
This shows that |S,(w) — T, (w)] < R(w) < oo a.s. for all n, from which the desired
result follows. O

The second step is not so intuitive, but it is an important part of this proof and
the one given in Section 2.5.

Lemma 2.4.3. Y ;7 var(Yy)/k?* < 4E|X;| < cc.

Proof. To bound the sum, we observe

o'} k
var (Vi) < E(Y2) = / 2yP(|Vi| > y) dy < / 2P(Xy| > y) dy
0 0

so using Fubini’s theorem (since everything is > 0 and the sum is just an integral with
respect to counting measure on {1,2,...})

s o]
S EOR)R < Zk > [ gen 20P00] > v)dy
k=1 0
= / {Z k21(y<k)} 2yP(|X1] > y) dy
0 k=1
Since F|X;| = fo (|X1| > y) dy, we can complete the proof by showing

Lemma 2.4.4. Ify > 0 then 2y Zk>y k=2 < 4.

Proof. We begin with the observation that if m > 2 then

> k2 /_1 2 2de = (m—1)"1

k>m

When y > 1, the sum starts with & = [y] + 1 > 2, so

2y k< 2y/[y <4

k>y

since y/[y] < 2 for y > 1 (the worst case being y close to 2). To cover 0 <y < 1, we
note that in this case

2>k~ 2<2<1+Zk )

k>y

This establishes Lemma 2.4.4 which completes the proof of Lemma 2.4.3 and of the
theorem. 0

The first two steps, Lemmas 2.4.2 and 2.4.3 above, are standard. Etemadi’s in-
spiration was that since X,, n > 1, and X, , n > 1, satisfy the assumptions of the
theorem and X,, = X, — X, we can without loss of generality suppose X,, > 0. As
in the proof of Theorem 2.3.8, we will prove the result first for a subsequence and
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then use monotonicity to control the values in between. This time, however, we let
a > 1 and k(n) = [@"]. Chebyshev’s inequality implies that if € > 0

ZP|Tkn)—ETkn)|>ek QZVar Th(my)/k(n)?
n=1
=2 Z k(n)~2 Z var (V;,) = €2 var (V) Z k(n)~2
n=1 m=1 m=1 n:k(n)>m

where we have used Fubini’s theorem to interchange the two summations of nonneg-
ative terms. Now k(n) = [a”] and [a"] > a™/2 for n > 1, so summing the geometric
series and noting that the first term is < m~

Z [an]—Q <4 Z a—Qn < 4(1 _a—2)—1m—2

n:a">m n:a”>m

Combining our computations shows

> P(ITitn) — BTyl > €k(n)) <4(1—a )2 Y E(Y2)m™ < oo
n=1

m=1

by Lemma 2.4.3. Since ¢ is arbitrary (Ty,) — ETk(n))/k(n) — 0 a.s. The dominated
convergence theorem implies EY}, — EX; as k — 00, so ETy,)/k(n) — EX; and we
have shown Tj,(,)/k(n) — EX; a.s. To handle the intermediate values, we observe
that if k(n) <m < k(n+1)

Ty(n+1)
k(n)

IN

Ti) T
k(n+1) = m

(here we use Y; > 0), so recalling k(n) = [@"], we have k(n + 1)/k(n) — a and

—EXl < liminf T;,,/m < limsup T,,,/m < aEX;

n—0o0 m—oo

Since a > 1 is arbitrary, the proof is complete. O

The next result shows that the strong law holds whenever EX; exists.

Theorem 2.4.5. Let X, Xo,... be i.i.d. with EXi+ =o00 and EX; <oo. If S, =
X1+ + X, then S, /n — o0 a.s.

Proof. Let M > 0 and XM = X; A M. The XM are i.i.d. with E|XM| < oo, so if
SM = XM 4 ...+ XM then Theorem 2.4.1 implies SM /n — EXM. Since X; > XM,
it follows that

hgng /n > hm SMp = ExM
The monotone convergence theorem implies E(XM)* 1 EXZ.Jr = o0 as M 1 oo, so
EXM = B(XM)* — E(XM)~ 1 oo, and we have liminf, .., S,/n > oo, which
implies the desired result. O

The rest of this section is devoted to applications of the strong law of large num-
bers.
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Example 2.4.1. Renewal theory. Let X7, X5,... be i.i.d. with 0 < X; < co. Let
T, = X1 +...4+ X, and think of T;, as the time of nth occurrence of some event. For
a concrete situation, consider a diligent janitor who replaces a light bulb the instant
it burns out. Suppose the first bulb is put in at time 0 and let X; be the lifetime of
the ith light bulb. In this interpretation, 7;, is the time the nth light bulb burns out
and Ny = sup{n : T,, <t} is the number of light bulbs that have burnt out by time ¢.

Theorem 2.4.6. If EX; = p < 0o then ast — oo,
N/t = 1/p a.s.  (1/oo =0).

Proof. By Theorems 2.4.1 and 2.4.5, T,,/n — p a.s. From the definition of Ny, it
follows that T'(N;) <t < T(N; + 1), so dividing through by N, gives

TN _ ¢ T(Ne+1) N+l
N, ~N,~ N, +1 N,

To take the limit, we note that since T;, < oo for all n, we have N; T oo as t — oo.
The strong law of large numbers implies that for w € Qy with P(y) = 1, we have
Tn(w)/n — u, Ni(w) T oo, and hence

TN, (w) (W) Ni(w) +1
— =i — 1
Nt(w) Nt(W)
From this it follows that for w € Qg that t/N;(w) — p a.s. O

The last argument shows that if X,, — X, a.s. and N(n) — oo a.s. then
Xnm) — X as. We have written this out with care because the analogous re-
sult for convergence in probability is false.

Exercise 2.4.1. Give an example with X,, € {0,1}, X,, — 0 in probability, N(n) T co
a.s., and Xny() — 1 as.

Example 2.4.2. Empirical distribution functions. Let X7, X5,... be i.i.d. with
distribution F' and let

Fn(x) = n71 Z 1(XmS$)

m=1

F, (x) = the observed frequency of values that are < x , hence the name given above.
The next result shows that F), converges uniformly to F' as n — oo.

Theorem 2.4.7. The Glivenko-Cantelli theorem. As n — oo,

sup |Fp(z) — F(z)| = 0 a.s.

Proof. Fix x and let Y,, = 1(x, <. Since the Y,, are i.i.d. with £Y,, = P(X,, <z) =
F(z), the strong law of large numbers implies that F,,(z) = n=' > " _| Y, — F(x)
a.s. In general, if F), is a sequence of nondecreasing functions that converges pointwise
to a bounded and continuous limit F' then sup, |F,(x) — F(z)| — 0. However, the
distribution function F'(x) may have jumps, so we have to work a little harder.
Again, fix r and let Z,, = 1(x, <;). Since the Z,, are i.i.d. with £Z,, = P(X, <
z) = F(z—) = limy1, F'(y), the strong law of large numbers implies that F,(z—) =
Y Zy — F(z—) as. For 1 < j <k—1let z;, =inf{y: F(y) > j/k}. The
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pointwise convergence of F,,(z) and F,(z—) imply that we can pick Ni(w) so that if
n > Ni(w) then

|Fo(zjk) — F(zj)| <k™' and  |Fu(zje—) — F(zj0—)| <k’

for 1 <j <k—1. If we let 9 = —oo0 and z, = 0o, then the last two inequalities
hold for j =0 or k. If z € (zj_1 %, ;) with 1 < j < k and n > Ni(w), then using
the monotonicity of F,, and F, and F(z;,—) — F(z;j—1%) < k™!, we have

Fo(z) < Fp(zjp—) < Flzjp—) + k™ < F(zj_1p) + 2k < F(x) + 26!
Fo(z) > Fu(zj_1) > F(wj_1p) — k' > Flzjp—) — 2k~ > F(z) — 2k~

so sup, |Fy,(z) — F(z)| < 2k~!, and we have proved the result. O

Example 2.4.3. Shannon’s theorem. Let X, X5,... € {1,...,r} be independent
with P(X; = k) = p(k) > 0 for 1 < k < r. Here we are thinking of 1,...,r as
the letters of an alphabet, and X7, Xo,... are the successive letters produced by an
information source. In this i.i.d. case, it is the proverbial monkey at a typewriter. Let
Tn(w) = p(X1(w)) - p(X,(w)) be the probability of the realization we observed in
the first n trials. Since log 7, (w) is a sum of independent random variables, it follows
from the strong law of large numbers that

—n"togmy(w) — H = — Zp(k) log p(k) a.s.
k=1

The constant H is called the entropy of the source and is a measure of how random
it is. The last result is the asymptotic equipartition property: If ¢ > 0 then as
n — 0o

P{exp(—n(H +¢)) < mp(w) < exp(—n(H —¢€)} — 1

EXERCISES

2.4.2. Lazy janitor. Suppose the ith light bulb burns for an amount of time X;
and then remains burned out for time Y; before being replaced. Suppose the X;,Y;
are positive and independent with the X’s having distribution F and the Y’s having
distribution G, both of which have finite mean. Let R; be the amount of time in
[0,t] that we have a working light bulb. Show that R/t — EX,;/(EX; + EY;) almost
surely.

2.4.3. Let Xy = (1,0) and define X,, € R? inductively by declaring that X, is
chosen at random from the ball of radius | X,,| centered at the origin, i.e., X,,+1/|Xn|
is uniformly distributed on the ball of radius 1 and independent of X, ..., X,. Prove
that n=!log|X,| — ¢ a.s. and compute c.

2.4.4. Investment problem. We assume that at the beginning of each year you can
buy bonds for $1 that are worth $ a at the end of the year or stocks that are worth
a random amount V' > 0. If you always invest a fixed proportion p of your wealth
in bonds, then your wealth at the end of year n 4+ 1 is Wy, 41 = (ap + (1 — p)V,)Wh,.
Suppose Vi,Va,... are iid. with EV?2 < oo and E(V, %) < co. (i) Show that
n~tlogW,, — c(p) a.s. (ii) Show that c(p) is concave. [Use Theorem A.5.1 in the
Appendix to justify differentiating under the expected value.] (iii) By investigating
c'(0) and ¢'(1), give conditions on V that guarantee that the optimal choice of p is in
(0,1). (iv) Suppose P(V =1) = P(V =4) = 1/2. Find the optimal p as a function of
a.
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2.5 Convergence of Random Series*

In this section, we will pursue a second approach to the strong law of large numbers
based on the convergence of random series. This approach has the advantage that it
leads to estimates on the rate of convergence under moment assumptions, Theorems
2.5.7 and 2.5.8, and to a negative result for the infinite mean case, Theorem 2.5.9,
which is stronger than the one in Theorem 2.3.7. The first two results in this section
are of considerable interest in their own right, although we will see more general
versions in Lemma 3.1.1 and Theorem 3.4.2.

To state the first result, we need some notation. Let F), = (X, Xp41,...) = the
future after time n = the smallest o-field with respect to which all the X,,, m > n are
measurable. Let 7 = N, F/, = the remote future, or tail o-field. Intuitively, A € T
if and only if changing a finite number of values does not affect the occurrence of the
event. As usual, we turn to examples to help explain the definition.

Example 2.5.1. If B, € R then {X,, € B, i0.} € 7. If we let X,, = 14, and
B,, = {1}, this example becomes {A,, i.0.}.

Example 2.5.2. Let S, = X1+ ...+ X,,. It is easy to check that
{lim,,— o S, exists } € T,
{limsup,, o, S, > 0} ¢ 7,
{limsup,,_,., Sn/cn >z} € T if ¢, — 0.

The next result shows that all examples are trivial.

Theorem 2.5.1. Kolmogorov’s 0-1 law. If X1, X5, ... are independent and A € T
then P(A) =0 or 1.

Proof. We will show that A is independent of itself, that is, P(AN A) = P(A)P(A),
so P(A) = P(A)?, and hence P(A) = 0 or 1. We will sneak up on this conclusion in
two steps:

(a) A€ o(Xy,...,Xk) and B € 0(Xg41, Xkt2,...) are independent.

Proof of (a). If B € 0(Xg41,...,Xpyj) for some j, this follows from Theorem 2.1.5.
Since o(X1,...,Xx) and U;jo(Xpq1,..., Xi4;) are m-systems that contain Q (a) fol-
lows from Theorem 2.1.3.

(b) A€ o(X1,Xs,...)and B € T are independent.

Proof of (b). Since T C o(Xpt1, Xpt2,.-.), if A € o(Xy,...,X}y) for some k, this
follows from (a). Ugo(X71,..., X) and 7 are m-systems that contain 2, so (b) follows
from Theorem 2.1.3.

Since 7 C o(X1, Xa,...), (b) implies an A € 7 is independent of itself and Theorem
2.5.1 follows. O

If Ay, Ag,... are independent then Theorem 2.5.1 implies P(A,, i.0.) = 0 or 1.
Applying Theorem 2.5.1 to Example 2.5.2 gives P(lim,,_,o S, exists) = 0 or 1. The
next result will help us prove the probability is 1 in certain situations.

Theorem 2.5.2. Kolmogorov’s maximal inequality. Suppose Xi,...,X, are

independent with EX; =0 and var(X;) <oo. If S,, = X7 + -+ X,, then

P ( max |Sg| > x) <z % var(S,)

1<k<n
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Remark. Under the same hypotheses, Chebyshev’s inequality (Theorem 1.6.4) gives
only
P(|S,] > x) <z ?var (S,)

Proof. Let Ay = {|Sx| > z but |S;| < = for j < k}, i.e., we break things down
according to the time that |Sy| first exceeds x. Since the Ay, are disjoint and (S, —
Sy)? >0,

n

ES2>> [ S2dP=>" [ Sp+2Sc(Sn— Sk)+ (Sn — Sk)*dP
k=17 4k k=17 A%

>y S,ZdP+Z/ 2514, - (Sn — Si)dP
k=1 Ak k=1

Skla, € 0(Xy,...,Xg) and S, — Sk € 0(Xk41,...,X,) are independent by Theorem
2.1.6, so using Theorem 2.1.9 and E(S,, — Sk) = 0 shows

/QSklAk - (Sp — Sk)dP = E(2S;14,) - E(Sn, — Sk) =0

Using now the fact that |Si| > x on Ay and the Ay are disjoint,
2 2 ~ 2 _ 2
ES;: > Z: . SpdP > ;x P(Ay) =x°P <1I%1ka%<n|5k| > a:) |

Exercise 2.5.1. Suppose X1, Xs,... are i.i.d. with EX; =0, var (X;) = C' < co. Use
Theorem 2.5.2 with n = m® where a(2p—1) > 1 to conclude that if S, = X1+ -+ X,
and p > 1/2 then S, /n” — 0 almost surely.

We turn now to our results on convergence of series. To state them, we need a
. s N .
definition. We say that Y7, a,, converges if imy_.c Y., _; @, exists.

Theorem 2.5.3. Suppose X1, Xs, ... are independent and have EX, = 0. If
Z var(X,) < oo
n=1

then with probability one Y > | X, (w) converges.

Proof. Let Sy = 22;1 X,,. From Theorem 2.5.2, we get

N

o —2 o _ 2
P (Mrgnn%éN S — Sar| > e> < e 2var(Sy — Sy) =€ nz%:ﬂ var (X,)

Letting N — oo in the last result, we get
P(sup [ S — S| >e) <e? Z var (X,) =0 as M — oo
m2M n=M+1
If we let war = sup,, > |Sm — Sn| then wyy | as M T and
P(wM>2e)§P(sup [ S — S| >6) —0
m>M

as M — oo so wys | 0 almost surely. But wps(w) | 0 implies S, (w) is a Cauchy
sequence and hence lim,,_,, S, (w) exists, so the proof is complete. O
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Example 2.5.3. Let X, Xs,... be independent with
PX,=n""=PX,=-n"%=1/2

EX, = 0 and var(X,) = n™2® so if @ > 1/2 it follows from Theorem 2.5.3 that
> X, converges. Theorem 2.5.4 below shows that o > 1/2 is also necessary for this
conclusion. Notice that there is absolute convergence, i.e., Y |X,| < oo, if and only
ifa>1.

Theorem 2.5.3 is sufficient for all of our applications, but our treatment would not
be complete if we did not mention the last word on convergence of random series.

Theorem 2.5.4. Kolmogorov’s three-series theorem. Let X1, X5,... be inde-
pendent. Let A >0 and let Y; = X;1(|x,|<a)- In order that Eflo:l X, converges a.s.,
it is necessary and sufficient that

(i) ZP(|Xn\ > A) < oo, (it) ZEYn converges, and (i) Z var (Y,) < oo
n=1 n=1

n=1

Proof. We will prove the necessity in Example 3.4.7 as an application of the central
limit theorem. To prove the sufficiency, let u, = EY,,. (iii) and Theorem 2.5.3 imply
that >~ | (Y, — pun) converges a.s. Using (ii) now gives that Y-, Y, converges a.s.
(i) and the Borel-Cantelli lemma imply P(X,, # Y, i.0.) =0, so >~ X, converges
a.s. O

The link between convergence of series and the strong law of large numbers is
provided by

Theorem 2.5.5. Kronecker’s lemma. If a, | co and Y., x,/a, converges then

n

-1

a, g Ty — 0
m=1

Proof. Let a9 = 0, by = 0, and for m > 1, let b,, = Zzn:l xi/ak. Then z,, =
@ (b, — byp—1) and so

n n n
-1 —1
a, E Tm = Q, E Arbm — E A bm—1
m=1 m=1 m=1
n n
—1
= a, anby + § Am—1bm—1 — E Ambm—1
m=2 m=1

n

(am - am—l)
= bn — Z w bm—l

m=1 n

(Recall ap = 0.) By hypothesis, b,, — b, as n — co. Since a,, — amy—1 > 0, the last
sum is an average of by, ..., b,. Intuitively, if ¢ > 0 and M < oo are fixed and n is
large, the average assigns mass > 1 — € to the b, with m > M, so

n

Z (am — am_l)bm—l — beo
Q.

m=1 n
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To argue formally, let B = sup |b,,|, pick M so that |b,, — boo| < €/2 for m > M, then
pick N so that aps/a, < ¢/4B for n > N. Now if n > N, we have

n

Z (am _aafm—l)bm_l —b| < Z (am - am—l) |bm—1 _ boo‘

m=1 n m=1 An
a G — €
< oM 2B + Gn 7 OM © <€
[e2% Qn, 2
proving the desired result since € is arbitrary. O

Theorem 2.5.6. The strong law of large numbers. Let X1, X5, ... be i.i.d. ran-
dom variables with E|X;| < oco. Let EX; = p and S, = X1+ ...+ X,,. Then
Sp/n — p a.s. as n — oo.

Proof. Let Yy, = Xp1(x,|<k) and T, = Y1 +---+Y,,. By (a) in the proof of Theorem
2.4.1 it suffices to show that T, /n — u. Let Zp = Yy, — EYx, so EZ, = 0. Now
var (Zy) = var (Y;) < EY}? and (b) in the proof of Theorem 2.4.1 imply

Z var (Zy,)/k* < ZEYkQ/k2 < oo
k=1 k=1

Applying Theorem 2.5.3 now, we conclude that 2211 Zy,/k converges a.s. so Theorem
2.5.5 implies

n Tn n
n~t Z(Yk — FEY}) — 0 and hence P n~t Z EY);, — 0 a.s.
k=1 k=1

The dominated convergence theorem implies FY, — p as k — oo. From this, it
follows easily that n=' >} _, EY}, — p and hence T),/n — p. O

2.5.1 Rates of Convergence

As mentioned earlier, one of the advantages of the random series proof is that it
provides estimates on the rate of convergence of S,,/n — p. By subtracting p from
each random variable, we can and will suppose without loss of generality that pu = 0.

Theorem 2.5.7. Let X1, Xo,... be i.i.d. random variables with EX; = 0 and EXZ-2 =
02 <oo0. Let Spy = X1+ ...+ X,,. If e >0 then

S, /nt?(logn)/?* -0  a.s.
Remark. Kolmogorov’s test, Theorem 8.11.2 will show that

limsup S, /n/?(loglogn)/? = 0v/2  a.s.

n—oo

so the last result is not far from the best possible.

Proof. Let a,, = n'/?(logn)'/?*¢ for n > 2 and a; > 0.

- 1 1
Xn n) — 2= T N11o- <
7Z:lvar( Jap) =0 (a% +;n(logn)1+25> 00

so applying Theorem 2.5.3 we get Y -~ | X,,/a,, converges a.s. and the indicated result
follows from Theorem 2.5.5. O
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The next result due to Marcinkiewicz and Zygmund treats the situation in which
EX? = 0o but E|X;[P < oo for some 1 < p < 2.

Theorem 2.5.8. Let X1, Xs,... be i.i.d. with EX; = 0 and E|X1|P < oo where
l<p<2. IfS,=X1+...+ X, thenS’n/nl/p—>0 a.s.

Proof. Let Y, = Xk1(|Xk|§k1/p) and T, =Y +---+Y,.

ZPYHéXk :ZP\Xk|p>k < B|XP < o0
k=1 k=1

so the Borel-Cantelli lemma implies P(Y;, # X} i.0.) = 0, and it suffices to show
T, /n'/P — 0. Using var (Y,,) < E(Y;2), Lemma 2.2.8 with p = 2, P(|V;,| > y) <
P(]X1| > y), and Fubini’s theorem (everything is > 0) we have

i var (Y, /m'/?) < Z EY;
m=1

oo
< X4 >
- Z Z/n 1)1/ m2/p P(1Xa] > y) dy

oo

) nl/p
2y
;/( o 2 P )

To bound the integral, we note that for n > 2 comparing the sum with the integral
of z=2/»

Z m2/P < p( —1)P=2/p < Oy

when y € [(n — 1)V, n!/P]. Since E|X;|P = [;° paP 1 P(|X;| > x)dz < oo, it follows
that

o0

Z var (Y, /m'/?) < oo

m=1

If we let p,, = EY,, and apply Theorem 2.5.3 and Theorem 2.5.5 it follows that
n~/p Z (Yoo — pim) — 0 ass.

To estimate p,,, we note that since EX,, =0, u,, = —E(X;;|X;| > ml/p), o)
| < B(X[;1X| > mP) = mPE(IX|/m"/P; |Xi] > m"/P)
<m PE((IX|/m PP X > mP)
<m WP E(IXG P | Xy| > mt/P)

Now 7 _ m~'FVP < Cpl/P and E(|X;P;|X;| > mYP) — 0 as m — oo, so
n=1/p > i Hm — 0 and the desired result follows. O

Exercise 2.5.2. The converse of the last result is much easier. Let p > 0. If
S, /nt/P — 0 as. then E|X;[P < cc.
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2.5.2 Infinite Mean

The St. Petersburg game, discussed in Example 2.2.7 and Exercise 2.3.17, is a situa-
tion in which EX; = oo, S,,/nlogsn — 1 in probability but
limsup S, /(nlogyn) = co a.s.
n—oo
The next result, due to Feller (1946), shows that when E|X;| = oo, S, /a, cannot
converge almost surely to a nonzero limit. In Theorem 2.3.7 we considered the special
case Gn = n.

Theorem 2.5.9. Let X1, Xs,... be ii.d. with E|X1| = oo and let S, = X1 +
-+ X,,. Let a, be a sequence of positive numbers with a,/n increasing. Then
limsup,,_, . |Sn|/an =0 or co according as ), P(|X1| > an) < 00 or = cc.

Proof. Since an/n 1, agn > kay, for any integer k. Using this and a,, T,

00 e} 1 e}
ZP(|X1| Z kan) Z ZP(|X1‘ Z akn Z ' |X1| Z anb)
n=1 n=1 k m=k

The last observation shows that if the sum is infinite, lim sup,, , . |Xn|/a, = co. Since
max{|Sn—1|, |Sn|} > |Xn|/2, it follows that limsup,, . [Sn|/an = ©
To prove the other half, we begin with the identity

(%) > mPam1 <|Xi| <am) =Y P(Xi > an1)

m=1

To see this, write m = >_" ;1 and then use Fubini’s theorem. We now let Y,, =
Xnl(x,<an), and T, = Y1 4 ... +Y,. When the sum is finite, P(Y;, # X, i.0.) =0,
and it suffices to investigate the behavior of the T,,. To do this, we let ag = 0 and
compute

o
Z var (Vaan) < 3 BV,
=Sy [ s
n=1 [am—1,am)
=> y? dF(y Z ay
m—1 " [am_1,am)
Since a,, > nam,/m, we have Yo a,? < (m?/a2)> 0 n~? < Cma,?, so

<C Z m/[ o dF(y)
m=1 Am—1,0m

Using () now, we conclude Y ° | var (Y, /a,) < oc.

The last step is to show ET,/a, — 0. To begin, we note that if E|X;| = oo,
> P(IX;i] > an) < o0, and a,/n T we must have a,,/n | co. To estimate ET, /ay,
now, we observe that

a," Y BV <ay'n Y E(1Xmli | Xm| < am)
m=1 m=1
_|_
Qn

nan

n
< —E(|X;;any < [Xi] < an)

an
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where the last inequality holds for any fixed N. Since a,/n — oo, the first term
converges to 0. Since m/a,, |, the second is
n
< Y PBE(Xilam-1 < X < an)
m=N+1 m

oo
< Z mP(am-1 < | X;| < an)
m=N+1

(%) shows that the sum is finite, so it is small if N is large and the desired result
follows. O

EXERCISES

2.5.3. Let X1, Xo,... be i.i.d. standard normals. Show that for any ¢

oo .
sin(nnt)
E X, - ———= converges a.s.
n

n=1
We will see this series again at the end of Section 8.1.

2.5.4. Let X1, X, ... be independent with EX,, = 0, var (X,,) = 02. (i) Show that if
>, 02/n? < oo then >, X,,/n converges a.s. and hence n™' > " _| X,,, — 0 a.s. (ii)
Suppose " 02/n? = co and without loss of generality that o2 < n? for all n. Show
that there are independent random variables X,, with EX,, = 0 and var (X,,) < 02

so that X,,/n and hence n™* 3", _ X, does not converge to 0 a.s.

2.5.5. Let X,, > 0 be independent for n > 1. The following are equivalent:

(1) Yopoy Xn < oo as. (ii) Y07 [P(X, > 1)+ E(Xn1(x,<1))] <

(iii) Y07 B(X,/(1+ X,)) < .

2.5.6. Let ¢(x) = 22 when |z| < 1 and = |x| when |z| > 1. Show that if X1, X», ...
are independent with FX,, = 0 and Y.~ E¢(X,) < oo then > >~ X,, converges
a.s.

2.5.7. Let X,, be independent. Suppose > oo | E|X,[P(™) < oo where 0 < p(n) < 2
for all n and EX,, = 0 when p(n) > 1. Show that > > X,, converges a.s.

2.5.8. Let X1, X5,... be i.i.d. and not = 0. Then the radius of convergence of the
power series >, - Xy (w)2" (Le., r(w) = sup{c : D [Xn(w)|c” < oo})is 1 as. or 0

a.s., according as Elogt |X;| < oo or = co where log™ z = max(log z,0).

2.5.9. Let X, Xy, ... be independent and let Sy, , = Xpp41 + ...+ X,,. Then

: 1 < <
(*) P (o 80l > 20) nin P(Sul < 0) < Pyl > a
2.5.10. Use (x) to prove a theorem of P. Lévy: Let X, Xo,... be independent and
let S, = X1 +... 4+ X,,. If lim,_, S, exists in probability then it also exists a.s.

2.5.11. Let X1, X5,... beiid. and S, = X1 + ...+ X,,. Use (x) to conclude that if
Sp/n — 0 in probability then (maxi<m<n Sm)/n — 0 in probability.

2.5.12. Let X;,Xs5,... be i.i.d. and S, = X3 + ...+ X,,. Suppose a,, T oo and
a(2™)/a(2"71) is bounded. (i) Use () to show that if S, /a(n) — 0 in probability and
San /a(2™) — 0 a.s. then S, /a(n) — 0 a.s. (ii) Suppose in addition that EX; = 0 and
EX? < oo. Use the previous exercise and Chebyshev’s inequality to conclude that
S, /n'’?(logy n)'/?te — 0 a.s.
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2.6 Large Deviations™

Let X1, Xo,... beiid. and let S, = X7 +- -+ X,,. In this section, we will investigate
the rate at which P(S, > na) — 0 for a > p = EX;. We will ultimately conclude
that if the moment-generating function ¢(0) = Eexp(0X;) < oo for some 6 > 0,
P(S,, > na) — 0 exponentially rapidly and we will identify

1
~v(a) = lim —log P(S, > na)
n—oo n
Our first step is to prove that the limit exists. This is based on an observation
that will be useful several times below. Let m, = P(S,, > na).

Tomtn = P(Sm > ma, Sptm — Sm > na) = Ty,

since Sy, and Sy, 4., — Sy, are independent. Letting «,, = log m,, transforms multipli-
cation into addition.

Lemma 2.6.1. If Yiin = Ym + Yn then as n — 00, Y, /n — sup,,, Ym/m.

Proof. Clearly, limsup v, /n < supym,/m. To complete the proof, it suffices to prove
that for any m liminf ~,, /n > ~,,/m. Writing n = km + ¢ with 0 < £ < m and making
repeated use of the hypothesis gives v, > kv, + v¢. Dividing by n = km + ¢ gives

) 5 ()2t 200

n km + /¢ m n

Letting n — oo and recalling n = km + ¢ with 0 < £ < m gives the desired result. O

Lemma 2.6.1 implies that lim,,_. %log P(S, > na) = y(a) exists < 0. It follows
from the formula for the limit that

P(S, > na) < @ (2.6.1)
The last two observations give us some useful information about v(a

).
Exercise 2.6.1. The following are equivalent: (a) v(a) = —oo, (b) P(X; > a) =0,
and (c) P(S, > na) =0 for all n.

Exercise 2.6.2. Use the definition to conclude that if A € [0,1] is rational then
y(Aa 4+ (1 = A)b) > My(a) + (1 — A)y(b). Use monotonicity to conclude that the last
relationship holds for all A € [0, 1] so « is concave and hence Lipschitz continuous on
compact subsets of y(a) > —oo.

The conclusions above are valid for any distribution. For the rest of this section,
we will suppose:

(H1) ¢(0) = Fexp(X;) < oo for some 6 > 0

Let 6, = sup{f : #(0) < oo}, 6_ = inf{f : ¢p(0) < oo} and note that ¢(d) < oo for
0 € (0_,04). (H1) implies that EX;t < cosou=EXt —EX~ € [-00,00). If > 0
Chebyshev’s inequality implies

" P(S,, > na) < Eexp(0S,) = ¢(0)"
or letting k(6) = log ()
P(S,, > na) < exp(—n{ab — k(0)}) (2.6.2)

Our first goal is to show:
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Lemma 2.6.2. Ifa > pu and 0 > 0 is small then af — k(0) > 0.

Proof. k(0) = logp(0) = 0, so it suffices to show that (i) « is continuous at 0, (ii)
differentiable on (0,6 ), and (iii) ’'(#) — p as # — 0. For then

0
a@—n(@):/o a—r'(x)dr >0

for small 6.
Let F(z) = P(X; < z). To prove (i) we note that if 0 < § < 6y < 0_

9% < 1 4 elor (%)

so by the dominated convergence theorem as 6 — 0

/eo””dFH/lszl

To prove (ii) we note that if |h| < hg then

hx
/ e dy
0

so an application of the dominated convergence theorem shows that

by . PO+ R) —p(0)
#'(0) = Jlim, h
ehr _ 1

lehe — 1| = < |hx|eo®

e dF (z)

= lim
h—0

= /xeemdF(:r) for 6 € (0,64)

From the last equation, it follows that x(0) = log ¢(0) has «/'(6) = ¢'(6)/#(0). Using
() and the dominated convergence theorem gives (iii) and the proof is complete. [

Having found an upper bound on P(S, > na), it is natural to optimize it by
finding the maximum of fa — x(0):

d%{ea —logp(0)} = a—¢'(0)/¢(0)

so (assuming things are nice) the maximum occurs when a = ¢'(0)/¢(8). To turn the
parenthetical clause into a mathematical hypothesis we begin by defining

Fole) =~ | " ar(y)

whenever ¢(0) < oco. It follows from the proof of Lemma 2.6.2 that if 6 € (6_,0),
Fy is a distribution function with mean

/ x dFy(z) = ﬁ /_OO ze? dF (z) = S;/((g))

Repeating the proof in Lemma 2.6.2, it is easy to see that if 8 € (f_,60,) then

¢ (0) = / 2% qF ()

— 00
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So we have
2

20 (20 - i f e =

since the last expression is the variance of Fy. If we assume

(H2) the distribution F' is not a point mass at

then ¢'(0)/p(0) is strictly increasing and af — log ¢(6) is concave. Since we have
©'(0)/¢(0) = p, this shows that for each a > p there is at most one 6, > 0 that solves
a=¢'(0,)/p(0,), and this value of § maximizes af — log ¢(6). Before discussing the
existence of 6, we will consider some examples.

Example 2.6.1. Normal distribution.

/ 7 (2m) V2 exp(—2?/2) da = exp(6?/2) / (27) "2 exp(—(z — 0)?/2) dx

The integrand in the last integral is the density of a normal distribution with mean 6
and variance 1, so ¢() = exp(6?/2), 0 € (—o00,00). In this case, ¢'(6)/p(0) = 0 and

. x

Fy(x) = 6792/2/ eey(27r)71/26792/2 dy
—0o0

is a normal distribution with mean 6 and variance 1.

Example 2.6.2. Exponential distribution with parameter \. If 6 < \

/ ¥ e A dx = N/ (\—0)
0

¢ (0)p(0) =1/(A—0) and

A

- _- ’ Y e~ MY d
)\_006 e Y

Fy(x)
is an exponential distribution with parameter A — 6 and hence mean 1/() — 8).
Example 2.6.3. Coin flips. P(X; =1) = P(X; = —1) = 1/2
0(0) = (" +e7%)/2
¢'(0)/p(0) = (" —e ) /(" +e7%)
Fo({a})/F({z}) = €% /$(0) so
Fo({1}) =¢’/(e” +e™%) and Fp({-1}) =e /(" +e77)

Example 2.6.4. Perverted exponential. Let g(z) = Cx =3¢~ forz > 1, g(x) =0
otherwise, and choose C so that g is a probability density. In this case,

w(f) = /eomg(x)dx < 0
if and only if # < 1, and when 6 < 1, we have

< e e
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Recall 0, = sup{f: ¢(f) < co}. In Examples 2.6.1 and 2.6.2, we have ¢/(6)/6(0) 1
oo as 0 1 04 so we can solve a = ¢'(0)/4(0) for any a > p. In Example 2.6.3,
@'(0)/9(0) 11 as § — oo, but we cannot hope for much more since F' and hence Fy is
supported on {—1,1}.

Exercise 2.6.3. Let z, = sup{z : F(x) < 1}. Show that if z, < co then ¢(f) < 0o
for all # > 0 and ¢'(6)/#(0) — z, as 0 T co.

Example 2.6.4 presents a problem since we cannot solve a = ¢'(0)/p(0) when a > 2.
Theorem 2.6.5 will cover this problem case, but first we will treat the cases in which
we can solve the equation.

Theorem 2.6.3. Suppose in addition to (H1) and (H2) that there is a 6, € (0,0)
so that a = ¢'(0,)/¢(0,). Then, as n — oo,

n~"log P(S, > na) — —a, + log ¢ (6,)

Proof. The fact that the limsup of the left-hand side < the right-hand side follows
from (2.6.2). To prove the other inequality, pick A € (6,,6.), let X, X3, ... be
i.i.d. with distribution F) and let S;) = X7 +---+X;). Writing dF/dF), for the Radon-
Nikodym derivative of the associated measures, it is immediate from the definition
that dF/dFy = e *p(\). If we let F* and F™ denote the distributions of S and
Sy, then

dF™

L 2.6.4. =e Mo\
emma TR e p(N)

Proof. We will prove this by induction. The result holds when n = 1. For n > 1, we
note that

Fr=F""1 % F(z) = /OO dF"(z) /HE dF (y)

— 00 — 00

= / dF? " (z) / AFA(Y) Ligyy<zye ()"
_ A A n
=B (1(33,1+X33z)6 M1t Xn)p(A) )

= [ ampe ety

where in the last two equalities we have used Theorem 1.6.9 for (S, _;, X)) and
S O

If v > a, then the lemma and monotonicity imply

() Pz [ Y e G () > p(A) e (EY () — F (na)

na

F has mean ¢'(A\)/p(N), so if we have a < ¢'(N\)/p(N\) < v, then the weak law of
large numbers implies

F(nv) — FY(na) - 1 asn — oo
From the last conclusion and (x) it follows that

liminf n~*log P(S, > na) > —\v + log ¢(\)

n—oo

Since A > 0, and v > a are arbitrary, the proof is complete. O
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To get a feel for what the answers look like, we consider our examples. To prepare
for the computations, we recall some important information:

k(0) =logp(0) K'(0) = ¢ (0)/p(0) 0, solves k'(0,) = a
~v(a) = lim (1/n)log P(S, > na) = —ab, + «(0,)

n—oo

Normal distribution (Example 2.6.1)
x(0) = 6%/2 K(0) =0 0, =a
y(a) = —ab, + k(0,) = —a?/2

Exercise 2.6.4. Check the last result by observing that S, has a normal distribution
with mean 0 and variance n, and then using Theorem 1.2.3.

Exponential distribution (Example 2.6.2) with A =1

k(0) = —log(1 —0) K(0)=1/(1-0) bo=1-1/a
~v(a) = —aby, + k(0,) = —a+ 1+ loga

With these two examples as models, the reader should be able to do

Exercise 2.6.5. Let X1, Xs,... be i.i.d. Poisson with mean 1, and let S,, = X1 +
-+ + X,. Find lim,_,(1/n)log P(S, > na) for a > 1. The answer and another
proof can be found in Exercise 3.1.4.

Coin flips (Example 2.6.3). Here we take a different approach. To find the 6 that
makes the mean of Fy = a, we set Fp({1}) = €//(e? + e7?) = (1 + a)/2. Letting
x = e gives

2z = (14 a)(z+z71) (a—1Da?>+(1+a)=0

Sox=+/(1+a)/(1—a)and 0, =logz = {log(1 + a) — log(1 — a)}/2.
els 4 e70a ela 1
¢(0a) = 2 :1+a: (I+a)(1—a)
~v(a) = —ab, + k(0,) = —{(1 + a)log(1+a)+ (1 —a)log(l —a)}/2

In Exercise 3.1.3, this result will be proved by a direct computation. Since the formula
for y(a) is rather ugly, the following simpler bound is useful.

Exercise 2.6.6. Show that for coin flips () < exp(p() — 1) < exp(86?) for § < 1
where 8 = Y07, 1/(2n)! ~ 0.586, and use (2.6.2) to conclude that P(S, > an) <
exp(—na®/43) for all a € [0,1]. It is customary to simplify this further by using

g < Zfﬁ:l 27" =1

Turning now to the problematic values for which we cannot solve a = ¢/(6,)/¢(6,),
we begin by observing that if z, = sup{x : F(z) < 1} and F is not a point mass at
x, then ¢/(0)/d(0) T xo as 0 T oo but ¢'(6)/4(0) < zg for all § < co. However, the

result for a = x, is trivial:
1
- log P(S,, > nx,) =log P(X; = z,) foralln

Exercise 2.6.7. Show that as a T x,, v(a) | log P(X; = z,).

When z, = oo, ¢'(0)/¢(0) T 0o as 8 T oo, so the only case that remains is covered by
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Theorem 2.6.5. Suppose z, = 00, 04 < 00, and ¢'(0)/¢(0) increases to a finite
limit ap as 0 7 04. If ap < a < 0

n~tlog P(S, >na) — —af; +logp(6,)
i.e., v(a) is linear for a > ay.

Proof. Since (log p(6)) = ¢'(6)/¢(0), integrating from 0 to 6 shows that log(p(64)) <
oo. Letting 8 = 6, in (2.6.2) shows that the limsup of the left-hand side < the right-
hand side. To get the other direction we will use the transformed distribution F}, for
A =04. Letting 0 T 6, and using the dominated convergence theorem for x < 0 and
the monotone convergence theorem for 2 > 0, we see that F)\ has mean ag. From (x)
in the proof of Theorem 2.6.3, we see that if ag < a <v =a+ 3¢

P(S, > na) > p(\)"e” "M (F}(nv) — F{(na))
and hence

1 1
- log P(Sy, > na) >logp(A\) — Av + - log P(S € (na,nv])

Letting X7, X3, ... be i.i.d. with distribution F and S} = X +--- + X}, we have
P(S) € (na,nv)) > P{Sy_; € ((ap — €)n, (aop + €)n]}
-P{X)} € ((a — ag + €)n, (a — ag + 2€)n]}
1
> §P{X7>l‘ €((a—ap+e€n,(a—ag+e)(n+1)]}

for large n by the weak law of large numbers. To get a lower bound on the right-hand
side of the last equation, we observe that

1
limsup — log P(X} € ((a — ag + €)n, (a — ag + €)(n+1)]) =0

n—oo

for if the lim sup was < 0, we would have E exp(nX;') < oo for some 7 > 0 and hence
Eexp((A+n)X1) < oo, contradicting the definition of A = 6. To finish the argument
now, we recall that Theorem 2.6.1 implies that

lim E log P(Sy, > na) = v(a)

n—oo N
exists, so our lower bound on the limsup is good enough. O

By adapting the proof of the last result, you can show that (H1) is necessary for
exponential convergence:

Exercise 2.6.8. Suppose EX; =0 and Eexp(6X;) = oo for all § > 0. Then
1
—log P(S,, > na) — 0 for all a > 0
n

Exercise 2.6.9. Suppose FX; = 0. Show that if € > 0 then

liminf P(S,, > na)/nP(X; > n(a+¢)>1

n—oo

Hint: Let F,, = {X; > n(a + ¢) for exactly one i < n}.



Chapter 3

Central Limit Theorems

The first four sections of this chapter develop the central limit theorem. The last
five treat various extensions and complements. We begin this chapter by considering
special cases of these results that can be treated by elementary computations.

3.1 The De Moivre-Laplace Theorem

Let X1, Xo,...beiid. with P(X; =1)=P(Xy=-1)=1/2andlet S,, = X;+---+
X,,. In words, we are betting $1 on the flipping of a fair coin and S,, is our winnings
at time n. If n and k are integers

2
P(Ssy, = 2k) = (n fk>2—2n

since Sy, = 2k if and only if there are n + k flips that are +1 and n — k flips that
are —1 in the first 2n. The first factor gives the number of such outcomes and the
second the probability of each one. Stirling’s formula (see Feller, Vol. 1. (1968),
p. 52) tells us

n

nl~n"e "V2rn asn — oo (3.1.1)

where a,, ~ b, means a, /b, — 1 as n — 00, S0

e (2(20)"/?

(n+k)"th(n —k)yn=k (27 (n + k))V/2(27(n — k)12

e S I
(mn) Y2 (1 - f)m : (1 - k)m (3.1.2)

The first two terms on the right are

B )

A little calculus shows that:

and we have

81
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Lemma 3.1.1. Ifc; — 0, a; — oo and ajc; — A then (1 +¢;)% — e.

Proof. As © — 0, log(1 + z)/x — 1, so ajlog(l + ¢;) — A and the desired result
follows. O

Exercise 3.1.1. Generalize the last proof to conclude that if max;<;<p |cj7n| — 0,
> i=1Cim — A, and sup,, 37, [¢jn| < oo then [T, (1+¢jn) — et

Using Lemma 3.1.1 now, we see that if 2k = 2v/2n, i.e., k = x+/n/2, then

k‘2 - —n 2
(1_n2> =(1-2?/2n) " — "/
—k —x4/n/2
(1+%) )Y
n

() - o

—x2/2

— e

(1 +xz/v2n
For this choice of k, k/n — 0, so

and putting things together gives:
Theorem 3.1.2. If 2k/\/2n — @ then P(Sa, = 2k) ~ (7n)~1/2e=7"/2.

Our next step is to compute

P(aV2n < Sy, < bV2n) = > P(Son = m)
melav2n,byv2n]N2Z

Changing variables m = xv/2n, we have that the above is

~ Z (271')71/26712/2 . (2/71)1/2
x€[a,b]N(2Z/V/2n)

where 2Z/v/2n = {22/v/2n : z € Z}. We have multiplied and divided by /2 since
the space between points in the sum is (2/n)Y/2, so if n is large the sum above is

b
~ / (27r)_1/26_12/2dx

The integrand is the density of the (standard) normal distribution, so changing no-
tation we can write the last quantity as P(a < x < b) where y is a random variable
with that distribution.

It is not hard to fill in the details to get:

Theorem 3.1.3. The De Moivre-Laplace Theorem. If a < b then as m — oo

b
Pla < Sp/vm <b)— / (27‘(’)71/2679:2/261.%
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(To remove the restriction to even integers observe Sa, 11 = Sa, £+ 1.) The last result
is a special case of the central limit theorem given in Section 3.4, so further details
are left to the reader.

EXERCISES
The next three exercises illustrate the use of Stirling’s formula. In them, X7, X, ...
are i.id. and S, = X1 + -+ X,,.

3.1.2. If the X; have a Poisson distribution with mean 1, then S, has a Poisson
distribution with mean n, i.e., P(S, = k) = e~"n*/k! Use Stirling’s formula to show
that if (k — n)/y/n — x then

2mnP(S, = k) — exp(—z?/2)

As in the case of coin flips it follows that

b
P(a < (S, —n)/vn<b) — / (2m) 12 /2 4

but proving the last conclusion is not part of the exercise.

In the next two examples you should begin by considering P(S,, = k) when k/n —
a and then relate P(S, =7+ 1) to P(S,, = j) to show P(S,, > k) < CP(S, = k).

3.1.3. Suppose P(X; =1) = P(X; = —1) = 1/2. Show that if a € (0,1)
1
o log P(Say, > 2na) — —v(a)

where v(a) = £{(1 4 a)log(1 + a) + (1 — a)log(1 — a)}.
3.1.4. Suppose P(X; = k) =e '/k! for k=0,1,... Show that if a > 1

1
—log P(Sy, >na) —a—1—aloga
n

3.2 Weak Convergence

In this section, we will define the type of convergence that appears in the central limit
theorem and explore some of its properties. A sequence of distribution functions is
said to converge weakly to a limit F' (written F,, = F) if F},(y) — F(y) for all y that
are continuity points of F. A sequence of random variables X, is said to converge
weakly or converge in distribution to a limit X, (written X,, = X ) if their
distribution functions F,,(z) = P(X,, < ) converge weakly. To see that convergence
at continuity points is enough to identify the limit, observe that F' is right continuous
and by Exercise 1.2.3, the discontinuities of F' are at most a countable set.

3.2.1 Examples

Two examples of weak convergence that we have seen earlier are:

Example 3.2.1. Let X7, X5,... be i.i.d. with P(X; =1) = P(X; = —1) =1/2 and
let S, = X1+ -+ X,,. Then Theorem 3.1.3 implies

Fo(y) = P(Sn/vn <y) — /_y (2m)"V2e " /2 dy
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Example 3.2.2. Let X1, X5, ... be i.i.d. with distribution F'. The Glivenko-Cantelli
theorem (Theorem 2.4.7) implies that for almost every w,

Faly) =n"" Z L(x,, (w)<y) — F(y) for all y

m=1

In the last two examples convergence occurred for all y, even though in the second
case the distribution function could have discontinuities. The next example shows
why we restrict our attention to continuity points.

Example 3.2.3. Let X have distribution F. Then X + 1/n has distribution
F.(z)=P(X+1/n<z)=F(xz—1/n)

Asn — oo, Fp(x) — F(xz—) = limy;, F(y) so convergence only occurs at continuity
points.

Example 3.2.4. Waiting for rare events. Let X, be the number of trials needed
to get a success in a sequence of independent trials with success probability p. Then
P(X,>n)=(1—-p)"!for n=1,2,3,... and it follows from Lemma 3.1.1 that as
p—0,

P(pX,>z)—e ® forallz >0
In words, pX,, converges weakly to an exponential distribution.

Example 3.2.5. Birthday problem. Let X7, X5, ... be independent and uniformly
distributed on {1,..., N}, and let Ty = min{n : X,, = X,,, for some m < n}.

P(Ty >n) = ﬁ (1_771]\—[1)

m=2

When N = 365 this is the probability that two people in a group of size n do not have
the same birthday (assuming all birthdays are equally likely). Using Exercise 3.1.1,
it is easy to see that

P(Tx/NY? > z) — exp(—22/2) for all >0

Taking N = 365 and noting 22/1/365 = 1.1515 and (1.1515)2/2 = 0.6630, this says
that
P (T35 > 22) ~ "% % 0.515

This answer is 2% smaller than the true probability 0.524.

Before giving our sixth example, we need a simple result called Scheffé’s Theo-
rem. Suppose we have probability densities f,, 1 <n < oo, and f, — fo pointwise
as n — 0o0. Then for all Borel sets B

/Bfn(x)dx—/Bfoo(a:)dx

< / @) — foo()|da
- / (oo () — fula))* dz — 0

by the dominated convergence theorem, the equality following from the fact that the
frn > 0 and have integral = 1. Writing p,, for the corresponding measures, we have
shown that the total variation norm

ln — pooll = sup l1in(B) = poo(B)| — 0
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a conclusion stronger than weak convergence. (Take B = (—o0,x].) The example
1y, = a point mass at 1/n (with 1/00 = 0) shows that we may have p,, = e with
llpin — pool| = 1 for all n.

Exercise 3.2.1. Give an example of random variables X,, with densities f, so that
X, = a uniform distribution on (0,1) but f,(z) does not converge to 1 for any
z €10,1].

Example 3.2.6. Central order statistic. Put (2n + 1) points at random in (0,1),
i.e., with locations that are independent and uniformly distributed. Let V,, 11 be the
(n + 1)th largest point. It is easy to see that

Lemma 3.2.1. V,, 1 has density function

Frale) = G4 1) (2 )an(1 -

Proof. There are 2n + 1 ways to pick the observation that falls at =, then we have to
pick n indices for observations < x, which can be done in (2:) ways. Once we have
decided on the indices that will land < x and > «, the probability the corresponding
random variables will do what we want is (1 — z)™, and the probability density
that the remaining one will land at x is 1. If you don’t like the previous sentence
compute the probability X; <z —¢,..., X, <x—€6,r—e< Xp11 <z +¢€ Xpjo >
T+¢€...Xopp1 > x+ € then let € — 0. O

To compute the density function of V;, = 2(V,, 411 —1/2)v/2n, we use Exercise 1.2.5,
or simply change variables x = 1/2 + y/2v/2n, dz = dy/2v/2n to get

pet =) (G+3) (3-3) 375

2n 2n+1 n
= 272 (L—y?/2n)"  —— [ 5
()22 -y 2L 2

The first factor is P(Sa, = 0) for a simple random walk so Theorem 3.1.2 and Lemma
3.1.1 imply that

Fra(y) — 2m) "2 exp(—y?/2) as n — oo

Here and in what follows we write P(Y,, = y) for the density function of Y,,. Using
Scheffé’s theorem now, we conclude that Y,, converges weakly to a standard normal
distribution.

Exercise 3.2.2. Convergence of maxima. Let X, Xo,... be independent with
distribution F, and let M,, = max,,<, Xpm. Then P(M, < x) = F(z)". Prove the
following limit laws for M,,:

(i) If F(z) =1—2~“ for x > 1 where o > 0 then for y > 0
P(M, /0" < y) — exp(-y~*)

(ii) If F(x) =1 — |z|® for —1 <z < 0 where 8 > 0 then for y < 0
P(n!/?M, < y) — exp(~y|”)

(i) If F(x) =1 — e * for z > 0 then for all y € (—o0, 00)

P(M,, —logn < y) — exp(—e™¥)
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The limits that appear above are called the extreme value distributions. The last
one is called the double exponential or Gumbel distribution. Necessary and
sufficient conditions for (M,, — b,)/a, to converge to these limits were obtained by
Gnedenko (1943). For a recent treatment, see Resnick (1987).

Exercise 3.2.3. Let X;, Xo,... be i.i.d. and have the standard normal distribution.
(i) From Theorem 1.2.3, we know

—x2/2

P(X;>x)~ e as & — 00

1
V2rmx
Use this to conclude that for any real number 6

P(X; >z 4 (0/z))/P(X; >z) — e
(ii) Show that if we define b, by P(X; > b,) = 1/n
P(b,(M,, —b,) <x) — exp(—e™ %)

(iii) Show that b, ~ (2logn)'/? and conclude M,,/(2logn)'/? — 1 in probability.

3.2.2 Theory

The next result is useful for proving things about weak convergence.

Theorem 3.2.2. If F,, = F,, then there are random variables Yy, 1 < n < oo, with
distribution F,, so thatY, — Y5 a.s.

Proof. Let Q = (0,1), F = Borel sets, P = Lebesgue measure, and let Y, (z) =
sup{y : F,(y) < z}. By Theorem 1.2.2, Y,, has distribution F,,. We will now show
that Y,,(z) — Yo (z) for all but a countable number of z. To do this, it is convenient to
write Y, (x) as F,; }(x) and drop the subscript when n = co. We begin by identifying
the exceptional set. Let a, = sup{y : F(y) < z}, b, = inf{y : F(y) > =}, and Qy =
{z : (az,bs) = 0} where (a,,b,) is the open interval with the indicated endpoints.
Q—Qy is countable since the (a,,b,) are disjoint and each nonempty interval contains
a different rational number. If z € Qg then F(y) < z for y < F~!(z) and F(z) > z
for 2 > F~1(z). To prove that F, }(z) — F~!(z) for z € Qy, there are two things to
show:

(a) liminf, o F; () > F~1(2)
Proof of (a). Let y < F~'(x) be such that F is continuous at y. Since z € €y,

F(y) < x and if n is sufficiently large F,(y) < z, i.e., F,;(x) > y. Since this holds
for all y satisfying the indicated restrictions, the result follows.

(b) limsup,, o, Fy ' (x) < F~(a)

n

Proof of (b). Let y > F~1(x) be such that F is continuous at y. Since z € Qo,
F(y) > z and if n is sufficiently large F,,(y) > z, i.e., F,;*(z) < y. Since this holds
for all y satisfying the indicated restrictions, the result follows and we have completed
the proof. O

Theorem 3.2.2 allows us to immediately generalize some of our earlier results.

Exercise 3.2.4. Fatou’s lemma. Let g > 0 be continuous. If X,, = X, then

liminf Eg(X,) > Fg(Xx)

n—oo
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Exercise 3.2.5. Integration to the limit. Suppose g, h are continuous with g(z) >
0, and |h(z)|/g(z) — 0 as |z| — oo. If F,, = F and [ g(z) dF,(z) < C' < oo then

/ h(z) dF,(z) — / h(z)dF(z)

The next result illustrates the usefulness of Theorem 3.2.2 and gives an equivalent
definition of weak convergence that makes sense in any topological space.

Theorem 3.2.3. X,, = X, if and only if for every bounded continuous function g
we have Eg(X,) — Eg(X).

Proof. Let Y, have the same distribution as X,, and converge a.s. Since g is continuous
9(Ys) — g(Y) a.s. and the bounded convergence theorem implies

Eg(Xn) = Eg(Yn) — Eg(Yoo) = Eg(X)
To prove the converse let

1 y<uz
99:,6(9): 0 y=>ar+te
linear z<y<x+e€

Since gy (y) =1 for y < z, gy is continuous, and g, (y) =0 for y > x + ¢,

limsup P(X,, < z) <limsup Eg, (Xpn) = Egz.(Xoo) < P(Xoo <z +¢)
Letting € — 0 gives limsup,,_, . P(X, < z) < P(Xs < z). The last conclusion is
valid for any x. To get the other direction, we observe

liminf P(X,, <z) > liminf Egy ¢ (Xn) = Egs—c,e(Xoo) > P(Xoo <z —¢€)
Letting € — 0 gives liminf, o P(X,, < ) > P(Xo < 2) = P(Xoo < z) if z is
a continuity point. The results for the limsup and the liminf combine to give the
desired result. O

The next result is a trivial but useful generalization of Theorem 3.2.3.

Theorem 3.2.4. Continuous mapping theorem. Let g be a measurable function
and Dy = {x : g is discontinuous at z}. If X,, = X and P(Xs € Dy) = 0 then
9(Xyn) = g(X). If in addition g is bounded then Eg(X,) — Fg(X).

Remark. D, is always a Borel set. See Exercise 1.3.6.

Proof. Let Y,, =4 X,, with Y,, — Y, a.s. If f is continuous then D;,, C D, so
P(Ys € Dyog) = 0 and it follows that f(g(Y,)) — f(9(Ys)) a.s. If, in addition, f
is bounded then the bounded convergence theorem implies Ef(g(Y,)) — Ef(9(Yx)).
Since this holds for all bounded continuous functions, it follows from Theorem 3.2.3
that g(X,) = g(Xao).

The second conclusion is easier. Since P(Y, € Dy) =0, g(¥;,) — g9(Y) a.s., and
the desired result follows from the bounded convergence theorem. O

The next result provides a number of useful alternative definitions of weak con-
vergence.



88 CHAPTER 3. CENTRAL LIMIT THEOREMS

Theorem 3.2.5. The following statements are equivalent: (i) X,, = Xoo

(i) For all open sets G, liminf, .., P(X, € G) > P(X. € G).

(iii) For all closed sets K, limsup,,_, . P(X, € K) < P(X» € K).

(iv) For all Borel sets A with P(Xo € 0A) =0, lim,,_,oo P(X,, € A) = P(X& € A).

Remark. To help remember the directions of the inequalities in (ii) and (iii), consider
the special case in which P(X,, = z,,) = 1. In this case, if z,, € G and z,, — 2, € G,
then P(X,, € G) =1 for all n but P(Xo € G) = 0. Letting K = G° gives an example
for (iii).

Proof. We will prove four things and leave it to the reader to check that we have
proved the result given above.

(i) implies (ii): Let Y, have the same distribution as X,, and ¥;,, — Y a.s. Since G
is open
lim inf 1g(Yn) Z lg(Yoo)

n—oo
so Fatou’s Lemma implies

liminf P(Y,, € G) > P(Ys € G)

n—oo

(ii) is equivalent to (iii): This follows easily from: A is open if and only if A€ is closed
and P(A) + P(A°) = 1.

(i) and (iii) imply (iv): Let K = A and G = A° be the closure and interior of A
respectively. The boundary of A, 9A = A — A° and P(X € 04) =0 so

P(Xp € K)=P(Xe € A) = P(X € G)
Using (ii) and (iii) now

limsup P(X,, € A) <limsup P(X, € K) < P(Xo € K) = P(X € A)

n—oo n—o0o

liminf P(X,, € A) > liminf P(X,, € G) > P(Xs € G) = P(Xs € A)

n—oo n— 00

(iv) implies (i): Let  be such that P(Xo = z) = 0, i.e., x is a continuity point of F,
and let A = (—o0, z]. O

The next result is useful in studying limits of sequences of distributions.

Theorem 3.2.6. Helly’s selection theorem. For every sequence Fy, of distribution
Junctions, there is a subsequence Fy, ) and a right continuous nondecreasing function
F so that limyg o Fyy1)(y) = F(y) at all continuity points y of F.

Remark. The limit may not be a distribution function. For example if a+b+c =1
and I, () = a 1(z>n) + b 1(z>_pn) + ¢ G(z) where G is a distribution function, then
Fo(z) = F(z) = b+ cG(z),

lim F(z)=b and lim F(z)=b+c=1-a
r|—o0 zToo

In words, an amount of mass a escapes to 400, and mass b escapes to —oo. The type

of convergence that occurs in Theorem 3.2.6 is sometimes called vague convergence,

and will be denoted here by =,,.
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Proof. The first step is a diagonal argument. Let ¢, go, ... be an enumeration of the
rationals. Since for each k, F,,(qx) € [0,1] for all m, there is a sequence my (i) — oo
that is a subsequence of my_1(j) (let mo(j) = j) so that

Frn i) (qr) converges to G(gx) as i — oo

Let Fy(k) = Fin, (k). By construction F),x)(q) — G(q) for all rational . The function
G may not be right continuous but F(z) = inf{G(q) : ¢ € Q, ¢ > z} is since

lirln F(z,) =1inf{G(q) : ¢ € Q, ¢ > z,, for some n}
=inf{G(¢) : g € Q,¢ >z} = F(x)

To complete the proof, let = be a continuity point of F. Pick rationals r1, 79, s with
ry <ro < x < s so that

Fz)—e< F(r1)) < F(rg) < F(z) < F(s) < F(z)+¢

Since Fy ) (re) — G(r2) > F(r1), and Fj,x)(s) — G(s) < F(s) it follows that if k is
large
Fz)—e< Fn(k)(Tg) < Fn(k) () < Fn(k)(s) < F(z)+e

which is the desired conclusion. O

The last result raises a question: When can we conclude that no mass is lost in
the limit in Theorem 3.2.67

Theorem 3.2.7. Every subsequential limit is the distribution function of a probability
measure if and only if the sequence F,, is tight, i.e., for all € > 0 there is an M, so
that

limsupl — F,(M,) + F,(—M.) < e
Proof. Suppose the sequence is tight and Fj,(xy =, F. Let r < —M, and s > M, be
continuity points of F. Since F,,(r) — F(r) and F,(s) — F(s), we have

1-— F(S) + F(r) = klim 1-— Fn(k)(s) + Fn(k)(’l“)
—00
<limsup1— Fn(Me) + Fn(fMe) <e

n—oo

The last result implies limsup, ,. 1 — F'(z) + F(—x) < e. Since € is arbitrary it
follows that F' is the distribution function of a probability measure.

To prove the converse now suppose Fj, is not tight. In this case, there is an € > 0
and a subsequence n(k) — oo so that

1-— Fn(k)(/ﬂ) + Fn(k)(—k) > €

for all k. By passing to a further subsequence F}, ;) we can suppose that Fy,,) = F.
Let 7 < 0 < s be continuity points of F'.

1—F(s)+ F(r) = jlirgo 1- Fn(kj)(s) + Fn(kj)(r)

> liminf 1 — Fn(kj)(kj) + Fn(kj)(—k‘j) > €

J—o0

Letting s — oo and r — —o0, we see that F' is not the distribution function of a
probability measure. O
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The following sufficient condition for tightness is often useful.

Theorem 3.2.8. If there is a ¢ > 0 so that p(z) — 00 as |z| — oo and

C= stlep/go(x)an(x) < o0

then F,, is tight.

Proof. 1 — F,(M)+ F,(—M) < C/inf 5> (). O
The first two exercises below define metrics for convergence in distribution. The

fact that convergence in distribution comes from a metric immediately implies

Theorem 3.2.9. If each subsequence of X,, has a further subsequence that converges
to X then X, = X.

We will prove this again at the end of the proof of Theorem 3.3.6.
EXERCISES
3.2.6. The Lévy Metric. Show that
p(F,G)=inf{e: F(x —€) —e < G(z) < F(z+¢) + e forall z}
defines a metric on the space of distributions and p(F,,, F') — 0 if and ouly if F,, = F.
3.2.7. The Ky Fan metric on random variables is defined by
a(X,)Y)=inf{e>0: P(|X = Y| >¢) <€}
Show that if a(X,Y) = « then the corresponding distributions have Lévy distance
p(F,G) < a.

3.2.8. Let a(X,Y) be the metric in the previous exercise and let 5(X,Y) = E(|X —
Y|/(1+|X —Y])) be the metric of Exercise 2.3.8. If a(X,Y’) = a then

a®/(1+a) <B(X,Y)<a+(1-a)a/(1+a)
3.2.9. If F,, = F and F is continuous then sup, |Fy,(z) — F(z)| — 0.

3.2.10. If F is any distribution function there is a sequence of distribution functions
of the form Zzlzl an,ml(z, <z With F;, = F. Hint: use Theorem 2.4.7.

3.2.11. Let X,,, 1 < n < oo, be integer valued. Show that X, = X, if and only if
P(X,, =m) — P(Xsx =m) for all m.

3.2.12. Show that if X,, — X in probability then X,, = X and that, conversely, if
X, = ¢, where c is a constant then X,, — ¢ in probability.

3.2.13. Converging together lemma. If X,, = X and Y,, = ¢, where c is a
constant then X,, + Y, = X + ¢. A useful consequence of this result is that if
X, = X and Z,, — X,, = 0 then Z,, = X.

3.2.14. Suppose X,, = X, Y, > 0, and Y;, = ¢, where ¢ > 0 is a constant then
X.,Y,, = cX. This result is true without the assumptions Y,, > 0 and ¢ > 0. We have
imposed these only to make the proof less tedious.

3.2.15. Show that if X,, = (X},..., X") is uniformly distributed over the surface of
the sphere of radius v/n in R™ then X! = a standard normal. Hint: Let Y7,Ys,...
be i.i.d. standard normals and let X! = Y;(n/Y " _ Y,2)1/2.

3.2.16. Suppose Y, > 0, EY,* — 1 and EY,? — 1 for some 0 < a < 3. Show that
Y,, — 1 in probability.

3.2.17. For each K < oo and y < 1 there is a ¢, x > 0 so that EX? = 1 and
EX* < K implies P(|X| > y) > ¢, k.
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3.3 Characteristic Functions

This long section is divided into five parts. The first three are required reading,
the last two are optional. In the first part, we show that the characteristic function
o(t) = Eexp(itX) determines F(z) = P(X < z), and we give recipes for computing F
from . In the second part, we relate weak convergence of distributions to the behavior
of the corresponding characteristic functions. In the third part, we relate the behavior
of ¢(t) at 0 to the moments of X. In the fourth part, we prove Polya’s criterion and
use it to construct some famous and some strange examples of characteristic functions.
Finally, in the fifth part, we consider the moment problem, i.e., when is a distribution
characterized by its moments.

3.3.1 Definition, Inversion Formula

If X is a random variable we define its characteristic function (ch.f.) by
©(t) = Be'™™ = FcostX +iFsintX

The last formula requires taking the expected value of a complex valued random
variable but as the second equality may suggest no new theory is required. If Z is
complex valued we define EZ = E(ReZ) + iE(Im Z) where Re(a + bi) = a is the
real part and Im (a+bi) = b is the imaginary part. Some other definitions we will
need are: the modulus of the complex number z = a + bi is |a + bi| = (a® + b*)'/?,
and the complex conjugate of z = a + bi, Z = a — bi.

Theorem 3.3.1. All characteristic functions have the following properties:
(a) p(0) =1,
(b) p(=t) = (1),
(c) lp(t)| = |Ee"X| < Ele"™¥| =1
(d) |o(t+ h) — p(t)] < Ble?"X — 1|, so ¢(t) is uniformly continuous on (—oo, 00).
(e) BEet(aX+b) — citb (1)
Proof. (a) is obvious. For (b) we note that
p(—t) = E(cos(—tX) + isin(—tX)) = E(cos(tX) — isin(tX))

1/2

(c) follows from Exercise 1.6.2 since ¢(z,y) = (22 + y*)!/? is convex.

lp(t+ 1) — p(t)] = |B(e WX — %))

< E|ei(t+h)X _ ez’tXl — EleihX _ 1|

so uniform convergence follows from the bounded convergence theorem. For (e) we
note Eeit(aX—l—b) _ ezthez(ta)X _ e”bgo(at). 0

The main reason for introducing characteristic functions is the following:

Theorem 3.3.2. If X; and X5 are independent and have ch.f.’s 1 and @y then
X1+ X3 has ch.f. o1(t)pa(t).

Proof.
Eeit(XlJrXQ) — E(eitXleith) — EeitXlEeitXQ

since X1 and X2 are independent. O
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The next order of business is to give some examples.
Example 3.3.1. Coin flips. If P(X =1) = P(X = —1) = 1/2 then
Ee™ = (e +e7)/2 = cost

Example 3.3.2. Poisson distribution. If P(X = k) = e *\*/k! for k =0,1,2,...
then

ix _ N AN it
Ee™t = Z e = exp(A(e — 1))
k=0 '

Example 3.3.3. Normal distribution

Density  (27) /2 exp(—22/2)
Ch.f. exp(—t%/2)

Combining this result with (e) of Theorem 3.3.1, we see that a normal distribution
with mean g and variance o2 has ch.f. exp(iut — 0?t?/2). Similar scalings can be
applied to other examples so we will often just give the ch.f. for one member of the
family.

Physics Proof
/eitx(27r)71/267:62/2 do — 642/2 /(271_)71/267(1721)2/2 da

The integral is 1 since the integrand is the normal density with mean it and variance
1. |

Math Proof. Now that we have cheated and figured out the answer we can verify it
by a formal calculation that gives very little insight into why it is true. Let

o(t) = /eim@ﬂ')_l/ze_xz/zda: = /costa: (27T)_1/26_’”2/2dx

since ¢ sin tx is an odd function. Differentiating with respect to ¢ (referring to Theorem
A.5.1 for the justification) and then integrating by parts gives

o'(t) = /—x sintz (2m) Y 2e % /2 dy
=— /tcosta? (2#)_1/26_”2/2dﬂc = —tp(t)

This implies £ {¢(t) exp(t?/2)} = 0 so p(t) exp(t?/2) = ¢(0) = 1. |
In the next three examples, the density is 0 outside the indicated range.

Example 3.3.4. Uniform distribution on (a,b)

Density 1/(b—a) x € (a,b)
Ch.f. (e — eita) ) it(b— a)

In the special case a = —c, b = ¢ the ch.f. is (¢ — =€) /2cit = (sinct)/ct.

Proof. Once you recall that f: e’ dx = (e* — e*) /) holds for complex A, this is
immediate. O
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Example 3.3.5. Triangular distribution

Density 1 — |z| z e (-1,1)
Ch.f. 2(1 — cost)/t?

Proof. To see this, notice that if X and Y are independent and uniform on (—1/2,1/2)
then X + Y has a triangular distribution. Using Example 3.3.4 now and Theorem
3.3.2 it follows that the desired ch.f. is

{(e/2 — e7it/2) /it}2 = {25in(t/2)/t}?

Using the trig identity cos20 = 1 — 2sin? § with § = /2 converts the answer into the
form given above. O

Example 3.3.6. Exponential distribution

Density e~ 7 x € (0,00)
Ch.f.  1/(1—it)

Proof. Integrating gives

1Y | OO
/oo eitze—wdx _ e(zt 1z _ 1
0 it—1|, 1—it

since exp((it — 1)x) — 0 as  — oo. O

For the next result we need the following fact which follows from the fact that

Jfd(p+v)= [ fdu+ [ fdv.

Lemma 3.3.3. If Fy,..., F, have ch.f. p1,...,0n and A; >0 have A\ +...+ X, =1
then Y i M F; has ch.f. 0 Nigi.

Example 3.3.7. Bilateral exponential

Density 2e~ 1! x € (—00,00)
Ch.f. 1/(14t%)

Proof This follows from Lemma 3.3.3 with F} the distribution of an exponential ran-
dom variable X, Fy the distribution of —X, and Ay = A2 = 1/2 then using (b) of
Theorem 3.3.1 we see the desired ch.f. is

1 1 (1 +dt) + (1 —it) 1

20 —it) 20+ 20+ 1+ -

Exercise 3.3.1. Show that if ¢ is a ch.f. then Re¢ and |p|? are also.

The first issue to be settled is that the characteristic function uniquely determines
the distribution. This and more is provided by

Theorem 3.3.4. The inversion formula. Let o(t) = [€'®u(dz) where p is a
probability measure. If a < b then

T e—ita _ e—itb
nm@w*/)——f———ﬂwm=uwm+§mmmb

T—oo -T 1t
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Remark. The existence of the limit is part of the conclusion. If yu = gy, a point mass
at 0, ¢(t) = 1. In this case, if @ = —1 and b = 1, the integrand is (2sint)/t and the
integral does not converge absolutely.

Proof. Let

T _—ita _ ,—ith T —ita _ ,—ith
e[ St ewa [t i

The integrand may look bad near ¢t = 0 but if we observe that

—ita —itb b

e " —e »
1t :/ e &y
? a

we see that the modulus of the integrand is bounded by b — a. Since pu is a probability
measure and [T, T] is a finite interval it follows from Fubini’s theorem, cos(—z) =
cosz, and sin(—z) = —sinz that

T _—ita _ ,—ith
Ir = / / C et g p(da)
T it

S e g [ )

Introducing R(6,T) = fTT(sin 0t)/tdt, we can write the last result as
(+) Ir = [{R(s— . T) = Rz~ b.)}ulde)

If we let S(T) = fOT(sin x)/x dx then for § > 0 changing variables ¢ = /0 shows that

TO -
R(0,T) =2 / ST dw = 28(T0)
0 X

while for § < 0, R(0,T) = —R(|0|,T). Introducing the function sgnx, which is 1 if
x>0, —1if x <0, and 0 if x = 0, we can write the last two formulas together as

R(0,T) =2(sgn)S(T)0|)
As T — o0, S(T) — /2 (see Exercise 1.7.5), so we have R(0,T) — 7 sgn and

2r a<ax <b
Rx—a,T)—R(z—-bT)—>(m x=aorz=0
0 xz<aorxz>b

|R(0,T)| < 2sup, S(y) < oo, so using the bounded convergence theorem with (x)
implies

(2m) "1z — o, b) + (b))

proving the desired result. O
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Exercise 3.3.2. (i) Imitate the proof of Theorem 3.3.4 to show that

(ii) If P(X € hZ) = 1 where h > 0 then its ch.f. has p(27/h +t) = p(t) so

h w/h )
P(X =)= - / et or € 12

(iii) If X = Y + b then Eexp(itX) = e®®Eexp(itY). So if P(X € b+ hZ) = 1, the
inversion formula in (ii) is valid for € b+ hZ.

Two trivial consequences of the inversion formula are:
Exercise 3.3.3. If ¢ is real then X and —X have the same distribution.

Exercise 3.3.4. If X;, i = 1,2 are independent and have normal distributions with
mean 0 and variance J?, then X7 + X5 has a normal distribution with mean 0 and
variance o? + 03.

The inversion formula is simpler when ¢ is integrable, but as the next result shows
this only happens when the underlying measure is nice.

Theorem 3.3.5. If [ |p(t)|dt < oo then p has bounded continuous density

fly) = — / e (t) di

T o

Proof. As we observed in the proof of Theorem 3.3.4

b .
/ 6fzty dy
a

so the integral in Theorem 3.3.4 converges absolutely in this case and

efita _ efitb

1t

<[b—a

oS} e—ita _ e—itb —a 00
la,t) + gultat)) = o [~ 2w < L2 [ e

The last result implies ¢ has no point masses and

1 et _ e—it(m+h)

1 x+h )
by / e Wy | (t)dt
Tr xT
x+h 1 )
/ (2/ e Wp(t) dt) dy
z ™

by Fubini’s theorem, so the distribution p has density function

w(x,x + h)

1) =5 [ et di

The dominated convergence theorem implies f is continuous and the proof is complete.
O
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Exercise 3.3.5. Give an example of a measure p with a density but for which
J l(t)]dt = oco. Hint: Two of the examples above have this property.

Exercise 3.3.6. Show that if X;,..., X, are independent and uniformly distributed
n (—1,1), then for n > 2, X; + --- + X,, has density

f(z) = l/Do(silrlt/t)"costac dt
0

™

Although it is not obvious from the formula, f is a polynomial in each interval (k, k +
1), k € Z and vanishes on [—n,n]°.

Theorem 3.3.5 and the next result show that the behavior of  at infinity is related
to the smoothness of the underlying measure.

Exercise 3.3.7. Suppose X and Y are independent and have ch.f. ¢ and distribution
1. Apply Exercise 3.3.2 to X — Y and use Exercise 2.1.8 to get

lim o [ el de = PX ~ Y =0) = 3 ul{a))?

Remark. The last result implies that if p(¢t) — 0 as t — oo, p has no point masses.
Exercise 3.3.13 gives an example to show that the converse is false. The Riemann-
Lebesgue Lemma (Exercise 1.4.4) shows that if ¢ has a density, ¢(t) — 0 as t — oo.

Applying the inversion formula Theorem 3.3.5 to the ch.f. in Examples 3.3.5 and
3.3.7 gives us two more examples of ch.f. The first one does not have an official name
so we gave it one to honor its role in the proof of Polya’s criterion, see Theorem 3.3.10.

Example 3.3.8. Polya’s distribution

Density (1 — cosz)/ma?
Ch.f. (1—1th*

Proof. Theorem 3.3.5 implies

1 [2(1—coss)

—1is _ +
2 € Yds = (1 - |y|)

21 s
Now let s =z, y = —t. O
Example 3.3.9. The Cauchy distribution

Density 1/7(1 + 2?)
Ch.f. exp(—|t|)

Proof. Theorem 3.3.5 implies

1 I 1 _
_ ds = —e~ 1l
2r ) 1+ 52° s c
Now let s = z, y = —t and multiply each side by 2. O

Exercise 3.3.8. Use the last result to conclude that if X3, X5, ... are independent
and have the Cauchy distribution, then (X; + --- + X,,)/n has the same distribution
as Xq.
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3.3.2 Weak Convergence

Our next step toward the central limit theorem is to relate convergence of character-
istic functions to weak convergence.

Theorem 3.3.6. Continuity theorem. Let p,,, 1 < n < oo be probability measures
with ch.f. on. (1) If fin = foo then @n(t) — woo(t) for all t. (i) If ©n(t) converges
pointwise to a limit o(t) that is continuous at 0, then the associated sequence of
distributions p, s tight and converges weakly to the measure p with characteristic
function .

Remark. To see why continuity of the limit at 0 is needed in (ii), let u,, have a normal
distribution with mean 0 and variance n. In this case ¢, (t) = exp(—nt?/2) — 0 for
t # 0, and ¢,(0) = 1 for all n, but the measures do not converge weakly since
tn((—00,2]) — 1/2 for all z.

Proof. (i) is easy. €' is bounded and continuous so if p,, = fise then Theorem 3.2.3
implies ¢, (t) — Yoo (t). To prove (ii), our first goal is to prove tightness. We begin
with some calculations that may look mysterious but will prove to be very useful.

u . u 2S'
/ 1—emdt:2u—/ (costx +isintz) dt = 2u — U
x

—Uu —Uu

Dividing both sides by u, integrating u.,(dz), and using Fubini’s theorem on the
left-hand side gives

u! /2(1 — (b)) dt = 2/ <1 - Siz;‘x> i (d2)

To bound the right-hand side, we note that

x
|sinz| = ‘/ cos(y) dy‘ <|z| forall z
0

so we have 1 — (sinux/uz) > 0. Discarding the integral over (—2/u,2/u) and using
|sinuz| <1 on the rest, the right-hand side is

> 9 /M/u (1 - |u1x|) ponldr) > pn({ [2] > 2/u})

Since p(t) — 1 as t — 0,

u_l/ (1-¢(t))dt = 0asu—0

—Uu

Pick u so that the integral is < e. Since @, (t) — ¢(t) for each t, it follows from the
bounded convergence theorem that for n > N

2 >t /_u (1—pn@)dt > pn{z: || > 2/u}

Since € is arbitrary, the sequence p,, is tight.

To complete the proof now we observe that if p,x) = u, then it follows from
the first sentence of the proof that p has ch.f. ¢. The last observation and tightness
imply that every subsequence has a further subsequence that converges to u. I claim
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that this implies the whole sequence converges to p. To see this, observe that we
have shown that if f is bounded and continuous then every subsequence of [ fduy,
has a further subsequence that converges to [ f du, so Theorem 2.3.3 implies that the
whole sequence converges to that limit. This shows [ fdu, — [ fdu for all bounded
continuous functions f so the desired result follows from Theorem 3.2.3. O

Exercise 3.3.9. Suppose that X,, = X and X, has a normal distribution with mean
0 and variance o2. Prove that 02 — o2 € [0, 00).

Exercise 3.3.10. Show that if X,, and Y, are independent for 1 < n < oo, X, = X,
and Y,, = Y, then X, +Y, = X + Y.

Exercise 3.3.11. Let X{, X5, ... be independent and let S,, = X1 +--- + X,,. Let
©; be the ch.f. of X; and suppose that S,, — S a.s. Then S, has ch.f. H;}il ©;(t).

Exercise 3.3.12. Using the identity sint = 2sin(¢/2) cos(t/2) repeatedly leads to
(sint)/t = [[,°_; cos(t/2™). Prove the last identity by interpreting each side as a
characteristic function.

Exercise 3.3.13. Let X, Xo,... be independent taking values 0 and 1 with proba-
bility 1/2 each. X =235, X; /37 has the Cantor distribution. Compute the ch.f. ¢

of X and notice that ¢ has the same value at t = 3*7 for k = 0,1,2, ...

3.3.3 Moments and Derivatives

In the proof of Theorem 3.3.6, we derived the inequality

u

wlx e |z| > 2/u} < ufl/ (1 —(t))dt (3.3.1)
which shows that the smoothness of the characteristic function at 0 is related to the
decay of the measure at co. The next result continues this theme. We leave the proof
to the reader. (Use Theorem A.5.1.)

Exercise 3.3.14. If [ |z|"u(dz) < oo then its characteristic function ¢ has a contin-
uous derivative of order n given by o™ (t) = [(iz)"e"® u(dx).

Exercise 3.3.15. Use the last exercise and the series expansion for e=t*/2 to show

that the standard normal distribution has

EX?" = (2n)!/2"n! = (2n —1)(2n —3) ---3-1 = (2n — 1)!!

The result in Exercise 3.3.14 shows that if F|X|" < oo, then its characteristic
function is n times differentiable at 0, and ¢™(0) = E(iX)™. Expanding ¢ in a Taylor

series about 0 leads to .

E(itX)™
oty = S EUXT o)
m!
m=0
where o(t") indicates a quantity g(t) that has g(t)/t™ — 0 as t — 0. For our purposes
below, it will be important to have a good estimate on the error term, so we will now

derive the last result. The starting point is a little calculus.

a2
< min ((n O (3.3.2)

Lemma 3.3.7.

eiz _ Z (an)'

m=0




3.3. CHARACTERISTIC FUNCTIONS 99

The first term on the right is the usual order of magnitude we expect in the correction
term. The second is better for large |x| and will help us prove the central limit theorem
without assuming finite third moments.

Proof. Integrating by parts gives

x 1l 7 z .
/ (x —s5)"e ds = + / (x — s)" e ds
0 0

n+1l n+1

/ e’sds:x—i—i/ (x —s)e*® ds
0 0

The left-hand side is (e!* — 1)/i, so rearranging gives

When n = 0, this says

x
ezzl—l—ix—kiz/ (z — s)eds
0
Using the result for n = 1 now gives
—1+m+——|——/ (x — s)%eds

and iterating we arrive at

, O M e .
(a) e””—z( ) = /O(x—s)"e”ds

m/! n!

m=0

To prove the result now it only remains to estimate the “error term” on the right-hand
side. Since |e"*] < 1 for all s,

7;n—i—l x )
/ (x — s)"e"ds
0

n+1 |
- < |/ (n + 1)1

(b)

The last estimate is good when z is small. The next is designed for large x. Integrating

by parts
—/ (x —s)"e¥ds = —— —|—/ (x —s)" " teds
" Jo n 0

Noticing 2™ /n = [ (x — s)"~'ds now gives

l'n+1 i

m A (.’L‘ _ S)neisds — m/o (m _ s)n—l(ez’s _ 1)d8
and since |e®® — 1] < 2, it follows that

T L L e e .
c n!oxses_(nil)!oxs s

Combining (a), (b), and (c) we have the desired result. O

< 2|z|"/n!

Taking expected values, using Jensen’s inequality, applying Theorem 3.3.2 to z =
tX, gives

(X (itX)™
S Bt - Z m!
m=0

< Emin ([tX|"", 2t X|") (3.3.3)

ti Z E
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where in the second step we have dropped the denominators to make the bound
simpler.
In the next section, the following special case will be useful.

Theorem 3.3.8. If E|X|?> < oo then
o(t) =1+ itEX —t2B(X?)/2 4 o(t?)

Proof. The error term is < t2E(|t| - |X|> A 2|X|?). The variable in parentheses is
smaller than 2| X|? and converges to 0 as t — 0, so the desired conclusion follows from
the dominated convergence theorem. O

Remark. The point of the estimate in (3.3.3) which involves the minimum of two
terms rather than just the first one which would result from a naive application of
Taylor series, is that we get the conclusion in Theorem 3.3.8 under the assumption
E|X|? < o0, i.e., we do not have to assume E|X|3 < oco.

Exercise 3.3.16. (i) Suppose that the family of measures {p;,¢ € I} is tight, i.e.,
sup,; ui([—M, M]¢) — 0 as M — oo. Use (d) in Theorem 3.3.1 and (3.3.3) with n =0
to show that their ch.f.’s ¢; are equicontinuous, i.e., if € > 0 we can pick é > 0 so that
if |h] < & then |p;(t + h) — @i(t)] < e. (ii) Suppose pn, = poo. Use Theorem 3.3.6
and equicontinuity to conclude that the ch.f.’s ¢, — @ uniformly on compact sets.
[Argue directly. You don’t need to go to AA.] (iii) Give an example to show that the
convergence need not be uniform on the whole real line.

Exercise 3.3.17. Let X7, X5, ... be i.i.d. with characteristic function ¢. (i) If ¢’(0) =
ia and S, = X1+ - -+X,, then S,,/n — a in probability. (ii) If S,,/n — a in probability
then ¢(t/n)" — €' as n — oo through the integers. (iii) Use (ii) and the uniform
continuity established in (d) of Theorem 3.3.1 to show that (¢(h) —1)/h — —ia as
h — 0 through the positive reals. Thus the weak law holds if and only if ¢'(0) exists.
This result is due to E.J.G. Pitman (1956), with a little help from John Walsh who
pointed out that we should prove (iii).

The last exercise in combination with Exercise 2.2.4 shows that ¢’(0) may exist
when E|X| = oo.

Exercise 3.3.18. 2 [[°(1 — Re(t))/(xt?)dt = [ |y|dF(y). Hint: Change variables
2 = |y|t in the density function of Example 3.3.8, which integrates to 1.

The next result shows that the existence of second derivatives implies the existence
of second moments.

Theorem 3.3.9. If limsup,, | o{¢(h) — 2¢(0) + ¢(—h)}/h? > —oco, then E|X|* < co.

Proof. (eth® —2 + =) /p2 = —2(1 — coshx)/h? < 0 and 2(1 — cos hz)/h? — 22 as
h — 0 so Fatou’s lemma and Fubini’s theorem imply

1 —coshx
2 .
/m dF(z) < 2112nﬂ1(r)1f TdF(x)
_9 _
— Jimsup 2P w(g) to=h) _
h—0 h
which proves the desired result. U

Exercise 3.3.19. Show that if lim;o(¢(t) — 1)/t = ¢ > —occ then EX = 0 and
E|X|? = —2¢ < oo. In particular, if p(t) = 1 + o(t?) then p(t) = 1.
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Exercise 3.3.20. If Y}, are r.v.’s with ch.f.’s ¢, then Y,, = 0 if and only if there is
a 0 > 0 so that ¢, (t) — 1 for |t| < 4.

Exercise 3.3.21. Let X, X»,... be independent. If S,, = 3" _ X,, converges in
distribution then it converges in probability (and hence a.s. by Exercise 2.5.10). Hint:
The last exercise implies that if m,n — oo then S,, —S,, — 0 in probability. Now
use Exercise 2.5.11.

3.3.4 Polya’s Criterion*
The next result is useful for constructing examples of ch.f.’s.

Theorem 3.3.10. Polya’s criterion. Let ¢(t) be real nonnegative and have ¢(0) =
1, p(t) = p(—t), and ¢ is decreasing and convex on (0,00) with

L e(t) =1, lim p(t) =0

Then there is a probability measure v on (0,00), so that

() e = [ (1-f )+ v(ds)

and hence ¢ is a characteristic function.

Remark. Before we get lost in the details of the proof, the reader should note that
(x) displays ¢ as a convex combination of ch.f.’s of the form given in Example 3.3.8,
so an extension of Lemma 3.3.3 (to be proved below) implies that this is a ch.f.

The assumption that lim; g p(t) = 1 is necessary because the function ¢(t) =
L103(t) which is 1 at 0 and 0 otherwise satisfies all the other hypotheses. We could
allow lim;_, o, ¢(t) = ¢ > 0 by having a point mass of size ¢ at 0, but we leave this
extension to the reader.

Proof. Let ¢’ be the right derivative of ¢, i.e.,

Since ¢ is convex this exists and is right continuous and increasing. So we can let u
be the measure on (0, 00) with p(a,b] = ¢'(b) — ¢’(a) for all 0 < a < b < oo, and let
v be the measure on (0, 00) with dv/du = s.

Now ¢'(t) — 0 as t — oo (for if ¢'(t) | —e we would have p(t) < 1 — et for all ¢),

so Exercise A.4.7 implies
()= [ vt

Integrating again and using Fubini’s theorem we have for ¢t > 0

// drds—/ —1/ ds v(dr)
o [

Using ¢(—t) = ¢(t) to extend the formula to ¢t < 0 we have (). Setting ¢ = 0 in (x)
shows v has total mass 1.
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If o is piecewise linear, v has a finite number of atoms and the result follows from
Example 3.3.8 and Lemma 3.3.3. To prove the general result, let v, be a sequence
of measures on (0, 00) with a finite number of atoms that converges weakly to v (see

Exercise 3.2.10) and let
00 +
©n(t) :/ (1 - ) U (ds)
0

Since s — (1—1t/s|)" is bounded and continuous, ¢, (t) — ¢(t) and the desired result
follows from part (ii) of Theorem 3.3.6. O

t

S

A classic application of Polya’s criterion is:
Exercise 3.3.22. Show that exp(—|t|¥) is a characteristic function for 0 < a < 1.

(The case a = 1 corresponds to the Cauchy distribution.) The next argument, which
we learned from Frank Spitzer, proves that this is true for 0 < a < 2. The case a = 2
corresponds to a normal distribution, so that case can be safely ignored in the proof.

Example 3.3.10. exp(—|t|¥) is a characteristic function for 0 < a < 2.
Proof. A little calculus shows that for any § and |z| < 1
£ ()
n=0

where

<ﬂ) LGRUIMGRLES

n 1-2-
Let 1(t) =1 — (1 — cost)*/2 = 3"°° | ¢,(cost)™ where

- (o

¢n > 0 (here we use a < 2), and Y.~ ¢, = 1 (take ¢ = 0 in the definition of ). cost
is a characteristic function (see Example 3.3.1) so an easy extension of Lemma 3.3.3
shows that 1 is a ch.f. We have 1 — cost ~ t2/2 as t — 0, so

1-— COS(t . 21/2 . nfl/a) ~ n,z/atz
Using Lemma 3.1.1 and (ii) of Theorem 3.3.6 now, it follows that
exp(—|t|*) = lim {¢(t- 91/2 . n—l/a)}n

is a ch.f. 0O

Exercise 3.3.19 shows that exp(—|t|%) is not a ch.f. when a > 2. A reason for
interest in these characteristic functions is explained by the following generalization
of Exercise 3.3.8.

Exercise 3.3.23. If X, Xo,... are independent and have characteristic function
exp(—|t|*) then (X1 + --- 4+ X,,)/n'/® has the same distribution as X;.

We will return to this topic in Section 3.7. Polya’s criterion can also be used to
construct some “pathological examples.”
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Exercise 3.3.24. Let ¢ and @2 be ch.f’s. Show that A = {t : ¢1(t) = @a(t)} is
closed, contains 0, and is symmetric about 0. Show that if A is a set with these
properties and 1 (t) = eIl there is a @y so that {t: o1 (t) = pa(t)} = A.

Example 3.3.11. For some purposes, it is nice to have an explicit example of two
ch.f.’s that agree on [—1,1]. From Example 3.3.8, we know that (1—¢|)T is the ch.f. of
the density (1 —cosx)/mz?. Define 9(t) to be equal to ¢ on [—1,1] and periodic with
period 2, i.e., ¥(t) = 1 (t + 2). The Fourier series for v is

o0

+ Z 2@ 1) 2 5 exp(i(2n — 1)mu)

DN | =

The right-hand side is the ch.f. of a discrete distribution with
P(X=0)=1/2 and P(X=2n—1)71)=27r22n—-1)"? ncZ.

Exercise 3.3.25. Find independent r.v.’s X, Y, and Z so that Y and Z do not have
the same distribution but X +Y and X + Z do.

Exercise 3.3.26. Show that if X and Y are independent and X +Y and X have the
same distribution then Y = 0 a.s.

For more curiosities, see Feller, Vol. II (1971), Section XV .2a.

3.3.5 The Moment Problem*

Suppose f 2*dF, (x) has a limit u; for each k. Then the sequence of distributions is
tight by Theorem 3.2.8 and every subsequential limit has the moments pj, by Exercise
3.2.5, so we can conclude the sequence converges weakly if there is only one distri-
bution with these moments. It is easy to see that this is true if F is concentrated
on a finite interval [—M, M] since every continuous function can be approximated
uniformly on [—M, M| by polynomials. The result is false in general.

Counterexample 1. Heyde (1963) Consider the lognormal density
fo(x) = 2n) 2z Yexp(—(logz)?/2) >0
and for —1 <a <1 let

fa(x) = fo(z){1 + asin(2rlogz)}
To see that f, is a density and has the same moments as fy, it suffices to show that
/ 2" fo(x)sin(2mlogx)dr =0 for r=0,1,2,...
0

Changing variables = exp(s + 1), s = logx — r, ds = dz/x the integral becomes

(2m)~1/2 /:’0 exp(rs + r2) exp(—(s 4+ 7)?/2) sin(27(s + 1)) ds

oo

= (2m) Y% exp(r?/2) / exp(—s2/2) sin(27s) ds = 0

— 00
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The two equalities holding because r is an integer and the integrand is odd. From the
proof, it should be clear that we could let

g(x) = fo(x) {1 + Zak sin(k:ﬂ'logx)} if Z lak] <1
k=1

k=1

to get a large family of densities having the same moments as the lognormal.

The moments of the lognormal are easy to compute. Recall that if y has the
standard normal distribution, then Exercise 1.2.6 implies exp(x) has the lognormal
distribution.

EX™ = Fexp(ny) = /6""”(27r)*1/267$2/2 dx
= /2 /(27r)_1/2e_(“3_”)2/2 dx = exp(n?/2)

since the last integrand is the density of the normal with mean n and variance 1.
Somewhat remarkably there is a family of discrete random variables with these mo-
ments. Let a > 0 and

P(Y, = ae®) = a " exp(—k?/2)/ca for k € Z
where ¢, is chosen to make the total mass 1.

exp(—n?/2)EY" = exp(—n?/2) Z(aek)”a_k exp(—k?/2)/cq
k
=Y a T exp(—(k —n)?/2)/ca = 1
k

by the definition of ¢,.

The lognormal density decays like exp(—(logz)?/2) as |z| — oo. The next coun-
terexample has more rapid decay. Since the exponential distribution, e™* for z > 0,
is determined by its moments (see Exercise 3.3.28 below) we cannot hope to do much
better than this.

Counterexample 2. Let A € (0,1) and for —1 <a <1 let
far(@) = exexp(=|z[*){1 + asin(Blz[* sgn (x))}

where 8 = tan(Ar/2) and 1/cy = [exp(—|z|*)dz. To prove that these are density
functions and that for a fixed value of A they have the same moments, it suffices to
show

/x" exp(—|z|*) sin(B|z|* sgn (z))dz =0 forn=0,1,2,...

This is clear for even n since the integrand is odd. To prove the result for odd n, it
suffices to integrate over [0, 00). Using the identity

/ tP~te~%dt =T'(p)/q"* when Req >0

0

with p = (n +1)/), ¢ = 1 + Bi, and changing variables ¢ = 2*, we get
L((n+1)/2)/(1 + g i)+

= / gMEOAD/A=L oy (—(1 4 Bi)zM)A 2 da
0

= )\/00 z" exp(—a™) cos(Bx)dx — i\ /00 z" exp(—a™) sin(fz?) dz
0 0



3.3. CHARACTERISTIC FUNCTIONS 105

Since 8 = tan(Aw/2)
(14 Bi) ™D/ = (cos Arr/2)~ "D/ (exp(idr /2))(FD/A

The right-hand side is real since A < 1 and (n + 1) is even, so

o0
/ z" exp(—x) sin(Bz?) dz = 0
0
A useful sufficient condition for a distribution to be determined by its moments is

Theorem 3.3.11. Iflimsup,_, ,ul/zk/Qk =1 < oo then there is at most one d.f. F
with py = fa:de (x) for all positive integers k.

Remark. This is slightly stronger than Carleman’s condition

Zl/ 1/2k _

k=1

which is also sufficient for the conclusion of Theorem 3.3.11.

Proof. Let F be any d.f. with the moments s, and let v, = [ |z|*dF(z). The Cauchy-
Schwarz inequality implies v2, 11 < pokHokt2 SO

hrnsup(yk )/k =r <oo

k—o0

Taking 2 = tX in Lemma 3.3.2 and multiplying by e**X

n—1 ,.
iox | itx (itX)™ [tX|"
oo (- 32 ) <

m=0

, we have

Taking expected values and using Exercise 3.3.14 gives

tn—l
(n—1)!

|ﬂn
n!

Un

]so<e+t> —o®) — t(0)... - w-”(e)] <

Using the last result, the fact that vy, < (r + €)¥k* for large k, and the trivial bound
ek > k¥ /k! (expand the left-hand side in its power series), we see that for any @

oo

(%) w0+t Z for |t| < 1/er

m=

Let G be another distribution with the given moments and ¢ its ch.f. Since ¢(0) =
»(0) = 1, it follows from (*) and induction that ¢(t) = ¢(t) for [t| < k/3r for all k,
so the two ch.f.’s coincide and the distributions are equal. O

Combining Theorem 3.3.11 with the discussion that began our consideration of
the moment problem.

Theorem 3.3.12. Suppose [ z¥dF,(x) has a limit py for each k and

1/2k

limsup po)” /2k < 00

k—o0

then F, converges weakly to the unique distribution with these moments.
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Exercise 3.3.27. Let G(x) = P(|X| < z), A = sup{z : G(x) < 1}, and v}, = E|X|*.
Show that V;/k — A, so the assumption of Theorem 3.3.12 holds if A < co.

Exercise 3.3.28. Suppose |X| has density Cz® exp(—2*) on (0, 00). Changing vari-
ables y = 2, dy = 2?1 dx

oo
BIX|" = / Cxy" ) exp(—y)y'/*tdy = CAT((n + a +1)/3)
0

Use the identity I'(z + 1) = 2T'(z) for x > 0 to conclude that the assumption of
Theorem 3.3.12 is satisfied for A > 1 but not for A < 1. This shows the normal
(A =2) and gamma (A = 1) distributions are determined by their moments.

Our results so far have been for the so-called Hamburger moment problem.
If we assume a priori that the distribution is concentrated on [0,00), we have the
Stieltjes moment problem. There is a 1-1 correspondence between X > 0 and
symmetric distributions on R given by X — £X?2 where ¢ € {—1,1} is independent
of X and takes its two values with equal probability. From this we see that

lim sup V;/Qk/2k < o0
k—oo

is sufficient for there to be a unique distribution on [0, 00) with the given moments.
The next example shows that for nonnegative random variables, the last result is close
to the best possible.

Counterexample 3. Let A € (0,1/2), 8 =tan(Ar), =1 < a <1 and
fa(z) = cxexp(—2*)(1 4 asin(Bz?))  for 2 >0

where 1/cy = [ exp(—2*) da.

By imitating the calculations in Counterexample 2, it is easy to see that the f, are
probability densities that have the same moments. This example seems to be due to
Stoyanov (1987) p. 92-93. The special case A = 1/4 is widely known.

3.4 Central Limit Theorems

We are now ready for the main business of the chapter. We will first prove the central
limit theorem for

3.4.1 i.i.d. Sequences

Theorem 3.4.1. Let X1, Xo,... be i.i.d. with EX; = u, var(X;) = 0% € (0,00). If
Sp=X1+4+---+ X, then
(S, —np)/ont/? =

where x has the standard normal distribution.

This notation is non-standard but convenient. To see the logic note that the square
of a normal has a chi-squared distribution.

Proof By considering X! = X; — p, it suffices to prove the result when p = 0. From

Theorem 3.3.8
o2t?
o(t) = Eexp(itX;) =1— -+ o(t?)
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SO
2 n
E exp(itS, /on/?) = (1 - ;— + o(n—1)>
n

From Lemma 3.1.1 it should be clear that the last quantity — exp(—t2/2) as n — oo,
which with Theorem 3.3.6 completes the proof. However, Lemma 3.1.1 is a fact about
real numbers, so we need to extend it to the complex case to complete the proof.

Theorem 3.4.2. If ¢, — ¢ € C then (1 + ¢, /n)" — e°.
Proof. The proof is based on two simple facts:

Lemma 3.4.3. Let z1,...,z, and wy,...,w, be complex numbers of modulus < 6.

Then
n n
11— 11 wm
m=1 m=1

Proof. The result is true for n = 1. To prove it for n > 1 observe that

n
< gt Z |Zm — W]
m=1

n n n n n n
Hzm_meSZIHZm_ZIme+21me_w1me
m=1 m=1 m=2 m=2 m=2 m=2
n n
n—1
<40 Hszme + 0" 21 — wq
m=2 m=2
and use induction. O

Lemma 3.4.4. If b is a compler number with |b| < 1 then |e® — (1 +b)| < |b|%.

Proof. € — (1+b) = b%/2!1 +b3/3! + b*/4! + ... so if [b| < 1 then

b2
le? — (14 b)] g%(1+1/2+1/22+...):|b|2 o

Proof of Theorem 3.4.2. Let z, = (14 ¢p/n), wy = exp(cy/n), and v > |¢|. For
large n, |c,| < . Since 1+ y/n < exp(y/n), it follows from Lemmas 3.4.3 and 3.4.4

that )
n_gen) < ()" |2’ < v

[(1+4cp/n)" —e| < (e n <e -0
n

as n — o0. O

n

To get a feel for what the central limit theorem says, we will look at some concrete
cases.

Example 3.4.1. Roulette. A roulette wheel has slots numbered 1-36 (18 red and
18 black) and two slots numbered 0 and 00 that are painted green. Players can bet
$1 that the ball will land in a red (or black) slot and win $1 if it does. If we let X; be
the winnings on the ith play then X, X5, ... are i.i.d. with P(X; = 1) = 18/38 and
P(X;, =-1) =20/38.

EX;=-1/19 and var(X)=FEX?—(EX)?>=1-(1/19)* =0.9972
We are interested in

Sn—np _ —nu
P > =P ——— > —
(Sn 20) < oyn ~ Jﬁ)
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Taking n = 361 = 192 and replacing ¢ by 1 to keep computations simple,
—ny 361 (1/19)
ay/n V361

So the central limit theorem and our table of the normal distribution in the back of
the book tells us that

P(S, >0)~ P(x >1)=1—-0.8413 = 0.1587

In words, after 361 spins of the roulette wheel the casino will have won $19 of your
money on the average, but there is a probability of about 0.16 that you will be ahead.

Example 3.4.2. Coin flips. Let X, X»,... beiid. with P(X; =0)=P(X; =1) =
1/2. If X; = 1 indicates that a heads occured on the ith toss then S,, = X;+---+ X,
is the total number of heads at time n.

EX;=1/2 and var(X)=EX?—(EX)>=1/2—1/4=1/4

So the central limit theorem tells us (S, —n/2)/y/n/4 = x. Our table of the normal
distribution tells us that

P(x >2) =1-0.9773 = 0.0227

so P(]x] < 2) =1—2(0.0227) = 0.9546, or plugging into the central limit theorem

95 % P((S, —n/2)/\/nfd € [<2,2]) = P(S, —n/2 € [~v/n, V1))

Taking n = 10, 000 this says that 95% of the time the number of heads will be between
4900 and 5100.

Example 3.4.3. Normal approximation to the binomial. Let X, X5,... and
S be as in the previous example. To estimate P(S1s = 8) using the central limit
theorem, we regard 8 as the interval [7.5,8.5]. Since p = 1/2, and o/n = 2 for n = 16

|Sn — npl

P(isie 8| <0.5) = p (2=

< 0.25)

~ P(|]x| < 0.25) = 2(0.5987 — 0.5) = 0.1974

Even though n is small, this agrees well with the exact probability

16 13-11-10-9
2710 = = ——— — —0.1964.
<8> 65, 536 0196

The computations above motivate the histogram correction, which is important
in using the normal approximation for small n. For example, if we are going to
approximate P(Sis < 11), then we regard this probability as P(S1s < 11.5). One
obvious reason for doing this is to get the same answer if we regard P(S16 < 11) =
1— P(S6 > 12).

Exercise 3.4.1. Suppose you roll a die 180 times. Use the normal approximation
(with the histogram correction) to estimate the probability you will get fewer than 25
sixes.
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Example 3.4.4. Normal approximation to the Poisson. Let Z) have a Poisson
distribution with mean A\. If X7, X5, ... are independent and have Poisson distribu-
tions with mean 1, then S,, = X1 +--- + X, has a Poisson distribution with mean n.
Since var (X;) = 1, the central limit theorem implies:

(S, —n)/n'? = x asn — oo

To deal with values of A that are not integers, let N7, Na, N3 be independent
Poisson with means [A], A — [A], and [A] +1 — A. If we let S;yj = N1, Zx = N1 + Na
and S[y4+1 = N1 + N2 + N3 then Sy < Zx < Spyj41 and using the limit theorem for
the S, it follows that

(Zx = N)/AY2 = x  as A — o

Example 3.4.5. Pairwise independence is good enough for the strong law of large
numbers (see Theorem 2.4.1). It is not good enough for the central limit theorem.
Let &1,&,... be 1.id. with P(§; =1) = P(§; = —1) = 1/2. We will arrange things so
that for n > 1

+2"  with prob 277!

o =&+ &) (14 &) {0 with prob 1 — 27"

To do this we let X; = &, Xo = &6, andform =2""14+35,0< <27t n>2
let X,,, = X;€n41. Bach X, is a product of a different set of {;’s so they are pairwise
independent.

EXERCISES

3.4.2. Let X, Xo,... be iid. with EX; = 0, 0 < var(X;) < oo, and let S, =
X1+ -4+ X,. (a) Use the central limit theorem and Kolmogorov’s zero-one law to
conclude that limsup S,,/y/n = oo a.s. (b) Use an argument by contradiction to show
that S, /v/n does not converge in probability. Hint: Consider n = m!.

3.4.3. Let Xy, Xo,... beiid. and let S, = X7 +--- + X,,. Assume that S, //n =
a limit and conclude that EX? < oco. Sketch: Suppose EX? = co. Let X}, X},...
be an independent copy of the original sequence. Let Y; = X; — X|, U; = Yil(jy,|<a),
Vi = Yil(}y;|>a), and observe that for any K

n

P(iYmZK\/ﬁ> zp(ZUmzKﬁ,znijzo>
m=1 m=1

m=1

n 1
P(ZUmzKﬁ>z5

m=1

>

M| —

for large n if A is large enough. Since K is arbitrary, this is a contradiction.

3.4.4. Let X1, Xo,... be i.id. with X; > 0, EX; = 1, and var (X;) = 02 € (0,00).
Show that 2(v/S,, — v/n) = ox.

3.4.5. Self-normalized sums. Let Xi, Xo,... be i.i.d. with FX; = 0 and EXi2 =
02 € (0,00). Then
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3.4.6. Random index central limit theorem. Let X, X5, ... beii.d. with EX; =
0 and EX? = 0% € (0,0), and let S,, = X7 + --- + X,,. Let N, be a sequence
of nonnegative integer-valued random variables and a, a sequence of integers with
a, — oo and N,,/a, — 1 in probability. Show that

SN, [o\/an = X

Hint: Use Kolmogorov’s inequality (Theorem 2.5.2) to conclude that if Y,, = Sy, /o\/an
and Z, = S,, /o\/an, then Y,, — Z,, — 0 in probability.

3.4.7. A central limit theorem in renewal theory. Let Y7,Y5, ... bei.i.d. positive
random variables with EY; = p and var (Y;) = 02 € (0,00). Let S, = Y1 +--- +Y,
and N; = sup{m : S,,, < t}. Apply the previous exercise to X; = Y; — u to prove that
ast — 0o

(1N — 1) /(%)) /? = x

3.4.8. A second proof of the renewal CLT. Let Y7,Y5,..., S,,, and N; be as in
the last exercise. Let u = [t/u], Dy = Sy — t. Use Kolmogorov’s inequality to show

P(|Susm — (Su +mp)| > t2/5 for some m € [—t3/° #3/°]) -0 ast— oo

Conclude [Ny — (t — Dy)/pu|/ t*/? — 0 in probability and then obtain the result in the
previous exercise.

Our next step is to generalize the central limit theorem to:

3.4.2 Triangular Arrays

Theorem 3.4.5. The Lindeberg-Feller theorem. For eachn, let X, ., 1 <m <
n, be independent random variables with EX,, ,, = 0. Suppose

(i) >"_, EX,QL’m —02>0
(ii) For all € > 0, lim, oo Y _y E(| X0 m % [ Xn,m| > €) = 0.
Then Sy, = Xp1+ -+ Xppn = 0x asn — 00.

Remarks. In words, the theorem says that a sum of a large number of small in-
dependent effects has approximately a normal distribution. To see that Theorem
3.4.5 contains our first central limit theorem, let Y7,Y5... be i.i.d. with EY; = 0 and
EY? =0 € (0,00), and let Xy, = Yy, /n'/?. Then 0" | EX2  =o0%and if e >0

3" E( Xl [ Xnml > €) = nE(|Y1 /0% [Y1/n'/?] > ¢)
m=1

= E(|Y1)% V1| > ent/?) — 0
by the dominated convergence theorem since EY? < 0o.

Proof. Let ¢ m(t) = Eexp(itXynm), on,, = EX7 . By Theorem 3.3.6, it suffices
to show that

H <Pn,m,(t) - eXp(*t202/2)
m=1
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Let zpm = ©n,m(t) and wy m = (1 — tgofhm/Q). By (3.3.3)

|2n,m — Wn,m| < E(‘tXn,m‘B A 2‘tXn,M|2)
< E(‘tXn,mP? |Xn,m| <e)+ E(2|tXn,m|2§ |Xn,m| > €)
< e’ B(| Xnml*; [ Xnm| <€) + 28 E(| Xl [ Xnm| > €)

Summing m =1 to n, letting n — oo, and using (i) and (ii) gives

n

lim sup E |Zn,m — Wnm| < et3o?
n—oo m=1

Since € > 0 is arbitrary, it follows that the sequence converges to 0. Our next step is
to use Lemma 3.4.3 with 6 = 1 to get

n n

H Pn,m(t) — H (1- tQUvzz,m/z) —0
m=1 m=1

To check the hypotheses of Lemma 3.4.3, note that since ¢, , is a ch.f. [p, ., (t)] <1

for all n,m. For the terms in the second product we note that

UrQL,m <€ +E(|Xn,m|2 $ [ Xnm| > €)
2

n,m

and € is arbitrary so (ii) implies sup,, o
t?02 /2 > —1 for all m.

To complete the proof now, we apply Exercise 3.1.1 with ¢, », = —tQU%’m/Q. We
have just shown sup,, o7, — 0. (i) implies

— 0 and thus if n is large 1 > 1 —

n
Z Crmn — —02152/2
m=1

so [Tm—1(1 =t} ,,/2) — exp(—t*0?/2) and the proof is complete. O

Example 3.4.6. Cycles in a random permutation and record values. Con-
tinuing the analysis of Examples 2.2.4 and 2.3.2, let Y1,Y5,... be independent with
P, =1) =1/m, and P(Y,, =0) = 1—1/m. EY,, = 1/m and var(Y,,) =
1/m—1/m?. Soif S, =Y; +---+Y, then ES,, ~logn and var (S,) ~ logn. Let

Xn,m = (Ym - 1/m)/(10g 77,)1/2
EXpm=0,>0_1 EXZ2  —1, and for any € >0

n
3" E( Xl [ Xnm] > €) =0

m=1

—1/2

since the sum is 0 as soon as (logn) < €. Applying Theorem 3.4.5 now gives

(logn)~"/2 (Sn > ;) =X

m=1

Observing that

n—1 1 n n 1
Sz [ e tdr=tognz 30
m:lm 1 m:2m

n

shows [logn — 3" |, 1/m| <1 and the conclusion can be written as

(S, —log n)/(logn)l/2 =X
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Example 3.4.7. The converse of the three series theorem. Recall the set up of
Theorem 2.5.4. Let X1, X, ... be independent, let A > 0, and let Y,,, = X,,,1(|x,,|<A)-

In order that ) 7, X,, converges (i.e., limy_.oo SN X, exists) it is necessary that:

n=1

oo

Z (| Xn| > A) < o0, (il ZEY converges, and (iii) i

n=1 n=1

Proof. The necessity of the first condition is clear. For if that sum is infinite, P(| X,,| >
Aio.) >0 and lim, .o Y 1 _; X, cannot exist. Suppose next that the sum in (i) is
finite but the sum in (iii) is infinite. Let

var (V;,) and X, = (Y — EYy,)/c/?

Cp =

iNgh

EXpm=0,>"_, E'Xfmn =1, and for any € > 0
Z E(‘Xn,mP; | Xn,m| >€) — 0
m=1

since the sum is 0 as soon as 2A/c}/2 < €. Applying Theorem 3.4.5 now gives that if
Sp=Xn1+-+ X, then S, = x. Now

(1) if impy oo Yoy Xy exists, limy, oo Do Yoy exists.
(ii) if we let T, = (3,,<,, Yim)/cn'* then T,, = 0.

The last two results and Exercise 3.2.13 imply (S,, — T,,) = x. Since
Sn - Tn - - Z EYm /C»}I/Z
m<n

is not random, this is absurd.

Finally, assume the series in (i) and (iii) are finite. Theorem 2.5.3 implies that
lim, oo > (Vi —EY,,) exists, so if limy, o0 Y1 _y Xom and hence limy, oo > v, Y,
does, taking differences shows that (ii) holds. O

Example 3.4.8. Infinite variance. Suppose X1, X5, ... are i.i.d. and have P(X; >
r) = P(X; < —z) and P(|X1| >2) =272 forz > 1.

oo
E|X,|? = / 22 P(|X1| > z)dx = oo
0

but it turns out that when S,, = Xj + - -+ + X, is suitably normalized it converges to
a normal distribution. Let

}/”a"" = Xml(\Xm\Snl/Q log log n)

The truncation level ¢, = n'/?loglogn is chosen large enough to make

> P(Yom # Xm) < nP(IX1] > cn) — 0
m=1
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However, we want the variance of Y;, ,,, to be as small as possible, so we keep the
truncation close to the lowest possible level.

Our next step is to show EYH%m ~ logn. For this we need upper and lower bounds.
Since P(|Yy m| > x) < P(]X1| > «) and is 0 for & > ¢,, we have

Cn

EYf,mS/ /ZyP(\X1|>y)dy=1+/ 2/ydy
0 1
=142logc, =1+ logn + 2logloglogn ~ logn

In the other direction, we observe P(|Y, | > x) = P(|X1] > ) — P(|X1| > ¢,) and
the right-hand side is > (1 — (loglogn)~2)P(|X1| > z) when x < /n so

N
BYZ,. = (1 (oglogm) ) [ 2/ydy ~logn
1

If S/, = Yo1 + - + Y, then var(S,) ~ nlogn, so we apply Theorem 3.4.5
to Xom = Yom/(n logn)'/2. Things have been arranged so that (i) is satisfied.
Since |Yy,.m| < n'/?loglogn, the sum in (ii) is 0 for large n, and it follows that
S! /(nlogn)'/? = x. Since the choice of ¢, guarantees P(S,, # S!) — 0, the same
result holds for S,,.

Remark. In Section 3.6, we will see that if we replace P(|X;| > z) = 22 in Example
3.4.8 by P(|X;| > x) = 2~* where 0 < a < 2, then S,,/n'/® = to a limit which is
not x. The last word on convergence to the normal distribution is the next result due
to Lévy.

Theorem 3.4.6. Let X1, Xs,... bei.i.d. and S, = X1+---+ X,,. In order that there
exist constants a,, and b, > 0 so that (S, — a,) /b, = X, it is necessary and sufficient
that

PP(X4| > y)/E(X1 % 1X] < y) — 0.

A proof can be found in Gnedenko and Kolmogorov (1954), a reference that contains
the last word on many results about sums of independent random variables.

EXERCISES

In the next five problems X;, Xs, ... are independent and S,, = X7 + -+ + X,,.

3.4.9. Suppose P(X,, =m) = P(X,, = —m) =m~2/2, and for m > 2
PX,=1)=PX,,=-1)=(1-m"%))/2

Show that var (S,)/n — 2 but S,,/v/n = x. The trouble here is that X, ,,, = X,,/v/n

does not satisfy (ii) of Theorem 3.4.5.

3.4.10. Show that if | X;| < M and ), var(X,,) = oo then

(S — ESn)/\/ var (Sp) = x

3.4.11. Suppose EX; = 0, EX? = 1 and F|X;|**° < C for some 0 < §,C < o0.
Show that S,,/v/n = x.

3.4.12. Prove Lyapunov’s Theorem. Let o, = {var(S,)}'/2. If there is a § > 0
so that N

lim a, ™ %" B(| X, — EXp[*T) =0

n—oo =1
then (S, — ES,)/a, = x. Note that the previous exercise is a special case of this
result.
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3.4.13. Suppose P(X; = j) = P(X; = —j) = 1/2j% and P(X; = 0) = 1—j=° where
B > 0. Show that (i) If 8 > 1 then S,, — S a.s. (ii) if 8 < lthenS /n(?’ A2 = cx.
(iii) if B =1 then S, /n = N where

1
E exp(itR) = exp <—/ 7 (1 — cos xt) dx)
0

3.4.3 Prime Divisors (Erdés-Kac)*

Our aim here is to prove that an integer picked at random from {1,2,...,n} has about
loglogn + x(loglog n)1/2

prime divisors. Since exp(e?) = 5.15x 1023, this result does not apply to most numbers
we encounter in “everyday life.” The first step in deriving this result is to give a

Second proof of Theorem 3.4.5. The first step is to let

= ZE( nm5|Xﬂm|>€)

m=1
and observe

Lemma 3.4.7. h,(¢) — 0 for each fized ¢ > 0 so we can pick €, — 0 so that
hi(€,) — 0.

Proof. Let N,, be chosen so that h,(1/m) < 1/m for n > N, and m — N, is
increasing. Let €, = 1/m for N, < n < Np41, and = 1 for n < N;. When
Ny <1 < Npy1, €, = 1/my s0 |hp(en)| = |hn(1/m)] < 1/m and the desired result
follows. O

Let Xq/’L’m = Xn,m]-(\Xn,1m,|>sn,)a Yn,m - Xn,m]-(\Xn1m|§en)a and Zn,m = Yn,m -
EYy m. Clearly |Zy, | < 26,. Using Xy = X}, 00+ Yo, Znm = Yom — EYnm,
EY, ;m = —EX], ,,, the variance of the sum is the sum of the variances, and var (W) <
EW?, we have

n n 2
E (Z Xn,m - Z Zn,m) =K (Z n,m EX’;L m)
m=1 m=1

m=1 m=1

as n — 00, by the choice of .

Let S, =30 _  Xnmand Ty, = Y _| Zy, . The last computation shows S,, —
T, — 0 in L? and hence in probability by Lemma 2.2.2. Thus, by Exercise 3.2.13,
it suffices to show T,, = ox. (i) implies ES? — o2. We have just shown that
E(S, —T,)* — 0, so the triangle inequality for the L? norm implies ET??> — 2. To
compute higher moments, we observe

Z Z 7'1 Tk' k' Z Z;lz1 . Z;k”

k=1 r;
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where )" extends over all k-tuples of positive integers with 71 +--- 4+ r, = r and
> extends over all k-tuples of distinct integers with 1 < i < n. If we let

Ap (71, ZEZ,T;“.- EZ™,

N,k

then

ETT Z Z Tl Tk' k;' (7‘1, Tk)

k=1 74

To evaluate the limit of E'T; we observe:
(a) If some r; = 1, then A, (ry,...7¢) = 0 since EZ,, ;; = 0.
(b) If all r; = 2 then

n k
ZE nyi1 EZrzbzk— <ZEZ7217TI’L> _>0-2k
m=1

To argue the other inequality, we note that for any 1 < a < b < k we can estimate
the sum over all the i1,...,7; with ¢, = i, by replacing Eme»a by (2€,)? to get (the
factor (4) giving the number of ways to pick 1 < a < b < k)

n k—1
(Z EZZ,m> ZE v B2, < ( ) (2€n)? (ZE ) —0
m=1

(c) If all the r; > 2 but some r; > 2 then using

E|Zpn,|" < (2e,)" ?EZ7

’I’LZJ

we have

< T1 ) Tk
’ ik
1A (r1,...m5)] E E|Zp i [ E|Zp, |

< (2en)7“ FAL(2,..2) = 0

When 7 is odd, some r; must be =1 or > 3 so ET,, — 0 by (a) and (c). If » = 2k is

even, (a)—(c) imply

a2k (2k)! ,

ot = Elox)

and the result follows from Theorem 3.3.12. O
Turning to the result for prime divisors, let P,, denote the uniform distribution on

{1,...,n}. If P(A) = lim P, (A) exists the limit is called the density of A C Z. Let

A, be the set of integers divisible by p. Clearly, if p is a prime Po(A,) = 1/p and

q # p is another prime

Poo(Ap N Aq) =1/pg= Poo(Ap)Poo(Aq)

ET) —

Even though P, is not a probability measure (since P({i}) = 0 for all ¢), we can
interpret this as saying that the events of being divisible by p and ¢ are independent.
Let 6,(n) =1 if n is divisible by p, and = 0 otherwise, and

n) = Z dp(n) be the number of prime divisors of n
p<n
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this and future sums on p being over the primes. Intuitively, the §,(n) behave like
X, that are i.i.d. with

P(X,=1)=1/p and P(X,=0)=1-1/p

The mean and variance of > _ X, are
> 1/p and > 1/p(1—1/p)
p<n p<n

respectively. It is known that

(%) Zl/pzloglognJrO(l)

p<n

(see Hardy and Wright (1959), Chapter XXII), while anyone can see Zp 1/p? < oo,
so applying Theorem 3.4.5 to X,, and making a small leap of faith gives us:

Theorem 3.4.8. Erdés-Kac central limit theorem. Asn — oo
P, (m <n:g(m)—loglogn < x(loglogn)lm) — P(x <)

Proof. We begin by showing that we can ignore the primes “near” n. Let
ay, = nl/loglogn
log v, = logn/ loglogn
log log o, = loglogn — logloglogn
The sequence «,, has two nice properties:
(8) (Za,<pen 1/p) /(0glogn)/* = 0 by (+)
Proof of (a). By (x)

> Up=> 1/p=> 1/p

an<p<n p<n p<an
= loglogn — loglog a;, + O(1)
= logloglogn + O(1)

(b) If € > 0 then «,, < n¢ for large n and hence o, /n — 0 for all r < co.
Proof of (b). 1/loglogn — 0 as n — oc. |
Let gn(m) = > <., 6p(m) and let E,, denote expected value w.r.t. P,.

Ev|l D &)= > Pum:dm)=1)< > 1/p

an<p<n an<p<n an<p<n

so by (a) it is enough to prove the result for g,. Let

Sp= > X,

p<an
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where the X, are the independent random variables introduced above. Let b,, = ES),
and a2 = var (S,). (a) tells us that b, and a? are both

loglog n + o((loglogn)'/?)
so it suffices to show
Py(m : gn(m) — b, < za,) — P(x < )

An application of Theorem 3.4.5 shows (S, — by)/a, = x, and since |X,| < 1 it
follows from the second proof of Theorem 3.4.5 that

E (S, —bn)/an)"” — EXx" for all r

Using notation from that proof (and replacing i; by p;)

ES, = sz Tk'k'ZEX;:”.X;:)

k=1 m;

Since X, € {0,1}, the summand is

E(Xm "'ka) =1/(p1---pr)

A little thought reveals that

BB+ 6p) < -0/ (o1 -]

The two moments differ by < 1/n, so
- 1 1
E(S)) — E,(¢g7)] = _— —
250~ Ban)| = 32 o

r aT
<13 <
- n(Zl) - n -0
p<an

by (b). Now
E(Sn —ba)" = mz::o <;) ES (~b,)" ™
E(gn — bn)" = mz_o (7;) Bgm(_by)

so subtracting and using our bound on |E(S]) — E,,(g5,)| with r =m

" r\ 1
E n_bnT_E n_bnrg —ay'by, " = n bnr
E(S0—ba)" = Blga "] < 32 (1) 2o = (o b =0

since b,, < au,. This is more than enough to conclude that
E ((gn — bn)/an)T — EX"

and the desired result follows from Theorem 3.3.12. O
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3.4.4 Rates of Convergence (Berry-Esseen)*

Theorem 3.4.9. Let Xy, Xo,... be i.i.d. with EX; = 0, EX? = 02, and E|X,|® =
p < oo. If Fy,(x) is the distribution of (X1+---+ X,,)/o/n and N (z) is the standard
normal distribution, then

|Fu(w) = N(2)] < 3p/0°v/n

Remarks. The reader should note that the inequality holds for all n and z, but since
p > o3 it only has nontrivial content for n > 10. It is easy to see that the rate cannot
be faster than n~!/2. When P(X; = 1) = P(X; = —1) = 1/2, symmetry and (1.4)
imply

Fion(0) = 3 {1+ P(So0 = 0)} = (14 (xn) /%) + o(n /%)

The constant 3 is not the best known (van Beek (1972) gets 0.8), but as Feller brags,
“our streamlined method yields a remarkably good bound even though it avoids the
usual messy numerical calculations.” The hypothesis E|X |3 is needed to get the rate
n~1/2. Heyde (1967) has shown that for 0 < § < 1

Z n~ 1 2 sup |F, (z) — N(z)| < o0
n=1 *

if and only if E|X|**° < oo. For this and more on rates of convergence, see Hall
(1982).

Proof. Since neither side of the inequality is affected by scaling, we can suppose
without loss of generality that 02 = 1. The first phase of the argument is to derive an
inequality, Lemma 3.4.11, that relates the difference between the two distributions to
the distance between their ch.f.’s. Polya’s density (see Example 3.3.8 and use (e) of
Theorem 3.3.1)

1—-cos Lx
hi(z) = wLa?

has ch.f. wr(0) = (1—10/L|)* for || < L. We will use Hy, for its distribution function.
We will convolve the distributions under consideration with Hy, to get ch.f. that have
compact support. The first step is to show that convolution with Hj does not reduce
the difference between the distributions too much.

Lemma 3.4.10. Let F' and G be distribution functions with G'(z) < A < co. Let
A(x) = F(z) — G(x), n =sup |A(z)|, AL = Ax Hp, and ny, = sup |Ar(z)|. Then
> 122 or <2nr + 2

=97 gL T=ET o
Proof. A goes to 0 at +o00, G is continuous, and F' is a d.f., so there is an xg with
A(zg) = n or A(xg—) = —n. By looking at the d.f’s of (—1) times the r.v.’s in
the second case, we can suppose without loss of generality that A(zg) = n. Since
G'(z) < A and F is nondecreasing, A(xg 4+ s) > n — As. Letting 6 = n/2\, and
t =9+ 0, we have

(n/2) + Xz for || <4
-n otherwise

A(t—x)>{
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To estimate the convolution Ay, we observe

2/5 hy(z)de < 2/5 2/(wLa?)dx = 4/(nL6)

Looking at (—d,d) and its complement separately and noticing symmetry implies
fis zhr(z)dz = 0, we have

n 4 4 n 6n n 12X
> i _ - - J_ 0 _ 7 =7
ez Act) 2 5 (1 L5> "RL6 T2 7Ls 2 nL

which proves the lemma. O

Lemma 3.4.11. Let K7 and K5 be d.f. with mean 0 whose ch.f. k; are integrable
; t) — t
Ki(e) — Kalw) = () [ ool g
Proof. Since the k; are integrable, the inversion formula, Theorem 3.3.4, implies that
the density k;(z) has
Blw) = (2m) 7 [ it

Subtracting the last expression with ¢ = 2 from the one with ¢ = 1 then integrating
from a to z and letting AK = Ky — K5 gives

AK@) - AK(@) =0 [ [0 - k(o) dedy
(2m)~ /{eﬂta, o—itay FLlE) = Fa(t) ()*"@() gt

the application of Fubini’s theorem being justified since the x; are integrable in ¢ and
we are considering a bounded interval in y.

The factor 1/it could cause problems near zero, but we have supposed that the
K; have mean 0, so {1 — x,(t)}/t — 0 by Exercise 3.3.14, and hence (k1 (t) — k2(t))/it
is bounded and continuous. The factor 1/it improves the integrability for large ¢ so
(k1(t) — ka(t))/it is integrable. Letting a — —oo and using the Riemann-Lebesgue
lemma (Exercise 1.4.4) proves the result. O

Let ¢p and pg be the ch.f.’s of F' and G. Applying Lemma 3.4.11 to F, = Fx Hp,
and Gy, = G x Hy,, gives

|F(z) = Gr(z)|

| /\

/w wi(t) — gt <t>||‘ff|

dt
[¢]

I /\

- |w<> pal®)] o

since |wp, ()] < 1. Using Lemma 3.4.10 now, we have

L
F@) - 6@l < 1 [ lor@®) - vo®)l G+ 27

where A = sup,, G'(z). Plugging in F' = F,, and G = N gives

L
|Fa(e) = N(@)| < = /_L 0™ (0/3/7) — $(0) |d;| P 22 (3.4.1)

s
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and it remains to estimate the right-hand side. This phase of the argument is fairly
routine, but there is a fair amount of algebra. To save the reader from trying to
improve the inequalities along the way in hopes of getting a better bound, we would
like to observe that we have used the fact that C' = 3 to get rid of the cases n <9,
and we use n > 10 in (e).

To estimate the second term in (3.4.1), we observe that

(a) sup G'(z) = G'(0) = (2m)~Y/? = 0.39894 < 2/5

For the first, we observe that if |al,|3] < v

n—1

(b) |an _ 6n| < Z |an—mﬁm _ an—m—16m+1| < n|a _ ﬁh/n—l

m=0

Using (3.3.3) now gives (recall we are supposing o2 = 1)

(c) o(t) = 1+ %/2| < p|t]*/6
soift2 <2
(d) ()] <1 —#2/2 4 pt[*/6

Let L = 4y/n/3p. If |6] < L then by (d) and the fact p|0]//n < 4/3
G0/ /)] < 16220+ plo[? /60"
< 1—560%/18n < exp(—562/18n)
since 1 —z < e~?. We will now apply (b) with
a=¢(0/vn)  [=exp(—07/2n) = exp(—567/18n)
Since we are supposing n > 10
(e) 7" < exp(—67/4)
For the other part of (b), we write
nla — B < nle(0/vn) — 1+ 6%/2n] +n|l — 02 /2n — exp(—6?/2n)|
To bound the first term on the right-hand side, observe (c) implies
nlp(6/v/n) — 1+ 62/2n] < |6 f6n'/2

For the second term, note that if 0 < z < 1 then we have an alternating series with
decreasing terms so

x?2 a3

. e
e —(1—$)|—‘ 2!—1—3! ’S

.272

2
Taking z = 6% /2n it follows that for || < L < v/2n

n|l — 6%/2n — exp(—02/2n)| < 6*/8n
Combining this with our estimate on the first term gives

(f) nla — B| < pl0]®/6n'/? + 6 /8n
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Using (f) and (e) in (b), gives

6nt/2 " 8n

1 5 20% 103
< _ I el
< pes(-o2/ { %+ KL
since p/+/n = 4/3L, and 1/n = 1/y/n-1/\/n < 4/3L-1/3 since p > 1 and n > 10.
Using the last result and (a) in Lemma 3.4.11 gives

2 [ 207 10F
Recalling L = 4./n/3p, we see that the last result is of the form |F,(z) — N (z)| <
Cp/+/n. To evaluate the constant, we observe

2 3
é'mn(e/\/ﬁ)eXP(92/2)|§eXp(92/4){ po” 10 }

/(2ﬂ'a)71/2x2 exp(—2?/2a)dx = a
and writing 2% = 222 - /2 and integrating by parts
2/ 23 exp(—x?/4) dx = 2/ 4o exp(—2?/4) dx
0 0

(oo}
= 167/ "~ 16
0
This gives us
1 3/2 16 p p
F,(z) — <-.-—-[=-2-v4 — 496 —=<3—
) =N (@)l < 2 4(9 SRST >ﬁ< /i

For the last step, you have to get out your calculator or trust Feller. O

3.5 Local Limit Theorems*

In Section 3.1 we saw that if X7, Xo,... are i.i.d. with P(X; =1) = P(X; = -1) =
1/2 and k,, is a sequence of integers with 2k, /(2n)'/? — x then

P(Son = 2ky) ~ (7n)~Y/2 exp(—22/2)

In this section, we will prove two theorems that generalize the last result. We begin
with two definitions. A random variable X has a lattice distribution if there are
constants b and h > 0 so that P(X € b+ hZ) =1, where b+ hZ = {b+ hz: z € Z}.
The largest h for which the last statement holds is called the span of the distribution.

Example 3.5.1. If P(X =1) = P(X = —1) = 1/2 then X has a lattice distribution
with span 2. When h is 2, one possible choice is b = —1.

The next result relates the last definition to the characteristic function. To check
(i) in its statement, note that in the last example E(e!*X) = cost has |cos(t)| = 1
when ¢ = nm.

Theorem 3.5.1. Let ¢(t) = Ee®X. There are only three possibilities.

(i) |(t)| <1 for allt # 0.

(ii) There is a A > 0 so that |(N\)] =1 and |p(t)| <1 for 0 <t < A. In this case, X
has a lattice distribution with span 2w /.

(iii) |p(t)| = 1 for all t. In this case, X =b a.s. for some b.
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Proof. We begin with (ii). It suffices to show that |p(¢)] = 1 if and only if P(X €
b+ (2m/t)Z) =1 for some b. First, if P(X € b+ (2r/t)Z) = 1 then

o(t) = Eel'X = ¢itt Z e?™P(X = b+ (21/t)n) = €'
neZ
Conversely, if |¢(t)| = 1, then there is equality in the inequality |Ee®X| < E|e®X|,
so by Exercise 1.6.1 the distribution of e®X must be concentrated at some point e,
and P(X € b+ (2r/t)Z) = 1.

To prove trichotomy now, we suppose that (i) and (ii) do not hold, i.e., there is a
sequence ¢, | 0 so that |p(t,)] = 1. The first paragraph shows that there is a b, so
that P(X € b, + (27 /t,,)Z) = 1. Without loss of generality, we can pick b,, € (—n/t,,
w/tn]. Asn — oo, P(X ¢ (—7/tn,7/ty]) — 0 so it follows that P(X = b,) — 1.
This is only possible if b, =b for n > N, and P(X =b) = 1. O

We call the three cases in Theorem 3.5.1: (i) nonlattice, (ii) lattice, and (iii)
degenerate. The reader should notice that this means that lattice random variables
are by definition nondegenerate. Before we turn to the main business of this section,
we would like to introduce one more special case. If X is a lattice distribution and we
can take b = 0, i.e., P(X € hZ) = 1, then X is said to be arithmetic. In this case,
if A =2x/h then p(A\) =1 and ¢ is periodic: p(t + ) = @(¢).

Our first local limit theorem is for the lattice case. Let X, X5, ... be i.i.d. with
EX; =0, EX? = 0% € (0,), and having a common lattice distribution with span
h.If S, =X1+---+X,, and P(X; € b+hZ) =1 then P(S,, € nb+hZ) = 1. We put

pn(z) = P(Sp/vn=1x) forze L, ={(nb+hz)/V/n:z¢eZ}

and
n(z) = (2m0?) Y2 exp(—x?/20?%) for z € (—o0, 00)

Theorem 3.5.2. Under the hypotheses above, as n — oo

nl/2
sup Tpn(x) —n(z)| — 0

x€L,

Remark. To explain the statement, note that if we followed the approach in Example
3.4.3 then we would conclude that for z € L,

z+h/2/n h
Pa(a) = / n(y) dy ~ ~=n(z)
z—h/2/n \/ﬁ

Proof. Let Y be a random variable with P(Y € a + 0Z) =1 and ¢(t) = E exp(itY).
It follows from part (iii) of Exercise 3.3.2 that

1 /6 it
P(Y_.T)_zﬂ_/e/ﬂ-/ee tw(t)dt

Using this formula with 6 = h/\/n, ¢(t) = Eexp(itS,/+/n) = ¢"(t/+/n), and then
multiplying each side by 1/6 gives

e—itxson(t/\/ﬁ) dt

n1/2 1 w/n/h
=g [

B % —mv/n/h
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Using the inversion formula, Theorem 3.3.5, for n(z), which has ch.f. exp(—o?t?/2),

gives
1 .
n(z) = 5 /67”1 exp(—c?t?/2) dt
™

Subtracting the last two equations gives (recall 7 > 1, [e=%%| < 1)

nl/2 w/n/h -
(@) @) < [ (/i) - expl-o* /)] d
—my/A/h
o
+/ exp(—o?t?/2) dt
w/n/h

The right-hand side is independent of x, so to prove Theorem 3.5.2 it suffices to show
that it approaches 0. The second integral clearly — 0. To estimate the first integral,
we observe that " (t//n) — exp(—c?t?/2), so the integrand goes to 0 and it is now
just a question of “applying the dominated convergence theorem.”

To do this, we will divide the integral into three pieces. The bounded convergence
theorem implies that for any A < oo the integral over (—A, A) approaches 0. To
estimate the integral over (—A, A)¢, we observe that since EX; = 0 and EX? = 02,
formula (3.3.3) and the triangle inequality imply that

(pla)] < 11— 0u2/2] + " Eminul - |X P 61X )
The last expected value — 0 as u — 0. This means we can pick § > 0 so that if
lu| < 8, it is < 02/2 and hence
lo(u)] <1 —0c%u?/2 + o%u?/4 =1 — o*u?/4 < exp(—o°u?®/4)
since 1 —xz < e~®. Applying the last result to u = t/\/n we see that for t < §/n
(%) lp(t/v/n)"| < exp(—0?t*/4)
So the integral over (—d+/n,dy/n) — (—A, A) is smaller than

v
2/ exp(—o?t?/4) dt
A

which is small if A is large.

To estimate the rest of the integral we observe that since X has span h, Theorem
3.5.1 implies |¢(u)| # 1 for u € [, 7/h]. ¢ is continuous so there is an 7 < 1 so that
lo(uw)] < n < 1for |u| €[§,m/h]. Letting u = t/4/n again, we see that the integral

over [—my/n/h, m\/n/h] — (—=6+y/n,dy/n) is smaller than
m/n/h
2/ n" + exp(—c?t?/2) dt
oy

which — 0 as n — oco. This completes the proof. O

We turn now to the nonlattice case. Let X, Xs,... be ii.d. with FX; = 0,
EX? = 0% € (0,00), and having a common characteristic function ¢(t) that has
lo(t)] < 1forallt #0. Let S, = X1 +---+ X, and n(z) = (2r0%)~ /2 exp(—x?/252).

Theorem 3.5.3. Under the hypotheses above, if x,//n — x and a < b

VnP(S, € (x, +a, x, +b)) — (b—a)n(x)
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Remark. The proof of this result has to be a little devious because the assumption
above does not give us much control over the behavior of ¢. For a bad example, let
41,42, - .- be an enumeration of the positive rationals which has ¢, < n. Suppose

P(X =gn) =PX =—q)= 1/2n+1

In this case EX = 0, EX? < oo, and the distribution is nonlattice. However, the
characteristic function has limsup,_, . [¢(t)| = 1.

Proof. To tame bad ch.f.’s we use a trick. Let § > 0

1 1—cosdy

ho(y) 5

i oy

be the density of the Polya’s distribution and let hg(z) = e¥"ho(z). If we introduce
the Fourier transform

g(u) = / e"g(y) dy
then it follows from Example 3.3.8 that

ho(u) = {1 —[u/d] if [u] <6

0 otherwise

and it is easy to see that hg(u) = ho(u + ). We will show that for any 60

(0 Vi Eha(S, = 22) = n(o) [ halw) dy
Before proving (a), we will show it implies Theorem 3.5.3. Let
fin(A) = VnP(Sy, —2n € A), and  p(A) = n(z)|4]

where |A| = the Lebesgue measure of A. Let

an =/nEho(S, —z,) and o= n(x)/ho(y) dy = n(x)

Finally, define probability measures by

n(B) = o [ Hontdn). and o(B) = [ howyutay

Qn

Taking # = 0 in (a) we see o, — « and so (a) implies

(b) [ ety — [ emuiay)

Since this holds for all §, it follows from Theorem 3.3.6 that v, = v. Now if |al, |b] <

27 /6 then the function
1

k(y) = o) Liaw) (v)

is bounded and continuous a.s. with respect to v so it follows from Theorem 3.2.4
that

[ty ~ [ kwwiay
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Since a,, — «, this implies
VnP(S, € (x, 4+ a,z, + b)) — (b—a)n(z)

which is the conclusion of Theorem 3.5.3.
Turning now to the proof of (a), the inversion formula, Theorem 3.3.5, implies

1 A
/ e~ ho(u) du

T om
Recalling the definition of hg, using the last result, and changing variables u = v + 6
we have

ho(l‘)

) 1 ) R
ho(x) = e¥hg(z) = o / e =0T R (u) du
=5 e " hg(v) dv

since iLe(’U) = fzo(v + 0). Letting F,, be the distribution of S,, — x,, and integrating
gives

Eho(Sp — ) = % / / =g () du dF) ()

_ % / / =1 4B, () ho (1) du

by Fubini’s theorem. (Recall hg(u) has compact support and F, is a distribution
function.) Using (e) of Theorem 3.3.1, we see that the last expression
1

= — [ o(—u)"e™® hy(u) du
2m

To take the limit as n — oo of this integral, let [—M, M] be an interval with hg(u) = 0
for u ¢ [-M, M|]. By (x) above, we can pick § so that for |u| < ¢

() |o(u)] < exp(—o?u?/4)
Let I = [—4,0] and J = [-M, M] — I. Since |¢(u)| < 1 for u # 0 and ¢ is continuous,
there is a constant n < 1 so that |p(u)] < n < 1 for w € J. Since |hg(u)| < 1, this
implies that

Ji i

o/, o(—u)" e hg(u) du| < o 2Mn"™ — 0

as n — oo. For the integral over I, change variables v = t/1/n to get
1 [ovm , .

— [ (et (¢ /) dt

2 ) _sym

The central limit theorem implies p(—t//n)" — exp(—c?t?/2). Using (c) now and
the dominated convergence theorem gives (recall z, /+/n — x)

. ~ 1 A
vn o(—u)" e hg(u) du — —/exp(—02t2/2)e”mh9(0) dt
27 J; 27

=mm%@:mw/mww

by the inversion formula, Theorem 3.3.5, and the definition of /g (0). This proves (a)
and completes the proof of Theorem 3.5.3. O
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3.6 Poisson Convergence

3.6.1 The Basic Limit Theorem

Our first result is sometimes facetiously called the “weak law of small numbers” or
the “law of rare events.” These names derive from the fact that the Poisson appears
as the limit of a sum of indicators of events that have small probabilities.

Theorem 3.6.1. For each n let X, n, 1 < m < n be independent random variables
with P(Xpm =1) = pnm, P(Xnm =0) =1—pym. Suppose
(1) 3zt Prm — A € (0,00),
and (1) maxi<m<n Pn.m — 0.
If Sp = Xp1+ -+ X0 then S, = Z where Z is Poisson()\).
Here Poisson(\) is shorthand for Poisson distribution with mean A, that is,
P(Z =k) = e *\/k!

Note that in the spirit of the Lindeberg-Feller theorem, no single term contributes
very much to the sum. In contrast to that theorem, the contributions, when positive,
are not small.

First proof. Let pnm(t) = E(exp(itXnm)) = (1 — pum) + Pame’ and let S, =
Xn1+ -+ Xnn Then

E exp(itS,,) H (1+ pnm(e™ = 1))
m=1

Let 0 < p < 1. |exp(p(e” —1))| = exp(pRe (e — 1)) < 1 and |1+ p(e® —1)| <1
since it is on the line segment connecting 1 to e**. Using Lemma 3.4.3 with § = 1 and
then Lemma 3.4.4, which is valid when max,, p, m < 1/2 since |e?* — 1| < 2,

n

exp (Z pn,m(eit - 1)> - H {1 +pn,m(eit - 1)}

m=1

<> Jexp(Pnm (e = 1)) = {1 + ppm(e = 1)}

n

2 it 2

< E :pn,'rrL|e -1
m=1

Using |e®® — 1| < 2 again, it follows that the last expression

by assumptions (i) and (ii). The last conclusion and > _| pp.m — A imply
Eexp(itS,) — exp(A(e” — 1))
To complete the proof now, we consult Example 3.3.2 for the ch.f. of the Poisson

distribution and apply Theorem 3.3.6. O

We will now consider some concrete situations in which Theorem 3.6.1 can be
applied. In each case we are considering a situation in which p, ., = ¢/n, so we
approximate the distribution of the sum by a Poisson with mean c.
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Example 3.6.1. In a calculus class with 400 students, the number of students who
have their birthday on the day of the final exam has approximately a Poisson distri-
bution with mean 400/365 = 1.096. This means that the probability no one was born
on that date is about e~10% = (.334. Similar reasoning shows that the number of
babies born on a given day or the number of people who arrive at a bank between
1:15 and 1:30 should have a Poisson distribution.

Example 3.6.2. Suppose we roll two dice 36 times. The probability of “double ones”
(one on each die) is 1/36 so the number of times this occurs should have approximately
a Poisson distribution with mean 1. Comparing the Poisson approximation with exact
probabilities shows that the agreement is good even though the number of trials is
small.

k 0 1 2 3
Poisson 0.3678 0.3678 0.1839 0.0613
exact  0.3627 0.3730 0.1865 0.0604

After we give the second proof of Theorem 3.6.1, we will discuss rates of convergence.
Those results will show that for large n the largest discrepancy occurs for £k = 1 and
is about 1/2en ( = 0.0051 in this case).

Example 3.6.3. Let &, 1,...,&,,, be independent and uniformly distributed over
[-n,n]. Let X, ., = 11if &, € (a,b), = 0 otherwise. S, is the number of points
that land in (a,b). ppm = (b—a)/2n so Y, ppm = (b —a)/2. This shows (i)
and (ii) in Theorem 3.6.1 hold, and we conclude that S,, = Z, a Poisson r.v. with
mean (b — a)/2. A two-dimensional version of the last theorem might explain why
the statistics of flying bomb hits in the South of London during World War II fit a
Poisson distribution. As Feller, Vol. I (1968), p.160-161 reports, the area was divided
into 576 areas of 1/4 square kilometers each. The total number of hits was 537 for an
average of 0.9323 per cell. The table below compares Nj the number of cells with &
hits with the predictions of the Poisson approximation.

k 0 1 2 3 4 >5
N, 229 211 93 35 7 1
Poisson 226.74 211.39 98.54 30.62 7.14 1.57

For other observations fitting a Poisson distribution, see Feller, Vol. I (1968), Section
VI.7.

Our second proof of Theorem 3.6.1 requires a little more work but provides in-
formation about the rate of convergence. We begin by defining the total variation
distance between two measures on a countable set S.

1
—v|| == z) —v(z)| = su A)—v(A
s =11 = 5 3212 = ()] = sup () = (4)
The first equality is a definition. To prove the second, note that for any A

D 1n(2) = v(2)] 2 [p(A) = v(A)] + [p(A%) = v(A9)] = 2|u(A) - v(A)

and there is equality when A = {z : pu(z) > v(z)}.

Exercise 3.6.1. Show that (i) d(u,v) = || — v|| defines a metric on probability
measures on Z and (ii) ||un — pf| — 0 if and only if u,(x) — p(x) for each = € Z,
which by Exercise 3.2.11 is equivalent to p,, = pu.
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Exercise 3.6.2. Show that ||u —v|| < 26 if and only if there are random variables X
and Y with distributions p and v so that P(X #Y) <.

The next three lemmas are the keys to our second proof.

Lemma 3.6.2. If yu; X uo denotes the product measure on Z x Z that has (pu1 X
p2)(x,y) = pa(x)p2(y) then

1 x pg —v1 x vl <y — vi + (2 — vl

Proof. 2[|py x pp — vy x va|| =32, | (2)pa(y) — vi(@)ra(y)]
<l @)p2(y) — (@) ) + Y v (@)p2(y) — vi(@)va(y)l
= S ) Y ) — @)+ @)Y lusl) — vl

=2[|p1 — vl + 2([p2 — 12|
which gives the desired result. O

Lemma 3.6.3. If ju1 * uo denotes the convolution of p1 and pe, that is,

pa o pa(x) =Y (e — y)pa(y)

then [[py * p2 — vy xvo| < [lpa X p2 — vy x 12|

Proof. 2[|p1 * po —v1 x vl = 30, (30, m(z —y)ua(y) — 22, vi(x — y)ra(y)

< ZZ |1 (= y)pa(y) — v1(x — y)va(y)]

= 2|l X pg —v1 X va|
which gives the desired result. O

Lemma 3.6.4. Let p be the measure with u(1) = p and p(0) =1 —p. Let v be a
Poisson distribution with mean p. Then ||u — v| < p*.

Proof. 2||p —v|| = |p(0) — v(0)] + |u(1) —v(1)[ + 32,55 v(n)
=l-p—e?|+p—peP|+1-eP(1+p)
Since 1 —x < e * <1 for z > 0, the above

=eP—14+p+p(l—eP)+1—eP—pe?
=2p(1 —e7P) < 2p

which gives the desired result. O

Second proof of Theorem 3.6.1. Let piy, ., be the distribution of X, ,,. Let pu, be
the distribution of S,,. Let v, ., v, and v be Poisson distributions with means



3.6. POISSON CONVERGENCE 129

Pryms An = D m<n Pn,m, and X respectively. Since p, = pin,1 % -+ % iy, and v, =
Up %« % Uy, Lemmas 3.6.3, 3.6.2, and 3.6.4 imply

[pn — vl < Z [ Bn,m — Vil < 2 Z p?z,m (3.6.1)
m=1 m=1

Using the definition of total variation distance now gives
n
sup e (4) = va(A)] € 3 P
m=1

Assumptions (i) and (ii) imply that the right-hand side — 0. Since v,, = v as n — o0,
the result follows. d

Remark. The proof above is due to Hodges and Le Cam (1960). By different
methods, C. Stein (1987) (see (43) on p. 89) has proved

Sup i (A) = va(A) < AV DTS 02
m=1

Rates of convergence. When p,, ,, = 1/n, (3.6.1) becomes

sup [n (A) —vn(A)] < 1/n
A

To assess the quality of this bound, we will compare the Poisson and binomial prob-
abilities for k successes.

k  Poisson Binomial
0 -

T T ST A (S

I (T A (R

3oeta (et (-t = (-2 (-2
)

Since (1 — ) < e™®, we have 11,(0) — v,

—~

0) < 0. Expanding

2 ad
log(1 =r——+—=—...
og(l+z)==x 5 + 3
gives
1 n—1 n-1 1
-1 1——)=- — — .. =—14+—4+0(n?
(n )og( n) n 2n? o T (™)
So

n

n—1
n <<1 - 1) - el> =ne ! (exp{l/2n+O0(n 2} —1) —» e '/2
and it follows that

n(pn(1) = va(1)) = e7'/2
(i (2) = vn(2)) — 7' /4
For k > 3, using (1 —2/n) < (1—1/n)? and (1 — z) < =% shows pu, (k) — v, (k) <0,

sup |pn(A) — vn(A)| =~ 3/4en
ACZ

There is a large literature on Poisson approximations for dependent events. Here
we consider
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3.6.2 Two Examples with Dependence

Example 3.6.4. Matching. Let 7 be a random permutation of {1,2,...,n}, let
Xn,m = 1if m is a fixed point (0 otherwise), and let S,, = X,, 1 + --- + X, » be the
number of fixed points. We want to compute P(S,, = 0). (For a more exciting story
consider men checking hats or wives swapping husbands.) Let A,, ,, = {X,.m = 1}.
The inclusion-exclusion formula implies

P( ?n:lAm) = ZP(Am) - Z P(AZ ﬁAm)

<m

+ > P(AxNANAy) -

k<l<m

() ()52

since the number of permutations with & specified fixed points is (n — k)! Canceling
some factorials gives

n nL 1 n (_1)7n
S>0:Z S0 P(Sn:O):Z

m=1 m=0

Recognizing the second sum as the first n + 1 terms in the expansion of e™! gives

oo

> Sr
m)

m=n+1
00 1 1 —1
2)” 11—
kz’” BRCES] ( n+2>

a much better rate of convergence than 1/n. To compute the other probabilities, we
observe that by considering the locations of the fixed points

|P(Sn =0) _671| =

n+1

3
~
I
=
I

P(Snfk = O)

<Z)n(n1)...1(nk+1)

= k'P(Sn_k =0) — e '/k!
Example 3.6.5. Occupancy problem. Suppose that r balls are placed at random
into n boxes. It follows from the Poisson approximation to the Binomial that if
n — oo and r/n — ¢, then the number of balls in a given box will approach a Poisson
distribution with mean c¢. The last observation should explain why the fraction of
empty boxes approached e~ in Example 2.2.5. Here we will show:

Theorem 3.6.5. If ne™"/™ — X\ € [0,00) the number of empty boxes approaches a
Poisson distribution with mean \.

Proof. To see where the answer comes from, notice that in the Poisson approximation
the probability that a given box is empty is e~ /" & A/n, so if the occupancy of
the various boxes were independent, the result would follow from Theorem 3.6.1. To
prove the result, we begin by observing

k: i
P( boxes iy,1i2,...,ix are empty ) = (1 — )
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If we let p,,(r,n) = the probability exactly m boxes are empty when r balls are put
in n boxes, then P( no empty box ) = 1 — P( at least one empty box ). So by
inclusion-exclusion

8 wo =3 () (1- 5]

By considering the locations of the empty boxes

(v putrm = () (1= 2 lron = m)

m

To evaluate the limit of p,,(r,n) we begin by showing that if ne~"/™ — X then

(c) <:l> (1- %)T A

One half of this is easy. Since (1 —z) < e~® and ne™"/" — A

(d) (") (1-™) < g A )

m n m)!

For the other direction, observe (') > (n —m)™/m! so

()02 = (2w

Now (1 —m/n)™ — 1 as n — oo and 1/m! is a constant. To deal with the rest, we
note that if 0 <¢ < 1/2 then

log(1—t) = —t —t2/2 —t3/3...
2

2—t—%(1+2‘1+2_2+---)=—t—t2

so we have
m T
log (nm (1 - —) ) > mlogn —rm/n — r(m/n)?
n
Our assumption ne~"/" — X means
r =mnlogn —nlog A+ o(n)

so r(m/n)? — 0. Multiplying the last display by m/n and rearranging gives m logn —
rm/n — mlog A. Combining the last two results shows

n—oo

lim inf n" (1 — @>r >\
n

and (c) follows. From (a), (c), and the dominated convergence theorem (using (d) to
get the domination) we get

(e) if ne™"/™ — X then po(r,n) — Z,;“;O(—l)k% =e
For fixed m, (n —m)e~"/("=™) — X so it follows from (e) that po(r,n —m) — e=*.
Combining this with (b) and (¢) completes the proof. O
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Example 3.6.6. Coupon collector’s problem. Let Xi, X5,... be i.i.d. uniform
on {1,2,...,n} and T,, = inf{m : {X1,... X;,} = {1,2,...,n}}. Since T,, < m if and
only if m balls fill up all n boxes, it follows from Theorem 3.6.5 that

P(T,, —nlogn < nx) — exp(—e™ %)
Proof. If r = nlogn + nx then ne~"/™ — =%, O

Note that T}, is the sum of n independent random variables (see Example 2.2.3), but
T, does not converge to the normal distribution. The problem is that the last few
terms in the sum are of order n so the hypotheses of the Lindeberg-Feller theorem are
not satisfied.

For a concrete instance of the previous result consider: What is the probability
that in a village of 2190 (= 6-365) people all birthdays are represented? Do you think
the answer is much different for 1825 (= 5 - 365) people?

Solution. Here n = 365, so 365 log 365 = 2153 and
P(Ts65 < 2190) = P((Ts65 — 2153)/365 < 37/365)
~ exp(—e %19M) = exp(—0.9036) = 0.4051
P(Ts65 < 1825) = P((T365 — 2153)/365 < —328/365)
~ exp(—e?8980) = exp(—2.4562) = 0.085

As we observed in Example 2.2.3, if we let
i =inf{m : {X1,..., X} =k}

then 7" = 1 and for 2 < k < n, 7' — 7', are independent and have a geometric
distribution with parameter 1 — (k —1)/n.

Exercise 3.6.3. Suppose k/n'/2 — X € [0, 0c) and show that 7'~k = Poisson(\?/2).
Hint: This is easy if you use Theorem 3.6.6 below.

Exercise 3.6.4. Let p, , = ET)' and Ui)k = var (7]'). Suppose k/n — a € (0,1),
and use the Lindeberg-Feller theorem to show (7" — pin 1)/v/n = ox.

The last result is true when /f/nl/2 — o0 and n — k — oo, see Baum and Billingsley
(1966). Results for k = n — j can be obtained from Theorem 3.6.5, so we have
examined all the possibilities.

3.6.3 Poisson Processes

Theorem 3.6.1 generalizes trivially to give the following result.

Theorem 3.6.6. Let X, ,,,, 1 < m < n be independent nonnegative integer valued
random variables with P(Xy m = 1) = prm, P(Xnm > 2) = €nm.

(i) >om—1 Pnm — A € (0,00),

(1) maxi<m<n Pnm — 0,

and (iii) Y0 _ €nm — 0.

If Sp = Xpa1+ -+ Xy then S, = Z where Z is Poisson()\).
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Proof. Let X, ,, = 1if X;, ,, = 1, and 0 otherwise. Let S; = X, ; + -+ X ..
(i)-(ii) and Theorem 3.6.1 imply S, = Z, (iii) tells us P(S, # S;,) — 0 and the result
follows from the converging together lemma, Exercise 3.2.13. 0

The next result, which uses Theorem 3.6.6, explains why the Poisson distribution
comes up so frequently in applications. Let N(s,t) be the number of arrivals at a
bank or an ice cream parlor in the time interval (s,t]. Suppose

(1) the numbers of arrivals in disjoint intervals are independent,

(ii) the distribution of N(s,t) only depends on t — s,

(iii) P(N(0,h) =1) = A+ o(h),

and (iv) P(N(0,h) > 2) = o(h).

Here, the two o(h) stand for functions ¢; (k) and g2(h) with g;(h)/h — 0 as h — 0.

Theorem 3.6.7. If (i)—(iv) hold then N(0,t) has a Poisson distribution with mean
At.

Proof. Let Xy, ,m = N((m—1)t/n, mt/n) for 1 <m < n and apply Theorem 3.6.6. O

A family of random variables Ny, t > 0 satisfying:
(1) if0=ty <ty <...<ty, N(tg) — N(tx—-1), 1 <k < n are independent,
(ii) N(t) — N(s) is Poisson(A(t — s)),
is called a Poisson process with rate A\. To understand how N; behaves, it is
useful to have another method to construct it. Let &1, &2, ... be independent random
variables with P(§; > t) = e M fort > 0. Let T), = & + --- + &, and N; = sup{n :
T, <t} where Ty = 0. In the language of renewal theory (see Theorem 2.4.6), T;, is

the time of the nth arrival and Ny is the number of arrivals by time ¢. To check that
N is a Poisson process, we begin by recalling (see Theorem 2.1.12):

)\nsnfl

fr.(s) = m
i.e., the distribution of 7T}, has a density given by the right-hand side. Now
P(N; =0)=P(Ty >t) = e

e for s>0

and for n > 1
t
P<Nt:n):P(Tn§t<Tn+l):/ P(TnZS)P(gn-‘rl >t—8)d8
0

t yn n—1 n
_ / A"s ef)\sefx\(tfs) ds = —At ()‘t)
0

(n—1)! ¢ n!

The last two formulas show that N; has a Poisson distribution with mean At. To
check that the number of arrivals in disjoint intervals is independent, we observe

P(Tn+1 Z U|Nt = TL) = P(Tn+1 Z U,Tn S t)/P(Nt = TL)
To compute the numerator, we observe
t
P(Th1 > u, T, <t)= / fr, (8)P(€py1 > u—s)ds
0

t Angn—1 n
_ / s 67)\867)\(u75)d5 _ 67)\” ()‘t)
o (n—=1) n!
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The denominator is P(N; = n) = e~ *(\t)"/n!, so
P(T,i1 > ulN, = n) = e M /e~ = g7 Mut)

or rewriting things P(T41 —t > s|N; = n) = e **. Let T{ = Tv(¢)41 — t, and T}, =
Tnw+x — Tn(t)+r—1 for k > 2. The last computation shows that T is independent
of N;. If we observe that

P(Tn < taTn—i-l > U7Tn+k _Tn+k—1 > ’Uk;,k' = 2a7K)

K
=P(T, <t,Thy1 > u) H P(&nqk > vr)
k=2

then it follows that
(a) T, T35, ... are i.i.d. and independent of N;.

The last observation shows that the arrivals after time ¢ are independent of N; and
have the same distribution as the original sequence. From this it follows easily that:

(b)If0=tg <t1...<t, then N(¢;) — N(t;—1), i =1,...,n are independent.

To see this, observe that the vector (N (t2) —N(t1),...,N(tn) —N(tn—1)) is o(T}, k >
1) measurable and hence is independent of N(¢1). Then use induction to conclude

‘ - A(ti — tia))™
P(N(t;) = N(ti—1) = ki =1,...,n) = [ [ exp(=A(t; — tim1)) =—————
i=1 kil
Remark. The key to the proof of (a) is the lack of memory property of the exponential
distribution:

(%) PT>t+s|T>t)=P(T>5s)

which implies that the location of the first arrival after ¢ is independent of what
occurred before time ¢ and has an exponential distribution.

Exercise 3.6.5. Show that if P(T' > 0) = 1 and () holds then there is a A > 0 so
that P(T > t) = e~* for t > 0. Hint: First show that this holds for t = m2™".

Exercise 3.6.6. Show that (iii) and (iv) in Theorem 3.6.7 can be replaced by
(v) If Ng_ = lim;15 N, then P(Ns — Ns,_ > 2 for some s) = 0.

That is, if (i), (ii), and (v) hold then there is a A > 0 so that N(0,¢) has a Poisson
distribution with mean At. Prove this by showing: (a) If u(s) = P(Ng = 0) then (i)
and (ii) imply u(r)u(s) = u(r + s). It follows that u(s) = e=** for some A > 0, so
(iii) holds. (b) if v(s) = P(Ns > 2) and A,, = {Ny/r, — Njz—1)/n > 2 for some k < n}
then (v) implies P(A,) — 0 as n — oo and (iv) holds.

Exercise 3.6.7. Let T;, be the time of the nth arrival in a rate A Poisson process. Let
U1,Us, ..., U, be independent uniform on (0,1) and let V;* be the kth smallest number
in {Uy,...,U,}. Show that the vectors (V{*,..., V") and (T1/Tnt1,- - Tn/Tnt1)
have the same distribution.

Spacings. The last result can be used to study the spacings between the order
statistics of i.i.d. uniforms. We use notation of Exercise 3.6.7 in the next four exercises,
taking A = 1 and letting Vj* =0, and V!, ; = 1.
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Exercise 3.6.8. Smirnov (1949) nV}* = Tj.
Exercise 3.6.9. Weiss (1955) n™" Y0 _ 1(n(vn—vin )sq) — € in probability.
Exercise 3.6.10. (n/logn)maxi<m<n+1 V,¥ — V,»_; — 1 in probability.

Exercise 3.6.11. P(n*minj<p,<, V2 =V | >xz) — e "

For the rest of the section, we concentrate on the Poisson process itself.

Exercise 3.6.12. Thinning. Let N have a Poisson distribution with mean A and let
X1,X2,... be an independent i.i.d. sequence with P(X; = j) =p; for j =0,1,... k.
Let N; = [{m < N : X,,, = j}|. Show that Ny, N1, ..., Ny are independent and N;
has a Poisson distribution with mean Ap;.

In the important special case X; € {0,1}, the result says that if we thin a Poisson
process by flipping a coin with probability p of heads to see if we keep the arrival,
then the result is a Poisson process with rate Ap.

Exercise 3.6.13. Poissonization and the occupancy problem. If we put a
Poisson number of balls with mean r in n boxes and let NV; be the number of balls in
box i, then the last exercise implies Ny,..., N, are independent and have a Poisson
distribution with mean r/n. Use this observation to prove Theorem 3.6.5.

Hint: If r = nlogn— (log \)n+o(n) and s; = nlogn— (log p;)n with ps < A < py then
the normal approximation to the Poisson tells us P(Poisson(s1) < r < Poisson(sz)) —
lasn — oo.

Example 3.6.7. Compound Poisson process. At the arrival times T, 75, ... of a
Poisson process with rate A, groups of customers of size £1, s, . . . arrive at an ice cream
parlor. Suppose the ¢; are i.i.d. and independent of the ijs. This is a compound
Poisson process. The result of Exercise 3.6.12 shows that N} = the number of
groups of size k to arrive in [0,¢] are independent Poisson’s with mean pjAt.

Example 3.6.8. A Poisson process on a measure space (S,S,u) is a random
map m : § — {0,1,...} that for each w is a measure on S and has the following
property: if Aj,..., A, are disjoint sets with p(A;) < oo then m(A;),...,m(A4,,) are
independent and have Poisson distributions with means u(A;). p is called the mean
measure of the process. Exercise 3.6.12 implies that if (S) < oo we can construct
m by the following recipe: let X7, X5,... be i.i.d. elements of S with distribution
v(-) = u(-)/p(S), let N be an independent Poisson random variable with mean p(.5),
and let m(A) = |{j < N : X, € A}|. To extend the construction to infinite measure
spaces, e.g., S = R? S = Borel sets, s = Lebesgue measure, divide the space up into
disjoint sets of finite measure and put independent Poisson processes on each set.

3.7 Stable Laws*

Let X1,Xs,... be iid. and S, = X; + --- + X,,. Theorem 3.4.1 showed that if
EX; = p and var (X;) = 02 € (0,00) then

(Su —nis)/ on'’? = x

In this section, we will investigate the case EX? = co and give necessary and sufficient
conditions for the existence of constants a,, and b,, so that

(S, —bn)/an, =Y where Y is nondegenerate
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We begin with an example. Suppose the distribution of X; has
PXy>z)=PXy<—-2)=2"%/2 forz>1 (3.7.1)

where 0 < o < 2. If () = Eexp(itX1) then

00 —1
. (6] : «
1— t) = 1— 1tx d 1— it d
o= [0 e | - e

—00

1 — cos(t

. cos(tx) dx
1 xoz+1

Changing variables tx = u, dr = du/t the last integral becomes

/‘X’l—cosudu sa /‘X’l—cosud

=a — — ={t% ————du

¢ (u/t)ett ot t uott

Asu— 0, 1—cosu ~u?/2. So (1 —cosu)/u**tt ~ u=>"1/2 which is integrable, since
a < 2 implies —a+1 > —1. If we let

00
1 —cosu

and observe (3.7.1) implies ¢(t) = ¢(—t), then the results above show
1—o)~CJt|*as t—0 (3.7.2)
Let X1, X3, ... beii.d. with the distribution given in (3.7.1) and let S,, = X1+ - -+ X,,.
Eexp(itSu/nV/) = p(t/n/*)" = (1 = {1 = plt/n!/*)})"
As n — oo, n(1 — @(t/n'/*)) — C|t|*, so it follows from Theorem 3.4.2 that
E exp(itS, /n**) — exp(—C|t|*)

From part (ii) of Theorem 3.3.6, it follows that the expression on the right is the
characteristic function of some Y and

S, /nt* =Y (3.7.3)

To prepare for our general result, we will now give another proof of (3.7.3). If
0 < a < band an'/® > 1 then

1
P(anl/a <Xi< bnl/o‘) = i(afo‘ —b )t
so it follows from Theorem 3.6.1 that
No(a,b) = [{m <n: X,,/n'/* € (a,b)}| = N(a,b)

where N(a,b) has a Poisson distribution with mean (a=®—b~%)/2. An easy extension
of the last result shows that if A C R — (—4,0) and dn'/® > 1 then

o
ST dzx

P(X,/n'* € A) = n_l/
A

so N, (A) = |{m <n:X,,/n'/* € A}| = N(A), where N(A) has a Poisson distribu-
tion with mean
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The limiting family of random variables N(A) is called a Poisson process on
(—00,00) with mean measure p. (See Example 3.6.8 for more on this process.)
Notice that for any € > 0, (e, 00) = €~ */2 < 00, s0 N(€,00) < 00.

The last paragraph describes the limiting behavior of the random set

Xy ={Xpn/n"* 1 <m <n}
To describe the limit of S,,/ nt/® we will “sum up the points.” Let € > 0 and
L(e) = {m < n:|Xm| > en'/*}
So(e) = Z X S,(€) = Sn — S, (e)

mely,(e)

I,(¢) = the indices of the “big terms,” i.e., those > en'/® in magnitude. S, (e) is the
sum of the big terms, and Sy, (¢) is the rest of the sum. The first thing we will do is
show that the contribution of S, (€) is small if € is. Let

Xm(e) = Xml(\Xm|§enl/”)
Symmetry implies EX,,(e) =0, so E(S,(¢)?) = nEX;(e)2.

1/a

o) 1 en
EX1(6)2=/ 2yP(|X1(e)] >y)dy§/ 2ydy+/ 2yy “dy
0 0 1
2—a
1+ Le2fan2/oc71 2 < an/aq
2 -« 2—-a” 2—-«
where we have used o < 2 in computing the integral and a > 0 in the final inequality.
From this it follows that
26270‘
2—-a

To compute the limit of S,,(€)/n'/®, we observe that |I,,(e)| has a binomial distri-
bution with success probability p = ¢~ /n. Given |I,,(¢)| = m, Sp(€)/n*/* is the sum
of m independent random variables with a distribution F}; that is symmetric about 0
and has

E(Sa(e)/n'/*)? <

(3.7.4)

1— FS(z) = P(Xy /0 > x| |X1]/nV® > €) =27%/2e forxz > €
The last distribution is the same as that of eXy, so if p(t) = Fexp(itXy), the dis-
tribution F¢ has characteristic function ¢(et). Combining the observations in this
paragraph gives

m

Eexp(itS’n(e)/nl/o‘) = Z (n) (e7/n)™ (1 — e “/n)" " "p(et)™

m=0

Writing

(n) L lan-1-p-m+1) _ 1

m/n™  m! nm m)

noting (1 — e %/n)" < exp(—e~®) and using the dominated convergence theorem

E exp(itS,,(€) /nt/®) — Z exp(—e~*)(e”*)"p(et)™ /m!

=exp(—e {1 —¢(et)}) (3.7.5)

To get (3.7.3) now, we use the following generalization of Lemma 3.4.7.
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Lemma 3.7.1. If h,,(€) — g(€) for each € > 0 and g(e) — g(0) as e — 0 then we can
pick €, — 0 so that hy(e,) — ¢(0).

Proof. Let N, be chosen so that |h,(1/m)—g(1/m)| < 1/m forn > N,, and m — N,,,
is increasing. Let €, = 1/m for N, < n < Npy1 and = 1 for n < N;. When
Npm < n < Npi1, €, = 1/m so it follows from the triangle inequality and the
definition of ¢,, that

|ha(€n) — g(0)] < |hn(1/m) — g(1/m)| + [g(1/m) — g(0)]
<1/m+[g(1/m) — g(0)|
When n — oo, we have m — oo and the result follows. O

Let hy(€) = E exp(itS,,(€) /n'/*) and g(e) = exp(—e~*{1—¢(et)}). (3.7.2) implies
1— () ~Clt|* as t — 0 so
g(e) = exp(=CJt|Y) ase—0
and Lemma 3.7.1 implies we can pick €, — 0 with h,,(e,) — exp(—=C|[¢[*). Introducing
Y with Eexp(itY) = exp(—C|t|*), it follows that S, (e,)/n'/® =Y. If ¢, — 0 then

(3.7.4) implies )
S,(en)/nt* =0

and (3.7.3) follows from the converging together lemma, Exercise 3.2.13. O

Once we give one final definition, we will state and prove the general result alluded
to above. L is said to be slowly varying, if

lim L(tx)/L(x)=1 forallt>0

Exercise 3.7.1. Show that L(t) = logt is slowly varying but ¢¢ is not if € # 0.
Theorem 3.7.2. Suppose X1, Xo,... are i.i.d. with a distribution that satisfies
(i) im, oo P(X1 > z)/P(|X1| > z) =0 € [0,1]
(i) P(|X1| > x) = 27 “L(x)
where a < 2 and L is slowly varying. Let S, = X1 +---+ X,

a, = inf{z: P(|X1| >z) <n"'} and b, = nE(X11(x,|<an))
Asn — o0, (Sy, —by)/an =Y where Y has a nondegenerate distribution.

Remark. This is not much of a generalization of the example, but the conditions are
necessary for the existence of constants a, and b, so that (S, — b,)/a, = Y, where
Y is nondegenerate. Proofs of necessity can be found in Chapter 9 of Breiman (1968)
or in Gnedenko and Kolmogorov (1954). (3.7.11) gives the ch.f. of Y. The reader
has seen the main ideas in the second proof of (3.7.3) and so can skip to that point
without much loss.

Proof. Tt is not hard to see that (ii) implies
nP(|X1| > an) — 1 (3.7.6)

To prove this, note that nP(|X| > a,) < 1 and let ¢ > 0. Taking z = a,,/(1+¢€) and
t =1+ 2¢, (ii) implies

—a - P(IX1| > (1 +26)an/(1+¢€)) - P(XG] > an)
— <
(1+2¢) = nhm (X1| > an/(1 1)) hnmlnf Un
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proving (3.7.6) since € is arbitrary. Combining (3.7.6) with (i) and (ii) gives
nP(Xy > za,) — 0= forx >0 (3.7.7)

so {m < n: X, > za,}| = Poisson(fz~*). The last result leads, as before, to
the conclusion that X,, = {X,,/a, : 1 < m < n} converges to a Poisson process on
(—00, 00) with mean measure

p(A) = / Ocrlx| =T dx + / (1 —0)ajz|~ @t dy
AN(0,00) AN(—o00,0)

To sum up the points, let I,(€) = {m < n: |X,,| > ea,}

ﬂ(E) = EXm]-(ea,,<|Xm\§an) Sn(e) = Z Xm
mely(e)

fi(e) = EXml(ix,,|<can)

Sn(€) = (Sn —bp) — (Sn(e) —nji(e)) = Z {Xml(\Xm\Sean) - ﬁ(e)}
m=1

If we let Xm(ﬁ) = Xml(\Xm|§ea,,L) then
E(S’n(e)/an)2 =n var (X1(€)/a,) < nE(Xl(e)/an)2

E(Xy(e)/an)? < / C9yP(IX0| > yan) dy

) P(X] > ya,)
= P(|X4]| > an 2y—r———-d
001> o) |20 0

We would like to use (3.7.7) and (ii) to conclude

_ € 2
nB(Xi(e)/an)? — / 2yy " dy = e
0 2—«
and hence
- 2e27
limsup E(S,(¢)/an)* < 5 (3.7.8)

To justify interchanging the limit and the integral and complete the proof of (3.7.8),
we show the following (take 6 < 2 — a):

Lemma 3.7.3. For any 6 > 0 there is C so that for allt >ty and y <1
P(IX1| > yt)/P(IX1| > t) < Cy=*°
Proof. (ii) implies that as t — oo
P(IX4| > 1/2)/P(1X3] > 1) — 2°
so for t > tg we have
P(|X:| > t/2)/P(|X1| > t) < 2%
Iterating and stopping the first time ¢/2™ < ¢, we have for all n > 1

P(|X1| > t/2™)/P(|Xy| > t) < ¢2letdn
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where C' = 1/P(|X1| > to). Applying the last result to the first n with 1/2" < y and
noticing y < 1/2"~ 1, we have

P(|X1| > yt)/P(|X1| > t) < C20T0y=0
which proves the lemma. O

To compute the limit of S,.(€), we observe that |I,,(e)| = Poisson(e~®). Given
|I.(e)| = m, Sy (€)/ay is the sum of m independent random variables with distribution
F; that has

1—-Fy(x) =P(X1/an > z||X1]|/an > €) — 07 /e
Ef(—xz) = P(X1/an < —z||X1]/an > €) — (1 = O)|z| /e
for x > e. If we let ¢¢ (t) denote the characteristic function of F¢, then Theorem 3.3.6

implies

o0 —€
P (t) — (L) = / e qr (@) gy +/ e (1 — 9)eaa|x|_(a+1) dx

oo

as n — o0o. So repeating the proof of (3.7.5) gives
E exp(itSy(€)/an) — exp(—e*{1 — ¢<(t)})
(oo}
= exp (/ (e —1)0az= @t dy
- / (e —1)(1 — o)a|x<a+1>dx>
where we have used e* = fﬁoo az— (@D dz. To bring in

‘[L(E) = EXml(ean<|Xm\§an)

we observe that (3.7.7) implies nP(za, < X,, <ya,) — 0z~ —y~*). So
1 —€
nji(e)/an _’/ zfoz () dx+/ (1 — 0)alz|~@FY dx

-1

From this it follows that E exp(it{S,(€) — nji(e)}/a,) —

exp (/ (e —1)0az= @t dy
1
1 .
+ / (e — 1 —itz)faz™ @) d

+/ (e — 1 —itx)(1 — 0)alz| (@D da (3.7.9)

-1

—1
+ / (e —1)(1 — O)ar|a| (@D dx)

— 00

The last expression is messy, but €@ — 1 — ity ~ —t?22/2 as t — 0, so we need to
subtract the itz to make

1
/ (e —1 —itz)z~@FVdz  converge when a > 1
0
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To reduce the number of integrals from four to two, we can write the limit as ¢ — 0
of the right-hand side of (3.7.9) as

e . it
exp (itc Jr/o (emﬁ —1- 1:_;) Gax— () gy

0 .
. t
+/ (em 11— 11;) (1 - @)alz|~(@+D) dz) (3.7.10)

where ¢ is a constant. Combining (3.7.6) and (3.7.9) using Lemma 3.7.1, it follows
easily that (S, — b,)/a, = Y where Ee®Y is given in (3.7.10). O

Exercise 3.7.2. Show that when a < 1, centering is unnecessary, i.e., we can let
b, = 0.

By doing some calculus (see Breiman (1968), p. 204-206) one can rewrite (3.7.10)
as
exp(itc — blt|*{1 + ir sgn (t)wqa(¢)}) (3.7.11)

where —1 <k <1, (k=20 —1) and

wa(t) = {tan(ﬂ'a/Q) ?f a#1
(2/m)loglt| fa=1
The reader should note that while we have assumed 0 < « < 2 throughout the
developments above, if we set v = 2 then the term with x vanishes and (3.7.11)
reduces to the characteristic function of the normal distribution with mean ¢ and
variance 2b.

The distributions whose characteristic functions are given in (3.7.11) are called
stable laws. « is commonly called the index. When o = 1 and x = 0, we have the
Cauchy distribution. Apart from the Cauchy and the normal, there is only one other
case in which the density is known: When o = 1/2, kK = 1, ¢ = 0, and b = 1, the
density is

(2my®) "2 exp(—1/2y) for y >0 (3.7.12)
One can calculate the ch.f. and verify our claim. However, later (see Section 7.4)
we will be able to check the claim without effort, so we leave the somewhat tedious

calculation to the reader.
We are now finally ready to treat some examples

Example 3.7.1. Let X7, X5,... be i.i.d. with a density that is symmetric about 0,
and continuous and positive at 0. We claim that

1 /1 1
- (X1 +t Xn> = a Cauchy distribution (o =1, K = 0)
To verify this, note that

-1

PO/X, > 2) = PO< X, <o) = / C fw)dy ~ f(0)/x

as © — 00. A similar calculation shows P(1/X; < —z) ~ f(0)/z so in (i) in Theorem
3.7.2 holds with # = 1/2, and (ii) holds with a = 1. The scaling constant a,, ~ 2f(0)n,
while the centering constant vanishes since we have supposed the distribution of X is
symmetric about 0.
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Remark. Readers who want a challenge should try to drop the symmetry assumption,
assuming for simplicity that f is differentiable at O.

Example 3.7.2. Let X1, X5,... be i.i.d. with P(X; = 1) = P(X; = —-1) = 1/2, let
Sp=X14+---+X,,and let 7 =inf{n >1:5, = 1}. In Chapter 4 (see the discussion
after (4.3.2)) we will show

1/2, —1/2

P(r>2n)~7""*n as n — 00

Let 7,79, ... be independent with the same distribution as 7, and let T, = 7+ - -+7,.
Results in Section 4.1 imply that T}, has the same distribution as the nth time S,,
hits 0. We claim that T}, /n? converges to the stable law with a = 1/2, k = 1 and note
that this is the key to the derivation of (3.7.12). To prove the claim, note that in (i)
in Theorem 3.7.2 holds with # = 1 and (ii) holds with o = 1/2. The scaling constant
a, ~ Cn?. Since o < 1, Exercise 3.7.2 implies the centering constant is unnecessary.

Example 3.7.3. Assume n objects X, 1,...,Xp, » are placed independently and at
random in [—n,n]. Let

n

F, = Z sg (Xn,m)/ [ Xnm [P

m=1
be the net force exerted on 0. We will now show that if p > 1/2, then

lim Eexp(itF,) = exp(—c|t|'/?)

n—oo

To do this, it is convenient to let X, ,,, = nY},, where the Y; are i.i.d. on [—1,1]. Then

n
Fo=n"" sgn(Ym)/|Ym|’
m=1
Letting Z,,, = sgn (Yin)/|Ym|?, Zm is symmetric about 0 with P(|Z,,| > z) =
P(|Y,| < 271/ so in (i) in Theorem 3.7.2 holds with # = 1/2 and (ii) holds with
a = 1/p. The scaling constant a,, ~ CnP? and the centering constant is 0 by symmetry.

Exercise 3.7.3. Show that (i) If p < 1/2 then F,/n'/?7? = cx.
(i) If p = 1/2 then F,,/(log n)'/2 = cx.

Example 3.7.4. In the examples above, we have had b, = 0. To get a feel for the
centering constants consider Xy, Xo,... i.i.d. with

P(X;>z)=0x"" PX;,<—z)=(1—-0)z""

1/«

where 0 < o < 2. In this case a,, = n and

/o cn a>1
by, = n/ (20 — )az™%dz ~ S enlogn a=1
! ent/*a<1

When « < 1 the centering is the same size as the scaling and can be ignored. When
a > 1, b, ~nu where p = EX;.

Our next result explains the name stable laws. A random variable Y is said to
have a stable law if for every integer k > 0 there are constants a; and by so that if
Yi,..., Y, are ii.d. and have the same distribution as Y, then (Y1+...+Yy—b)/ax =4
Y. The last definition makes half of the next result obvious.
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Theorem 3.7.4. Y is the limit of (X1 + -+ + Xi — br)/ay for some i.i.d. sequence
X, if and only if Y has a stable law.

Proof. If Y has a stable law we can take X, X5, ... i.i.d. with distribution Y. To go
the other way, let

and SJ = X(j—tynt1 + -+ Xjn. A little arithmetic shows

an: - (Syll +-- Syli - bnk)/ank
ankZink = (Srlz - bn) +oet (S'ZCL - b”) + (kb" - b"k)
AnkZnk [ On = (STII —bn)/an +---+ (SS —bn)/an + (kbp — bui)/an

The first k terms on the right-hand side = Y7+ - -+Y; asn — oo where Y7, ..., Y} are
independent and have the same distribution as Y, and Z,,;, = Y. Taking W,, = Z,x
and b !

W»,/L _ aﬂ b — n — Unk

gives the desired result. O

Theorem 3.7.5. Convergence of types theorem. If W,, = W and there are
constants ay, > 0, B, so that W) = a, W, + 3, = W' where W and W' are nonde-
generate, then there are constants o and B so that o, — a and 3, — 5.

Proof. Let ¢, (t) = Eexp(itW,,).

Un(t) = Eexp(it(an W, + Bn)) = exp(itBn)on(ant)

If ¢ and ) are the characteristic functions of W and W', then

(a) pn(t) = ¢(t)  n(t) = exp(itfn)pnlant) — ¥(t)

Take a subsequence () that converges to a limit o € [0, 00]. Our first step is to
observe @ = 0 is impossible. If this happens, then using the uniform convergence
proved in Exercise 3.3.16

(b) [Vn ()] = |@n(ant)| — 1

[(t)] = 1, and the limit is degenerate by Theorem 3.5.1. Letting ¢t = u/a;, and
interchanging the roles of ¢ and 1 shows o = 00 is impossible. If « is a subsequential
limit, then arguing as in (b) gives [¢(t)| = |¢(at)|. If there are two subsequential
limits o’ < «, using the last equation for both limits implies |p(u)| = |p(ud’/a)|.
Iterating gives |o(u)| = |¢(u(a’/a)*)] — 1 as k — oo, contradicting our assumption
that W' is nondegenerate, so o, — a € [0,00).

To conclude that 3, — [ now, we observe that (ii) of Exercise 3.3.16 implies
©n — @ uniformly on compact sets so @, (a,t) — @(at). If 4 is small enough so that
|o(at)| > 0 for |t| < 4, it follows from (a) and another use of Exercise 3.3.16 that

) el
() = 200ty ™ plat)

uniformly on [0, d]. exp(it53,) is the ch.f. of a point mass at (3,. Using (3.3.1) now
as in the proof of Theorem 3.3.6, it follows that the sequence of distributions that
are point masses at (3, is tight, i.e., B, is bounded. If 5, — [ then exp(it3) =
Y(t)/p(at) for |t| < 4, so there can only be one subsequential limit. O
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Theorem 3.7.4 justifies calling the distributions with characteristic functions given
by (3.7.11) or (3.7.10) stable laws. To complete the story, we should mention that
these are the only stable laws. Again, see Chapter 9 of Breiman (1968) or Gnedenko
and Kolmogorov (1954). The next example shows that it is sometimes useful to know
what all the possible limits are.

Example 3.7.5. The Holtsmark distribution. (o« = 3/2, k = 0). Suppose stars
are distributed in space according to a Poisson process with density ¢ and their masses
are i.i.d. Let X; be the z-component of the gravitational force at 0 when the density
is t. A change of density 1 — ¢ corresponds to a change of length 1 — ¢~1/3, and
gravitational attraction follows an inverse square law so

X, L32x, (3.7.13)

If we imagine thinning the Poisson process by rolling an n-sided die, then Exercise
3.6.12 implies

d n
Xt :th/n +"'+Xt/n

where the random variables on the right-hand side are independent and have the same
distribution as X;/,. It follows from Theorem 3.7.4 that X; has a stable law. The
scaling property (3.7.13) implies o = 3/2. Since Xy =4 —X¢, kK = 0.

EXERCISES

3.7.4. Let Y be a stable law with x = 1. Use the limit theorem Theorem 3.7.2 to
conclude that Y > 0if oo < 1.

3.7.5. Let X be symmetric stable with index a. (i) Use (3.3.1) to show that E|X|P <
oo for p < a. (il) Use the second proof of (3.7.3) to show that P(|X| > z) > Cax™®
so BE|X|* = occ.

3.7.6. Let Y,Y1,Y5, ... be independent and have a stable law with index «. Theorem
3.7.4 implies there are constants «j and (i so that Y7 +--- 4+ Yy and aipY + G have
the same distribution. Use the proof of Theorem 3.7.4, Theorem 3.7.2 and Exercise
3.7.2 to conclude that (i) o = k@, (ii) if @ < 1 then By = 0.

3.7.7. Let Y be a stable law with index o < 1 and kK = 1. Exercise 3.7.4 implies that
Y > 0, so we can define its Laplace transform ¢(A\) = Eexp(—AY). The previous
exercise implies that for any integer n > 1 we have ¥(\)™ = ¥(n'/*)\). Use this to
conclude Eexp(—AY) = exp(—cA®).

3.7.8. (i) Show that if X is symmetric stable with index o and Y > 0 is an inde-
pendent stable with index 8 < 1 then XY/® is symmetric stable with index a. (ii)
Let Wi and W be independent standard normals. Check that 1/W3 has the density
given in (3.7.12) and use this to conclude that Wi /W5 has a Cauchy distribution.

3.8 Infinitely Divisible Distributions*

In the last section, we identified the distributions that can appear as the limit of
normalized sums of i.i.d.r.v.’s. In this section, we will describe those that are limits
of sums

(*) Sn :X’n.,l ++Xn,n
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where the X, ,,, are i.i.d. Note the verb “describe.” We will prove almost nothing in
this section, just state some of the most important facts to bring the reader up to
cocktail party literacy.

A sufficient condition for Z to be a limit of sums of the form (x) is that Z has
an infinitely divisible distribution, i.e., for each n there is an i.i.d. sequence
Yoi1,...,Y, n so that

d
Z:Yn,1+"'+Yn,n
Our first result shows that this condition is also necessary.

Theorem 3.8.1. Z is a limit of sums of type (x) if and only if Z has an infinitely
divisible distribution.

Proof. As remarked above, we only have to prove necessity. Write
SQn = (X2n,1 + -+ X2n7n) + (X2n7n+l + -+ X2n,2n) = Yn + YT/L

The random variables Y;, and Y, are independent and have the same distribution. If
S, = Z then the distributions of Y,, are a tight sequence since

P(Y, >y)? = P(Y, >y)P(Y] > y) < P(Ss, > 2y)

and similarly P(Y,, < —y)? < P(S2, < —2y). If we take a subsequence nj, so that
Yy, = Y (and hence Y, = Y’) then Z =4 Y +Y’. A similar argument shows that
Z can be divided into n > 2 pieces and the proof is complete. O

With Theorem 3.8.1 established, we turn now to examples. In the first three cases,
the distribution is infinitely divisible because it is a limit of sums of the form (x). The
number gives the relevant limit theorem.

Example 3.8.1. Normal distribution. Theorem 3.4.1
Example 3.8.2. Stable Laws. Theorem 3.7.2
Example 3.8.3. Poisson distribution. Theorem 3.6.1

Example 3.8.4. Compound Poisson distribution. Let &1,&5,... be i.i.d. and
N(X) be an independent Poisson r.v. with mean A\. Then Z = §; +---+{y(y) has an
infinitely divisible distribution. (Let X, ; =4 &1 + -+ 4+ &n(a/n).) For developments
below, we would like to observe that if ¢(t) = F exp(it;) then

o0

Eexp(itZ) = Z e

n=0

AT

2 p(t)" = exp(=A(1 - (1) (3.8.1)

Exercise 3.8.1. Show that the gamma distribution is infinitely divisible.

The next two exercises give examples of distributions that are not infinitely divis-
ible.

Exercise 3.8.2. Show that the distribution of a bounded r.v. Z is infinitely divisible
if and only if Z is constant. Hint: Show var (Z) = 0.

Exercise 3.8.3. Show that if p is infinitely divisible, its ch.f. ¢ never vanishes. Hint:
Look at ¢ = |p|?, which is also infinitely divisible, to avoid taking nth roots of complex
numbers then use Exercise 3.3.20.
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Example 2.8.4 is a son of 2.8.3 but a father of 2.8.1 and 2.8.2. To explain this
remark, we observe that if ¢ = € and —e with probability 1/2 each then ¢(t) =
(e + e7t) /2 = cos(et). So if A = €72, then (3.8.1) implies

Eexp(itZ) = exp(—e (1 — cos(et))) — exp(—t?/2)

as € — 0. In words, the normal distribution is a limit of compound Poisson distri-
butions. To see that stable laws are also a special case (using the notation from the
proof of Theorem 3.7.2), let

I(e) ={m <n:|X,| > e}

Sn(e)z Z X
mely,(e)

Sn(e) =8, — Sp(e)

If ¢, — O then Sq(en)/an = 0. If € is fixed then as n — oo we have |I,,(e)] =
Poisson(e™®) and Sy, (€)/a, = a compound Poisson distribution:

E exp(itSy(€)/an) — exp(—e {1 — (t)})
Combining the last two observations and using the proof of Theorem 3.7.2 shows that

stable laws are limits of compound Poisson distributions. The formula (3.7.10) for
the limiting ch.f.

0o ) it
exp (itc +/0 (em —-1- 1:_;) Gax™ (D) gy

0 . itx
+ / <em -1 x2> (1 — )z =@+ da:) (3.8.2)

helps explain:

Theorem 3.8.2. Lévy-Khinchin Theorem. Z has an infinitely divisible distribu-
tion if and only if its characteristic function has

’t? ito it
log p(t) = ict — UT +/ (e’t”“ -1 e ) wu(dzx)

1442

where 1 is a measure with p({0}) =0 and [ %u(dm) < 00.

For a proof, see Breiman (1968), Section 9.5., or Feller IT (1971), Section XVII.2. u
is called the Lévy measure of the distribution. Comparing with (3.8.2) and recalling
the proof of Theorem 3.7.2 suggests the following interpretation of u: If 02 = 0 then
Z can be built up by making a Poisson process on R with mean measure p and then
summing up the points. As in the case of stable laws, we have to sum the points in
[—¢, €], subtract an appropriate constant, and let € — 0.

Exercise 3.8.4. What is the Lévy measure for the limit R in part (iii) of Exercise
3.4.137

The theory of infinitely divisible distributions is simpler in the case of finite vari-
ance. In this case, we have:
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Theorem 3.8.3. Kolmogorov’s Theorem. Z has an infinitely divisible distribu-
tion with mean 0 and finite variance if and only if its ch.f. has

log p(t) = /(6“”” — 1 —itx)z 2 v(dx)
Here the integrand is —t%/2 at 0, v is called the canonical measure and var(Z) =
v(R).
To explain the formula, note that if Z, has a Poisson distribution with mean A
Eexp(ite(Zy — \)) = exp(A(e"™ — 1 —itx))

so the measure for Z = z(Zy — ) has v({z}) = \z2.

3.9 Limit Theorems in R?

Let X = (X1,...,X4) be a random vector. We define its distribution function by
F(z) = P(X < ). Here z € R%, and X < z means X; <z; fori =1,...,d. Asin
one dimension, F' has three obvious properties:

(i) It is nondecreasing, i.e., if x < y then F(z) < F(y).
(ii) imy oo Fi(x) =1, lim,, oo F(z) =0.
(iii) F is right continuous, i.e., lim,, F(y) = F(z).

Here z — oo means each coordinate x; goes to oo, x; — —oo means we let z; — —o0
keeping the other coordinates fixed, and y |  means each coordinate y; | x;.

As discussed in Section 1.1, an additional condition is needed to guarantee that F'
is the distribution function of a probability measure, let

A= (al,bl] X o+ X (ad,bd]

V = {(11,1)1} X e X {ad,bd}
V' = the vertices of the rectangle A. If v € V, let

sgn (v) = (71)# of a’s in v

The inclusion-exclusion formula implies

P(XeA)= Z sgn (v)F(v)

veV
So if we use A4 F to denote the right-hand side, we need
(iv) AxF > 0 for all rectangles A.

The last condition guarantees that the measure assigned to each rectangle is > 0. At
this point we have defined the measure on the semialgebra S; defined in Example
1.1.3. Theorem 1.1.6 now implies that there is a unique probability measure with
distribution F.

Exercise 3.9.1. If F is the distribution of (Xi,..., Xy) then F;(z) = P(X; < x) are
its marginal distributions. How can they be obtained from F'7
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Exercise 3.9.2. Let F1,. .., Fy be distributions on R. Show that for any o € [—1,1]

d d
F(xy,...,2q) = {1 +aH(1 - Fi(ﬁﬁi))} HFj(xj)

is a d.f. with the given marginals. The case o = 0 corresponds to independent r.v.’s.

Exercise 3.9.3. A distribution F' is said to have a density f if
Xy T
Flavo) = [ oo [ s dn

Show that if f is continuous, 0*F/0x; ... 0z = f.

If F,, and F are distribution functions on R?, we say that F,, converges weakly
to F, and write F,, = F, if F,,(z) — F(z) at all continuity points of F. Our first task
is to show that there are enough continuity points for this to be a sensible definition.
For a concrete example, consider

1 ifx>0,y>1
Flz,y)=qy ifz>0,0<y<1
0 otherwise
F' is the distribution function of (0,Y) where Y is uniform on (0,1). Notice that this
distribution has no atoms, but F is discontinuous at (0,y) when y > 0.

Keeping the last example in mind, observe that if =, < z, ie., x,; < x; for all
coordinates i, and x,, T x as n — oo then

F(z)—F(z,) =P(X <z)—P(X<x,) | PX<z)—P(X <1x)
In d = 2, the last expression is the probability X lies in
{(a,22) :a < a1} U{(21,b) : b < o}

Let H! = {z : x; = ¢} be the hyperplane where the ith coordinate is c¢. For each i,
the H! are disjoint so D' = {c¢: P(X € H!) > 0} is at most countable. It is easy to
see that if x has z; ¢ D? for all i then F is continuous at x. This gives us more than
enough points to reconstruct F.

As in Section 3.2, it will be useful to have several equivalent definitions of weak
convergence. In Chapter 8, we will need to know that this is valid for an arbitrary
metric space (5, p), so we will prove the result in that generality and insert another
equivalence that will be useful there. f is said to be Lipschitz continuous if there
is a constant C so that |f(x) — f(y)] < Cp(z,y).

Theorem 3.9.1. The following statements are equivalent to X,, = Xoo.

(i) Ef(X,) = Ef(Xs) for all bounded continuous f.

(ii) Ef(X,) — Ef(Xs) for all bounded Lipschitz continuous f.

(#1) For all closed sets K, limsup,,_, . P(X, € K) < P(X, € K).

(iv) For all open sets G, liminf, .., P(X,, € G) > P(X» € G).

(v) For all sets A with P(Xo € 0A) =0, lim,,,oc P(X,, € A) = P(X € A).

(vi) Let Dy = the set of discontinuities of f. For all bounded functions f with P(X €
Dy) =0, we have Ef(X,)) = Ef(Xs)-
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Proof. We will begin by showing that (i)—(vi) are equivalent.
(i) implies (ii): Trivial.

(ii) implies (iii): Let p(z, K) = inf{p(z,y) : y € K}, p,(r) = (1 —jr)", and f;(z) =
@;(p(z, K)). f; is Lipschitz continuous, has values in [0,1], and | 1x(z) as j T co. So

limsup P(X,, € K) < nlLIr;OEfj(Xn) =FEfj(Xo) | P(Xooc € K)as j 100

n—oo

(#i) is equivalent to (iv): As in the proof of Theorem 3.2.5, this follows easily from
two facts: A is open if and only if A€ is closed; P(A) + P(A°) = 1.

(iii) and (iv) imply (v): Let K = A, G = A°, and reason as in the proof of Theorem
3.2.5.

(v) implies (vi): Suppose |f(x)| < K and pick ag < a1 < ... < ay so that P(f(Xo) =
a;))=0for0<i</{ ay<—K <K < ay,and o; — ;—1 < €. This is always possible
since {a : P(f(Xs) = @) > 0} is a countable set. Let A; = {z: ay—1 < f(z) < a;}.
0A; C{x: f(z) € {ai—1,4}} U Dy, s0 P(Xo € 0A;) =0, and it follows from (v)

that
¢ ¢

Z%P(Xn €Ay — ZaiP(Xoo €A

i=1 i=1

The definition of the «; implies
¢
0<> aiP(X, € A) —Ef(X,) <e forl<n<oo
i=1

Since € is arbitrary, it follows that Ef(X,,) — Ef(Xw).
(vi) implies (i): Trivial.
It remains to show that the six conditions are equivalent to weak convergence (=).

(v) implies (=) : If F is continuous at x, then A = (—o0,21] X ... X (—00,24] has
u(0A) =0, s0 F,(z) = P(X,, € A) - P(Xs € A) = F(z).

(=) implies (iv): Let D' = {c: P(X € H!) > 0} where H! = {z : 2" = c}. We say
a rectangle A = (ay,b1] X ... x (ag,bq] is good if a;, b; ¢ D* for all i. (=) implies that
for all good rectangles P(X,, € A) — P(X € A). This is also true for B that are a
finite disjoint union of good rectangles. Now any open set GG is an increasing limit of
By’s that are a finite disjoint union of good rectangles, so

liminf P(X,, € G) > liminf P(X,, € By) = P(Xo € Bi) | P(Xo € G)

n—oo n—0oo

as k — o0o. The proof is complete. O

Remark. In Section 3.2, we proved that (i)—(v) are consequences of weak convergence
by constructing r.v’s with the given distributions so that X,, — X, a.s. This can be
done in R? (or any complete separable metric space), but the construction is rather
messy. See Billingsley (1979), p. 337-340 for a proof in R.

Exercise 3.9.4. Let X,, be random vectors. Show that if X,, = X then the coordi-
nates X, ; = X;.
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A sequence of probability measures ., is said to be tight if for any € > 0, there

is an M so that iminf,, . p,([-M, M]?) > 1 —e.

Theorem 3.9.2. If u, is tight, then there is a weakly convergent subsequence.

Proof. Let F,, be the associated distribution functions, and let ¢, g2, ... be an enu-
meration of Q? = the points in R? with rational coordinates. By a diagonal argu-
ment like the one in the proof of Theorem 3.2.6, we can pick a subsequence so that
Fo)(q) — G(q) for all ¢ € Q% Let

F(z) = inf{G(q) : ¢ € Q%, ¢ >z}

where ¢ > = means ¢; > x; for all 7. It is easy to see that F' is right continuous. To
check that it is a distribution function, we observe that if A is a rectangle with vertices
in Q% then A F, > 0 for all n, so AyG > 0, and taking limits we see that the last
conclusion holds for F' for all rectangles A. Tightness implies that F' has properties
(i) and (ii) of a distribution F. We leave it to the reader to check that F, = F. The
proof of Theorem 3.2.6 works if you read inequalities such as r; < r9 < < s as the
corresponding relations between vectors. O

The characteristic function of (X1,...,Xy) is (t) = Eexp(it-X) where t- X =
t1 X1+ -- - + tq Xy is the usual dot product of two vectors.

Theorem 3.9.3. Inversion formula. If A = [a1,b1] X ... X [ag, bg] with p(0A) =0
then

T—o0

d
p(a) = tim 20 [ TLwe)e0de
[-T,774 j=1
where 1;(s) = (exp(—isa;) — exp(—isb;))/is.

Proof. Fubini’s theorem implies

d
/[ ] / H ¥;(t;) exp(itjz;) p(dx) dt
—T,7]4 j=1

d T
= / H/ ¥;(t;) exp(it;x;) dt; p(de)
j=1"-T
It follows from the proof of Theorem 3.3.4 that

T
/ij(tj) exp(itjz;) dt; — 7 (Lia, ) (@) + La; 0,1 (%))

so the desired conclusion follows from the bounded convergence theorem. O

Exercise 3.9.5. Let ¢ be the ch.f. of a distribution ' on R. What is the distribution
on R? that corresponds to the ch.f. ¥(ty, ... ,tq) = @(t; + -+ +14)?

Exercise 3.9.6. Show that random variables X1, ..., X} are independent if and only
if

k
©x,..x, (t) = H ox;(ty)
j=1
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Theorem 3.9.4. Convergence theorem. Let X,,, 1 < n < oo be random vectors
with ch.f. ¢n. A necessary and sufficient condition for X, = X is that p,(t) —

Poo(t)-

Proof. exp(it - x) is bounded and continuous, so if X, = X then @, (t) — @oo(t).
To prove the other direction it suffices, as in the proof of Theorem 3.3.6, to prove that
the sequence is tight. To do this, we observe that if we fix § € R?, then for all s € R,
©n(s0) — oo (sh), so it follows from Theorem 3.3.6, that the distributions of 6 - X,
are tight. Applying the last observation to the d unit vectors eq,...,eqs shows that
the distributions of X,, are tight and completes the proof. O

Remark. As before, if ¢, (t) — poo(t) with oo (t) continuous at 0, then ¢ (t) is the
ch.f. of some X, and X, = X

Theorem 3.9.4 has an important corollary.

Theorem 3.9.5. Cramér-Wold device. A sufficient condition for X,, = X is
that 6 - X,, = 6 - X for all § € R%.

Proof. The indicated condition implies F exp(if - X,,) — Eexp(if - X ) for all 6 €
R, O

Theorem 3.9.5 leads immediately to

Theorem 3.9.6. The central limit theorem in R¢. Let X1, X, ... be i.i.d. ran-
dom vectors with EX,, = u, and finite covariances

ij = E(Xn,i — pa) (X — 1))

If S, = X1 +---+ X, then (S, —nu)/n'/? = x, where x has a multivariate normal
distribution with mean 0 and covariance I', i.e

Eexp(if-x) =exp [ — Z Z 0;0;T;/2
i g

Proof. By considering X = X,, — u, we can suppose without loss of generality that
u=0. Let # € R% 6. X, is a random variable with mean 0 and variance

E(ZGX) ZZEQGXn,XnJ ZZ@GF”

so it follows from the one-dimensional central limit theorem and Theorem 3.9.5 that
S, /n'’? = x where

Eexp(if - x) = exp ZZGG I';;/2 |
which proves the desired result. O
To illustrate the use of Theorem 3.9.6, we consider two examples. In each ey, ..., eq

are the d unit vectors.
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Example 3.9.1. Simple random walk on Z¢. Let X1, Xo, ... be i.i.d. with
P(X, =+4e;)=P(X,=—e;)=1/2d fori=1,...,d

EX! =0 and if i # j then EX! X = 0 since both components cannot be nonzero
simultaneously. So the covariance matrix is I';; = (1/2d)I.

Example 3.9.2. Let X1, X5, ... beiid. with P(X,, =¢;)=1/6fori=1,2,...,6. In
words, we are rolling a die and keeping track of the numbers that come up. EX,,; =
1/6 and EX,, ;X, ; = 0 for i # j, so I';; = (1/6)(5/6) when i = j and = —(1/6)?
when i # j. In this case, the limiting distribution is concentrated on {z : ), x; = 0}.

Our treatment of the central limit theorem would not be complete without some
discussion of the multivariate normal distribution. We begin by observing that I';; =
I‘ji and if EXZ =0 and EXin = Fi’j

2
> > 06,1 =E (Z 9¢Xz-> >0
% J 7

so I' is symmetric and nonnegative definite. A well-known result implies that there
is an orthogonal matrix U (i.e., one with UU = I, the identity matrix) so that
I' = U'VU, where V > 0 is a diagonal matrix. Let W be the nonnegative diagonal
matrix with W2 = V. If we let A = WU, then I' = A’A. Let Y be a d-dimensional
vector whose components are independent and have normal distributions with mean
0 and variance 1. If we view vectors as 1 X d matrices and let x = Y A, then x has
the desired normal distribution. To check this, observe that

0-YA=Y 0> Y;A;
( J

has a normal distribution with mean 0 and variance

2
> (Z Ajiez) => (Z 9iA§j> (Z Ajkek> = A" A9" = 9"
j i j i k
so E(exp(if - x)) = exp(—(0T'6%)/2).
If the covariance matrix has rank d, we say that the normal distribution is non-
degenerate. In this case, its density function is given by

(2m)~¥2(det T) "2 exp | — Z in‘;jlyj/2
i,J
The joint distribution in degenerate cases can be computed by using a linear transfor-

mation to reduce to the nondegenerate case. For instance, in Example 3.9.2 we can
look at the distribution of (X1,..., X5).

Exercise 3.9.7. Suppose (X1,...,X4) has a multivariate normal distribution with
mean vector # and covariance I'. Show Xi,..., X, are independent if and only if
I'jj = 0 for ¢ # j. In words, uncorrelated random variables with a joint normal

distribution are independent.

Exercise 3.9.8. Show that (Xi,..., X ) has a multivariate normal distribution with
mean vector # and covariance I if and only if every linear combination ¢y X1+ - -+c4Xq4
has a normal distribution with mean c¢6® and variance cI'ct.



Chapter 4

Random Walks

Let X1, Xs,... be i.i.d. taking values in R% and let S,, = X; + ...+ X,,. S, is a
random walk. In the last chapter, we were primarily concerned with the distribution
of S,. In this one, we will look at properties of the sequence S;(w), S2(w), ... For
example, does the last sequence return to (or near) O infinitely often? The first
section introduces stopping times, a concept that will be very important in this and
the next two chapters. After the first section is completed, the remaining three can
be read in any order or skipped without much loss. The second section is not starred
since it contains some basic facts about random walks.

4.1 Stopping Times

Most of the results in this section are valid for i.i.d. X’s taking values in some nice
measurable space (S,S) and will be proved in that generality. For several reasons,
it is convenient to use the special probability space from the proof of Kolmogorov’s
extension theorem:

Q={(w1,ws,...)w; €S}

F=8xSx...
P=pxpx... 1 is the distribution of X;
Xn(w) = wy

So, throughout this section, we will suppose (without loss of generality) that our
random variables are constructed on this special space.

Before taking up our main topic, we will prove a 0-1 law that, in the i.i.d. case,
generalizes Kolmogorov’s. To state the new 0-1 law we need two definitions. A finite
permutation of N = {1,2,...} is a map 7 from N onto N so that 7(¢) # ¢ for only
finitely many 7. If 7 is a finite permutation of N and w € SN we define (mw); = Wr(4)-
In words, the coordinates of w are rearranged according to w. Since X;(w) = w;
this is the same as rearranging the random variables. An event A is permutable if
7 A ={w: 7w € A} is equal to A for any finite permutation 7, or in other words,
if its occurrence is not affected by rearranging finitely many of the random variables.
The collection of permutable events is a o-field. It is called the exchangeable o-field
and denoted by &.

To see the reason for interest in permutable events, suppose S = R and let S, (w) =
X1(w) + -+ 4+ X, (w). Two examples of permutable events are

153
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(i) {w: Sp(w) € B i.o.}
(ii) {w : limsup,,_,, Sn(w)/c, > 1}

In each case, the event is permutable because S, (w) = Sy, (nw) for large n. The list
of examples can be enlarged considerably by observing:

(iii) All events in the tail o-field 7 are permutable.

To see this, observe that if A € o(X,41,Xn+2,...) then the occurrence of A is un-
affected by a permutation of Xi,...,X,. (i) shows that the converse of (iii) is false.
The next result shows that for an i.i.d. sequence there is no difference between £ and
T. They are both trivial.

Theorem 4.1.1. Hewitt-Savage 0-1 law. If X7, X, ... are i.i.d. and A € € then
P(A) € {0,1}.

Proof. Let A € £. As in the proof of Kolmogorov's 0-1 law, we will show A is
independent of itself, i.e., P(A) = P(AN A) = P(A)P(A) so P(A) € {0,1}. Let
A, € 0(Xy,...,X,) so that

(a) P(A,AA) — 0

Here AAB = (A—B)U(B—A) is the symmetric difference. The existence of the A4,,’s
is proved in part ii of Lemma A.2.1. A, can be written as {w : (w1,...,wn) € B}
with B, € S™. Let
j4+n if1<j<n
m(j)=Rj—n ifn+1<j<2n
j ifj>2m 41

Observing that 72 is the identity (so we don’t have to worry about whether to write
7 or m—1) and the coordinates are i.i.d. (so the permuted coordinates are) gives

(b) Plw:we A,AA) = P(w: 1w € A,AA)

Now {w:mw € A} = {w:w € A}, since A is permutable, and
{wimwe Ay} ={w: (wWnt1,...,wan) € By}

If we use A/, to denote the last event then we have

(c) {w:rmwe A,AAY ={w:we Al AA}

Combining (b) and (c) gives

(d) P(A,AA) = P(Al AA)

It is easy to see that
[P(B) — P(C)| < |P(BAC|

so (d) implies P(A,,), P(A},) — P(A). Now A—C C (A— B)U (B — C) and with a
similar inequality for C' — A implies AAC C (AAB) U (BAC). The last inequality,
(d), and (a) imply

P(A,AA) < P(A,AA) + P(AAA!) — 0
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The last result implies

0< P(A,) — P(4, N A})
< P(A,UA") — P(A,NA") = P(A4,AA") -0

so P(A,NAl)— P(A). But 4, and A}, are independent, so
P(A, 1 A1) = P(A,)P(A,) — P(A)?
This shows P(A) = P(A)?, and proves Theorem 4.1.1. O

A typical application of Theorem 4.1.1 is

Theorem 4.1.2. For a random walk on R, there are only four possibilities, one of
which has probability one.

(i) Sp, =0 for all n.

(ii) Sy, — o0.

(iii) S — —oc.

(iv) —oo = liminf S,, < limsup S,, = co.

Proof. Theorem 4.1.1 implies lim sup S, is a constant ¢ € [—o0,00]. Let S], = S, 11 —
Xi. Since S/, has the same distribution as S, it follows that ¢ = ¢ — X;. If ¢ is
finite, subtracting ¢ from both sides we conclude X; = 0 and (i) occurs. Turning the

last statement around, we see that if X; # 0 then ¢ = —oco or co. The same analysis
applies to the liminf. Discarding the impossible combination limsup S,, = —oco and
liminf S,, = +00, we have proved the result. U

Exercise 4.1.1. Symmetric random walk. Let X, X5,... € R be i.i.d. with a
distribution that is symmetric about 0 and nondegenerate (i.e., P(X; = 0) < 1).
Show that we are in case (iv) of Theorem 4.1.2.

Exercise 4.1.2. Let X1, Xs,... be i.i.d. with EX; =0 and EX? = 02 € (0,00). Use
the central limit theorem to conclude that we are in case (iv) of Theorem 4.1.2. Later
in Exercise 4.1.11 you will show that EX; = 0 and P(X; = 0) < 1 is sufficient.

The special case in which P(X; =1) = P(X; = —1) = 1/2 is called simple random
walk. Since a simple random walk cannot skip over any integers, it follows from
either exercise above that with probability one it visits every integer infinitely many
times.

Let F,, = 0(X1,...,X,) = the information known at time n. A random variable
N taking values in {1,2,...} U {oo} is said to be a stopping time or an optional
random variable if for every n < oo, {N = n} € F,,. If we think of S,, as giving the
(logarithm of the) price of a stock at time n, and N as the time we sell it, then the last
definition says that the decision to sell at time n must be based on the information
known at that time. The last interpretation gives one explanation for the second
name. N is a time at which we can exercise an option to buy a stock. Chung prefers
the second name because N is “usually rather a momentary pause after which the
process proceeds again: time marches on!”

The canonical example of a stopping time is N = inf{n : S, € A}, the hitting
time of A. To check that this is a stopping time, we observe that

{N=n}={S1€A4%...,5,_1€ A°,S, € A} e F,

Two concrete examples of hitting times that have appeared above are
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Example 4.1.1. N = inf{k : |S| > x} from the proof of Theorem 2.5.2.

Example 4.1.2. If the X; > 0 and N; = sup{n : S,, <t} is the random variable that
first appeared in Example 2.4.1, then N; + 1 = inf{n : S,, > t} is a stopping time.

The next result allows us to construct new examples from the old ones.

Exercise 4.1.3. If S and T are stopping times then S AT and S V T are stopping
times. Since constant times are stopping times, it follows that S An and SV n are
stopping times.

Exercise 4.1.4. Suppose S and T are stopping times. Is S + T a stopping time?
Give a proof or a counterexample.

Associated with each stopping time N is a o-field F = the information known
at time N. Formally, Fy is the collection of sets A that have AN{N =n} € F, for
all n < oo, i.e., when N = n, A must be measurable with respect to the information
known at time n. Trivial but important examples of sets in Fy are {N < n}, i.e., N
is measurable with respect to Fy.

Exercise 4.1.5. Show that if Y,, € F,, and N is a stopping time, Yy € Fy. As a
corollary of this result we see that if f : S — R is measurable, T, = > _ f(Xpm),
and M, = maxm,<p Iy, then Ty and My € Fn. An important special case is S = R,

flx) ==
Exercise 4.1.6. Show that if M < N are stopping times then Fj; C Fy.
Exercise 4.1.7. Show that if L < M and A € F, then

N L onA . ¢ e ti
= is a stopping time
M on A° PPIiS

Our first result about Fy is

Theorem 4.1.3. Let X1, Xs,... be i.i.d., F, = 0(X1,...,X,) and N be a stopping
time with P(N < c0) > 0. Conditional on {N < 0o}, {XNin,n > 1} is independent
of Fn and has the same distribution as the original sequence.

Proof. By Theorem A.1.5 it is enough to show that if A € Fn and B; € S for
1 <7 <k then

k
P(A,N <00, Xy4; € Bj,1<j < k)=PAN{N < oo}) [[ u(B))
j=1

where u(B) = P(X; € B). The method (“divide and conquer”) is one that we will
see many times below. We break things down according to the value of IV in order to
replace N by n and reduce to the case of a fixed time.

P(A,N:TL,X]\H_J'EBj,lSjSk)ZP(A,N:TL,XTH_jEBj,lSjSk)
k
= P(AN{N =n}) [T m(B;)
j=1

since AN{N = n} € F, and that o-field is independent of X, 11, ..., Xp4+k. Summing
over n now gives the desired result. O
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To delve further into properties of stopping times, we recall we have supposed
Q = SN and define the shift 6 : Q — Q by

(w)(n) =w(n+1) n=12...

In words, we drop the first coordinate and shift the others one place to the left. The
iterates of # are defined by composition. Let #' = @, and for k > 2 let % = 0 0 1.
Clearly, (#*w)(n) = w(n + k), n = 1,2,... To extend the last definition to stopping
times, we let

oN, — 0"w on {N =n}
A on {N = o0}

Here A is an extra point that we add to 2. According to the only joke in Blumenthal
and Getoor (1968), A is a “cemetery or heaven depending upon your point of view.”
Seriously, A is a convenience in making definitions like the next one.

Example 4.1.3. Returns to 0. For a concrete example of the use of 8, suppose
S =R and let

T(w)=inf{n:w; +- -+ w, =0}
where inf ) = oo, and we set 7(A) = co. If we let 2(w) = 7(w) + 7(67w) then on
{7 < o0},

T(0"w) =inf{n: ("w); + -+ ("w), =0}
=inf{n:wry1 + -+ wWryn =0}
T(w)+7(0"w) =inf{m >7:w; + -+ +w, =0}

So 7 is the time of the second visit to 0 (and thanks to the conventions §%w = A
and 7(A) = oo, this is true for all w). The last computation generalizes easily to show
that if we let

Tn(W) = Tt (W) + 7(07'w)

then 7, is the time of the nth visit to 0.
If we have any stopping time T, we can define its iterates by Ty = 0 and
Tp(w) = Tho1(w) + T(OT1w) forn >1
If we assume P =y X i X ... then
P(T, < 0) = P(T < c0)" (4.1.1)

Proof. We will prove this by induction. The result is trivial when n = 1. Suppose
now that it is valid for n — 1. Applying Theorem 4.1.3 to N = T,,_1, we see that
conditional on T},_1 < oo, T(67"-1) < oo has the same probability as T < oo, so

P(T,, < o0) = P(T,,_; < 00, T(#1"1w) < o0)
= P(T,_1 < ) P(T < 00) = P(T < 00)™

by the induction hypothesis. O
Letting t,, = T(#T»-1), we can extend Theorem 4.1.3 to
Theorem 4.1.4. Suppose P(T < c0) = 1. Then the “random vectors”

Vo= (tn, X1, 1415+, XT,)

are independent and identically distributed.
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Proof. Tt is clear from Theorem 4.1.3 that V,, and V; have the same distribution.
The independence follows from Theorem 4.1.3 and induction since Vi,...,V,_1 €
F(Th-1)- O

Example 4.1.4. Ladder variables. Let a(w) = inf{n : w; + -+ + w, > 0} where
inf ) = oo, and set a(A) = co. Let ap = 0 and let

ag(w) = ap—1(w) + a (0¥ 1w)
for £ > 1. At time ay, the random walk is at a record high value.

The next three exercises investigate these times.

Exercise 4.1.8. (i) If P(a < 00) < 1 then P(sup .S, < o) = 1.
(i) If P(a < 00) =1 then P(sup S,, = o0) = 1.

Exercise 4.1.9. Let 8 = inf{n : S, < 0}. Prove that the four possibilities in
Theorem 4.1.2 correspond to the four combinations of P(aw < 00) < 1 or = 1, and
P(B <o) <lor=1.

Exercise 4.1.10. Let Sy =0, 3 = inf{n >1: S, <0} and
A:ln = {0 2 Sm751 Z Smw";Sm*l Z S’mJ Sm < Sm+1,~~'7sm < Sn}
(i) Show 1 =" P(A%) =" _  P(a>m)P(3 >n—m).

m=0

(ii) Let n — oo and conclude Fa = 1/P(8 = o0).

Exercise 4.1.11. (i) Combine the last exercise with the proof of (ii) in Exercise 4.1.8

to conclude that if EX; = 0 then P(8 = oo) = 0. (ii) Show that if we assume in
addition that P(X; = 0) < 1 then P(8 = oc0) = 0 and Exercise 4.1.9 implies we are
in case (iv) of Theorem 4.1.2.

A famous result about stopping times for random walks is:

Theorem 4.1.5. Wald’s equation. Let X, Xs,... be i.i.d. with E|X;| < co. If N
is a stopping time with EN < oo then ESy = FX1EN.

Proof. First suppose the X; > 0.

ESN = /SNdPZ i/snl{N_n}dP: i i /Xml{N:n}dP
n=1

n=1m=1

Since the X; > 0, we can interchange the order of summation (i.e., use Fubini’s
theorem) to conclude that the last expression

oo 0o [eS)
n=m m=1

m=1n=

Now {N > m} = {N < m — 1}¢ € F,,—1 and is independent of X,,, so the last
expression

(oo}
= Z EX,,P(N >m)=FEX,EN
m=1
To prove the result in general, we run the last argument backwards. If we have
EN < oo then

00 > i E|X|P(N >m) = i i /\Xm|1{N:n} dP
m=1

m=1n=m
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The last formula shows that the double sum converges absolutely in one order, so
Fubini’s theorem gives

Z Z /Xml{N:n}dP = Z Z /Xml{N:n}dP
m=1n=m n=1m=1

Using the independence of {N > m} € F,,_1 and X,,,, and rewriting the last identity,
it follows that

> EX,,P(N >m)=ESy
m=1

Since the left-hand side is EN E X7, the proof is complete. O

Exercise 4.1.12. Let X, Xo, ... be i.i.d. uniform on (0,1), let S,, = X1 +--- + X,,,
and let T = inf{n : S,, > 1}. Show that P(T > n) = 1/nl, so ET = e and EST = ¢/2.

Example 4.1.5. Simple random walk. Let X;, X, ... be i.i.d. with P(X; =1) =
1/2 and P(X; = —1) = 1/2. Let a < 0 < b be integers and let N = inf{n : S, ¢
(a,b)}. To apply Theorem 4.1.5, we have to check that EN < co. To do this, we
observe that if « € (a,b), then

P(x+ Sy_q ¢ (a,b)) > 27~

since b — a steps of size +1 in a row will take us out of the interval. Iterating the last
inequality, it follows that

PN > n(b—a)) < (1-27¢-)"
so EN < oo. Applying Theorem 4.1.5 now gives ESy =0 or
bP(Sy =b)+aP(Sy =a) =0
Since P(Sy =b) + P(Sy = a) = 1, it follows that (b — a)P(Sy =b) = —a, so

- b
a P(SN:a):b—CL

Letting T, = inf{n : S,, = a}, we can write the last conclusion as

P(T, <T,) = fora<0<b (4.1.2)

b—a

Setting b = M and letting M — oo gives
P(T, <00) > P(Ty <Ty) — 1

for all @ < 0. From symmetry (and the fact that Ty = 0), it follows that
PT,<o0)=1 forallzeZ (4.1.3)

Our final fact about T, is that ET, = oo for x # 0. To prove this, note that if
ET, < oo then Theorem 4.1.5 would imply

Tr = ESTI = .E‘Xl.ETz =0
In Section 4.3, we will compute the distribution of 77 and show that

P(Ty >t)~C t71/2
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Exercise 4.1.13. Asymmetric simple random walk. Let X7, X5, ... bei.i.d. with
PX;=1)=p>1/2and P(X; =—-1)=1—p, and let S,, = X1 + -+ + X,,. Let
a =inf{m: S, >0} and g =inf{n: S, < 0}.

(i) Use Exercise 4.1.9 to conclude that P(a < 00) =1 and P(8 < o0) < 1.

(ii) If Y = inf S, then P(Y < —k) = P(8 < o0)*.

(iil) Apply Wald’s equation to aAn and let n — oo to get Ea = 1/EX; =1/(2p—1).
Comparing with Exercise 4.1.10 shows P(3 = oco) = 2p — 1.

Exercise 4.1.14. An optimal stopping problem. Let X,,, n > 1 be i.i.d. with

EX{ < oo and let

Y, = max X,, —cn
" 1<m<n m

That is, we are looking for a large value of X, but we have to pay ¢ > 0 for each
observation. (i) Let T' = inf{n : X,, > a}, p = P(X,, > a), and compute EYp. (i)
Let a (possibly < 0) be the unique solution of E(X; — a)™ = ¢. Show that EYy = «
in this case and use the inequality

Y, <a+ i((Xm—a)+—c)

for n > 1 to conclude that if 7 > 1 is a stopping time with E7 < oo, then FY, < a.
The analysis above assumes that you have to play at least once. If the optimal a < 0,
then you shouldn’t play at all.

Theorem 4.1.6. Wald’s second equation. Let X1, X5, ... be i.i.d. with EX,, =0
and EX?2 = 02 < co. If T is a stopping time with ET < co then ES% = o?ET.

Proof. Using the definitions and then taking expected value
S%/\n = S’%/\(n—l) + (2X5Sn-1+ X%)l(Tzn)
ESGpn = ESFp(m_1) +0°P(T > n)

since £X,, = 0 and X,, is independent of S;,_1 and 1(p>y) € Fp-1. [The expectation
of S, _1X,, exists since both random variables are in LZ.] From the last equality and
induction we get

ESin, =0 Y P(T >m)

m

M- L
e}

E(ST/\’I’L - ST/\m)2 = 02 (T Z k)
k=m+1
The second equality follows from the first applied to X,,+1, Xim+2,.... The second
equality implies that S, is a Cauchy sequence in L2, so letting n — oo in the first
it follows that ES% = o2ET. O

Example 4.1.6. Simple random walk, II. Continuing Example 4.1.5 we investi-
gate N = inf{S,, & (a,b)}. We have shown that EN < oco. Since o? = 1 it follows
from Theorem 4.1.6 and (4.1.2) that

Ty M—

EN:ESIQV:aQb 7
—a —Qa

= —ab

Ifb=Landa=—L, EN = L
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An amusing consequence of Theorem 4.1.6 is

Theorem 4.1.7. Let X1, Xo,... be i.i.d. with EX, = 0 and EX2 = 1, and let
T. = inf{n >1:|S,| > en'/?}.

ET. <oo forc<1
=00 forc>1

Proof. One half of this is easy. If ET, < oo then the previous exercise implies
ET, = E(S%C) > ¢2ET, a contradiction if ¢ > 1. To prove the other direction, we let
7 =T, An and observe S?2_; < c¢?(7 — 1), so using the Cauchy-Schwarz inequality

Er=ES?2=ES? | +2E(S, 1X,)+ EX? < cEr+2¢(Er EX?)Y? 4 EX?
To complete the proof now, we will show

Lemma 4.1.8. If T is a stopping time with ET = co then
EXZ,  JE(T An)—0

Theorem 4.1.7 follows for if € < 1 — ¢? and n is large, we will have ET < (¢ + €)ET,
a contradiction.

Proof. We begin by writing

E(X7,) = E(XFp: X, S (T AN)) + > E(XZT An=j, X} > €j)

j=1

The first term is < eE(T An). To bound the second, choose N > 1 so that for n > N

ZE(XJZ;XJ2 > €j) < ne

This is possible since the dominated convergence theorem implies E(X ]2; X 32 >e€j) — 0
as j — oo. For the first part of the sum, we use a trivial bound

N
N E(X:TAn=j,X}>ej) < NEX?

To bound the remainder of the sum, we note (i) X7 > 0; (ii) {TAn > j} is € F;_; and

hence is independent, of X71 x>~ ), (iii) use some trivial arithmetic, (iv) use Fubini’s
J

theorem and enlarge the range of j, (v) use the choice of N and a trivial inequality

n

ZE T/\nf],X >e])§
j=N

NE

E(XZ:T An>j, X7 > €j)

T
®

=Y P(TAn>jEXEX?>e)=> Y P(TAn=kEX};X] > ¢))

n
j=N j=N k=3
k

ZP (TAn=FkEX} X >¢j) < ZekP(T/\nzk:) <eE(T An)
j=1 k=N

I~
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Combining our estimates shows
EX2,., <2eE(T An)+ NEX?
Letting n — oo and noting E(T A n) — oo, we have

limsup EX%,,,/E(T An) < 2¢

n—oo

where € is arbitrary. U

4.2 Recurrence

Throughout this section, S,, will be a random walk, i.e., S, = X; + --- 4+ X, where
X1, Xs,...areii.d., and we will investigate the question mentioned at the beginning of
the chapter. Does the sequence S (w), Sa(w), ... return to (or near) 0 infinitely often?
The answer to the last question is either Yes or No, and the random walk is called
recurrent or transient accordingly. We begin with some definitions that formulate the
question precisely and a result that establishes a dichotomy between the two cases.

The number z € R? is said to be a recurrent value for the random walk S,, if
for every € > 0, P(||S, — z|| < € i.0.) = 1. Here ||z|| = sup |z;|. The reader will see
the reason for this choice of norm in the proof of Lemma 4.2.5. The Hewitt-Savage
0-1 law, Theorem 4.1.1, implies that if the last probability is < 1, it is 0. Our first
result shows that to know the set of recurrent values, it is enough to check z = 0. A
number x is said to be a possible value of the random walk if for any e > 0, there
is an n so that P(]|S, — z|| <€) > 0.

Theorem 4.2.1. The set V of recurrent values is either O or a closed subgroup of
R?. In the second case, V = U, the set of possible values.

Proof. Suppose V # ). It is clear that V¢ is open, so V is closed. To prove that V is
a group, we will first show that

(x)ifx e andy €V theny —x € V.

This statement has been formulated so that once it is established, the result follows
easily. Let
Ds,m(z) = P(||Sn — 2|| > 0 for all n > m)

If y—x ¢V, there is an € > 0 and m > 1 so that pae ., (y —x) > 0. Since z € U, there
is a k so that P(]|Sk — || < €) > 0. Since

P(||Sn, — Sk — (y —x)|| > 2¢ for all n > k + m) = pae.m(y — )
and is independent of {||Sx — x| < €}, it follows that
pe,erk(y) 2 P(”Sk - fEH < €)p2€,m(y - QC) >0

contradicting y € V,soy —z € V.

To conclude V is a group when V # 0, let ¢g,r € V, and observe: (i) taking
x =y =rin (*) shows 0 € V, (ii) taking © = r, y = 0 shows —r € V, and (iii) taking
x = —r, y = q shows g +r € V. To prove that V = U now, observe that if u € U
taking * = u, y = 0 shows —u € V and since V is a group, it follows that w € V. O
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If V = (), the random walk is said to be transient, otherwise it is called recurrent.
Before plunging into the technicalities needed to treat a general random walk, we
begin by analyzing the special case Polya considered in 1921. Legend has it that
Polya thought of this problem while wandering around in a park near Ziirich when
he noticed that he kept encountering the same young couple. History does not record
what the young couple thought.

Example 4.2.1. Simple random walk on Z¢.

for each of the d unit vectors e;. To analyze this case, we begin with a result that is
valid for any random walk. Let 79 = 0 and 7,, = inf{m > 7,,_1 : Sy, = 0} be the time
of the nth return to 0. From (4.1.1), it follows that

P(r, < 00) = P(1 < o0)"
a fact that leads easily to:
Theorem 4.2.2. For any random walk, the following are equivalent:
(i) P(11 < 00) =1, (ii) P(Sm =0 4.0.) =1, and (iii) > .°_  P(Sp, = 0) = co.
Proof. If P(my < o0) =1, then P(1, < c0) =1 for all n and P(S,, =01i.0.) =1. Let

oo

o0

V=23 15— = ) Lir<o0)
m=0 n=0

be the number of visits to 0, counting the visit at time 0. Taking expected value and

using Fubini’s theorem to put the expected value inside the sum:

EV = i P(S,, =0) = iP(Tn < 00)
m=0 n=0
= Z P(Tl < OO)n = !
n=0

_1—P(T1<OO)

The second equality shows (ii) implies (iii), and in combination with the last two
shows that if (i) is false then (iii) is false (i.e., (iii) implies (i)). O

Theorem 4.2.3. Simple random walk is recurrent in d < 2 and transient in d > 3.

To steal a joke from Kakutani (U.C.L.A. colloquium talk): “A drunk man will even-
tually find his way home but a drunk bird may get lost forever.”

Proof. Let pg(m) = P(Sy, = 0). pg(m) is 0 if m is odd. From Theorem 3.1.3, we
get p1(2n) ~ (mn)~1/? as n — oo. This and Theorem 4.2.2 gives the result in one
dimension. Our next step is

Simple random walk is recurrent in two dimensions. Note that in order for S5, = 0
we must for some 0 < m < n have m up steps, m down steps, n — m to the left and
n —m to the right so

n

p2(2n) = 472" Z

m=

()R ) = () s

m=0

2n!
m!m!(n —m)! (n —m)!
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To see the next to last equality, consider choosing n students from a class with n boys
and n girls and observe that for some 0 < m < n you must choose m boys and n —m
girls. Using the asymptotic formula p;(2n) ~ (7n)~Y2, we get p2(2n) ~ (7n)~'.
Since Y. n~! = oo, the result follows from Theorem 4.2.2.

Remark. For a direct proof of pa(2n) = p1(2n)?, note that if T'! and T2 are indepen-
dent, one dimensional random walks then T,, jumps from z to = + (1,1),  + (1, —1),
x+(—1,1), and z + (—1, —1) with equal probability, so rotating T, by 45 degrees and
dividing by v/2 gives S,,.

Simple random walk is transient in three dimensions. Intuitively, this holds since the
probability of being back at 0 after 2n steps is ~ en~3/2 and this is summable. We
will not compute the probability exactly but will get an upper bound of the right
order of magnitude. Again, since the number of steps in the directions +e; must be
equal for i =1,2,3

—2n (27’1)'
p3(2n) =6 z}; (k! (n —j — k)!)?

7

=9~ (2:) Zk: (3_nm>2

>

2n n!
< 27277, 3771
= <n)n}ix TR —j — k)

where in the last inequality we have used the fact that if a;; are > 0 and sum to 1
then >, a?’k < max; aj . Our last step is to show

n!
ax3 " < Cn!
UET Rm—j k="
To do this, we note that (a) if any of the numbers j, k or n—j—k is < [n/3] increasing
the smallest number and decreasing the largest number decreases the denominator
(since z(1 — x) is maximized at 1/2), so the maximum occurs when all three numbers
are as close as possible to n/3; (b) Stirling’s formula implies

n

n! n n 1

MKl n—j—k)!  jikkn—j—k)a* \ jk(n—j—k) 2n

Taking j and k within 1 of n/3 the first term on the right is < C3™, and the desired
result follows.

Simple random walk is transient in d > 3. Let T, = (S},82,83), N(0) = 0 and
N(n) = inf{m > N(n —1) : Ty # Tn@m-1)}. It is easy to see that Ty, is a
three-dimensional simple random walk. Since Ty, returns infinitely often to 0 with
probability 0 and the first three coordinates are constant in between the N(n), S, is
transient. O

Remark. Let 74 = P(S, = 0 for some n > 1) be the probability simple random
walk on Z¢ returns to 0. The last display in the proof of Theorem 4.2.2 implies

1
177Td

i P(Sap = 0) = (4.2.1)
n=0

Ind =3, P(Sy, = 0) ~ Cn=3/2 50 3.°° . P(Sa,, = 0) ~ C'"N~1/2_ and the series
converges rather slowly. For example, if we want to compute the return probability
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to 5 decimal places, we would need 10'° terms. At the end of the section, we will give
another formula that leads very easily to accurate results.

The rest of this section is devoted to proving the following facts about random
walks:

e S, is recurrent in d = 1 if S,,/n — 0 in probability.
e S, is recurrent in d =2 if S,/ nt/? = a nondegenerate normal distribution.
e S, is transient in d > 3 if it is “truly three dimensional.”

To prove the last result we will give a necessary and sufficient condition for recurrence.
The first step in deriving these results is to generalize Theorem 4.2.2.

Lemma 4.2.4. If Y 7 P(||S,|| <€) < oo then P(||S,|| < € i.0.) = 0.
If 3200 L P(||Sn|| < €) = oo then P(||Sy]| < 2€ i.0.) = 1.

Proof. The first conclusion follows from the Borel-Cantelli lemma. To prove the
second, let F' = {||S,|| < €i.0.}¢. Breaking things down according to the last time
HSnH < €,

M

P(F) P(|Sm]| < € ||Snll > € for all n > m+1)

3
Il
=)

P(||Sm | < € ||Sn — Sml| > 2€ for all n > m + 1)

3
I
=)

M

P([[Smll < €)paca
0

where ps . = P(||Sp|| > ¢ for all n > k). Since P(F) <1, and

3
Il

o0
> P(||Smll < €) =0
m=0
it follows that psc 1 = 0. To extend this conclusion to pac ; with £ > 2, let
A, = {lISm|l <€ ||Snl] > € for all n > m + k}
Since any w can be in at most k of the A,,, repeating the argument above gives

B2 P 2 3PS < pac
m=0

m=0
So poer = P(||Snll > 2¢ for all j > k) = 0, and since k is arbitrary, the desired

conclusion follows. O

Our second step is to show that the convergence or divergence of the sums in
Lemma 4.2.4 is independent of €. The previous proof works for any norm. For the
next one, we need ||z|| = sup; |x;|.

Lemma 4.2.5. Let m be an integer > 2.

prnqm %IZPwuq)

n=0
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Proof. We begin by observing

ZP(HS’nH < me) < Z ZP<S" € ke +10,6)%)
n=0 n=0 k
where the inner sum is over k € {—m,...,m — 1}%. If we let

Ty =inf{f >0:8S, € ke +[0,€)%}

then breaking things down according to the value of T} and using Fubini’s theorem
gives

ZPS € ke +[0,¢)? ZZPS € ke+0,6)4, Ty, = 0)

n=0 n=0 ¢=0

<D P(ISn = Sell < €, Tw =€)

=0 n=¢

Since {T}, = ¢} and {||S, — S¢|| < €} are independent, the last sum

oo o0 (o)
=Y P(T=m)Y P(ISjl <) <> P(IS;l <e)
m=0 §=0 §=0
Since there are (2m)? values of k in {—m,...,m — 1}%, the proof is complete. O

Combining Lemmas 4.2.4 and 4.2.5 gives:

Theorem 4.2.6. The convergence (resp. divergence) of > P(||Sn| <€) for a single
value of € > 0 is sufficient for transience (resp. recurrence).

Ind=1,if EX, = u # 0, then the strong law of large numbers implies S, /n — u
o |Sp| — oo and S, is transient. As a converse, we have

Theorem 4.2.7. Chung-Fuchs theorem. Suppose d = 1. If the weak law of large
numbers holds in the form S, /n — 0 in probability, then S, is recurrent.

Proof. Let uy(x) = P(|Sy| < x) for z > 0. Lemma 4.2.5 implies

oo 1 (e%S) 1 Am
nz:%un(l) > %nz:%un(m) > %nz:%un(n/fl)

for any A < oo since u,(x) > 0 and is increasing in z. By hypothesis u,(n/A) — 1,
so letting m — oo and noticing the right-hand side is A/2 times the average of the
first Am terms

iun(l) > A/2
n=0

Since A is arbitrary, the sum must be oo, and the desired conclusion follows from
Theorem 4.2.6. U

Theorem 4.2.8. If S, is a random walk in R? and S, /n'/? = a nondegenerate
normal distribution then S, is recurrent.
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Remark. The conclusion is also true if the limit is degenerate, but in that case the
random walk is essentially one (or zero) dimensional, and the result follows from the
Chung-Fuchs theorem.

Proof. Let u(n,m) = P(||Sn]| < m). Lemma 4.2.5 implies

Z u(n,1) > (4m?)~! Z u(n, m)
n=0 n=0
If m/\/n — c then
u(n,m) — n(x) dx
[—cie)?

where n(x) is the density of the limiting normal distribution. If we use p(c) to denote
the right-hand side and let n = [#m?], it follows that u([§m?],m) — p(0~'/2). If we

write
o0 [e%s}

m=? Z u(n,m) = / u([dm?],m) df
n=0 0
let m — oo, and use Fatou’s lemma, we get
lim inf (4m?)~* Z u(n,m) > 47" / p(6~1/2) dp
meee n=0 0

Since the normal density is positive and continuous at 0
pe)= [ nla)ds~ n(0)2)
[—ec]?

as ¢ — 0. So p(0~1/2) ~ 4n(0)/0 as @ — oo, the integral diverges, and backtracking
to the first inequality in the proof it follows that > - u(n,1) = oo, proving the
result. 0

We come now to the promised necessary and sufficient condition for recurrence.
Here ¢ = FEexp(it - X;) is the ch.f. of one step of the random walk.

Theorem 4.2.9. Let § > 0. S, is recurrent if and only if

1
Re ——— dy = >
/(5,5)d 1—(y)

We will prove a weaker result:

Theorem 4.2.10. Let § > 0. S,, is recurrent if and only if

1
sup/ Re——dy =
r<1.J(=6,5)4 1 —7rp(y)

Remark. Half of the work needed to get the first result from the second is trivial.

1 1
0<Re——— s Re———
L —7rp(y) 1 —p(y)

so Fatou’s lemma shows that if the integral is infinite, the walk is recurrent. The
other direction is rather difficult: the second result is in Chung and Fuchs (1951),

asr — 1
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but a proof of the first result had to wait for Ornstein (1969) and Stone (1969) to
solve the problem independently. Their proofs use a trick to reduce to the case where
the increments have a density and then a second trick to deal with that case, so we
will not give the details here. The reader can consult either of the sources cited or
Port and Stone (1969), where the result is demonstrated for random walks on Abelian
groups.

Proof. The first ingredient in the solution is the

Lemma 4.2.11. Parseval relation. Let p and v be probability measures on R® with

ch.f.’s ¢ and .
/ () pldt) = / () v(dr)

Proof. Since e€® is bounded, Fubini’s theorem implies

[otoutan = [ [ eévtaman = [ [ uaovian) = [otman) o

Our second ingredient is a little calculus.
Lemma 4.2.12. If |z| < /3 then 1 — cosz > z%/4.

Proof. It suffices to prove the result for > 0. If z < 7/3 then cosz > 1/2,

Yy
sin y :/ coszdz >
0

o\ S
&

x 2

. y x

1-— = dy > “dy =—

cosx /0 siny dy > 5 W=

which proves the desired result. O
From Example 3.3.5, we see that the density
5 —
52‘x| when |z| <4, 0 otherwise

has ch.f. 2(1 — cosdt)/(0t)%. Let u, denote the distribution of S,. Using Lemma
4.2.12 (note w/3 > 1) and then Lemma 4.2.11, we have

d 1-— cos 5t
P(|S,]| < 1/6) < 4d/H i (1)
=1

,Qd/ H5—|$z| z) dz
5,5)4

Our next step is to sum from 0 to co. To be able to interchange the sum and the
integral, we first multiply by ™ where r < 1.

Zr"p 1Sl < 1/6) <2d/ 5"‘“' L

2 —
o 2 1—re(x)

Symmetry dictates that the integral on the right is real, so we can take the real part
without affecting its value. Letting » T 1 and using (§ — |z|)/d <1

> 2\? 1
P(||S,|l < 1/5 g<) Sup/ Re——dx
; (I1Sall < 1/6) < { 5 Cane T (@)

r<l
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and using Theorem 4.2.6 gives half of Theorem 4.2.10.
To prove the other direction, we begin by noting that Example 3.3.8 shows that
the density (1 — cos(z/8))/mx?/d has ch.f. 1 —|6t| when [t| < 1/§, 0 otherwise. Using

1> H?Zl(l — |6x;|) and then Lemma 4.2.11,

d

(IS0 < 1/6) > /( T = [62:]) pn(d)

—1/8,1/6)4 ;4
1—cos(ti/d) ,
Multiplying by " and summing gives
— cos(t;/9) 1
"P( 1/9) dt
Zr (151 < 1/9) /H 5 T

The last integral is real, so its value is unaffected if we integrate only the real part of
the integrand. If we do this and apply Lemma 4.2.12, we get

> 1
" P(||S,]l < 1/8) > (476 —d/ Re———dt
n; ([[Sull < 1/6) > (4m0) ot T ()

Letting r T 1 and using Theorem 4.2.6 now completes the proof of Theorem 4.2.10. [

We will now consider some examples. Our goal in d =1 and d = 2 is to convince
you that the conditions in Theorems 4.2.7 and 4.2.8 are close to the best possible.

d = 1. Consider the symmetric stable laws that have ch.f. p(t) = exp(—[t|*). To avoid
using facts that we have not proved, we will obtain our conclusions from Theorem
4.2.10. Tt is not hard to use that form of the criterion in this case since

1—rp(t) | 1—exp(—|t|*) asr 11
1 —exp(—|t|¥) ~ [t|* ast—0
From this, it follows that the corresponding random walk is transient for a < 1 and
recurrent for o« > 1. The case a > 1 is covered by Theorem 4.2.7 since these random
walks have mean 0. The result for « = 1 is new because the Cauchy distribution does

not satisfy S, /n — 0 in probability. The random walks with « < 1 are interesting
because Theorem 4.1.2 implies (see Exercise 4.1.1)

—oo = liminf §,, < limsup S,, = o

but P(|S,| < M i.0.) =0 for any M < oco.

Remark. The stable law examples are misleading in one respect. Shepp (1964)
has proved that recurrent random walks may have arbitrarily large tails. To be
precise, given a function e(z) | 0 as # T oo, there is a recurrent random walk with
P(|X1| > x) > e(x) for large .

d =2 Let a < 2 and let p(t) = exp(—|t|*) where [t| = (12 + t3)1/2. ¢ is the
characteristic function of a random vector (X7, X5) that has two nice properties:

(i) the distribution of (X7, X3) is invariant under rotations,

(ii) X; and X5 have symmetric stable laws with index .
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Again, 1—rp(t) | 1—exp(—[t|*) asr T 1 and 1 —exp(—|t|*) ~ |t|* as t — 0. Changing
to polar coordinates and noticing

o
27T/ derxr™® < oo
0

when 1 — a > —1 shows the random walks with ch.f. exp(—|t|*), a < 2 are transient.
When p < a, we have E|X1|P < oo by Exercise 3.7.5, so these examples show that
Theorem 4.2.8 is reasonably sharp.

d > 3. The integral foé dezi—lz72 < 00, so if a random walk is recurrent in d > 3, its
ch.f. must — 1 faster than 2. In Exercise 3.3.19, we observed that (in one dimension)
if p(r) = 1+ o(r?) then ¢(r) = 1. By considering ((rf) where r is real and 6 is a
fixed vector, the last conclusion generalizes easily to R?, d > 1 and suggests that once
we exclude walks that stay on a plane through 0, no three-dimensional random walks
are recurrent.

A random walk in R? is truly three-dimensional if the distribution of X; has
P(X1-60#0)>0 for all 6 # 0.

Theorem 4.2.13. No truly three-dimensional random walk is recurrent.

Proof. We will deduce the result from Theorem 4.2.10. We begin with some arith-
metic. If z is complex, the conjugate of 1 — zis 1 — Z, so

1 1-2 1 Re (1 —z)
- - d R —
11—z |1—2)? an ‘1—2 |1 — z|?

If 2 = a + bi with a < 1, then using the previous formula and dropping the b from
the denominator ) ) )
—a

el—z_(l—a)2—|—b2*1—a

Taking z = r¢(t) and supposing for the second inequality that 0 < Reg(t) < 1, we
have

R

o 1 < 1 < 1
L=rp(t) = Re(l—rp(t)) = Re(l— (1))

The last calculation shows that it is enough to estimate

(a) R

|z - ¢

Re (1 — g(t)) = / {1 - cos(z - £)}u(da) > / u(de)

lot|<m/3 4
by Lemma 4.2.12. Writing ¢t = pf where 6 € S = {z : |z| = 1} gives

2

(b) Re(1-(p9) > 5 [ & 21(d)
|z-0|<m/3p
Fatou’s lemma implies that if we let p — 0 and 0(p) — 6, then

(©) liminf/ 12 0(p)Pu(dz) > /|x~9|2u(dx) >0
P=0 Jjz-0(p)|<n/3p

I claim this implies that for p < pg

d inf z-02u(de) =C >0
(d) inf |x.9\<ﬂ/3p| " pu(dr)
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To get the last conclusion, observe that if it is false, then for p = 1/n there is a 6,, so
that

/ & 0a[2p(dz) < 1/n
|z-0n|<nm/3

All the 0, lie in S, a compact set, so if we pick a convergent subsequence we contradict
(c). Combining (b) and (d) gives

Re (1 —@(ph)) > Cp?/4

Using the last result and (a) then changing to polar coordinates, we see that if § is
small (so Re¢(y) >0 on (—4,0)%)

1 5vd a1 1
ReidyS/ d - /d@—
/“W 1= r(y) o P Re (1 ¢(ph))
1
SC’/ dpp?™3 < >
0

when d > 2, so the desired result follows from Theorem 4.2.10. O

Remark. The analysis becomes much simpler when we consider random walks on
Z?. The inversion formula given in Exercise 3.3.2 implies

P(S, = 0) = (27r)_d/7 K

Multiplying by r™ and summing gives

- 1
r"P(S, =0)=(2x _d/ ——dt
r;) ( ) ( ) (—m,m)d 1- T(p(t)

In the case of simple random walk in d = 3, ¢(t) = & 23:1 cost; is real.

1 1
g 1 =00 when ¢(t) > 0
1

So, using the monotone and bounded convergence theorems

00 3 -1

1
g P(S,=0)= (277)_3/ (1 ~3 E cos a:z> dz
n=0 (=m,m)? i=1

This integral was first evaluated by Watson in 1939 in terms of elliptic integrals, which
could be found in tables. Glasser and Zucker (1977) showed that it was

(v/6/327%)T(1/24)T(5/24)T(7/24)T(11/24) = 1.51638606 . . .
so it follows from (4.2.1) that
g = 0.34053733...

For numerical results in 4 < d < 9, see Kondo and Hara (1987).
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4.3 Visits to 0, Arcsine Laws*

In the last section, we took a broad look at the recurrence of random walks. In this
section, we will take a deep look at one example: simple random walk (on Z). To steal
a line from Chung, “We shall treat this by combinatorial methods as an antidote to
the analytic skulduggery above.” The developments here follow Chapter III of Feller,
vol. 1. To facilitate discussion, we will think of the sequence S1,S3,..., S, as being
represented by a polygonal line with segments (k — 1,S,_1) — (k,Sk). A path is
a polygonal line that is a possible outcome of simple random walk. To count the
number of paths from (0,0) to (n,x), it is convenient to introduce a and b defined by:
a = (n+ x)/2 is the number of positive steps in the path and b = (n — x)/2 is the
number of negative steps. Notice that n =a+band x =a—0b. If —n <z < n and
n — x is even, the a and b defined above are nonnegative integers, and the number of

paths from (0,0) to (n,x) is
n
() (43.1)

Otherwise, the number of paths is 0.

(n,y)

Figure 4.1: Reflection Principle

Theorem 4.3.1. Reflection principle. If x,y > 0 then the number of paths from
(0,x) to (n,y) that are 0 at some time is equal to the number of paths from (0, —x)

to (n,y).

Proof. Suppose (0, sg), (1,81),...,(n,s,) is a path from (0,z) to (n,y). Let K =
inf{k : s, = 0}. Let s}, = —sp, for k < K, s}, = s for K < k < n. Then (k,s}),
0 < k < n, is a path from (0, —z) to (n,y). Conversely, if (0,%), (1,%1),...,(n,tn)
is a path from (0,—x) to (n,y) then it must cross 0. Let K = inf{k : ¢, = 0}. Let
t), = —ty for k < K, tj, = t, for K < k < n. Then (k,t}), 0 < k < n, is a path from
(0, —z) to (n,y) that is 0 at time K. The last two observations set up a one-to-one
correspondence between the two classes of paths, so their numbers must be equal. [

From Theorem 4.3.1 we get a result first proved in 1878.

Theorem 4.3.2. The Ballot Theorem. Suppose that in an election candidate
A gets « wvotes, and candidate B gets (3 votes where § < «. The probability that
throughout the counting A always leads B is (a — ) /(a + B3).

Proof. Let x = a — 8, n = a + (. Clearly, there are as many such outcomes as there
are paths from (1,1) to (n,z) that are never 0. The reflection principle implies that
the number of paths from (1,1) to (n,x) that are 0 at some time the number of paths
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from (1,-1) to (n,z), so by (4.3.1) the number of paths from (1,1) to (n,z) that are

never 0 is
n—1 n—1
Nn— z—1— Nn— : = -
lz—1 1Lz+1 <a _ 1> < o )
B (n—1)! . (n=1)!
C(a—Dl(n—a) alln—a-1)
a—(n—a) n! a—-f

N n aln—a)l  a+p ™"

since n = « + 3, this proves the desired result. O

Using the ballot theorem, we can compute the distribution of the time to hit 0 for
simple random walk.

Lemma 4.3.3. P(Sl 7é O, ey 5277, 7é O) = P(S2n = 0)

Proof. P(S1 > 0,...,S52, > 0) = >, P(S1 > 0,...,82,-1 > 0,52, = 2r). From
the proof of Theorem 4.3.2, we see that the number of paths from (0,0) to (2n,2r)
that are never 0 at positive times (= the number of paths from (1,1) to (2n,2r) that
are never 0) is

Nop—1,20—1 — Nop—1,2r41

If we let pp » = P(S, = x) then this implies

1
P(S1>0,...,5p-1>0,5, =2r) = §(p2n—1,2r—1 — Pon—1,2r+1)

Summing from r = 1 to co gives

1 1
P(Sl >0,.. .,Sgn > O) = §p2n,171 = §P(Sgn = 0)
Symmetry implies P(S; < 0,...,S52, < 0) = (1/2)P(S2, = 0), and the proof is
complete. O

Let R =inf{m > 1: S, = 0}. Combining Lemma 4.3.2 with Theorem 3.1.2 gives
P(R > 2n) = P(Sa, = 0) ~ 7~ /2~ 1/2 (4.3.2)

Since P(R > z)/ P(|R| > z) = 1, it follows from Theorem 3.7.4 that R is in the
domain of attraction of the stable law with & = 1/2 and x = 1. This implies that if
R,, is the time of the nth return to 0 then Rn/n2 =Y, the indicated stable law. In
Example 3.7.2, we considered 7 = Ty where T, = inf{n : S,, = «}. Since S; € {—1,1}
and Ty =4 T_1, R =4 1 4+ 11, and it follows that Tn/n2 = Y, the same stable law.
In Example 8.7.6, we will use this observation to show that the limit has the same
distribution as the hitting time of 1 for Brownian motion, which has a density given
in (8.4.8).

This completes our discussion of visits to 0. We turn now to the arcsine laws. The
first one concerns

Lo, =sup{m <2n:S,, =0}

It is remarkably easy to compute the distribution of Lso,,.

Lemma 4.3.4. Let ugy = P(S2, = 0). Then P(Lay, = 2k) = uapuan—2k-
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Proof. P(Lan, = 2k) = P(Sar = 0,S2+1 # 0,...,52, # 0), so the desired result
follows from Lemma 4.3.3. ]

Theorem 4.3.5. Arcsine law for the last visit to 0. For0 <a <b< 1,
b
P(a < Loy /20 < b) — / (a1 — 2))" V2 do

To see the reason for the name, substitute y = /2, dy = (1/2)z~'/? dz in the integral
to obtain

Voo 2
/ 21 —y?) V2 dy = Z{aresin(Vb) — arcsin(va)}
Va ™ m
Since Lg, is the time of the last zero before 2n, it is surprising that the answer is
symmetric about 1/2. The symmetry of the limit distribution implies

P(Lap/2n < 1/2) — 1/2

In gambling terms, if two people were to bet $1 on a coin flip every day of the year,
then with probability 1/2, one of the players will be ahead from July 1 to the end of
the year, an event that would undoubtedly cause the other player to complain about
his bad luck.

Proof of Theorem 4.3.5. From the asymptotic formula for us,, it follows that if
k/n — x then
nP(Lay = 2k) — 7 (z(1 — z))"1/2

To get from this to the desired result, we let 2na,, = the smallest even integer > 2na,
let 2nb,, = the largest even integer < 2nb, and let f,(x) = nP(La, = k) for 2k/2n <
x < 2(k+1)/2n so we can write

nby bp+1/n
k=nan, An

Our first result implies that uniformly on compact sets

fol@) = flz) =7 Yol —z))~ /2

The uniformity of the convergence implies

sup  fo(z) = sup f(z) <oo
an<z<b,+1/n a<z<b

if 0 < a <b <1, so the bounded convergence theorem gives

bn+1/n b
/ fn(x)dx—>/ f(z)dz |

n

The next result deals directly with the amount of time one player is ahead.

Theorem 4.3.6. Arcsine law for time above 0. Let mo,, be the number of segments
(k —1,Sk—1) — (k,Sk) that lie above the axis (i.e., in {(z,y) : y > 0}), and let
U, = P(Sy, =0).

P(man = 2k) = ugkuzn 2k

and consequently, if 0 <a <b<1

b
Pla < 7o, /2n <b) — / N x(l—2))" Y% da
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Remark. Since 7y, =4 Laj,, the second conclusion follows from the proof of Theorem
4.3.5. The reader should note that the limiting density 7' (z(1 — z))~%/2 has a
minimum at x = 1/2, and — oo as x — 0 or 1. An equal division of steps between
the positive and negative side is therefore the least likely possibility, and completely
one-sided divisions have the highest probability.

Proof. Let B 2, denote the probability of interest. We will prove Bag 2n = UakU2n—2k
by induction. When n = 1, it is clear that

Bo,2 = P22 =1/2 = upue

For a general n, first suppose & = n. From the proof of Lemma 4.3.3, we have

1
Stz = P(S1>0,..., 85 > 0)
=P(S1=1,5—-51>0,...,5, —51 >0)
1
:ip(slzoa"'vsbn—lzo)
1

= §P(51 >0,...,5,>0)= %ﬂQn,Qn
The next to last equality follows from the observation that if S, 1 > 0 then So, 1 >
1, and hence S5, > 0.

The last computation proves the result for £ = n. Since (8,2, = B2n,2n, the result
is also true when k£ = 0. Suppose now that 1 < k < n—1. In this case, if R is the time
of the first return to 0, then R = 2m with 0 < m < n. Letting f2,, = P(R = 2m)
and breaking things up according to whether the first excursion was on the positive
or negative side gives

n—k

k
1 1
Bok,2n = 3 mX::l fomBok—2m,2n—2m + 3 mz::l fomBok,2n—2m

Using the induction hypothesis, it follows that

1 k 1 n—k
Bak,on = o U2n—2k E fomUak—2m + Uk E fomUon—2k—2m
m=1 m=1

By considering the time of the first return to 0, we see

k n—k
Uk = E f2mu2k—2m U2n—2k = E f2mu2n—2k—2m
m=1 m=1
and the desired result follows. O

Our derivation of Theorem 4.3.6 relied heavily on special properties of simple
random walk. There is a closely related result due to E. Sparre-Andersen that is valid
for very general random walks. However, notice that the hypothesis (ii) in the next
result excludes simple random walk.

Theorem 4.3.7. Let v, = [{k:1<k <n,S, >0}. Then
(i) P(v, = k) = P(vy, = k)P(vp—, = 0)
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(ii) If the distribution of X; is symmetric and P(S,, =0) =0 for allm > 1, then
P(vn = k) = ugguzn—2k
2m>

where Ugy, = 2_2m( ') 1s the probability simple random walk is 0 at time 2m.

(#ii) Under the hypotheses of (ii),
b
Pla<vp/n<b) — / 7Y z(1—2))"Y2dz for0<a<b<1

Proof. Taking things in reverse order, (iii) is an immediate consequence of (ii) and the
proof of Theorem 4.3.5. Our next step is to show (ii) follows from (i) by induction.
When n = 1, our assumptions imply P(v; = 0) = 1/2 = wous. If n > land 1 <k < n,
then (i) and the induction hypothesis imply

P(v, = k) = ugpo - UoUzn—2k = U2kU2n—2k

since uy = 1. To handle the cases k = 0 and k = n, we note that Lemma 4.3.4 implies

n
E Uk U2p—2k = 1
k=0

We have Y, _, P(v, = k) = 1 and our assumptions imply P(v,, = 0) = P(v, = n),
so these probabilities must be equal to ugus,.

The proof of (i) is tricky and requires careful definitions since we are not supposing
X is symmetric or that P(S,, =0) =0. Let v}, = [{k: 1 <k <n, Sy <0} =n—vy.

M,, = max S; ly=min{j:0<j<n,S;=M,}
0<j<n
M, = min S; 0, =max{j:0<j<n,S; =M}
0<j<n
The first symmetry is straightforward.
Lemma 4.3.8. (¢,,,S,) and (n —£,,,S,,) have the same distribution.

Proof. If we let Ty, = S,, — Sp—x = Xn + -+ + Xpu—gr1, then T, 0 < k < n has the
same distribution as Si, 0 < k < n. Clearly,

max T, =S, — min S,_
0<k<n 0<k<n

and the set of k for which the extrema are attained are the same. O

The second symmetry is much less obvious.

Lemma 4.3.9. (¢, S,) and (vy, Sp) have the same distribution.
(¢, Syn) and (v),,Sy) have the same distribution.

Remark. (i) follows from Lemma 4.3.8 and the trivial observation
P, =k)=P{ =k)P(l,_, =0)

so once Lemma 4.3.9 is established, the proof of Theorem 4.3.7 will be complete.
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Proof. When n = 1, {{; = 0} = {S; < 0} = {1y = 0}, and {¢] = 0} = {S1 >
0} = {v{ = 0}. We shall prove the general case by induction, supposing that both
statements have been proved when n is replaced by n — 1. Let

Gy)=Pln-1 =k, Sn_1<y)
H(y) = P(vp-1=Fk,Sn1 <)

On {S,, < 0}, we have £,_1 = {5, and v,_1 = v, so if F(y) = P(X; < y) then for
<0

P, =kS,<z)= /F(ac —y)dG(y) (4.3.3)
= /F(x—y)dH(y) =P(vn =k, S, <)

On {S,, > 0}, we have ¢,,_; = ¢, and v},_, = v},, so repeating the last computation
shows that for z > 0

P, =n—k,S, >z) =P, =n—kS, > z)

Since (£,,Sy) has the same distribution as (n — £,,5,) and v}, = n — v, it follows
that for z > 0
Pl,=k,S,>z)=Pv, =k, S, > )

Setting = 0 in the last result and (4.3.3) and adding gives

Subtracting the last two equations and combining the result with (4.3.3) gives
P, =k,S, <x)=P(v, =k, <x)

for all z. Since (¢, S,,) has the same distribution as (n — ¢,,,S,) and v}, = n — vy, it
follows that
P, =n—k,S,>z)=PW,=n—k, S, > )

for all . This completes the proof of Lemma 4.3.9 and hence of Theorem 4.3.7. [

4.4 Renewal Theory*

Let &1, &, . .. be i.i.d. positive random variables (i.e., P(§; > 0) = 1) with distribution
I and define a sequence of times by Top = 0, and Ty = Tp_1 + & for kK > 1. As
explained in Section 2.4, we think of £; as the lifetime of the ith light bulb, and T} is
the time the kth bulb burns out. A second interpretation from Section 3.6 is that Ty
is the time of arrival of the kth customer. To have a neutral terminology, we will refer
to the T} as renewals. The term renewal refers to the fact that the process “starts
afresh” at Ty, i.e., {Tk4; — Tk, j > 1} has the same distribution as {T}, j > 1}.

Departing slightly from the notation in Sections 2.4 and 3.6, we let N; = inf{k :
Ty > t}. N is the number of renewals in [0,¢], counting the renewal at time 0. In
Theorem 2.4.6, we showed that

Theorem 4.4.1. Ast — oo, N¢/t — 1/ a.s. where up = E&; € (0,00] and 1/00 = 0.

Our first result concerns the asymptotic behavior of U(t) = EN;.
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Ty TN

Figure 4.2: Renewal sequence.

Theorem 4.4.2. Ast — oo, U(t)/t — 1/p.

Proof. We will apply Wald’s equation to the stopping time IN;. The first step is to
show that EN; < oo. To do this, pick 6 > 0 so that P(§; > §) = € > 0 and pick K so
that K6 > t. Since K consecutive &/s that are > ¢ will make T, > ¢, we have

P(N; >mK) < (1 — 5™
and EN; < oo. If p < 00, applying Wald’s equation now gives
uwENy = ETN, >t

so U(t) > t/p. The last inequality is trivial when g = oo so it holds in general.
Turning to the upper bound, we observe that if P(§; < ¢) = 1, then repeating

the last argument shows pEN; = ESN, <t + ¢, and the result holds for bounded

distributions. If we let 5_1 = & A c and define T, and N, in the obvious way then

EN, < EN; < (t+¢)/E(&)

Letting ¢ — oo and then ¢ — oo gives limsup,_, . ENy/t < 1/u, and the proof is
complete. O

Exercise 4.4.1. Show that t/E(& At) < U(t) < 2t/E(& At).
Exercise 4.4.2. Deduce Theorem 4.4.2 from Theorem 4.4.1 by showing
lim sup E(N, /t)? < oo.

t—o0
Hint: Use a comparison like the one in the proof of Theorem 4.4.2.

Exercise 4.4.3. Customers arrive at times of a Poisson process with rate 1. If the
server is occupied, they leave. (Think of a public telephone or prostitute.) If not,
they enter service and require a service time with a distribution F' that has mean pu.
Show that the times at which customers enter service are a renewal process with mean
1+ 1, and use Theorem 4.4.1 to conclude that the asymptotic fraction of customers
served is 1/(p + 1).

To take a closer look at when the renewals occur, we let
(oo}
U(A)=>_ P(T, € A)
n=0

U is called the renewal measure. We absorb the old definition, U(t) = ENy, into
the new one by regarding U(¢) as shorthand for U([0,¢]). This should not cause prob-
lems since U(t) is the distribution function for the renewal measure. The asymptotic
behavior of U(t) depends upon whether the distribution F is arithmetic, i.e., con-
centrated on {4, 24,36, ...} for some § > 0, or nonarithmetic, i.e., not arithmetic.
We will treat the first case in Chapter 5 as an application of Markov chains, so we
will restrict our attention to the second case here.
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Theorem 4.4.3. Blackwell’s renewal theorem. If F' is nonarithmetic then
U(lt,t+h]) = h/p ast— co.

We will prove the result in the case p < oo by “coupling” following Lindvall (1977)
and Athreya, McDonald, and Ney (1978). To set the stage for the proof, we need a
definition and some preliminary computations. If T, > 0 is independent of £1,&s, ...
and has distribution G, then Ty, = Tx_1 + &k, k > 1 defines a delayed renewal
process, and G is the delay distribution. If we let N; = inf{k : T}, > t} as before
and set V(t) = ENy, then breaking things down according to the value of Ty gives

V(t) = /0 U(t — s) dG(s) (4.4.1)

The last integral, and all similar expressions below, is intended to include the contri-
bution of any mass G has at 0. If we let U(r) = 0 for < 0, then the last equation
can be written as V = U * (G, where * denotes convolution.

Applying similar reasoning to U gives

Ut) =1+ / Ut - 5)dF(s) (4.4.2)
0

or, introducing convolution notation,
U=1j,00)(t) + U * F.
Convolving each side with G (and recalling G « U = U * G) gives
V=G+U=G+VxF (4.4.3)

We know U (t) ~ t/p. Our next step is to find a G so that V() = t/u. Plugging what
we want into (4.4.3) gives
ti_y
t/n=G({t)+ | —dF(y)
0o M
b

SO G(t):t/u—/ %de(y)

0

The integration-by-parts formula is

/O K(y)dH(y) = H(OEK(t) — H(0)K(0) - / H(y) dK (y)

If we let H(y) = (y —t)/p and K(y) =1 — F(y), then

1 [t t by —
*/1*F(y)dy:** Y ar(y)
K Jo K 0o M
so we have .
1
G(t):;/ 1-F(y)dy (4.4.4)
0

It is comforting to note that p = f[o 00) 1 — F(y)dy, so the last formula defines a

probability distribution. When the delay distribution G is the one given in (4.4.4),
we call the result the stationary renewal process. Something very special happens
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when F(t) = 1 — exp(—At), t > 0 where A > 0 (i.e., the renewal process is a rate A
Poisson process). In this case, u = 1/ so G(t) = F(t).

Proof of Theorem 4.4.3 for n < co. Let T, be a renewal process (with Ty = 0) and
T) be an independent stationary renewal process. Our first goal is to find J and K
so that [Ty — Ty | < € and the increments {T4; — Ty,i > 1} and {Tf; — T, i > 1}
are i.i.d. sequences independent of what has come before.

Let n1, 72, ... and 1,15, ... be i.i.d. independent of T}, and T, and take the values
0 and 1 with probability 1/2 each. Let v, =y +---+n, and v, = 1+n] +-- -+ 1.,
Sn =T, and S, = T, . The increments of S, — S, are 0 with probability at least
1/4, and the support of their distribution is symmetric and contains the support of
the & so if the distribution of the £ is nonarithmetic the random walk S,, — 57, is
irreducible. Since the increments of S,, — S), have mean 0, N = inf{n : |S,, — 5}, < €}
has P(N < o0) =1, and we can let J = vy and K = vj. Let

T// —

n

T, iftJ>n
T,1+Tl’(+(n_J)—T}( ifJ<n

In other words, the increments 7'/ ; — T} are the same as Ty ; — Ty for i > 1.

v T Tp T, Ti, Ti,

T Tk Tiir Tiyo
Figure 4.3: Coupling of renewal processes.

It is easy to see from the construction that T, and T, have the same distribution.
If we let

N's,t] ={n: T, € [s,t]}| and N"[s,t] = {n: T, € [s,1]}|
be the number of renewals in [s,t] in the two processes, then on {T; < t}

> N'[t+ et +h— ¢
N'lt,t+h)=N'[t+T —Tj, t+h+Tp —T - ’
| ] b The = 1o =Tl <N'[t—et+h+e

To relate the expected number of renewals in the two processes, we observe that
even if we condition on the location of all the renewals in [0, s], the expected number
of renewals in [s, s + ¢] is at most U(t), since the worst thing that could happen is to
have a renewal at time s. Combining the last two observations, we see that if € < h/2
(so [t + €,t + h — €] has positive length)

U([t,t +h]) = EN"[t,t +h] > E(N'[t + e,t + h—¢€; Ty < t)
S h — 2e

> S = P(Ty > U(h)
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since EN'[t + €,t + h — €] = (h — 2¢)/p and {T; > t} is determined by the renewals
of T'in [0,¢] and the renewals of T” in [0,¢ + ¢]. For the other direction, we observe

U([t,t+h)) <E(N'[t—e,t+h+¢€;Ty <t)+ E(N"[t,t +h];T; >t)
< h+ 2e

+ P(T; > t)U(h)

The desired result now follows from the fact that P(T; > t) — 0 and € < h/2 is
arbitrary. 0

Proof of Theorem 4.4.8 for p = oo. In this case, there is no stationary renewal process,
so we have to resort to other methods. Let

B =limsupU(t, t+ 1] = klim U(tg, ty + 1]

t—oo

for some sequence t; — co. We want to prove that 8 = 0, for then by addition the
previous conclusion holds with 1 replaced by any integer n and, by monotonicity, with
n replaced by any h < n, and this gives us the result in Theorem 4.4.3. Fix ¢ and let

as = / Uty =yt + 1 — y] dF™ (y)
(.jflaj]

By considering the location of T; we get
@ I R U,
=

Since ( is the lim sup, we must have

(b) limsupag,; < 8- P(T; € (j —1,5])

k—o0

We want to conclude from (a) and (b) that

(©) liminf ar,; > 6 P(T; € (j — 1,5])

To do this, we observe that by considering the location of the first renewal in (j — 1, j]
(d) 0<ar; <UDP(T; € (j—1,4])

(c) is trivial when 8 = 0 so we can suppose § > 0. To argue by contradiction,
suppose there exist jo and € > 0 so that

lgr_{g.}fak,jo < B-{P(T; € (jo— 1,50]) — €}
Pick k,, — oo so that
ak,,jo — B {P(T; € (jo—1,Jo]) — €}

Using (d), we can pick J > jg so that

o

(oo}
limsup Y ax,; SUL) Y P(Ti € (j—1,4]) < Be/2
T =41 j=J+1
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Now an easy argument shows

J

J
limsupZakmj < Zhrrlnjo%pak"’j <g ZP(E e(f—1,7]) —¢
j=1 j=1

by (b) and our assumption. Adding the last two results shows

limsupZakmj < B(1—¢/2)

n— o0 =1

which contradicts (a), and proves (c).
Now, if j — 1 <y < j, we have

Uty —y,te + 1 —y] S Utk — Jite +2 — J]
so using (c) it follows that for j with P(7; € (j — 1,7]) > 0, we must have
UminfU(ty, — j,tx +2—3] >0
k—o00

Summing over i, we see that the last conclusion is true when U(j — 1, 5] > 0.

The support of U is closed under addition. (If x is in the support of F™* and y is
in the support of F™* then = 4 y is in the support of F(m+”)*.) We have assumed F'
is nonarithmetic, so U(j — 1,7] > 0 for j > jo. Letting ry = t; — jo and considering
the location of the last renewal in [0, r;] and the index of the T; gives

o0 Tk ) Tk
1=> [Ca-Foe-p)drt ) = [0 Fou- ) duw)
i=0 70 0
> (1= F(2n)U(rg — 2n,7% +2 — 2]
n=1
Since liminfy o U(rg — 2n, 7 + 2 — 2n] > § and

S (- F@n) > p/2 =
n=0

[ must be 0, and the proof is complete. O

Remark. Following Lindvall (1977), we have based the proof for y = co on part of
Feller’s (1961) proof of the discrete renewal theorem (i.e., for arithmetic distributions).
See Freedman (1971b) pages 22-25 for an account of Feller’s proof. Purists can find
a proof that does everything by coupling in Thorisson (1987).

Our next topic is the renewal equation: H = h+ H % F. Two cases we have
seen in (4.4.2) and (4.4.3) are:

Example 4.4.1. h=1: U(t) =1+ [ U(t — 5) dF(s)
Example 4.4.2. h(t) = G(t): V(t) = G(t) + [, V(t — 5) dF(s)

The last equation is valid for an arbitrary delay distribution. If we let G be the
distribution in (4.4.4) and subtract the last two equations, we get
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Example 4.4.3. H(t) = U(t) — t/u satisfies the renewal equation with h(t) =
L= F(s) ds.

Last but not least, we have an example that is a typical application of the renewal
equation.

Example 4.4.4. Let x > 0 be fixed, and let H(t) = P(Tn()—t > x). By considering
the value of T7, we get

H(t) = (1— F(t + ) +/O H(t - s)dF(s)

The examples above should provide motivation for:

Theorem 4.4.4. If h is bounded then the function

H(t) = /0 h(t — s) dU(s)

is the unique solution of the renewal equation that is bounded on bounded intervals.
Proof. Let U, (A) =>"" _, P(T,, € A) and

.0 = [ bt =s)aU,() = 3 (i F™) 1)

m=0

Here, F"™* is the distribution of T;,, and we have extended the definition of h by
setting h(r) = 0 for < 0. From the last expression, it should be clear that

Hn+1 =h + Hn x I
The fact that U(t) < oo implies U(t) — U, (t) — 0. Since h is bounded,
[Hy () = H(t)| < [|hlloc U (t) — Un(t)]

and H,,(t) — H(t) uniformly on bounded intervals. To estimate the convolution, we
note that

|H,, « F(t) — H « F(t)| <sup|H,(s) — H(s)|

s<t

< [Ialleo|U () = Un(®)]

since U -U,, = Z;’j:nﬂ F™* is increasing in ¢t. Lettingn — coin H,41 = h+Hpx F,
we see that H is a solution of the renewal equation that is bounded on bounded
intervals.

To prove uniqueness, we observe that if H; and Hy are two solutions, then K =
H, — H, satisfies K = K « F. If K is bounded on bounded intervals, iterating gives

K=KxF"™ —0asn— oo, so H = Hs. O

The proof of Theorem 4.4.4 is valid when F(oo) = P(§; < co) < 1. In this case,
we have a terminating renewal process. After a geometric number of trials with
mean 1/(1 — F(c0)), T;, = co. This “trivial case” has some interesting applications.
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Example 4.4.5. Pedestrian delay. A chicken wants to cross a road (we won’t ask
why) on which the traffic is a Poisson process with rate A. She needs one unit of time
with no arrival to safely cross the road. Let M = inf{¢ > 0 : there are no arrivals in
(t,t + 1]} be the waiting time until she starts to cross the street. By considering the
time of the first arrival, we see that H(t) = P(M < t) satisfies

1
)‘-i-/ H(t—y) e M dy
0

Comparing with Example 4.4.1 and using Theorem 4.4.4, we see that

_ 67)\ Z Fn*(t)
n=0
We could have gotten this answer without renewal theory by noting
P(M <t)= Z P(T, <t,Tpy1 = o)

n=0

The last representation allows us to compute the mean of M. Let y be the mean of
the interarrival time given that it is < 1, and note that the lack of memory property
of the exponential distribution implies

:/ e~ /\“d:ﬂ—/ / % (1—1—/1\)6’\

Then, by considering the number of renewals in our terminating renewal process,
EM = Ze 1—eM"np=(e* =1

since if X is a geometric with success probability e™* then EM = pE(X — 1).

Example 4.4.6. Cramér’s estimates of ruin. Consider an insurance company
that collects money at rate ¢ and experiences i.i.d. claims at the arrival times of a
Poisson process N; with rate 1. If its initial capital is x, its wealth at time ¢t is

We(t) =z +ct— ZY;

Here Y1,Y5, ... are i.i.d. with distribution G and mean p. Let
R(x) = P(W,(t) > 0 for all t)

be the probability of never going bankrupt starting with capital . By considering
the time and size of the first claim:

oo x+cs
(a) R(x) = /0 e’ /0 R(x 4+ cs —y)dG(y) ds

This does not look much like a renewal equation, but with some ingenuity it can be
transformed into one. Changing variables ¢t = x + cs

oo t
x)e /e = / e*t/c/ R(t —y)dG(y) %
T 0
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Differentiating w.r.t. z and then multiplying by e*/¢,

Ra) = LR(@) - [ Ra=y)dct) -

Integrating « from 0 to w

(b) R(w) — R(0) = — /Ow R(z)dx — i/ow /O‘T R(z —y) dG(y) dx

Interchanging the order of integration in the double integral, letting

S(w) = /Ow R(z) dx

using dG = —d(1 — G), and then integrating by parts
1 w w 1 w
[ [ re-wdedcw =~ [ sw-ydcw)
cJo y ¢ Jo
1 w
— . [ sw-nan-ow
¢Jo
1 w

~ s+ [Ta-cnrw -

c
Plugging this into (b), we finally have a renewal equation:

(© R(w) = R(0) + / " Rw— )t CW g,

c

It took some cleverness to arrive at the last equation, but it is straightforward to
analyze. First, we dismiss a trivial case. If u > c,

1 Nt
t(ct—ZYé)%c—u<0 a.s.

m=1

so R(z) =0. When u < ¢,

C

F@g:iéml—G%ﬂdy

is a defective probability distribution with F(co) = u/c. Our renewal equation can
be written as

(d) R=R(0)+R+F

so comparing with Example 4.4.1 and using Theorem 4.4.4 tells us R(w) = R(0)U (w).
To complete the solution, we have to compute the constant R(0). Letting w — oo and
noticing R(w) — 1, U(w) — (1 — F(o0))™! = (1 — u/c)~t, we have R(0) =1 — u/c.

The basic fact about solutions of the renewal equation (in the nonterminating
case) is:

Theorem 4.4.5. The renewal theorem. If F' is nonarithmetic and h is directly
Riemann integrable then as t — oo
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Intuitively, this holds since Theorem 4.4.4 implies

H(t) = /o h(t — s) dU(s)

and Theorem 4.4.3 implies dU (s) — ds/p as s — oo. We will define directly Riemann
integrable in a minute. We will start doing the proof and then figure out what we
need to assume.

Proof. Suppose
oo
s) = Zakl[k&(kJrl)d)(S)
k=0

where >°.7, |ax| < oo. Since U([t,t + d]) < U([0,6]) < oo, it follows easily from
Theorem 4.4.3 that

/ht—st ZakU (t = (k+1)6,t — ko)) H;Zaké

k=0

(Pick K so that >, lax| < €/2U([0,0]) and then T' so that
] U~ (k4 18,8 — k) — /] <

fort >T and 0 < k < K.) If h is an arbitrary function on [0, c0), we let
= §sup{h(z) : x € [ks, (k + 1))}
k=0

- i § inf{h(z) : x € [k6, (k+ 1)8)}
k=0

be upper and lower Riemann sums approximating the integral of h over [0, c0). Com-
paring h with the obvious upper and lower bounds that are constant on [kd, (k + 1)J)
and using the result for the special case,

t

¢
L <liminf [ h(t —s)dU(s) < limsup/ h(t —s)dU(s) <
0

1% t—oo [ t—00

r

"

If I° and I; both approach the same finite limit I as 6 — 0, then h is said to be
directly Riemann integrable, and it follows that

/0 h(t—s)dU(y) — I/u |

Remark. The word “direct” in the name refers to the fact that while the Riemann
integral over [0,00) is usually defined as the limit of integrals over [0,a], we are
approximating the integral over [0, c0) directly.

In checking the new hypothesis in Theorem 4.4.5, the following result is useful.

Lemma 4.4.6. If h(z) > 0 is decreasing with h(0) < oo and [;° h(z)dx < oo, then
h is directly Riemann integrable.
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Proof. Because h is decreasing, I° = Y72 6h(kd) and I = > oo, 6h((k + 1)5). So
ﬁz/‘m@ngzﬁ—wm
0

proving the desired result. O
The last result suffices for all our applications, so we leave it to the reader to do

Exercise 4.4.4. If h > 0 is continuous then & is directly Riemann integrable if and
only if I° < oo for some § > 0 (and hence for all § > 0).

Returning now to our examples, we skip the first two because, in those cases,
h(t) — 1 as t — 00, so h is not integrable in any sense.

Example 4.4.7. Continuation of Example 4.4.3. h(t) = ; f[t ooy 1 F(s)ds. h
is decreasing, h(0) = 1, and

u/ £ dt = //17 5) ds dt
/ /1— ﬁw—AMdLJ%»@:E@ﬂ)

So, if v = E(£2) < o0, it follows from Lemma 4.4.6, Theorem 4.4.5, and the formula
in Example 4.4.3 that

0<U(t)—t/p— v/2u* ast— oo

When the renewal process is a rate A Poisson process, i.e., P(& > t) = e~ N(t)—1
has a Poisson distribution with mean At, so U(t) = 1+ At. According to Feller, Vol. 1T
(1971), p. 385, if the &; are uniform on (0,1), then

Z ktk )/k' forn<t<n+1
k=0

As he says, the exact expression “reveals little about the nature of U. The asymptotic
formula 0 < U(¢) — 2t — 2/3 is much more interesting.”

Example 4.4.8. Continuation of Example 4.4.4. h(t) = 1—F(t+x). Again, his
decreasing, but this time ~(0) < 1 and the integral of & is finite when p = F(&;) < .
Applying Lemma 4.4.6 and Theorem 4.4.5 now gives

P(TN(t)—t>x)—>i/0 h(s)ds:%/ 1—F(t)dt

so (when p < o) the distribution of the residual waiting time Ty ;) —t converges
to the delay distribution that produces the stationary renewal process. This fact also
follows from our proof of 4.4.3.

Using the method employed to study Example 4.4.4, one can analyze various other
aspects of the asymptotic behavior of renewal processes. To avoid repeating ourselves

We assume throughout that F 1is nonarithmetic, and in problems where the mean
appears we assume it is finite.
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Exercise 4.4.5. Let Ay =t —Tx()—1 be the “age” at time ¢, i.e., the amount of time
since the last renewal. If we fix © > 0 then H(t) = P(A; > x) satisfies the renewal
equation

H(t) = (1= F()) 1(zg,00)(t) +/0 H(t —s)dF(s)

so P(Ay > ) — i f(m Oo)(1 — F(t))dt, which is the limit distribution for the residual
lifetime By = Ty — 1.

Remark. The last result can be derived from Example 4.4.4 by noting that if t > =
then P(A; > x) = P(By—; > z) = P(norenewal in (¢t —x,t]). To check the placement
of the strict inequality, recall Ny = inf{k : T}, > ¢} so we always have A; > 0 and
Bs; > 0.

Exercise 4.4.6. Use the renewal equation in the last problem and Theorem 4.4.4 to
conclude that if T" is a rate A Poisson process A; has the same distribution as &; A t.

Exercise 4.4.7. Let A; =t — Ty(;)—1 and By = Ty () — t. Show that
P(A, > 2, B > y) — l/ (1— F(t)) dt
1% Tty

Exercise 4.4.8. Alternating renewal process. Let £1,&5,... > 0 be i.i.d. with
distribution F} and let n1,72,... > 0 be i.i.d. with distribution F5. Let Ty = 0 and
for k > 1 let S = Tp—1 + & and Ty, = Sk + M. In words, we have a machine that
works for an amount of time &, breaks down, and then requires 7; units of time to
be repaired. Let F = Fy x F5 and let H(t) be the probability the machine is working
at time ¢. Show that if F' is nonarithmetic then as t — oo

H(t) — py/(p1 + p2)
where p; is the mean of F;.

Exercise 4.4.9. Write a renewal equation for H(t) = P( number of renewals in [0, ¢]
is odd) and use the renewal theorem to show that H(t) — 1/2. Note: This is a special
case of the previous exercise.

Exercise 4.4.10. Renewal densities. Show that if F(¢) has a directly Riemann
integrable density function f(t), then the V' = U — 1}y o) has a density v that satisfies

v(t) = f(¢) +/0 v(t — s) dF(s)

Use the renewal theorem to conclude that if f is directly Riemann integrable then
v(t) = 1/p as t — oo.

Finally, we have an example that would have been given right after Theorem 4.4.1
but was delayed because we had not yet defined a delayed renewal process.

Example 4.4.9. Patterns in coin tossing. Let X,,, n > 1 take values H and T
with probability 1/2 each. Let To = 0 and T, = inf{n > T,,—1 : (Xp,..., Xptr—1) =
(i1,...,1x)} where (iy,...,i) is some pattern of heads and tails. It is easy to see
that the T form a delayed renewal process, i.e., t; = T; — T;_; are independent for
j > 1 and identically distributed for j > 2. To see that the distribution of ¢; may be
different, let (i1,42,i3) = (H, H, H). In this case, P(t; =1) =1/8, P(ts =1) = 1/2.

Exercise 4.4.11. (i) Show that for any pattern of length k, Et; = 2* for j > 2.
(ii) Compute Et; when the pattern is HH, and when it is HT. Hint: For HH, observe

Et, = P(HH) + P(HT)E(t; + 2) + P(T)E(t; + 1)



Chapter 5

Martingales

A martingale X,, can be thought of as the fortune at time n of a player who is betting
on a fair game; submartingales (supermartingales) as the outcome of betting on a
favorable (unfavorable) game. There are two basic facts about martingales. The first is
that you cannot make money betting on them (see Theorem 5.2.5), and in particular if
you choose to stop playing at some bounded time N then your expected winnings FX
are equal to your initial fortune Xy. (We are supposing for the moment that X is not
random.) Our second fact, Theorem 5.2.8, concerns submartingales. To use a heuristic
we learned from Mike Brennan, “They are the stochastic analogues of nondecreasing
sequences and so if they are bounded above (to be precise, sup,, EX,” < o) they
converge almost surely.” As the material in Section 5.3 shows, this result has diverse
applications. Later sections give sufficient conditions for martingales to converge in
LP,p > 1 (Section 5.4) and in L' (Section 5.5); consider martingales indexed by n < 0
(Section 5.6); and give sufficient conditions for EXy = EXj to hold for unbounded
stopping times (Section 5.7). The last result is quite useful for studying the behavior
of random walks and other systems.

5.1 Conditional Expectation

We begin with a definition that is important for this chapter and the next one. After
giving the definition, we will consider several examples to explain it. Given are a
probability space (Q, F,, P), a o-field F C F,, and a random variable X € F, with
E|X| < oo. We define the conditional expectation of X given F, E(X|F), to be
any random variable Y that has

(i) Y € F, i.e., is F measurable
(ii) forall Ae F, [, XdP = [,YdP

Any Y satisfying (i) and (ii) is said to be a version of E(X|F). The first thing to be
settled is that the conditional expectation exists and is unique. We tackle the second
claim first but start with a technical point.

Lemma 5.1.1. IfY satisfies (i) and (ii), then it is integrable.

189
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Proof. Letting A = {Y > 0} € F, using (ii) twice, and then adding

/YdP:/XdPg/ | X|dP
A A A

~YdP = —Xdpg/ |X|dP
Ac Ac Ac

So we have E|Y| < E|X]|. O
Uniqueness. If Y’ also satisfies (i) and (ii) then
/Ysz/Y’dP forall Ae F
A A
Taking A ={Y — Y’ > e > 0}, we see
O:/X—XdP:/Y—Y’szeP(A)
A A

so P(A) = 0. Since this holds for all € we have Y < Y’ a.s., and interchanging the
roles of Y and Y’, we have Y = Y’ a.s. Technically, all equalities such as Y = E(X|F)
should be written as Y = E(X|F) a.s., but we have ignored this point in previous
chapters and will continue to do so.

Exercise 5.1.1. Generalize the last argument to show that if X; = Xy on B € F
then E(X;|F) = E(X2|F) a.s. on B.

Existence. To start, we recall v is said to be absolutely continuous with respect
to u (abbreviated v << ) if p(A) = 0 implies v(A4) = 0, and we use Theorem A.4.6:

Radon-Nikodym Theorem. Let p and v be o-finite measures on (Q, F). If v << p,
there is a function f € F so that for all A € F

/A fdp = v(4)

f is usually denoted dv/du and called the Radon-Nikodym derivative.

The last theorem easily gives the existence of conditional expectation. Suppose
first that X > 0. Let p = P and

y(A):/XdP for Ae F
A

The dominated convergence theorem implies v is a measure (see Exercise 1.5.4) and
the definition of the integral implies v << p. The Radon- Nikodym derivative dv/du €

F and for any A € F has
/XdP:I/(A):/@dP
A Adp

Taking A = Q, we see that dv/dp > 0 is integrable, and we have shown that dv/du
is a version of E(X|F).

To treat the general case now, write X = Xt — X~ let Y} = E(XT|F) and
Yy = E(X|F). Now Y] — Y3 € F is integrable, and for all A € F we have

/XdP:/XerP—/X*dP
A A A

:/Ylde/YgdP:/(Ylng)dP
A A A

This shows Y7 — Y3 is a version of E(X|F) and completes the proof. |



5.1. CONDITIONAL EXPECTATION 191

5.1.1 Examples

Intuitively, we think of F as describing the information we have at our disposal - for
each A € F, we know whether or not A has occurred. E(X|F) is then our “best
guess” of the value of X given the information we have. Some examples should help
to clarify this and connect E(X|F) with other definitions of conditional expectation.

Example 5.1.1. If X € F, then F(X|F) = X; i.e., if we know X then our “best
guess” is X itself. Since X always satisfies (ii), the only thing that can keep X from
being E(X|F) is condition (i). A special case of this example is X = ¢, where ¢ is a
constant.

Example 5.1.2. At the other extreme from perfect information is no information.
Suppose X is independent of F, i.e., for all B € R and A € F

P({X € BYn A) = P(X € B)P(A)

We claim that, in this case, E(X|F) = EX; i.e., if you don’t know anything about X,
then the best guess is the mean EX. To check the definition, note that EX € F so
(i). To verify (ii), we observe that if A € F then since X and 14 € F are independent,
Theorem 2.1.9 implies

/XdP:E(XlA):EXElA:/EXdP
A A

The reader should note that here and in what follows the game is “guess and verify.”
We come up with a formula for the conditional expectation and then check that it
satisfies (i) and (ii).

Example 5.1.3. In this example, we relate the new definition of conditional ex-
pectation to the first one taught in an undergraduate probability course. Suppose
Q1,8Qs,... is a finite or infinite partition of € into disjoint sets, each of which has
positive probability, and let F = o(Q1,s,...) be the o-field generated by these sets.
Then

P(2)

In words, the information in €; tells us which element of the partition our outcome
lies in and given this information, the best guess for X is the average value of X over
Q;. To prove our guess is correct, observe that the proposed formula is constant on
each €);, so it is measurable with respect to F. To verify (ii), it is enough to check
the equality for A = ;, but this is trivial:

E(X|F)= on

BX5Q) 0 e oy
/Q P() dP—E(Xsz)—/dep

A degenerate but important special case is F = {0, Q}, the trivial o-field. In this
case, E(X|F)=EX.

To continue the connection with undergraduate notions, let

P(A|G) = E(14]9)
P(A|B) = P(AN B)/P(B)

and observe that in the last example P(A|F) = P(A|Q;) on ;.
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Exercise 5.1.2. Bayes’ formula. Let G € G and show that

P@M:LPWQM/AHMQM

When G is the o-field generated by a partition, this reduces to the usual Bayes’ formula

P(G;|A) = P(A|G;)P /Ejpme G;)

The definition of conditional expectation given a o-field contains conditioning on
a random variable as a special case. We define

E(XY) = E(X[o(Y))
where o(Y) is the o-field generated by Y.

Example 5.1.4. To continue making connection with definitions of conditional ex-
pectation from undergraduate probability, suppose X and Y have joint density f(z,y),
ie.,

P((X,Y)EB):/Bf(a:,y)dxdy for B € R?

and suppose for simplicity that [ f(z,y)dz > 0 for all y. We claim that in this case,
if E|g(X)| < oo then E(g(X)|Y) = h(Y'), where

w) = [o@swnds ) [ fanas

To “guess” this formula, note that treating the probability densities P(Y = y) as if
they were real probabilities

PX=2Y=y)  flzy)
P(Y =y) [ f(z,y)de

S0, integrating against the conditional probability density, we have

P(X =Y =y) =

E(g(X)Y =y) = / 9(2)P(X = 2]Y = ) de

To “verify” the proposed formula now, observe h(Y) € o(Y) so (i) holds. To check
(ii), observe that if A € o(Y') then A = {w: Y (w) € B} for some B € R, so

// xydxdy—// flz,y)dedy
X)1

NB(Y)) = E(g(X

Remark. To drop the assumption that [ f(z,y)dz > 0, define h by

) [ fag)do = [ o(e)fo.0) da

(i.e., h can be anything where [ f(x,y)dz = 0), and observe this is enough for the
proof.
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Example 5.1.5. Suppose X and Y are independent. Let ¢ be a function with
Elo(X,Y)| < oo and let g(z) = E(p(x,Y)). We will now show that

E(p(X,Y)[X) = g(X)

Proof. Tt is clear that g(X) € o(X). To check (ii), note that if A € o(X) then
A = {X € C}, so using the change of variables formula (Theorem 1.6.9) and the
fact that the distribution of (X,Y") is product measure (Theorem 2.1.7), then the
definition of g, and change of variables again,

A¢(X,Y) dP = BE{p(X,Y)lc(X)}
://gb(x,y)lc(x) v(dy) p(dx)
= [ tet@ata) i) = [ g(x)ar

which proves the desired result. U

Example 5.1.6. Borel’s paradox. Let X be a randomly chosen point on the earth,
let 6 be its longitude, and ¢ be its latitude. It is customary to take 6 € [0,27) and
v € (—m/2,7/2] but we can equally well take 6 € [0,7) and ¢ € (—m,7]. In words,
the new longitude specifies the great circle on which the point lies and then ¢ gives
the angle.

At first glance it might seem that if X is uniform on the globe then 6 and the angle
o on the great circle should both be uniform over their possible values. 6 is uniform
but ¢ is not. The paradox completely evaporates once we realize that in the new or
in the traditional formulation ¢ is independent of 6, so the conditional distribution is
the unconditional one, which is not uniform since there is more land near the equator
than near the North Pole.

5.1.2 Properties

Conditional expectation has many of the same properties that ordinary expectation
does.

Theorem 5.1.2. In the first two parts we assume E|X|, E|Y| < oco.
(a) Conditional expectation is linear:

E(aX +Y|F) = aB(X|F) + E(Y|F) (5.1.1)

(b) If X <Y then
E(X|F) < E(Y|F). (5.1.2)

(c) If X;, > 0 and X,, T X with EX < oo then
E(X,|F) 1 E(X|F) (5.1.3)

Remark. By applying the last result to Y7 — Y,,, we see that if Y,, | Y and we have
E\Y1], E|Y]| < oo, then E(Y,|F) | E(Y|F).

Proof. To prove (a), we need to check that the right-hand side is a version of the left.
It clearly is F-measurable. To check (ii), we observe that if A € F then by linearity
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of the integral and the defining properties of E(X|F) and E(Y|F),

/{Mﬂxmyfmyundp:a/Jxmme+/ﬁamme

:a/XdP+/YdP:/aX+YdP
A A A

which proves (5.1.1).
Using the definition

/AE(X|}')dP:/AXdP§/AYdP:/AE(Y|}')dP

Letting A = {E(X|F) — E(Y|F) > € > 0}, we see that the indicated set has proba-
bility 0 for all € > 0, and we have proved (5.1.2).

Let Y,, = X — X,,. It suffices to show that E(Y,|F) | 0. Since Y,, |, (5.1.2) implies
Zn = E(Y,|F) | alimit Zo. If A € F then

/anP:/YndP
A A

Letting n — oo, noting Y,, | 0, and using the dominated convergence theorem gives
that [, ZodP =0 for all A€ F, s0 Zo = 0. O

Exercise 5.1.3. Prove Chebyshev’s inequality. If ¢ > 0 then
P(|X| > a|F) < a?E(X?|F)

Exercise 5.1.4. Suppose X > 0 and EX = oco. (There is nothing to prove when
EX < 00.) Show there is a unique F-measurable Y with 0 <Y < 0o so that

/XdP:/YdP forall A e F
A A

Hint: Let Xy = X AM, Yy = E(Xy|F), and let M — co.
Theorem 5.1.3. If ¢ is convex and E|X|, E|lo(X)| < oo then
P(E(X]F)) < E(p(X)|F) (5.1.4)

Proof. If ¢ is linear, the result is trivial, so we will suppose ¢ is not linear. We
do this so that if we let S = {(a,b) : a,b € Q,ax +b < ¢(x) for all z}, then
o(x) = sup{ax + b : (a,b) € S}. See the proof of Theorem 1.6.2 for more details. If
o(x) > ax + b then (5.1.2) and (5.1.1) imply

E(p(X)|F)>aE(X|F)+b as.
Taking the sup over (a,b) € S gives
E(p(X)|F) = (E(X|F)) as.
which proves the desired result. O

Remark. Here we have written a.s. by the inequalities to stress that there is an
exceptional set for each a,b so we have to take the sup over a countable set.
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Exercise 5.1.5. Imitate the proof in the remark after Theorem 1.5.2 to prove the
conditional Cauchy-Schwarz inequality.

B(XY|G)* < E(X?|G)B(Y?|G)
Theorem 5.1.4. Conditional expectation is a contraction in LP, p > 1.
Proof. (5.1.4) implies |E(X|F)|P < E(]X|P|F). Taking expected values gives
E(E(X|F)P) < B(E(|X|"|F)) = EIX] 0
In the last equality, we have used an identity that is an immediate consequence of
the definition (use property (ii) in the definition with A = Q).
E(E(Y|F)) = E() (5.1.5)
Conditional expectation also has properties, like (5.1.5), that have no analogue for
“ordinary” expectation.
Theorem 5.1.5. If F C G and E(X|G) € F then E(X|F) = E(X|G).

Proof. By assumption E(X|G) € F. To check the other part of the definition we note
that if A € F C G then

/AXdP:/AE(X|g)dP O

Theorem 5.1.6. If 1 C Fy then (i) E(E(X|F1)|F2) = E(X|F1)
(it) E(E(X|F2)|F1) = E(X|F1).

In words, the smaller o-field always wins. As the proof will show, the first equality
is trivial. The second is easy to prove, but in combination with Theorem 5.1.7 is
a powerful tool for computing conditional expectations. I have seen it used several
times to prove results that are false.

Proof. Once we notice that E(X|F;) € Fa, (i) follows from Example 5.1.1. To prove
(ii), notice that E(X|F1) € Fy, and if A € F; C F» then

/E(X|f1)dP:/XdP:/ E(X|F2)dP m|
A A A
Exercise 5.1.6. Give an example on Q = {a,b, ¢} in which

E(E(X|F1)|F2) # E(E(X|F2)|F1)

The next result shows that for conditional expectation with respect to F, random
variables X € F are like constants. They can be brought outside the “integral.”

Theorem 5.1.7. If X € F and E|Y|, E|XY| < oo then
E(XY|F) = XE(Y|F).

Proof. The right-hand side € F, so we have to check (ii). To do this, we use the usual
four-step procedure. First, suppose X = 1 with B € F. In this case, if A € F

/ 13E(Y|F)dP = E(Y|F)dP = YdP:/ 13Y dP
A ANB ANB A

so (ii) holds. The last result extends to simple X by linearity. If X, Y > 0, let X,
be simple random variables that T X, and use the monotone convergence theorem to
conclude that

/XE(Y|]-') dP:/XYdP
A A

To prove the result in general, split X and Y into their positive and negative parts. [
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Exercise 5.1.7. Show that when E|X|, E|Y|, and E|XY| are finite, each statement
implies the next one and give examples with X, Y € {—1,0,1} a.s. that show the
reverse implications are false: (i) X and Y are independent, (ii) E(Y|X) = EY, (iii)
E(XY)=EXEY.

Theorem 5.1.8. Suppose EX? < co. E(X|F) is the variable Y € F that minimizes
the “mean square error” E(X —Y)2.

Remark. This result gives a “geometric interpretation” of E(X|F). L*(F,) ={Y €
F, : EY? < oo} is a Hilbert space, and L?(F) is a closed subspace. In this case,
E(X|F) is the projection of X onto L?(F). That is, the point in the subspace closest
to X.

L*(F)

T
E(X|F)

Figure 5.1: Conditional expectation as projection in L?.

Proof. We begin by observing that if Z € L?(F), then Theorem 5.1.7 implies
ZE(X|F)=E(ZX|F)
(E|XZ| < oo by the Cauchy-Schwarz inequality.) Taking expected values gives
E(ZE(X|F)) = E(E(ZX|F)) = E(ZX)

or, rearranging,
EZ(X —E(X|F))] =0 for Z e L*(F)

IfY € L*(F) and Z = E(X|F) — Y then
E(X -Y)*=E{X - B(X|F)+ Z}* = E{X — E(X|F)}* + EZ*

since the cross-product term vanishes. From the last formula, it is easy to see E(X —
Y)? is minimized when Z = 0. O

Exercise 5.1.8. Show that if G ¢ F and EX? < oo then
E({X - E(X|F)}?) + E{E(X|F) - E(X|G)}?) = E{X - E(X[G)}?)

Dropping the second term on the left, we get an inequality that says geometrically,
the larger the subspace the closer the projection is, or statistically, more information
means a smaller mean square error. An important special case occurs when G =

{0,Q}.
Exercise 5.1.9. Let var (X|F) = E(X?|F) — E(X|F)2. Show that
var (X) = E(var (X|F)) + var (E(X|F))
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Exercise 5.1.10. Let Y7,Y5,... be ii.d. with mean p and variance 02, N an inde-
pendent positive integer valued r.v. with EN? < oo and X = Y7 + --- + Yy. Show
that var (X) = 02 EN + p? var (N). To understand and help remember the formula,
think about the two special cases in which N or Y is constant.

Exercise 5.1.11. Show that if X and Y are random variables with E(Y'|G) = X and
EY? = EX? < 00, then X =Y as.

Exercise 5.1.12. The result in the last exercise implies that if EY? < oo and E(Y|G)
has the same distribution as Y, then E(Y'|G) = Y a.s. Prove this under the assumption
E|Y| < oo. Hint: The trick is to prove that sgn (X) = sgn (E(X|G)) a.s., and then
take X =Y — c to get the desired result.

5.1.3 Regular Conditional Probabilities*

Let (Q, F, P) be a probability space, X : (2, F) — (5,8) a measurable map, and G
ao-field C F. p: QxS — [0,1] is said to be a regular conditional distribution
for X given G if

(i) For each A, w — u(w, A) is a version of P(X € A|G).

(ii) For a.e. w, A — p(w, A) is a probability measure on (S,S).

When S = Q and X is the identity map, p is called a regular conditional proba-
bility.

Exercise 5.1.13. Continuation of Example 1.4. Suppose X and Y have a joint
density f(x,y) > 0. Let

)= [ fepds/ [ 1o as

Show that u(Y (w), A) is a r.c.d. for X given o(Y).

Regular conditional distributions are useful because they allow us to simultane-
ously compute the conditional expectation of all functions of X and to generalize
properties of ordinary expectation in a more straightforward way.

Exercise 5.1.14. Let p(w, A) be ar.c.d. for X given F, and let f: (S,S) — (R, R)
have E|f(X)| < oo. Start with simple functions and show that

EGOOIP) = [ no.do)f(@) as

Exercise 5.1.15. Use regular conditional probability to get the conditional Holder
inequality from the unconditional one, i.e., show that if p, ¢ € (1,00) with 1/p+1/q =
1 then

E(XY||9) < B(IX]"I9)VPE(lY||G)"/

Unfortunately, r.c.d.’s do not always exist. The first example was due to Dieudonné
(1948). See Doob (1953), p. 624, or Faden (1985) for more recent developments.
Without going into the details of the example, it is easy to see the source of the
problem. If Ay, A,, ... are disjoint, then (5.1.1) and (5.1.3) imply

P(X € UpA,|G) =Y P(X € 4,|G) as.

but if S contains enough countable collections of disjoint sets, the exceptional sets
may pile up. Fortunately,
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Theorem 5.1.9. r.c.d.’s exist if (S,S) is nice.

Proof. By definition, there is a 1-1 map ¢ : S — R so that ¢ and ¢! are measurable.

Using monotonicity (5.1.2) and throwing away a countable collection of null sets, we
find there is a set Q, with P(Q,) = 1 and a family of random variables G(q,w), ¢ € Q
so that ¢ — G(q,w) is nondecreasing and w — G(q,w) is a version of P(p(X) < ¢|G).
Let F(z,w) = inf{G(q,w) : ¢ > z}. The notation may remind the reader of the proof
of Theorem 3.2.6. The argument given there shows F' is a distribution function. Since
G(gn,w) | F(z,w), the remark after Theorem 5.1.2 implies that F(z,w) is a version
of P(p(X) < 2/).

Now, for each w € €,, there is a unique measure v(w,-) on (R,R) so that
v(w,(—00,z]) = F(z,w). To check that for each B € R , v(w, B) is a version of
P(p(X) € B|G), we observe that the class of B for which this statement is true (this
includes the measurability of w — v(w, B)) is a A-system that contains all sets of the
form (aq1,b1]U- - (ag, br] where —oo < a; < b; < 00, so the desired result follows from
the m — A theorem. To extract the desired r.c.d., notice that if A € S and B = ¢(A),
then B = (p=1)71(A) € R, and set p(w, A) = v(w, B). O

The following generalization of Theorem 5.1.9 will be needed in Section 6.1.

Exercise 5.1.16. Suppose X and Y take values in a nice space (S,S) and G = o(Y).
There is a function u: S x S — [0, 1] so that

(i) for each A, p(Y(w), A) is a version of P(X € A|G)
(ii) for a.e. w, A — u(Y (w), A) is a probability measure on (S, S).

5.2 Martingales, Almost Sure Convergence

In this section we will define martingales and their cousins supermartingales and sub-
martingales, and take the first steps in developing their theory. Let F,, be a filtration,
i.e., an increasing sequence of o-fields. A sequence X, is said to be adapted to F,, if
X, € F, for all n. If X, is sequence with

(i) B|X,| < oo,
(ii) X, is adapted to F,,
(iii) E(Xp41|Fn) = X, for all n,

then X is said to be a martingale (with respect to F,,). If in the last definition, =
is replaced by < or >, then X is said to be a supermartingale or submartingale,
respectively.

Example 5.2.1. Simple random walk. Consider the successive tosses of a fair
coin and let &, = 1 if the nth tossis heads and £, = —1 if the nth toss is tails. Let
Xp=&+ - +& and F, = 0(&y,...,&) forn > 1, Xg =0 and Fy = {0,Q}. 1
claim that X,,, n > 0, is a martingale with respect to F,,. To prove this, we observe
that X,, € F,, E|X,| < o0, and &,11 is independent of F,,, so using the linearity of
conditional expectation, (5.1.1), and Example 5.1.2,

E(Xn+1|~7'—n) = E(Xnu:n) + E(§n+1|}—n) =Xn+ EfnJrl =X,

Note that, in this example, F,, = (X, ..., X,) and F, is the smallest filtration that
X, is adapted to. In what follows, when the filtration is not mentioned, we will take
fn = CT(Xl,... ,Xn)
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Exercise 5.2.1. Suppose X,, is a martingale w.r.t. G, and let F,, = 0(X1,...,X,,).
Then G, D F, and X, is a martingale w.r.t. F,,.

Example 5.2.2. Superharmonic functions. If the coin tosses considered above
have P(&, = 1) < 1/2 then the computation just completed shows E (X, 1|F,) <
X,, i.e., X, is a supermartingale. In this case, X, corresponds to betting on an
unfavorable game so there is nothing “super” about a supermartingale. The name
comes from the fact that if f is superharmonic (i.e., f has continuous derivatives of
order < 2 and 8*f/0z% + --- + 0% f /022 < 0), then

1
flz) > |B(0=7“)|/B(z,r) f(y) dy

where B(z,r) = {y : |x —y| < r} is the ball of radius r, and |B(0, )| is the volume of
the ball of radius 7.

Exercise 5.2.2. Suppose f is superharmonic on R?. Let &1, &, ... be i.i.d. uniform
on B(0,1), and define S,, by S,, = Sp,—1 + &, for n > 1 and Sy = z. Show that
X, = f(Sn) is a supermartingale.

Our first result is an immediate consequence of the definition of a supermartingale.
We could take the conclusion of the result as the definition of supermartingale, but
then the definition would be harder to check.

Theorem 5.2.1. If X,, is a supermartingale then for n > m, E(X,|Fmn) < Xp.

Proof. The definition gives the result for n = m + 1. Suppose n = m + k with k > 2.
By Theorem 5.1.2,

E(Xm+k|-7:m) = E(E(Xm+k|fm+kfl)‘]:m) < E(Xm+kfl|]:m)
by the definition and (5.1.2). The desired result now follows by induction. O

Theorem 5.2.2. (i) If X,, is a submartingale then for n > m, E(X,|Fmn) > Xm.
(i) If X,, is a martingale then for n > m, E(X,|Fmn) = Xm.

Proof. To prove (i), note that —X,, is a supermartingale and use (5.1.1). For (ii),
observe that X,, is a supermartingale and a submartingale. O

Remark. The idea in the proof of Theorem 5.2.2 can be used many times below. To
keep from repeating ourselves, we will just state the result for either supermartingales
or submartingales and leave it to the reader to translate the result for the other two.

Theorem 5.2.3. If X,, is a martingale w.r.t. F,, and ¢ is a convex function with
Elo(Xy)| < oo for all n then o(X,,) is a submartingale w.r.t. F,. Consequently, if
p>1 and E|X,|P < oo for all n, then | X,|P is a submartingale w.r.t. F,,.

Proof By Jensen’s inequality and the definition
E(p(Xnt1)|[Fn) > p(E(Xnt1]Fn)) = 0(Xn) |

Theorem 5.2.4. If X,, is a submartingale w.r.t. F,, and ¢ is an increasing convex
function with E|p(X,)| < oo for all n, then ¢(X,) is a submartingale w.r.t. Fy.
Consequently (i) If X,, is a submartingale then (X,, — a)™ is a submartingale. (i) If
X, is a supermartingale then X, A a is a supermartingale.
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Proof By Jensen’s inequality and the assumptions
E(p(Xni1)[Fn) 2 o(B(Xni1]Fn)) = o(Xn) m

Exercise 5.2.3. Give an example of a submartingale X,, so that X?2 is a supermartin-
gale. Hint: X,, does not have to be random.

Let F,,, n > 0 be a filtration. H,,, n > 1 is said to be a predictable sequence if
H, € F,_; for all n > 1. In words, the value of H,, may be predicted (with certainty)
from the information available at time n — 1. In this section, we will be thinking of
H,, as the amount of money a gambler will bet at time n. This can be based on the
outcomes at times 1,...,n — 1 but not on the outcome at time n!

Once we start thinking of H,, as a gambling system, it is natural to ask how much
money we would make if we used it. For concreteness, let us suppose that the game
consists of flipping a coin and that for each dollar you bet you win one dollar when
the coin comes up heads and lose your dollar when the coin comes up tails. Let X,
be the net amount of money you would have won at time n if you had bet one dollar
each time. If you bet according to a gambling system H then your winnings at time
n would be

(H : X)n = i Hm(Xm - mel)

since X, — X;n_1 = +1 or —1 when the mth toss results in a win or loss, respectively.

Let &, = X — Xm_1. A famous gambling system called the “martingale” is
defined by H; =1 and forn > 2, H, =2H,, ,if &, 1=—-1and H,=1if§, 1 =1.
In words, we double our bet when we lose, so that if we lose k times and then win,
our net winnings will be —1 —2... —2F~1 4 2% — 1. This system seems to provide us
with a “sure thing” as long as P(&,, = 1) > 0. However, the next result says there is
no system for beating an unfavorable game.

Theorem 5.2.5. Let X,,, n > 0, be a supermartingale. If H,, > 0 is predictable and
each H, is bounded then (H - X),, is a supermartingale.

Proof. Using the fact that conditional expectation is linear, (H - X), € F,, H, €
Fn-1, and (5.1.7), we have

E((H-X)pi1|Fn) = (H - X)n + BE(Hp1(Xpt1 — X3)|Fn)
= (H ' X)n + H7L+1E((Xn+1 - Xn)‘]:n) < (H : X)n

since E((Xn41 — Xn)|[Fp) <0 and Hyyq > 0. O

Remark. The same result is obviously true for submartingales and for martingales
(in the last case, without the restriction H,, > 0).

The notion of a stopping time, introduced in Section 4.1, is closely related to
the concept of a gambling system. Recall that a random variable N is said to be a
stopping time if {N = n} € F, for all n < co. If you think of N as the time a
gambler stops gambling, then the condition above says that the decision to stop at
time n must be measurable with respect to the information he has at that time. If we
let H,, = 1{n>ny, then {N >n} = {N <n—1}° € F,_1, so Hy, is predictable, and it
follows from Theorem 5.2.5 that (H-X),, = Xyan—Xo is a supermartingale. Since the
constant sequence Y,, = X is a supermartingale and the sum of two supermartingales
is also, we have:
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Theorem 5.2.6. If N is a stopping time and X, is a supermartingale, then Xyan
is a supermartingale.

Although you cannot make money with gambling systems, you can prove theorems
with them. Suppose X,,, n > 0, is a submartingale. Let a < b, let Ny = —1, and for
k>1let

Nop_1 = mf{m > Nop_o: X, < CL}
Nop, = inf{m > Nop_1: X > b}

The N; are stopping times and {Nog—1 < m < Nag} = {Nop—1 < m — 1} N {Ng, <
m—1}¢ € Fp_1, s0

H p—
" 0 otherwise

{1 if Nogp_1 < m < Ngj for some k

defines a predictable sequence. X (Nax—1) < a and X(Nai) > b, so between times
Noj_1 and Nog, X, crosses from below a to above b. H,, is a gambling system that
tries to take advantage of these “upcrossings.” In stock market terms, we buy when
X < a and sell when X,,, > b, so every time an upcrossing is completed, we make
a profit of > (b — a). Finally, U,, = sup{k : Nax < n} is the number of upcrossings

completed by time n.
) ? !
: A
a ] s TN

Figure 5.2: Upcrossings of (a,b). Lines indicate increments that are included in
(H-X),. InY, the points < a are moved up to a.

Theorem 5.2.7. Upcrossing inequality. If X,,, m > 0, is a submartingale then
(b—a)EU, < E(X,—a)T - E(Xo—a)t

Proof. Let Yy, = a+ (X,, —a)™. By Theorem 5.2.4, Y,, is a submartingale. Clearly,
it upcrosses [a, b] the same number of times that X, does, and we have (b — a)U,, <
(H -Y),, since each upcrossing results in a profit > (b — a) and a final incomplete
upcrossing (if there is one) makes a nonnegative contribution to the right-hand side.
It is for this reason we had to replace X,, by Y;,.

Let K, =1— H,,. Clearly, Y,, — Yo = (H-Y), + (K -Y),, and it follows from
Theorem 5.2.5 that E(K -Y),, > E(K-Y)o=0s0 E(H-Y),, < E(Y,, —Yy), proving
the desired inequality. O

We have proved the result in its classical form, even though this is a little mislead-
ing. The key fact is that E(K -Y), > 0, i.e., no matter how hard you try you can’t
lose money betting on a submartingale. From the upcrossing inequality, we easily get
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Theorem 5.2.8. Martingale convergence theorem. If X,, is a submartingale
with sup EX;F < oo then as n — oo, X,, converges a.s. to a limit X with E|X| < oo.

Proof. Since (X —a)™ < X 4 |a|, Theorem 5.2.7 implies that
EUy < (la| + EX,)/(b— a)

As n 7 oo, U, T U the number of upcrossings of [a,b] by the whole sequence, so if
sup FX,I < oo then EU < oo and hence U < oo a.s. Since the last conclusion holds
for all rational a and b,

Ugbeq{liminf X,, < a < b <limsup X,,}  has probability 0

and hence limsup X,, = liminf X, a.s., i.e., lim X,, exists a.s. Fatou’s lemma guar-
antees EX' < liminf EX;7 < o0, so X < oo a.s. To see X > —oo, we observe
that

EX, =EX' - EX, <EX'-EX,

(since X,, is a submartingale), so another application of Fatou’s lemma shows

EX™ <liminf X, <sup EX;Z" —FEXp < oo

n—oo n
and completes the proof. O

Remark. To prepare for the proof of Theorem 5.6.1, the reader should note that we
have shown that if the number of upcrossings of (a,b) by X,, is finite for all a,b € Q,
then the limit of X,, exists.

An important special case of Theorem 5.2.8 is

Theorem 5.2.9. If X,, > 0 is a supermartingale then as n — oo, X,, — X a.s. and
EX < EX,.

Proof. Y, = —X,, < 0 is a submartingale with EYn+ = 0. Since FXy > EX,, the
inequality follows from Fatou’s lemma. O

In the next section, we will give several applications of the last two results. We
close this one by giving two “counterexamples.”

Example 5.2.3. The first shows that the assumptions of Theorem 5.2.9 (or 5.2.8)
do not guarantee convergence in L'. Let S,, be a symmetric simple random walk with
So =1, 1ie., S, =5,-1+&, where &1,&s,... are iid. with P(§ =1) = P(§ = —-1) =
1/2. Let N =inf{n : S, =0} and let X,, = Syan. Theorem 5.2.6 implies that X,, is
a nonnegative martingale. Theorem 5.2.9 implies X,, converges to a limit X, < oo
that must be = 0, since convergence to k > 0 is impossible. (If X,, = k > 0 then
Xpnt1 = k+£1.) Since EX,, = EXy = 1 for all n and X, = 0, convergence cannot
occur in L.

Example 5.2.3 is an important counterexample to keep in mind as you read the
rest of this chapter. The next two are not as important.

Example 5.2.4. We will now give an example of a martingale with X; — 0 in
probability but not a.s. Let Xg = 0. When X;_1 = 0, let Xy = 1 or —1 with
probability 1/2k and = 0 with probability 1 — 1/k. When X, # 0, let Xj =
kX1 with probability 1/k and = 0 with probability 1 —1/k. From the construction,
P(Xx =0) =1—1/k so X3 — 0 in probability. On the other hand, the second
Borel-Cantelli lemma implies P(Xy = 0 for k > K) = 0, and values in (—1,1) — {0}
are impossible, so X} does not converge to 0 a.s.
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Exercise 5.2.4. Give an example of a martingale X,, with X,, — —oo a.s. Hint: Let
X, =& + -+ &, where the & are independent (but not identically distributed)
with E¢; = 0.

Our final result is useful in reducing questions about submartingales to questions
about martingales.

Theorem 5.2.10. Doob’s decomposition. Any submartingale X,, n > 0, can be
written in a unique way as X, = M, + A,, where M, is a martingale and A,, is a
predictable increasing sequence with Ag = 0.

Proof. We want X,, = M,, + A,,, E(M,|Fn-1) = My_1, and A,, € F,,_1. So we must
have

E(Xn|Fn-1) = E(M,|Fn-1) + E(An|Fn-1)

= n—1+ An = anl - Anfl + An
and it follows that
(a) An - An—l = E(Xn|fn—l) - Xn—l
(b) Mn = Xn - An
Now Ag = 0 and My = Xy by assumption, so we have A, and M, defined for all
time, and we have proved uniqueness. To check that our recipe works, we observe
that A,, — A,,_1 > 0 since X, is a submartingale and induction shows A4,, € F,,_1. To
see that M, is a martingale, we use (b), A, € F,,—1 and (a):
E(M,|Fn-1) =EX, — An|Fn-1)
= E(Xn|-7:n—1) - An = Anpn—-1— An—l = Mn—l

which completes the proof. O

Exercise 5.2.5. Let X,, = Zm<n 1p,, and suppose B, € F,,. What is the Doob
decomposition for X,,? B

EXERCISES

5.2.6. Let &1,&,. .. be independent with E¢; = 0 and var (§,,) = 02, < oo, and let

2 _ N 2 2 _ 2 :
sy = 105 Then S7 — s7 is a martingale.

5.2.7. If &,&,, ... are independent and have FE§; = 0 then
xP = Z ISTREREIN
1<ii<..<ig<n
is a martingale. When k=2 and S,, =& +--- + &,, 2xP = S2 — ngn £,

5.2.8. Generalize (i) of Theorem 5.2.4 by showing that if X,, and Y;, are submartin-
gales w.r.t. F, then X,, VY, is also.

5.2.9. Let Y7,Y5,... be nonnegative i.i.d. random variables with EY,, = 1 and
P(Y,, = 1) < 1. (i) Show that X, = [[,,<, Ym defines a martingale. (ii) Use
Theorem 5.2.9 and an argument by contradiction to show X,, — 0 a.s. (iii) Use the
strong law of large numbers to conclude (1/n)log X,, — ¢ < 0.

5.2.10. Suppose y,, > —1 for all n and > |y,| < co. Show that []7°_, (1 +yy,) exists.

m=1
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5.2.11. Let X, and Y, be positive integrable and adapted to F,,. Suppose
E(Xpu1|Fn) <(1+Y,)X,

with > Y,, < co a.s. Prove that X,, converges a.s. to a finite limit by finding a closely
related supermartingale to which Theorem 5.2.9 can be applied.

5.2.12. Use the random walks in Exercise 5.2.2 to conclude that in d < 2, nonnegative
superharmonic functions must be constant. The example f(x) = |z|>~% shows this is
false in d > 2.

5.2.13. The switching principle. Suppose X} and X? are supermartingales with
respect to F,, and N is a stopping time so that X% > X3%. Then

Y, = X}J(N>n) + X»Zl(Ngn) is a supermartingale.
Ly = X»}z]-(NZn) + Xfll(NQl) is a supermartingale.
5.2.14. Dubins’ inequality. For every positive supermartingale X,, n > 0, the
number of upcrossings U of [a, b] satisfies
a\k
PU>k) < (g) Emin(Xy/a,1)
To prove this, we let Nyg = —1 and for 7 > 1 let
Ngjfl = mf{m > N2j72 X < a}
Ngj = mf{m > Ngj_l X, > b}
Let Y, =1for 0 <n < Nj and for j > 1

vy — (b/a)j_l(Xn/a) for N2j_1 <n< Ngj
" (b/a)J for Ngj <n< N2j+1

(i) Use the switching principle in the previous exercise and induction to show that
Z), = Yuan; is a supermartingale. (ii) Use EY,an,, < EYp and let n — oo to get
Dubins’ inequality.

5.3 Examples

In this section, we will apply the martingale convergence theorem to generalize the
second Borel-Cantelli lemma and to study Polya’s urn scheme, Radon Nikodym deriva-
tives, and branching processes. The four topics are independent of each other and are
taken up in the order indicated.

5.3.1 Bounded Increments

Our first result shows that martingales with bounded increments either converge or
oscillate between +o00 and —oo.

Theorem 5.3.1. Let X, Xo,... be a martingale with | X411 — Xp| < M < oo. Let
C = {lim X,, exists and is finite}
D = {limsup X,, = +00 and liminf X,, = —co}

Then P(CUD) = 1.
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Proof. Since X,, — Xy is a martingale, we can without loss of generality suppose that
Xo=0. Let 0 < K < o0 and let N =inf{n: X,, < —K}. X,y is a martingale with
Xoan > —K—M a.s. so applying Theorem 5.2.9 to X,,on+ K+ M shows lim X,, exists
on {N = oo}. Letting K — oo, we see that the limit exists on {liminf X,, > —oo}.
Applying the last conclusion to —X,,, we see that lim X,, exists on {limsup X,, < co}
and the proof is complete. O

Exercise 5.3.1. Let X,,, n > 0, be a submartingale with sup X,, < co. Let £, =
X, — X,_1 and suppose E(sup &) < co. Show that X,, converges a.s.

Exercise 5.3.2. Give an example of a martingale X, with sup,, |X,| < oo and
P(X, =aio.)=1fora=-1,0,1. This example shows that it is not enough to have
sup | X,+1 — Xn| < 0o in Theorem 5.3.1.

Exercise 5.3.3. (Assumes familiarity with finite state Markov chains.) Fine tune
the example for the previous problem so that P(X,, =0) — 1 —2p and P(X,, = —1),
P(X,, = 1) — p, where p is your favorite number in (0,1), i.e., you are asked to do
this for one value of p that you may choose. This example shows that a martingale
can converge in distribution without converging a.s. (or in probability).

Exercise 5.3.4. Let X, and Y,, be positive integrable and adapted to F,,. Suppose
E(Xpi1|Fn) < Xp+ Yy, with >V, < 0o a.s. Prove that X, converges a.s. to a finite
limit. Hint: Let N = infy anzl Y,, > M, and stop your supermartingale at time V.

Theorem 5.3.2. Second Borel-Cantelli lemma, I1. Let F,, n > 0 be a filtration
with Fo = {0,Q} and A,, n > 1 a sequence of events with A, € F,,. Then

{A, i0} = {Z P(A,|Fpz1) }

Proof. If we let Xg =0 and X, = > _ 14, — P(A|Fm-1) for n > 1 then X, is a
martingale with |X,, — X,,_1] < 1. Using the notation of Theorem 5.3.1 we have:

on C, Z 14, =00 if and only if Z P(Ap|Fn-1) = 0
n=1 n=1

on D, ilAn:oo and iP(An\]:n—l)z

n=1
Since P(C' U D) = 1, the result follows. O
Exercise 5.3.5. Let p,, € [0,1). Use the Borel-Cantelli lemmas to show that

ﬁ (1—pm)=0 1fand0nly1f2pm—oo
m=1

m=1

Exercise 5.3.6. Show > °°, P(A,| N4 AS,)) = oo implies P(NS_; A%) = 0

5.3.2 Polya’s Urn Scheme

An urn contains 7 red and g green balls. At each time we draw a ball out, then replace
it, and add ¢ more balls of the color drawn. Let X,, be the fraction of green balls after
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the nth draw. To check that X, is a martingale, note that if there are i red balls and
j green balls at time n, then

X = (j+¢)/(i+j+c) with probability j/(i + j)
m J/i+j+c) with probability i/(i + j)

and we have

itjte itj itjtc it (itjtolity) ity

jte § o, i (j+c+i)j j

Since X,, > 0, Theorem 5.2.9 implies that X,, — X, a.s. To compute the dis-
tribution of the limit, we observe (a) the probability of getting green on the first m
draws then red on the next £ = n — m draws is

g gtc g+ (m—1)c . r r+({—1)c
g+r g+r+c gH+r+(m—-1c g+r+mec g+r+(n-1c

and (b) any other outcome of the first n draws with m green balls drawn and ¢ red
balls drawn has the same probability since the denominator remains the same and
the numerator is permuted. Consider the special case c=1, g =1, r = 1. Let G,, be
the number of green balls after the nth draw has been completed and the new ball
has been added. It follows from (a) and (b) that

n)m!(n—m)! 1
n+1! n+1

P(Gp=m+1)= (m

50 X has a uniform distribution on (0,1).
If we suppose that c=1, g =2, and r = 1, then

n! (m+ 1)!(n —m)!

min—m) (et

P(G,=m+2)=

if n — 00 and m/n — z. In general, the distribution of X, has density

F((g + T)/C) a:‘(g/c)_l(l _ x)(r/c)—l
I(g/c)l(r/c)

This is the beta distribution with parameters g/c and r/c. In Example 5.4.5 we
will see that the limit behavior changes drastically if, in addition to the ¢ balls of the
color chosen, we always add one ball of the opposite color.

5.3.3 Radon-Nikodym Derivatives

Let p be a finite measure and v a probability measure on (2, F). Let F, T F be
o-fields (i.e., o(UF,) = F). Let u, and v, be the restrictions of 1 and v to F,.

Theorem 5.3.3. Suppose pu, << v, for all n. Let X, = duy,/dv, and let X =
limsup X,,. Then

J(A) = /AXdu (AN {X = oo})

Remark. 1,(A) = [, X dv is a measure << v. Since Theorem 5.2.9 implies v(X =
o0) =0, ps(A) = (AN {X = oo}) is singular w.r.t. v. Thus p = p, + ps gives the
Lebesgue decomposition of u (see Theorem A.4.5), and Xo = dpu,/dv, v-a.s. Here
and in the proof we need to keep track of the measure to which the a.s. refers.
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Proof. As the reader can probably anticipate:
Lemma 5.3.4. X,, (defined on (Q, F,v)) is a martingale w.r.t. F,,.

Proof. We observe that, by definition, X,, € F,,. Let A € F,,. Since X,, € F,, and v,

is the restriction of v to F,
/Xndyz / X, dv,
A A

Using the definition of X,, and Exercise A.4.7

[ X = an(4) = )
A

the last equality holding since A € F,, and pu, is the restriction of pu to F,. If
A € Fp—1 C Fon, using the last result for n = m and n = m — 1 gives

/ Xndv = u(A) = / Xo1dv
A A
$0 B(Xm|Fm-1) = Xm—1. O

Since X, is a nonnegative martingale, Theorem 5.2.9 implies that X,, — X v-a.s.
We want to check that the equality in the theorem holds. Dividing u(A) by p(£2), we
can without loss of generality suppose p is a probability measure. Let p = (u + 1) /2,
Pn = (tn +vn)/2 = the restriction of p to F,. Let Y, = duy,/dpn, Zn = dv,/dpn. Yy,
Zn > 0and Y, + Z, =2 (by Exercise A.4.6), so Y,, and Z,, are bounded martingales
with limits Y and Z. As the reader can probably guess,

(%) Y =du/dp Z =dv/dp

It suffices to prove the first equality. From the proof of Lemma 5.3.4, if A € F,,, C F,

Mm:/m@H/Y@
A A

by the bounded convergence theorem. The last computation shows that
w(A) = / Ydp forall AeG=U,Fn,
A

G is a m-system, so the m— A theorem implies the equality is valid for all A € F = o(G)
and (x) is proved.

It follows from Exercises A.4.8 and A.4.9 that X,, = Y,,/Z,. At this point, the
reader can probably leap to the conclusion that X = Y/Z. To get there carefully,
note Y + Z = 2 p-as., so p(Y = 0,Z = 0) = 0. Having ruled out 0/0 we have
X =Y/Z p-as. (Recall X = limsup X,,.) Let W = (1/Z) - 1(z~0). Using (), then
1=2ZW + 1(z=0), we have

A A A

Now (x) implies dv = Z dp, and it follows from the definitions that

YW =X1(z50) =X v-as.
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the second equality holding since v({Z = 0}) = 0. Combining things, we have

(b) /AYWde:/AXdV

To handle the other term, we note that () implies du =Y dp, and it follows from the
definitions that {X = oo} = {Z = 0} p-a.s. so

(c) /1(Z=0)YdP:/ 1(x=o0) dpt
A A

Combining (a), (b), and (c¢) gives the desired result. O

Example 5.3.1. Suppose F,, = 0(Ix, : 0 < k < K,,) where for each n, I, is
a partition of 2, and the (n + 1)th partition is a refinement of the nth. In this
case, the condition p,, << v, is v(I;,,) = 0 implies u(Ix,) = 0, and the martingale
Xn = pIgn)/v(Ign) on Iy, is an approximation to the Radon-Nikodym derivative.
For a concrete example, consider Q = [0,1), I, = [k27",(k+1)27") for 0 < k < 2",
and v = Lebesgue measure.

Exercise 5.3.7. Check by direct computation that the X,, in Example 5.3.1 is a
martingale. Show that if we drop the condition u, << v, and set X,, = 0 when
V(1) =0, then E(X,+1|F,) < X,.

Exercise 5.3.8. Apply Theorem 5.3.3 to Example 5.3.1 to get a “probabilistic” proof
of the Radon-Nikodym theorem. To be precise, suppose F is countably generated
(i.e., there is a sequence of sets A, so that F = 0(A,, : n > 1)) and show that if x and
v are o-finite measures and . << v, then there is a function g so that u(A) = [, gdv.

Remark. Before you object to this as circular reasoning (the Radon-Nikodym theo-
rem was used to define conditional expectation!), observe that the conditional expec-
tations that are needed for Example 5.3.1 have elementary definitions.

Kakutani dichotomy for infinite product measures. Let p and v be mea-
sures on sequence space (RN, RN) that make the coordinates &,(w) = w, indepen-
dent. Let F,(z) = p(&n < z), Go(z) = v(§, < z). Suppose F,, < G, and let
gn = dF,/dG,,. Let F, = 0(&,, : m < n), let p,, and v, be the restrictions of p and
v to F,, and let

Theorem 5.3.3 implies that X,, — X v-as. > log(gm) > —oc is a tail event, so
the Kolmogorov 0-1 law implies

V(X =0) € {0,1} (5.3.1)

and it follows from Theorem 5.3.3 that either 4 << v or u L v. The next result gives
a concrete criterion for which of the two alternatives occurs.

Theorem 5.3.5. p << v or p L v, according as [[ o, [ \/Gm dGrm > 0 or = 0.

Proof. Jensen’s inequality and Exercise A.4.7 imply

2
(/ vV dm dGm) < /Q’m dGm = /dFm =1
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so the infinite product of the integrals is well defined and < 1. Let

Xn = H q"L(wm)

m<n

as above, and recall that X,, — X v-a.s. If the infinite product is 0 then

/X71z/2dl/: H /\/deGm —0
m=1
Fatou’s lemma implies

/Xl/%h/g 1iminf/X}/2du:0

n—oo

so X = 0 v-a.s., and Theorem 5.3.3 implies i 1L v. To prove the other direction, let

Y, = X}L/Z. Now [ gm dG,, =1, so if we use E to denote expected value with respect
to v, then EY,2 = EX,, = 1, so

n+k
E(Yn+k - Yn)2 = E(Xn-i-k + X, — 2X71L/2Xrltfk) =2 (1 - H / i dGm)

m=n+1

Now |a — b| = |a'/? — b'/2| - (a}/? 4 b'/?), so using Cauchy-Schwarz and the fact
(a + b)? < 2a? + 2b? gives

E‘Xn+k - Xn| = E(|Yn+k - Yn|(Yn+k + Yn))
< (EYpik — Yo)?E(Ynir + Ya)?)
< (AB(Yopy - Yi)2)?

1/2

From the last two equations, it follows that if the infinite product is > 0, then X,
converges to X in L'(v), so v(X = 0) < 1, (5.3.1) implies the probability is 0, and
the desired result follows from Theorem 5.3.3. O

Bernoulli product measures. For the next three exercises, suppose F,, G, are
concentrated on {0,1} and have F,,(0) = 1 — a,, G, (0) =1 — G,.

Exercise 5.3.9. (i) Use Theorem 5.3.5 to find a necessary and sufficient condition
for p << v. (ii) Suppose that 0 < € < @y, B, <1 — € < 1. Show that in this case the
condition is simply > (ay, — ()2 < oo.

Exercise 5.3.10. Show that if >, < co and ) 8, = co in the previous exercise
then g L v. This shows that the condition Y (a, — 8,)? < oo is not sufficient for
1 << v in general.

Exercise 5.3.11. Suppose 0 < o, B, < 1. Show that > |a, — 8, < oo is sufficient
for 4 << v in general.

5.3.4 Branching Processes

Let &, i,n > 1, be ii.d. nonnegative integer-valued random variables. Define a
sequence Z,, n > 0by Zy =1 and

n+1 n+1 .
4o+ € if Z,>0
Tpag =41 Zn " 5.3.2
+ {o if Z, =0 (5:32)
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Z, is called a Galton-Watson process. The idea behind the definitions is that
Z,, is the number of individuals in the nth generation, and each member of the nth
generation gives birth independently to an identically distributed number of children.
pr = P(§ = k) is called the offspring distribution.

Lemma 5.3.6. Let F,, = o(& 1 i > 1,1 <m < n) and pp = EE™ € (0,00). Then
Zn/u™ is a martingale w.r.t. JFy,.

Proof. Clearly, Z,, € F,.

K

E(Zn1lFn) = ) E(Zni1liz,=1y|Fn)

B
Il

1

by the linearity of conditional expectation, (5.1.1), and the monotone convergence
theorem, (5.1.3). On {Z,, =k}, Z, 1 =& 4+ + 5,?“, so the sum is

M8

B 4 4+ Yz ey Fn) =D Lz e BE + -+ G F)
k=1

=
Il

1

by Theorem 5.1.7. Since each 5;”“1 is independent of F,,, the last expression

=D Lzi=kykn = pnZn
k=1

Dividing both sides by p"*! now gives the desired result. O

Remark. The reader should notice that in the proof of Lemma 5.3.6 we broke things
down according to the value of Z,, to get rid of the random index. A simpler way of
doing the last argument (that we will use in the future) is to use Exercise 5.1.1 to
conclude that on {Z, = k}

E(Zn+1|Fn) = E( ?—H +"'+£1?+1|‘7:n) =kp = pzy

Z,/u™ is a nonnegative martingale, so Theorem 5.2.9 implies Z,,/u"™ — a limit
a.s. We begin by identifying cases when the limit is trivial.

Theorem 5.3.7. If u < 1 then Z, =0 for all n sufficiently large, so Z,/u™ — 0.
Proof. E(Z,/u") = E(Zy) =1, s0 E(Z,) = u™. Now Z, > 1on {Z, >0} so

P(Zn > 0) < E(Zp; Zn > 0) = E(Z,) = u™ — 0
exponentially fast if g < 1. O

The last answer should be intuitive. If each individual on the average gives birth
to less than one child, the species will die out. The next result shows that after we
exclude the trivial case in which each individual has exactly one child, the same result
holds when p = 1.

Theorem 5.3.8. If u =1 and P({" = 1) < 1 then Z, = 0 for all n sufficiently
large.

Proof. When p =1, Z,, is itself a nonnegative martingale. Since Z,, is integer valued
and by Theorem 5.2.9 converges to an a.s. finite limit Z.,, we must have Z,, = Z
for large n. If P(§ =1) < 1 and k > 0 then P(Z,, =k for all n > N) = 0 for any
N, so we must have Z,, = 0. O
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Figure 5.3: Generating function for Binomial(3,1/2).

When g < 1, the limit of Z,,/u™ is 0 because the branching process dies out. Our
next step is to show that if x> 1 then P(Z, > 0 for all n) > 0. For s € [0, 1], let
©(s) = 3 4o Prs® where p, = P(€™ = k). ¢ is the generating function for the
offspring distribution py,.

Theorem 5.3.9. P(Z,, =0 for some n) = p the unique fized point of ¢ in [0,1).

Proof. Differentiating and referring to Theorem A.5.2 for the justification gives for
s<1

O'(s) = kprst™t >0

¢"(s) =Y k(k—1)pest=2 >0

So ¢ is increasing and convex, and limgy1 ¢'(s) = > po, kpp = p.
Our interest in ¢ stems from the following facts.

(a) If 0.y, = P(Z,, = 0) then 0., = > pe g P (Om—1)".

Proof of (a). If Z; = k, an event with probability pg, then Z,, = 0 if and only if all
k families die out in the remaining m — 1 units of time, an independent event with
probability % . Summing over the disjoint possibilities for each k gives the desired
result. O

(b) If /(1) = p > 1 there is a unique p < 1 so that ¢(p) = p.

Proof of (b). v(0) >0, ¢(1) =1, and ¢’(1) > 1, so ¢(1 —¢) < 1 — € for small e. The
last two observations imply the existence of a fixed point. To see it is unique, observe
that g > 1 implies pg > 0 for some k > 1, so ¢”(6) > 0 for § > 0. Since ¢ is strictly
convex, it follows that if p < 1 is a fixed point, then ¢(z) < z for x € (p, 1). O

(c) Asm 1 00, 0, T p.

Proof of (c). 08y = 0, p(p) = p, and ¢ is increasing, so induction implies 6, is
increasing and 6, < p. Let 8, = lim#é,,. Taking limits in 6,, = ©(0,,—1), we see
Ooo = ©(00). Since 0, < p, it follows that 6, = p. O
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Combining (a)—(c) shows P(Z,, = 0 for some n) = lim#,, = p < 1 and proves Theorem
5.3.9. 0

0.3

0.25 4

0.2 4

0.15 4

0.1+

0.05 4

0

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 5.4: Tteration as in part (c) for the Binomial(3,1/2) generating function.

The last result shows that when p > 1, the limit of Z,,/u™ has a chance of being
nonzero. The best result on this question is due to Kesten and Stigum:

Theorem 5.3.10. W =lim Z,,/u™ is not = 0 if and only if > prklogk < oo.

For a proof, see Athreya and Ney (1972), p. 24-29. In the next section, we will show
that Y k?py < oo is sufficient for a nontrivial limit.

Exercise 5.3.12. Show that if P(lim Z,,/u™ = 0) < 1 then it is = p and hence
{lim Z,,/u"™ > 0} ={Z, > 0 for all n} a.s.

Exercise 5.3.13. Galton and Watson who invented the process that bears their
names were interested in the survival of family names. Suppose each family has
exactly 3 children but coin flips determine their sex. In the 1800s, only male children
kept the family name so following the male offspring leads to a branching process with
po = 1/8, p1 = 3/8, p2 = 3/8, ps = 1/8. Compute the probability p that the family
name will die out when Zy; = 1.

5.4 Doob’s Inequality, Convergence in L

We begin by proving a consequence of Theorem 5.2.6.

Theorem 5.4.1. If X,, is a submartingale and N is a stopping time with P(N <
k) =1 then
EXy < EXy < EXj

Remark. Let S, be a simple random walk with Sy = 1 and let N = inf{n : S, = 0}.
(See Example 5.2.3 for more details.) ESy =1 > 0 = ESy so the first inequality
need not hold for unbounded stopping times. In Section 5.7 we will give conditions
that guarantee FXg < EXy for unbounded N.

Proof. Theorem 5.2.6 implies Xy, is a submartingale, so it follows that

EXo=EXnno < EXnyar = EXN
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To prove the other inequality, let K, = 1yn<n) = I{n<n—1}. Kp is predictable, so
Theorem 5.2.5 implies (K - X),, = X,, — Xyan is a submartingale and it follows that

EXk—EXNZE(K-X)k.ZE(K-X)O:O 0

Exercise 5.4.1. Show that if j < k then E(X;; N = j) < E(Xy; N = j) and sum
over j to get a second proof of EXy < EXj..

Exercise 5.4.2. Generalize the proof of Theorem 5.4.1 to show that if X, is a sub-
martingale and M < N are stopping times with P(N < k) =1 then EX); < EXy.

Exercise 5.4.3. Use the stopping times from the Exercise 4.1.7 to strengthen the
conclusion of the previous exercise to E(Xn|Far) > X

We will see below that Theorem 5.4.1 is very useful. The first indication of this is:

Theorem 5.4.2. Doob’s inequality. Let X, be a submartingale,

X, = max X
" 0<m<n m

A>0, and A= {X,, > \}. Then
AP(A) < EX, 14 < EX;
Proof. Let N =inf{m : X,, > A or m =n}. Since Xy > Aon A,
AP(A) < EXnla < EX,l14

The second inequality follows from the fact that Theorem 5.4.1 implies FXy < EX,,
and we have Xy = X,, on A°. The second inequality is trivial, so the proof is
complete. O

Example 5.4.1. Random walks. If we let S,, = & + --- + £, where the &,
are independent and have E¢,, = 0, 02, = F¢2, < oo, then Theorem 5.2.3 implies
X,, = 52 is a submartingale. If we let A = 22 and apply Theorem 5.4.2 to X,,, we get
Kolmogorov’s maximal inequality, Theorem 2.5.2:

P( max |Sp,| > 33) <z %var (S,)

1<m<n

Using martingales, one can also prove a lower bound on the maximum that can be
used instead of the central limit theorem in our proof of the necessity of the conditions
in the three series theorem. (See Example 3.4.7.)

Exercise 5.4.4. Suppose in addition to the conditions introduced above that |£,,| <
K and let s2 =3 _ o2 Exercise 5.2.6 implies that S2 — s? is a martingale. Use
this and Theorem 5.4.1 to conclude

P( max [Sm| < x) < (z + K)?/var (S,,)

1<m<n

Exercise 5.4.5. Let X,, be a martingale with Xy = 0 and EX,% < o0. Show that

P ( max X,, > )\) < EXZ/(EX2+)\?)

1<m<n

Hint: Use the fact that (X,, + ¢)? is a submartingale and optimize over c.
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Integrating the inequality in Theorem 5.4.2 gives:
Theorem 5.4.3. LP maximum inequality. If X, is a submartingale then for
1 <p<oo,
— p p
s < (25) By
p—

Consequently, if Y, is a martingale and Y," = maxo<m<n |Yml,
» \?
B < (S25) B

Proof. The second inequality follows by applying the first to X,, = |Y,,|. To prove the
first we will, for reasons that will become clear in a moment, work with X,, A M rather
than X,,. Since {X,, A M > A} is always {X,, > A} or (), this does not change the
application of Theorem 5.4.2. Using Lemma 2.2.8, Theorem 5.4.2, Fubini’s theorem,
and a little calculus gives

E((X, AN M)P) = / pANPTIP(X,, A M > X)d)
0

(o]
g/o pAP~! (A‘l/X:[l(XnAMZA) dP) d\
X, AM
= / X / pAP~2dNdP
0

=L /X;(Xn AM)P=1dp
p—1

If we let ¢ = p/(p — 1) be the exponent conjugate to p and apply Holder’s inequality,

Theorem 1.6.3, we see that the above

< (BIX; )P (BIX A M)

If we divide both sides of the last inequality by (E|X, A M[P)Y/9, we get

n

P

B(%, ) < (25 ) By
Letting M — oo and using the monotone convergence theorem gives the desired
result. O

Example 5.4.2. Theorem 5.4.3 is false when p = 1. Again, the counterexample

is provided by Example 5.2.3. Let S;, be a simple random walk starting from Sy = 1,

N = inf{n : S,, = 0}, and X,, = Syan. Theorem 5.4.1 implies EX,, = ESyan =

ESy =1 for all n. Using hitting probabilities for simple random walk, (4.1.2) a = —1,

b= M — 1, we have

1

P ( X,, > M) -

max > Y

so E(max,, X,,) = > 3/_, P(max,, X,,, > M) = >3,_,1/M = oo. The monotone
convergence theorem implies that E max,,<, X, T 0o asn T oo.

The next result gives an extension of Theorem 5.4.2 to p = 1. Since this is not one
of the most important results, the proof is left to the reader.



5.4. DOOB’S INEQUALITY, CONVERGENCE IN L¥ 215

Theorem 5.4.4. Let X,, be a submartingale and log™ x = max(log z,0).
EX, < (1—e )71+ B(X; log™ (X))}

Remark. The last result is almost the best possible condition for sup|X,| € L.
Gundy has shown that if X,, is a positive martingale that has X,; < CX,, and
EXglogt Xy < 0o, then E(sup X,,) < oo implies sup E(X,log" X,,) < oo. For a
proof, see Neveu (1975) p. 71-73.

Exercise 5.4.6. Prove Theorem 5.4.4 by carrying out the following steps: (i) Imitate
the proof of 5.4.2 but use the trivial bound P(A4) <1 for A <1 to show
E(X, AM) <1+ /Xj[ log(X,, A M) dP

(ii) Use calculus to show alogh < aloga + b/e < alog™ a + b/e.
From Theorem 5.4.2, we get the following:

Theorem 5.4.5. L? convergence theorem. If X,, is a martingale with sup E|X,|P <
oo where p > 1, then X,, — X a.s. and in LP.

Proof. (EX;1)P < (E|X,|)P < E|X,[?, so it follows from the martingale convergence
theorem (5.2.8) that X,, — X a.s. The second conclusion in Theorem 5.4.3 implies

P » \?
E( sup Xm|> < () E|X,|?
0<m<n p—1

Letting n — oo and using the monotone convergence theorem implies sup | X,,| € L?.
Since | X,, — X|P < (2sup | X,|)?, it follows from the dominated convergence theorem,
that F|X,, — X|? — 0. O

The most important special case of the results in this section occurs when p = 2.
To treat this case, the next two results are useful.

Theorem 5.4.6. Orthogonality of martingale increments. Let X,, be a mar-
tingale with EX2 < oo for alln. If m <n and Y € F,, has EY? < oo then

E(Xyn — Xm)Y) =0

Proof. The Cauchy-Schwarz inequality implies FE|(X,, — X,,,)Y| < co. Using (5.1.5),
Theorem 5.1.7, and the definition of a martingale,

E((X, —X,)Y)=FEE(X,—Xn)Y|Fn)]=EYE(X, —X»)|Fn)]=0 0O

Theorem 5.4.7. Conditional variance formula. If X, is a martingale with
EX?2 < oo for alln,

E((Xn - Xm)Q‘}-m) = E(X72L|]:m) - Xr2n

Remark. This is the conditional analogue of E(X — EX)? = EX? — (EX)? and is
proved in exactly the same way.

Proof. Using the linearity of conditional expectation and then Theorem 5.1.7, we have
E(X? —2XnXm + X2 |Fm) = E(X2|Fm) — 2Xm E(X,| Fr) + X7,
= B(X2|Fn) —2X2 + X2

which gives the desired result. O
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Exercise 5.4.7. Let X,, and Y,, be martingales with EX? < co and EY,? < cc.

n
EX,Y, — EXyYy = Z E(Xp — Xm-1)Ym — Yin_1)

m=1
The next two results generalize Theorems 2.5.3 and 2.5.7. Let X,,, n > 0, be a
martingale and let &, = X,, — X, for n > 1.
Exercise 5.4.8. If EX3, >~ | B2 < oo then X,, — X a.s. and in L?.

Exercise 5.4.9. If b, T co and > ~_, F¢2 /b2, < oo then X, /b, — 0 a.s.
In particular, if E€2 < K < oo and Y. ~_, b2 < co then X,,/b, — 0 a.s.

m=1"m

Example 5.4.3. Branching processes. We continue the study begun at the end
of the last section. Using the notation introduced there, we suppose p = E(&") > 1
and var (£M™) = 02 < co. Let X,, = Z,,/u™. Taking m =n — 1 in Theorem 5.4.7 and
rearranging, we have

B(Xp|Fa-1) = X5y + BE((Xn = Xp-1)?|Famr)
To compute the second term, we observe

E((Xn - anl>2|-7:n71) = E((Zn/ﬂn - anl/:“n_l)2|~7:nfl)
= N72nE((Zn - NZn—1)2|}—n—1)

It follows from Exercise 5.1.1 that on {Z,_; = k},

k 2
B2~ 121 P10) = B( (L € - k) ‘ Fat) = ot = Zyio”
=1

Combining the last three equations gives
EX?=FEX? | +E(Z,_10%/p*") = EX?_| + o2 /u" ™!

since B(Z,_1/u"" 1) = EZy = 1. Now EX2 = 1,s0 EX? = 1+0?/u?, and induction

gives
n+1

EX2=1+0"> p*
k=2
This shows sup EX2 < oo, so X,, — X in L?, and hence EX,, — EX. EX, =1 for
all n, so EX =1 and X is not = 0. It follows from Exercise 5.3.12 that {X > 0} =
{Z, >0 foralln }.

5.4.1 Square Integrable Martingales*

For the rest of this section, we will suppose
X, is a martingale with Xy = 0 and EX% < oo for all n

Theorem 5.2.3 implies X2 is a submartingale. It follows from Doob’s decomposition
Theorem 5.2.10 that we can write XTQL = M, + A,, where M,, is a martingale, and
from formulas in Theorems 5.2.10 and 5.4.7 that

n

Ay = Z E(anu:m—l) - X72n—1 = E((Xm - Xm—1)2|-7'—m—1)
m=1 1

m=
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A, is called the increasing process associated with X,,. A, can be thought of as
a path by path measurement of the variance at time n, and A,, = lim A4,, as the
total variance in the path. Theorems 5.4.9 and 5.4.10 describe the behavior of the
martingale on {A, < oo} and {4, = oo}, respectively. The key to the proof of the
first result is the following:

Theorem 5.4.8. E (sup,, |[Xm|?) < 4FA.
Proof. Applying the L? maximum inequality (Theorem 5.4.3) to X,, gives
E ( sup |Xm|2) <4EX? =4FA,
0<m<n

since EX?L = EM, + FEA, and EM, = EMy = EXg = 0. Using the monotone
convergence theorem now gives the desired result. O

Theorem 5.4.9. lim,,_,., X, ezists and is finite a.s. on {As < 00}.
Proof. Let a > 0. Since A,11 € F,, N = inf{n : 4,41 > a®} is a stopping time.
Applying Theorem 5.4.8 to Xy, and noticing Ay, < a? gives
E (sup |XN/\n|2> < 4a?
n

so the L? convergence theorem, 5.4.5, implies that lim Xy, exists and is finite a.s.
Since a is arbitrary, the desired result follows. O

The next result is a variation on the theme of Exercise 5.4.9.

Theorem 5.4.10. Let f > 1 be increasing with fooo f(t)~2dt < co. Then X,/ f(An) —
0 a.s. on {As = o0}

Proof. H,, = f(A,,)~! is bounded and predictable, so Theorem 5.2.5 implies

n

Yo=(H -X)p=>

m=1

Xm - mel
f(Am)

If B, is the increasing process associated with Y,, then

is a martingale

Bn-‘rl - B, = E((Yn-‘rl - Yn)2|‘7:n)

(Xps1 — Xp)? ’ ) Apt1 —An
—p(lnkt T An) e ) Lndl T e
( fA? |7") T )

since f(An+1) € Fp. Our hypotheses on f imply that
oo oo
Z An+1 - 142n S Z/
n=0 f(An+1) n=0"[4

so it follows from Theorem 5.4.9 that Y,, — Y., and the desired conclusion follows
from Kronecker’s lemma, Theorem 2.5.5. O

ft)2dt < o0
)

nsAnt1

Example 5.4.4. Let ¢ > 0 and f(t) = (tlog't“t)"/2 v 1. Then f satisfies the
hypotheses of Theorem 5.4.10. Let &1,&s,... be independent with F¢,, = 0 and
E¢% = 02,. In this case, X,, = £ + -+- + &, is a square integrable martingale with

A, =o0f+ -+ 02, s0if Y72, 07 = 0o, Theorem 5.4.10 implies X,,/f(A,) — 0
generalizing Theorem 2.5.7.
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From Theorem 5.4.10 we get a result due to Dubins and Freedman (1965) that
extends our two previous versions in Theorems 2.3.6 and 5.3.2.

Theorem 5.4.11. Second Borel-Cantelli Lemma, ITII. Suppose B,, is adapted to
Frn and let p, = P(By|Fn-1). Then

ilB(m) ipmﬁl a.s. on {ipm:oo}
m=1 m=1

m=1

Proof. Define a martingale by Xo =0 and X,, — X,,_1 = 15, — P(By|Fn_1) forn > 1
so that we have

< Z 1B(m) Z pm) -1=X, Z Pm
m=1 m=1 m=1

The increasing process associated with X,, has

An - Anfl = E((Xn — Xn71)2|fn71)
(P Fu ) = <

On {A, < oo}, X,, — a finite limit by Theorem 5.4.9, so on {Ax < 00} N{>", Pm =
oo}

Xn i:pm —0
m=1

{Aco = 00} = {2 pm(1 = pm) = 00} C {3, pm = o0}, s0 on {Ae = oo} the
desired conclusion follows from Theorem 5.4.10 with f(¢t) = ¢V 1. O

Remark. The trivial example B, = ) for all n shows we may have A,, < oo and
> Dm =0 as.

Example 5.4.5. Bernard Friedman’s urn. Consider a variant of Polya’s urn (see
Section 5.3) in which we add a balls of the color drawn and b balls of the opposite
color where @ > 0 and b > 0. We will show that if we start with g green balls and
r red balls, where g,r > 0, then the fraction of green balls g, — 1/2. Let G,, and
R,, be the number of green and red balls after the nth draw is completed. Let B,, be
the event that the nth ball drawn is green, and let D,, be the number of green balls
drawn in the first n draws. It follows from Theorem 5.4.11 that

n oo
(%) D, /Z gm—1 — 1 a.s. on Z Jm—1 = 00
m=1 m=1

which always holds since g,, > ¢/(g + r + (a + b)m). At this point, the argument
breaks into three cases.

Case 1. a = b = c¢. In this case, the result is trivial since we always add c balls of
each color.

Case 2. a > b. We begin with the observation

Gri1 _g+aD, +b(n—D,)
nt1 + Rnt1 g+r+n(a+bd)

(*) In+1 = a
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If imsup,—oogn < « then (%) implies limsup, oo D, /n <  and (since a > b)

i axr+b(l—2z) b+ (a—Db)x
1 1 < -
I = T a+b

The right-hand side is a linear function with slope < 1 and fixed point at 1/2,
so starting with the trivial upper bound z = 1 and iterating we conclude that
limsup g, < 1/2. Interchanging the roles of red and green shows lim inf,, o gn > 1/2,
and the result follows.

Case 3. a < b. The result is easier to believe in this case since we are adding more
balls of the type not drawn but is a little harder to prove. The trouble is that when
b > a and D,, < zn, the right-hand side of (x) is maximized by taking D,, = 0, so we
need to also use the fact that if r, is fraction of red balls, then

Ryt _ r+bDy, +a(n — Dy)
n+1+Rn+1_ g+r+n(a+b)

Tnt+1 = G

Combining this with the formula for g,11, it follows that if limsup,,_, ., g» < 2 and
lim sup,,_, o, n < y then

a(l—y)+by a+(b—a)y
N 00 - a+b a a+b
i sup 7y < br +a(l — ) _ a+ (b—a)x
n—oo a+b a+b

lim sup g, <

Starting with the trivial bounds = 1, y = 1 and iterating (observe the two upper
bounds are always the same), we conclude as in Case 2 that both limsups are < 1/2.
O

Remark. B. Friedman (1949) considered a number of different urn models. The
result above is due to Freedman (1965), who proved the result by different methods.
The proof above is due to Ornstein and comes from a remark in Freedman’s paper.

Theorem 5.4.8 came from using Theorem 5.4.3. If we use Theorem 5.4.2 instead,
we get a slightly better result.

Theorem 5.4.12. E(sup,, | X,|) < 3EAY?.
Proof. As in the proof of Theorem 5.4.9 we let a > 0 and let N = inf{n : A, 11 > a*}.
This time, however, our starting point is

P (sup|Xm > a) <P(N<x)+P (sup|XN/\m| > a)
m m

P(N < o0) = P(As > @?). To bound the second term, we apply Theorem 5.4.2 to
X3 nm With A = a? to get

P (sup | X Nam| > a) <a?EX%,, =a *EAnan, < a 2E(As A a?)
m<n

Letting n — oo in the last inequality, substituting the result in the first one, and

integrating gives

/ P <sup|Xm| > a) da < / P(Ay > a?) da+/ a?E(As N a?) da
0 m 0 0
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Since P(As > a?) = P(Aé(/;2 > a), the first integral is EAY?. For the second, we use
Lemma 2.2.8 (in the first and fourth steps), Fubini’s theorem, and calculus to get

(oo} oo a2
/ a?E(As A a?)da = / a—2/ P(As > b)dbda
0 0 0
:/ P(Ay > b)/ a2 dadb :/ b~ Y2P(Ay > b)db=2EAL/?
0 Vo 0
which completes the proof. O

Exercise 5.4.10. Let £1,&, ... be iid. with B¢ = 0 and E¢? < co. Let S, =
& 4+ -+ &,. Theorem 5.4.1 implies that for any stopping time N, ESya, = 0. Use
Theorem 5.4.12 to conclude that if EN'/2 < oo then ESy = 0.

Remark. Let & in Exercise 5.4.10 take the values +1 with equal probability, and
let T = inf{n : S, = —1}. Since Sy = —1 does not have mean 0, it follows that
ET'/? = co. If we recall from (4.3.2) that P(T > t) ~ Ct~'/2, we see that the result
in Exercise 5.4.10 is almost the best possible.

5.5 Uniform Integrability, Convergence in L'

In this section, we will give necessary and sufficient conditions for a martingale to
converge in L'. The key to this is the following definition. A collection of random
variables X;, i € I, is said to be uniformly integrable if

lim <supE(|Xi|; | X;| > M)) =0
M—oo \ ;e

If we pick M large enough so that the sup < 1, it follows that

sup B|X;| < M +1< o0
iel
This remark will be useful several times below.

A trivial example of a uniformly integrable family is a collection of random vari-
ables that are dominated by an integrable random variable, i.e., |X;| < Y where
EY < oco. Our first result gives an interesting example that shows that uniformly
integrable families can be very large.

Theorem 5.5.1. Given a probability space (2, F,, P) and an X € L, then { E(X|F) :
F is a o-field C Fo} is uniformly integrable.

Proof. If A,, is a sequence of sets with P(4,,) — 0 then the dominated convergence
theorem implies E(|X|; A,,) — 0. From the last result, it follows that if € > 0, we can
pick § > 0 so that if P(4) < § then E(|X|; A) < e. (If not, there are sets A, with
P(A,) <1/n and E(|X|; An) > €, a contradiction.)

Pick M large enough so that E|X|/M < . Jensen’s inequality and the definition
of conditional expectation imply

E(|E(X|F)|; [E(X]F)| > M) < E(E(IX[|F); E(X]|F) > M)
E(1X]; E(IX[|F) > M)
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since { E(|X||F) > M} € F. Using Chebyshev’s inequality and recalling the definition
of M, we have

PRE(IX]|F) > M} < E{E(|[X||F)}/M = E|X|/M < §
So, by the choice of §, we have
E(|EX|F);|IE(X|F)| > M) <e foral F
Since € was arbitrary, the collection is uniformly integrable. O
A common way to check uniform integrability is to use:

Exercise 5.5.1. Let ¢ > 0 be any function with ¢(z)/z — oo as © — o0, e.g.,
@(x) = xP with p > 1 or ¢(x) = zlog™ z. If Ep(|X;]) < C for all i € I, then
{X; : i € I} is uniformly integrable.

The relevance of uniform integrability to convergence in L' is explained by:

Theorem 5.5.2. If X,, — X in probability then the following are equivalent:
(i) {X, : n > 0} is uniformly integrable.

(ii) X,, — X in L.

(iii) E|X,| — E|X| < co.

Proof. (i) implies (ii). Let

M ifae>M
om(z) =< if || <M
-M fxz<-M

The triangle inequality implies
[ Xn — X[ < X0 — om (X)) + [om (Xn) — o (X)] + |om (X) — X]|
Since o (Y) =Y)| = ([Y| = M)* < |Y[1(jy|>nm), taking expected value gives
E|Xy = X[ < Elom(Xn) — om(X)| + E(|Xnl; [ Xn| > M) + E([X[; [ X] > M)

Theorem 2.3.4 implies that ¢ (X,) — @ (X) in probability, so the first term — 0
by the bounded convergence theorem. (See Exercise 2.3.7.) If ¢ > 0 and M is large,
uniform integrability implies that the second term < e. To bound the third term, we
observe that uniform integrability implies sup F|X,,| < oo, so Fatou’s lemma (in the
form given in Exercise 2.3.6) implies E|X| < oo, and by making M larger we can make
the third term < e. Combining the last three facts shows limsup E|X,, — X| < 2e.
Since € is arbitrary, this proves (ii).

(#) implies (iii). Jensen’s inequality implies
[E1Xy| - EIX|| < E||X,] - | X]] < E[Xn = X[ =0
(iii) implies (i). Let
x on [0, M — 1],

Yap(x) =40 on [M, 00)
linear on [M — 1, M|
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The dominated convergence theorem implies that if M is large, E|X| — Evp (| X]) <
€/2. As in the first part of the proof, the bounded convergence theorem implies
EYp(1X,]) — Eva (| X]), so using (iii) we get that if n > ng

< EX| = Evu(|X]) +e/2 <e

By choosing M larger, we can make E(|X,|;|X,| > M) < e for 0 <n < ng, so X,, is
uniformly integrable. O

We are now ready to state the main theorems of this section. We have already
done all the work, so the proofs are short.

Theorem 5.5.3. For a submartingale, the following are equivalent:
(i) It is uniformly integrable.

(ii) It converges a.s. and in L.

(iii) It converges in L.

Proof. (i) implies (ii). Uniform integrability implies sup E|X,| < oo so the martingale
convergence theorem implies X,, — X a.s., and Theorem 5.5.2 implies X,, — X in
LY. (ii) implies (iii). Trivial. (iii) implies (i). X, — X in L' implies X,, — X in
probability, (see Lemma 2.2.2) so this follows from Theorem 5.5.2. O

Before proving the analogue of Theorem 5.5.3 for martingales, we will isolate two
parts of the argument that will be useful later.

Lemma 5.5.4. If integrable random variables X,, — X in L' then

E(Xn; A) — E(X; 4)
Proof. |EX;y1a — EX14| < E|X;la— X14| < E| X, —X|—0 O
Lemma 5.5.5. If a martingale X,, — X in L' then X,, = E(X|F,).

Proof. The martingale property implies that if m > n, E(X,,|F,) = X,, so if A €
Fr, E(Xpn;A) = E(Xpn; A). Lemma 5.5.4 implies E(X,,; A) — E(X;A), so we
have E(X,;A) = E(X;A) for all A € F,,. Recalling the definition of conditional
expectation, it follows that X,, = E(X|F,). O

Theorem 5.5.6. For a martingale, the following are equivalent:

(i) It is uniformly integrable.

(ii) It converges a.s. and in L.

(iii) It converges in L*.

(iv) There is an integrable random variable X so that X, = E(X|F,).

Proof. (i) implies (ii). Since martingales are also submartingales, this follows from
Theorem 5.5.3. (i) implies (i4i). Trivial. (iii) implies (iv). Follows from Lemma
5.5.5. (iv) implies (i). This follows from Theorem 5.5.1. O

The next result is related to Lemma 5.5.5 but goes in the other direction.

Theorem 5.5.7. Suppose F,, T Fxo, i.€., Fy is an increasing sequence of o-fields and
Foo =0(UpFp). Asn — oo,

E(X|F,) — E(X|Fx) a.s. andin L'
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Proof. The first step is to note that if m > n then Theorem 5.1.6 implies

so Y, = E(X|F,) is a martingale. Theorem 5.5.1 implies that Y,, is uniformly inte-
grable, so Theorem 5.5.6 implies that Y,, converges a.s. and in L' to a limit Y,,. The
definition of Y,, and Lemma 5.5.5 imply E(X|F,) =Y, = E(Ys|Fn), and hence

/XdP:/YoodP for all A € F,
A A

Since X and Y, are integrable, and U,F,, is a w-system, the m — A theorem implies
that the last result holds for all A € F.. Since Y, € F, it follows that Y, =
E(X|F). O

Exercise 5.5.2. Let Zy,7Z5,... be i.i.d. with E|Z;| < oo, let # be an independent
r.v. with finite mean, and let Y; = Z; +6. If Z; is normal(0,1) then in statistical terms
we have a sample from a normal population with variance 1 and unknown mean. The
distribution of  is called the prior distribution, and P(0 € -|Y7,...,Y},) is called
the posterior distribution after n observations. Show that E(6|Yy,...,Y,) — 0
a.s.

In the next two exercises, Q@ = [0,1), I, = [k27",(k+1)27"), and F,, = 0 (I :
0<Ek<2m).

Exercise 5.5.3. f is said to be Lipschitz continuous if |f(t) — f(s)] < K|t — s|
for 0 < s,t < 1. Show that X,, = (f((k+1)27") — f(k27™))/27" on I}, defines a
martingale, X,, — X, a.s. and in L', and

b
£(b) — f(a) = / X oo () dw

Exercise 5.5.4. Suppose f is integrable on [0,1). E(f|F,) is a step function and
— fin L'. From this it follows immediately that if ¢ > 0, there is a step function g on
[0,1] with [|f — g|dx < e. This approximation is much simpler than the bare-hands
approach we used in Exercise 1.4.3, but of course we are using a lot of machinery.

An immediate consequence of Theorem 5.5.7 is:

Theorem 5.5.8. Lévy’s 0-1 law. If F,, 1 Foo and A € Foo then E(14|F,) — 14
a.s.

To steal a line from Chung: “The reader is urged to ponder over the meaning of this
result and judge for himself whether it is obvious or incredible.” We will now argue
for the two points of view.

“It is obvious.” 14 € Fuo, and F,, T Foo, S0 our best guess of 14 given the information
in F,, should approach 14 (the best guess given F,).

“It is incredible.” Let X1, Xo, ... be independent and suppose A € 7, the tail o-field.
For each n, A is independent of F,,, so E(14|F,) = P(A). As n — oo, the left-hand
side converges to 14 a.s., so P(A) = 14 a.s., and it follows that P(A) € {0, 1}, i.e.,
we have proved Kolmogorov’s 0-1 law.

The last argument may not show that Theorem 5.5.8 is “too unusual or improbable
to be possible,” but this and other applications of Theorem 5.5.8 below show that it
is a very useful result.
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Exercise 5.5.5. Let X,, be r.v.’s taking values in [0, 00). Let D = {X,, = 0 for some
n > 1} and assume

P(D|Xy,...,Xpn) > d(x) >0 as. on {X, <z}
Use Theorem 5.5.8 to conclude that P(D U {lim,, X, = co}) = 1.

Exercise 5.5.6. Let Z, be a branching process with offspring distribution pj (see
the end of Section 5.3 for definitions). Use the last result to show that if pg > 0 then
P (lim,, Z,, =0 or co) = 1.

Exercise 5.5.7. Let X,, € [0, 1] be adapted to F,,. Let o, 8 > 0 with o+ 3 = 1 and
suppose

Show P(lim, X,, =0 or 1) =1 and if Xy = then P(lim, X,, = 1) = 6.
A more technical consequence of Theorem 5.5.7 is:

Theorem 5.5.9. Dominated convergence theorem for conditional expecta-
tions. Suppose Y,, — Y a.s. and |Y,| < Z for all n where EZ < oco. If F, 1 Foo
then

EY,|F,) - EY|Fx) a.s.

Proof. Let Wy = sup{|Y,, — Y| : n,mm > N}. Wy < 2Z, so EWx < oo. Using
monotonicity (5.1.2) and applying Theorem 5.5.7 to Wy gives

limsup E(|Y,, = Y||Fn) < lim E(Wy|F,) = E(Wn|Foo)

n—oo

The last result is true for all N and Wy | 0 as N 1 oo, so (5.1.3) implies E(Wx|Fx) |
0, and Jensen’s inequality gives us

|E(Yo|Fn) — E(Y|F)| < E(|Y, —=Y||F,) — 0 as. asn— o0

Theorem 5.5.7 implies E(Y|F,) — E(Y|F) a.s. The desired result follows from the
last two conclusions and the triangle inequality. O

Exercise 5.5.8. Show that if 7, | Fs and Y, — Y in L! then E(Y,|F,) —
E(Y|Fy) in L.

Example 5.5.1. Suppose X7, X, ... are uniformly integrable and — X a.s. Theorem
5.5.2 implies X, — X in L! and combining this with Exercise 5.5.8 shows E(X,,|F) —
E(X|F)in L*. We will now show that F(X,|F) need not converge a.s. Let Y,Ys,...
and Zy, Zs, ... be independent r.v.’s with

PY,=1)=1/n PX,=0=1-1/n
P(Z,=n)=1/n P(Z,=0)=1-1/n

Let X,, =Y, Z,. P(X,, > 0) = 1/n? so the Borel-Cantelli lemma implies X,, — 0 a.s.
E(X,;|X,| > 1) =n/n?, so X, is uniformly integrable. Let F = o (Y7, Ya,...).

B(Xo|F) = Yo E(Zo|F) = YaEZ, = Y,

Since Y,, — 0 in L' but not a.s., the same is true for E(X,|F).
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5.6 Backwards Martingales

A backwards martingale (some authors call them reversed) is a martingale indexed
by the negative integers, i.e., X,,, n < 0, adapted to an increasing sequence of o-fields
F, with

E(Xpp1|Fn) =X, forn<-1

Because the o-fields decrease as n | —oo, the convergence theory for backwards mar-
tingales is particularly simple.

Theorem 5.6.1. X_ = lim,,_,_o X,, ezxists a.s. and in L.

Proof. Let U, be the number of upcrossings of [a,b] by X_,, ..., Xo. The upcrossing
inequality, Theorem 5.2.7 implies (b — a)EU, < FE(Xo — a)t. Letting n — oo and
using the monotone convergence theorem, we have EU,, < 00, so by the remark after
the proof of Theorem 5.2.8, the limit exists a.s. The martingale property implies
X, = E(Xo|F,), so Theorem 5.5.1 implies X, is uniformly integrable and Theorem
5.5.2 tells us that the convergence occurs in L*. O
Exercise 5.6.1. Show that if Xy € LP the convergence occurs in LP.
The next result identifies the limit in Theorem 5.6.1.
Theorem 5.6.2. If X_ . = lirnn_>_OO X and F_ oo = NpFo, then X oo = E(Xo|F-0)-

Proof. Clearly, X ., € F_ = E(Xo|Fn), soif A e F_o, C F, then

/X dP = /XOdP

Theorem 5.6.1 and Lemma 5.5.4 imply F(X,; A) — E(X_s;A), so

/X dP = /XodP

for all A € F_,, proving the desired conclusion. O

The next result is Theorem 5.5.7 backwards.
Theorem 5.6.3. If F,, | F_oo asn | —00 (ie., Foo = NpFy), then
E(Y|F,) — E(Y|F_») as. and in L
Proof. X, = E(Y|F,) is a backwards martingale, so Theorem 5.6.1 and 5.6.2 imply
that as n | —oo, X,, = X_o a.s. and in L', where
X oo = B(Xo|Fooo) = BE(Y|Fo)|Fooc) = E(Y|F_o0) 0

Exercise 5.6.2. Prove the backwards analogue of Theorem 5.5.9. Suppose Y,, —
Y_ as. asn — —oo and |Y,| < Z as. where EZ < oo. If 7, | F_o, then
E(Y,|F,) - E(Y-|F-x) a.s

Even though the convergence theory for backwards martingales is easy, there are
some nice applications. For the rest of the section, we return to the special space
utilized in Section 4.1, so we can utilize definitions given there. That is, we suppose

Q:{(wl,w2,...):wi65}
F=8xSx...
Xn(w) =wy

Let &, be the o-field generated by events that are invariant under permutations that
leave n 4+ 1,n+ 2,... fixed and let £ = N, &, be the exchangeable o-field.
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Example 5.6.1. Strong law of large numbers. Let &;,&,, ... beiid. with E|¢;| <
oo. Let S, =& + -+ &, let X\, = S, /n, and let

Fon ::U(S%a5%+135%+27"J :?U(S%,§n+1,£n+2,.”)

To compute F(X_,|F_,_1), we observe that if j,k < n + 1, symmetry implies
E(&§|F-n-1) = E(&k|F-n-1), so

1 n+1
E(¢n1|Fon-1) = T E(&k|F-n-1)
k=1
1 Sn+1
p— 7E _ _ =
n+1 (S 1l Fn1) n+1

Since X_,, = (Sp+1 — &nt1)/n, it follows that

E(X_n|F-n-1) = E(Snt1/n|F-n-1) = E(€ns1/n|F-n-1)
_ Sn+1 5%+1 _ Sh+1

n nn+1) n+1

—n—1

The last computation shows X_,, is a backwards martingale, so it follows from Theo-
rems 5.6.1 and 5.6.2 that lim,, o, S, /n = E(X_1|F_). Since F_,, C &, F-oo C E.
The Hewitt-Savage 0-1 law (Theorem 4.1.1) says & is trivial, so we have

lim S,/n=FE(X_1) as.
n—oo
Example 5.6.2. Ballot theorem. Let {{;,1 < j < n} be i.i.d. nonnegative integer-
valued r.v.’s, let S, =& + -+ &, and let G = {S; < j for 1 < j < n}. Then
P(G|S,) = (1= 8,/n)*t (5.6.1)

Remark. To explain the name, consider an election in which candidate B gets (3
votes and A gets @ > 3 votes. Let &1,&s,...,&, be ii.d. and take values 0 or 2 with
probability 1/2 each. Interpreting 0’s and 2’s as votes for candidates A and B, we see
that G = {A leads B throughout the counting} so if n = o+

i
P(G|B gets (3 votes ) = (1 - 2ﬁ> _ Z;g

n
the result in Theorem 4.3.2.

Proof. The result is trivial when S,, > n, so suppose S, < n. Computations in
Example 5.6.1 show that X_; = S;/j is a martingale w.r.t. F_; = 0(S;,...,S,). Let
T =inf{k > —n: Xy > 1} and set T = —1 if the set is ). We claim that X7 =1 on
G¢. To check this, note that if Sj41 < j+ 1 then the fact that the & are nonnegative
integer values implies S; < Sj;1 < j. Since G C {T = —1} and S; < 1 implies
S1 =0, we have X7 =0 on G. Noting F_,, = 0(S5,,) and using Exercise 5.4.3, we see
that on {S, < n}
P(G°|S,) = E(X7|F_p) = Xon = Sn/n

Subtracting from 1 and recalling that this computation has been done under the
assumption S, < n gives the desired result. O

Example 5.6.3. Hewitt-Savage 0-1 law. If X, X5,... are i.i.d. and A € £ then
P(A) e {0,1}.

The key to the new proof is:
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Lemma 5.6.4. Suppose X1, Xo,... are i.i.d. and let
1
An(p) = — Xy X5
()= Gy (Koo Xa)

where the sum is over all sequences of distinct integers 1 < i1,...,1x < n and
nr=nn-1)--(n—k+1)

is the number of such sequences. If v is bounded, A,(p) — Eo(X1,...,Xk) a.s.

Proof. A, (¢) € &, s0

Au(9) = B(A(@)1E:) = e 3 Ble(Xiyr - X))
= Blp(X1,.. X&)

since all the terms in the sum are the same. Theorem 5.6.3 with F_,,, = &,, for m > 1
implies that
E(p(X1,..., Xi)[En) — E(p(X1, ..., Xy)|E)

We want to show that the limit is E(¢(X71, ..., Xx)). The first step is to observe that
there are k(n—1),_1 terms in A, (¢) involving X; and ¢ is bounded so if we let 1 € ¢
denote the sum over sequences that contain 1.

ﬁZQP(XlquZk) S Wsupqs_)o

lei

This shows that
E(QO(XM s 7Xk)‘5) € U(X27X37 s )

Repeating the argument for 2,3,..., k shows

E(p(Xy,..., Xp)|E) € 0(Xpt1, Xito,---)
Intuitively, if the conditional expectation of a r.v. is independent of the r.v. then
(a) E(p(X1,..., Xi)[€) = E(p(Xy, ..., X))

To show this, we prove:

(b) If EX? < 0o and E(X|G) € F with X independent of F then E(X|G) = EX.

Proof. Let Y = E(X|G) and note that Theorem 5.1.4 implies EY? < EX? < oo.
By independence, EXY = EX EY = (EY)? since EY = EX. From the geometric
interpretation of conditional expectation, Theorem 5.1.8, E((X —Y)Y) = 0,s0 EY? =
EXY = (EY)? and var (Y) = EY? — (EY)? = 0. 0

(a) holds for all bounded ¢, so £ is independent of G, = o(Xy,...,X)). Since
this holds for all k, and UGy, is a m-system that contains €2, Theorem 2.1.2 implies
£ is independent of o(UxGr) D &, and we get the usual 0-1 law punch line. If
A € &, it is independent of itself, and hence P(A) = P(AN A) = P(A)P(A), i.e.,
P(A) € {0,1}. 0

Example 5.6.4. de Finetti’s Theorem. A sequence X, X5,... is said to be
exchangeable if for each n and permutation 7 of {1,...,n}, (Xi,...,X,) and
(Xx@)s---» Xr(n)) have the same distribution.
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Theorem 5.6.5. de Finetti’s Theorem. If X, X5,... are exchangeable then con-
ditional on €, X1, Xo, ... are independent and identically distributed.

Proof. Repeating the first calculation in the proof of Lemma 5.6.4 and using the
notation introduced there shows that for any exchangeable sequence:

(n)k
= E(p(X1,...,Xp)|E)

Anl) = BAL@IE) = = S Be(Xiys o, X )IEw)

since all the terms in the sum are the same. Again, Theorem 5.6.3 implies that
An(p) = E(p(X1, ..., X3)[E) (5.6.2)

This time, however, £ may be nontrivial, so we cannot hope to show that the limit is
E(SD(XM s 7Xk7))'
Let f and g be bounded functions on R*~! and R, respectively. If we let I, » be

the set of all sequences of distinct integers 1 < iq,...,4 < n, then
(n)kflAn(f)nAn(g) = Z f(Xi1a-~-7Xik71)Zg(Xm)
1€ k-1 m

= Z f(AXz1 yeen ,Xikfl)g(Xik)

i€1n k
k—1

+ Z Z f(Xilv' T Xilc—l)g(Xij)
i€l k-1 j=1

If we let w(z1,...,2k) = f(z1,...,2x—1)g(xk), note that

(n)g—1n n (n)k—1 1
= d =
(n) (n—k+1) an (n) (n—k+1)
then rearrange, we have
n 1 k—1
A =——A A - E A ;
n(‘P) n7k+1 n(f) n(g) n*k+1j:1 n(‘p])

where ¢;(x1,...,25-1) = f(z1,...,26-1)9(z;). Applying (5.6.2) to ¢, f, g, and all
the ¢; gives

BE(f(X1,. ., Xp-1)g(Xp)[E) = E(f(X1,. ., Xi—1)|E) E(g(X4)|E)

It follows by induction that

k k
E Hfj(Xj)g ZHE(fj(Xj)\g) 0

When the X; take values in a nice space, there is a regular conditional distri-
bution for (X7, Xs,...) given &, and the sequence can be represented as a mixture
of i.i.d. sequences. Hewitt and Savage (1956) call the sequence presentable in this
case. For the usual measure theoretic problems, the last result is not valid when the
X, take values in an arbitrary measure space. See Dubins and Freedman (1979) and
Freedman (1980) for counterexamples.

The simplest special case of Theorem 5.6.5 occurs when the X; € {0,1}. In this
case
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Theorem 5.6.6. If X1, Xs,... are exchangeable and take values in {0,1} then there
is a probability distribution on [0, 1] so that

1
PXi=1,....Xp =1,Xp1=0,..., X, =0) :/ 0% (1 —0)" "k dF(0)
0

This result is useful for people concerned about the foundations of statistics (see
Section 3.7 of Savage (1972)), since from the palatable assumption of symmetry one
gets the powerful conclusion that the sequence is a mixture of i.i.d. sequences. The-
orem 5.6.6 has been proved in a variety of different ways. See Feller, Vol. II (1971),
p. 228-229 for a proof that is related to the moment problem. Diaconis and Freedman
(1980) have a nice proof that starts with the trivial observation that the distribution
of a finite exchangeable sequence X,,,, 1 < m < n has the form poHy p, + -+ pnHnn
where H,, , is “drawing without replacement from an urn with m ones and n —m
zeros.” If m — oo and m/n — p then H,, ,, approaches product measure with density
p. Theorem 5.6.6 follows easily from this, and one can get bounds on the rate of
convergence.

EXERCISES

5.6.3. Prove directly from the definition that if X7, Xs,... € {0,1} are exchangeable

P(Xi=1,.... X, =18, =m) = <:_:1>/<:1>

5.6.4. If X1, Xo,... € R are exchangeable with EX? < oo then F(X;X5) > 0.

5.6.5. Use the first few lines of the proof of Lemma 5.6.4 to conclude that if X1, X, ...
are i.i.d. with EX; = p and var (X;) = 02 < oo then

<Z>1 Y. (Xi-X))* =20

1<i<j<n

5.7 Optional Stopping Theorems

In this section, we will prove a number of results that allow us to conclude that if X,
is a submartingale and M < N are stopping times, then FX); < FXy. Example
5.2.3 shows that this is not always true, but Exercise 5.4.2 shows this is true if IV is
bounded, so our attention will be focused on the case of unbounded N.

Theorem 5.7.1. If X, is a uniformly integrable submartingale then for any stopping
time N, Xnan ts uniformly integrable.

Proof. X,} is a submartingale, so Theorem 5.4.1 implies EX};,,, < EX,I. Since X,
is uniformly integrable, it follows from the remark after the definition that

sup EXJJ\?ML < sup EX,T < 00
n n
Using the martingale convergence theorem (5.2.8) now gives Xyan, — Xn a.s. (here
X = lim, X,,) and E|X x| < co. With this established, the rest is easy. We write
E(|XNanli [ Xnan| > K) = E(|XN|; | XN| > K,N < n)
+ E(|X,]; | X, > K,N >n)

Since F|Xy| < oo and X, is uniformly integrable, if K is large then each term is
< €/2. O
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From the last computation in the proof of Theorem 5.7.1, we get:

Theorem 5.7.2. If E|Xy| < 0o and Xnl(N>n) is uniformly integrable, then Xyan
is uniformly integrable.

From Theorem 5.7.1, we immediately get:

Theorem 5.7.3. If X,, is a uniformly integrable submartingale then for any stopping
time N < oo, we have EXg < EXy < EX, where Xo = lim X,,.

Proof. Theorem 5.4.1 implies EXy < EXnyan < EX,,. Letting n — oo and observing
that Theorem 5.7.1 and 5.5.3 imply Xyan — Xy and X, — X in L' gives the
desired result. O

As in Theorem 5.2.2, the last result implies one for supermartingales with > and one
for martingales with =. This is true for the next two theorems as well.
From Theorem 5.7.3, we get the following useful corollary.

Theorem 5.7.4. Optional Stopping Theorem. If L < M are stopping times and
Yrian @8 a uniformly integrable submartingale, then EY; < EYy and

Yy, < EYum|FL)

Proof. Use the inequality FXy < EX in Theorem 5.7.3 with X,, = Y an and
N = L. To prove the second result, let A € Fr and

N — L onA
M on A°

is a stopping time by Exercise 4.1.7. Using the first result now shows EYy < EY),.
Since N = M on A€, it follows from the last inequality and the definition of conditional
expectation that

E(Yy; A) < E(Ym; A) = E(E(Ym|Fr); A)
Taking A, = {YL — E(Ym|FL) > €}, we conclude P(A;) = 0 for all € > 0 and the
desired result follows. O

The last result is the one we use the most (usually the first inequality with L =
0). Theorem 5.7.2 is useful in checking the hypothesis. A typical application is the
following generalization of Wald’s equation, Theorem 4.1.5.

Theorem 5.7.5. Suppose X, is a submartingale and E(|Xp4+1 — Xu||Fn) < B a.s.
If N is a stopping time with EN < oo then Xnan is uniformly integrable and hence
EXy > EXy.

Remark. As usual, using the last result twice shows that if X is a martingale
then EXy = EXy. To recover Wald’s equation, let S,, be a random walk, let u =
E(S,, — Sn—1), and apply the martingale result to X,, = S,, — nu.

Proof. We begin by observing that

oo
|XN/\n| < |XO‘ + Z |Xm+1 - Xm|1(N>m)

m=0
To prove uniform integrability, it suffices to show that the right-hand side has finite
expectation for then | Xy, | is dominated by an integrable r.v. Now, {N > m} € F,,
SO
E(|Xmi1 — Xml; N >m) = E(E(|Xmi1 — Xm||Fm); N > m) < BP(N > m)

and EY" " 0| Xmg1 — Xl Lvsm) < BY oo o P(N >m) = BEN < . O
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Before we delve further into applications, we pause to prove one last stopping
theorem that does not require uniform integrability.

Theorem 5.7.6. If X,, is a nonnegative supermartingale and N < oo is a stopping
time, then EXo > EXy where X, = lim X,,, which exists by Theorem 5.2.9.

Proof. Using Theorem 5.4.1 and Fatou’s Lemma,

EXo > liminf EXypap, > EXy O

Exercise 5.7.1. If X,, > 0 is a supermartingale then P(sup X, > A\) < EXy/A.

Applications to random walks. For the rest of the section, including all the
exercises below, &1,&s, ... are i.i.d., S, =& + -+ &,, and Fp, = 0 (&1,...,&).

Theorem 5.7.7. Asymmetric simple random walk refers to the special case in
which P(§; = 1) = p and P(§;, = —1) = q = 1 — p with p # q. Without loss of
generality we assume 1/2 <p < 1.

(a) If p(z) = {(1 — p)/p}* then ©(Sy) is a martingale.

(b) If we let T, = inf{n : S, = x} then fora <0 <b

p(b) = ¢(0)

R )

(¢) If a < 0 then P(min, S, < a) = P(T, < o) ={(1 —p)/p}°.
(d) If b > 0 then P(T, < 00) =1 and ET, =b/(2p — 1).

Proof. Since S, and &,41 are independent, Example 5.1.5 implies that on {S,, = m},

etz =v-(152) " voon (1)
={1-p+p} (1;19>m — o(Sh)

which proves (a).
Let N =T, ANT,. We showed in Example 4.1.5 that N < co. Since ¢(Snyan) is
bounded, it is uniformly integrable and Theorem 5.7.4 with L =0, M = N implies

©(0) = BEp(Sn) = P(T, < Tp)¢p(a) + P(Ty, < T,)¢(b)

Using P(T, < Tp) + P(Ty < T,) = 1 and solving gives (b).

Letting b — oo and noting ¢(b) — 0 gives the result in (c), since T, < oo if and
only if T,, < T, for some b. To start to prove (d) we note that p(a) — 0o as a — —oo,
so P(T, < o0) = 1. For the second conclusion, we note that X, = S, — (p — ¢)n is a
martingale. Since T, A n is a bounded stopping time, Theorem 5.4.1 implies

0=E(Styan — (p— )(Th An))

Now b > Styan > ming,, S, and (c¢) implies E(inf,, S,,) > —oo, so the dominated
convergence theorem implies 2.St,nr, — EST, as n — oo. The monotone convergence
theorem implies E(T, An) 1 ET}, so we have b = (p — q)ETy. O
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Remark. The reader should study the technique in this proof of (d) because it is
useful in a number of situations (e.g., the exercises below). We apply Theorem 5.4.1 to
the bounded stopping time T3 A n, then let n — oo, and use appropriate convergence
theorems. Here this is an alternative to showing that X, o, is uniformly integrable.

EXERCISES

5.7.2. Let S, be an asymmetric simple random walk with 1/2 < p < 1, and let
0? = pq. Use the fact that X,, = (S, — (p — ¢)n)? — o?n is a martingale to show
var (Tp) = bo?/(p — q)3.

5.7.3. Let S, be a symmetric simple random walk starting at 0, and let 7' = inf{n :
S, & (—a,a)} where a is an integer. (i) Use the fact that S2 — n is a martingale to
show that ET = a?. (ii) Find constants b and ¢ so that Y;,, = S* — 6nS2 + bn? + cn
is a martingale, and use this to compute ET?2.

The last five exercises are devoted to the study of exponential martingales.

5.7.4. Suppose &; is not constant. Let ¢(0) = Eexp(0€;1) < oo for § € (—4,9), and let
¥(0) =log p(#). (1) XY = exp(6S,, — ny(0)) is a martingale. (i) 1 is strictly convex.
(iii) Show E1/X¢ — 0 and conclude that X? — 0 a.s.

5.7.5. Let S, be asymmetric simple random walk with p > 1/2. Let Ty = inf{n : S,, =
1}. Use the martingale of Exercise 7.4 to conclude (i) if > 0 then 1 = e’ Ep(0) =11,
where ¢(0) = pe? +qe=? and ¢ =1 — p. (ii) Set pe? + ge=? = 1/s and then solve for
z=¢e"?to get

Es™ = (1 — {1 —4pgs®}'/?) /2gs

5.7.6. Let S, = & + -+ + &, be a random walk. Suppose ¢(0,) = Eexp(6,§1) = 1
for some 6, < 0 and &; is not constant. It follows from the result in Exercise 5.7.4
that X,, = exp(60,S,) is a martingale. Let 7 = inf{n : S, ¢ (a,b)} and Y;, = X, ar.
Use Theorem 5.7.4 to conclude that EX,; =1 and P(S; < a) < exp(—6,a).

5.7.7. Continuing with the set-up of the previous problem, suppose the &; are integer
valued with P(§; < —1) =0 and E¢; > 0. Let T = inf{n : S, = a} with a < 0. Use
the martingale X,, = exp(0,5y) to conclude that P(T < co) = exp(—6,a).

5.7.8. Let S,, be the total assets of an insurance company at the end of year n. In
year n, premiums totaling ¢ > 0 are received and claims (,, are paid where (, is
Normal(y,0?) and pu < c¢. To be precise, if &, = ¢ — (, then S,, = S,,_1 +&,. The
company is ruined if its assets drop to 0 or less. Show that if Sy > 0 is nonrandom,
then

P( ruin ) < exp(—2(c — p)So/c?)

5.7.9. Let Z, be a branching process with offspring distribution py, defined in part
d of Section 4.3, and let () = > prO*. Suppose p < 1 has p(p) = p. Show that p?»
is a martingale and use this to conclude P(Z,, = 0 for some n > 1|Z; = z) = p".



Chapter 6

Markov Chains

The main object of study in this chapter is (temporally homogeneous) Markov chains
on a countable state space S. That is, a sequence of r.v.’s X,,, n > 0, with

P(Xn+1 :,7|]:n) :p(Xnvj)

where 7, = 0(Xo, ..., Xy), p(i,j) > 0and 3, p(i, j) = 1. In words, given the present
the rest of the past is irrelevant for predicting the future.

Markov chains are useful because the assumption is satisfied in many examples and
leads to a rich and detailed theory. The theory focuses on the asymptotic behavior of
p"(i,7) = P(X, = j|Xo = 4). The basic results are that

R
nhj& - le (i,7) exists always
P

and under a mild assumption called aperiodicity:

lim p™(i,7) exists

n—oo

In nice situations, i.e., X,, is irreducible and positive recurrent, the limits above are
a probability distribution that is independent of the starting state i. In words, the
chain converges to equilibrium as n — oo. One of the attractions of Markov chain
theory is that these powerful conclusions come out of assumptions that are satisfied
in a large number of examples.

6.1 Definitions

Let (S,S) be a measurable space.

A function p: S x § — R is said to be a transition probability if:
(i) For each € S; A — p(x, A) is a probability measure on (5,S).
(ii) For each A € S , © — p(z, A) is a measurable function.

We say X,, is a Markov chain (w.r.t. F,,) with transition probability p if
P(Xn+1 € B|-7:n) = p(Xn,B)

233



234 CHAPTER 6. MARKOV CHAINS

Given a transition probability p and an initial distribution u on (S,S), we can
define a consistent set of finite dimensional distributions by

P(XjEBj,OSjSTL):/
B

u(da:o)/B p(xo,dxy)
/ P(Tn—1,dzy) (6.1.1)
B,

If we suppose that (S, S) is nice, Kolmogorov’s extenson theorem, Theorem 2.1.14, al-
lows us to construct a probability measure P, on sequence space (S{01+} S{0:1--})
so that the coordinate maps X,,(w) = w,, have the desired distributions.

Notation. When p = d,, a point mass at x, we use P, as an abbreviation for Pj_.
The measures P, are the basic objects because, once they are defined, we can define
the P, (even for infinite measures u) by

Pu(A) = [ ntd) P2(a)

Our next step is to show

Theorem 6.1.1. X,, is a Markov chain (with respect to F, = o(Xo, X1,...,Xn))
with transition probability p.

Proof. To prove this, we let A ={Xy € By, X1 € By,...,X, € Bp}, Bpy1 = B, and
observe that using the definition of the integral, the definition of A, and the definition
of P,

/Al(XnJrlEB) dPH = PM(A, Xn+1 S B)

=P,(Xo € By, X1 € By,..., X, € By, X1 € B)

- /BO M(d:L‘O)/Bl p(ajo,dxl)-“/B P(@n—1,dzn) p(2n, Bni1)

n

We would like to assert that the last expression is

= / p(Xn, B) dP,
A

To do this, replace p(z,,, By,,) by a general function f(xz,). If f is an indicator function,
the desired equality is true. Linearity implies that it is valid for simple functions, and
the bounded convergence theorem implies that it is valid for bounded measurable f,
e.g., f(z) =p(z, Bny1)-

The collection of sets for which

/l(Xn+1€B)dPu:/p(XnaB)dPM
A A

holds is a A-system, and the collection for which it has been proved is a w-system,
so it follows from the m — A theorem, Theorem 2.1.2, that the equality is true for all
A € F,,. This shows that

P(X,+1 € B|F,) = p(X,, B)

and proves the desired result. O
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At this point, we have shown that given a sequence of transition probabilities and
an initial distribution, we can construct a Markov chain. Conversely,

Theorem 6.1.2. If X,, is a Markov chain with transition probabilities p and initial
distribution u, then the finite dimensional distributions are given by (6.1.1).

Proof. Our first step is to show that if X,, has transition probability p then for any
bounded measurable f

B(f(Xos1)|Fo) = / P(Xn, dy) () (6.1.2)

The desired conclusion is a consequence of the next result. Let H = the collection of
bounded functions for which the identity holds.

Theorem 6.1.3. Monotone class theorem. Let A be a m-system that contains €2
and let H be a collection of real-valued functions that satisfies:

(i) If A€ A, then 14 € H.
(i) If f,g € H, then f + g, and cf € H for any real number c.
(iii) If fn, € H are nonnegative and increase to a bounded function f, then f € H.

Then H contains all bounded functions measurable with respect to o(A).

Proof. The assumption ©Q € A, (ii), and (iii) imply that G = {4 : 14 € H} is a
A-system so by (i) and the m — A theorem, Theorem 2.1.2, G D o(A). (ii) implies H
contains all simple functions, and (iii) implies that H contains all bounded measurable
functions. 0

Returning to our main topic, we observe that familiar properties of conditional
expectation and (6.1.2) imply
fnl)

E <H fm(Xm)> —EE ( IT fm(Xm)
m=0
m=0

m=0
m=0

The last integral is a bounded measurable function of X,,_1, so it follows by induction
that if p is the distribution of Xy, then

E fm(Xm) | = dxg) fo(z xo,dx1) f1(x1
<mr_1 ( >) /u( 0)0(0)/170(0 V()

e /pn—l(xn—la dxn)fn(zn) (613)

that is, the finite dimensional distributions coincide with those in (6.1.1). O

With Theorem 6.1.2 established, it follows that we can describe a Markov chain
by giving a transition probabilities p. Having done this, we can and will suppose that
the random variables X,, are the coordinate maps (X, (w) = wy) on sequence space

(2, F) = (51013, §101:-))
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We choose this representation because it gives us two advantages in investigating the
Markov chain: (i) For each initial distribution p we have a measure P, defined by
(6.1.1) that makes X,, a Markov chain with P,(Xy € A) = p(A4). (ii) We have the
shift operators 6, defined in Section 4.1: (6 w)(Mm) = Wyin.

6.2 Examples

Having introduced on the framework in which we will investigate things, we can finally
give some more examples.

Example 6.2.1. Random walk. Let &1, &, ... € R? be independent with distribu-
tion p. Let Xg =2 € R% and let X,, = Xo + & + -+ 4+ &,. Then X, is a Markov
chain with transition probability.

pla, A) = u(A - )

where A —z ={y—x:y € A}.
To prove this we will use an extension of Example 5.1.5.

Lemma 6.2.1. Let X andY take values in (S,S). Suppose F andY are independent.
Let X € F, ¢ be a function with E|p(X,Y)| < oo and let g(z) = E(p(z,Y)).

E(p(X,Y)|F) = g(X)
Proof. Suppose first that ¢(z,y) = 1a(x)1p(y) and let C € F.

E(p(X,Y);C) = P({X € AAnCN{Y € BY)
= P({X € AAnC)P{Y € B})

since {X € A} NC € F and {Y € B} are independent. g(z) = 14(x)P(Y € B), so
the above
= E(9(X); C)

We now apply the monotone class theorem, Theorem 6.1.3. Let A be the subsets
of S xS of the form A x B with A, B € §. A is a w-system that contains €. Let H be
the collection of ¢ for which the result holds. We have shown (i). Properties (ii) and
(iil) follow from the bounded convergence theorem which completes the proof. O

To get the desired result from Lemma 6.2.1, we let F = F,,, X = X,,, Y = &,41,
and @(z,y) = 1{z4yeay. In this case g(x) = u(A — x) and the desired result follows.

In the next four examples, S is a countable set and & = all subsets of S. Let
p(i,j) > 0 and suppose >_;p(i,j) = 1 for all i. Intuitively, p(i,j) = P(Xp+1 =
71X, =14). From p(i, j) we can define a transition probability by

p(i, A) = p(i, )
jEA

In each case, we will not be as formal in checking the Markov property, but simply
give the transition probability and leave the rest to the reader. The details are much
simpler because all we have to show is that

P(Xn+1 = .]|Xn = iaXn—l = in—17~ . ~X0 = Zo) :p(l,j)

and these are elementary conditional probabilities.
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Example 6.2.2. Branching processes. S ={0,1,2,...}

p(i,j) = P <Z - =j>

where &1, &9, ... are i.i.d. nonnegative integer-valued random variables. In words each
of the 7 individuals at time n (or in generation n) gives birth to an independent and
identically distributed number of offspring.

To make the connection with our earlier discussion of branching processes, do:

Exercise 6.2.1. Let Z,, be the process defined in (5.3.2). Check that Z,, is a Markov
chain with the indicated transition probability.

Example 6.2.3. Renewal chain. S ={0,1,2,...}, fy >0, and >, fr = 1.

p(0,7) = fira for j >0
p(i,i—1)=1 fori>1
p(i,7) =0 otherwise

To explain the definition, let &1,&s,. .. be i.id. with P(&,, = j) = f;, let Ty = ip and
for k> 11let Ty = Ti_1 + &k. Ty is the time of the kth arrival in a renewal process
that has its first arrival at time ig. Let

V. — 1 ime{To,Tl,Tg,...}
"™ 10 otherwise

and let X, = inf{m —n:m >n, Y, = 1}. ¥, = 1 if a renewal occurs at time m,
and X,, is the amount of time until the first renewal > n.
An example should help clarify the definition:

Y. 0 0 0 1 0 0 1 1 O 1

X, 3 2 1 0 2 1 0 0 4 0
It is clear that if X,, =4 > 0 then X, y; =4 — 1. When X,, =0, we have T, = n,
where N, = inf{k : T); > n} is a stopping time, so Theorem 4.1.3 implies &y, +1
is independent of o(Xo,&1,...,¢nN,) D o(Xo,...,Xyn). We have p(0,5) = fj4+1 since
EN,+1 =J + 1 implies X411 = j.

0 0 0
3 2 1

Example 6.2.4. M/G/1 queue. In this model, customers arrive according to
a Poisson process with rate A. (M is for Markov and refers to the fact that in a
Poisson process the number of arrivals in disjoint time intervals is independent.) Each
customer requires an independent amount of service with distribution F. (G is for
general service distribution. 1 indicates that there is one server.) Let X, be the
number of customers waiting in the queue at the time the nth customer enters service.
To be precise, when Xy = x, the chain starts with x people waiting in line and
customer 0 just beginning her service.

To understand the definition the following picture is useful:

To define our Markov chain X, let

0 k
o= [ e e
A "

be the probability that k customers arrive during a service time. Let &1,&2,... be
iid. with P(§ = k — 1) = ax. We think of & as the net number of customers to
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Figure 6.1: Realization of the M/G/1 queue. Black dots indicate the times at which
the customers enter service.

arrive during the ith service time, subtracting one for the customer who completed
service, so we define X, by

Xpp1 = (Xn+ &))" (6.2.1)
The positive part only takes effect when X,, = 0 and &,11 = —1 (e.g.,, Xo = 0,
&3 = —1) and reflects the fact that when the queue has size 0 and no one arrives

during the service time the next queue size is 0, since we do not start counting until
the next customer arrives and then the queue length will be 0.

It is easy to see that the sequence defined in (6.2.1) is a Markov chain with tran-
sition probability

p<070) =ap+ay
(3,7 — 1+ k) = ay ifj>1ork>1

The formula for aj is rather complicated, and its exact form is not important, so we
will simplify things by assuming only that a, > 0 for all £ > 0 and )~ -, ar = 1.

Figure 6.2: Physical motivation for the Ehrenfest chain.

Example 6.2.5. Ehrenfest chain. S = {0,1,...,r}

pk,k+1)=(r—Fk)/r
plk,k—1)=Fk/r
p(i,j) =0 otherwise
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In words, there is a total of r balls in two urns; k in the first and r — k in the second.
We pick one of the r balls at random and move it to the other urn. Ehrenfest used
this to model the division of air molecules between two chambers (of equal size and
shape) that are connected by a small hole. For an interesting account of this chain,
see Kac (1947a).

Example 6.2.6. Birth and death chains. S = {0,1,2,...} These chains are
defined by the restriction p(i,j) = 0 when |i — j| > 1. The fact that these processes
cannot jump over any integers makes it particularly easy to compute things for them.

That should be enough examples for the moment. We conclude this section with
some simple calculations. For a Markov chain on a countable state space, (6.1.1) says

n

Pu(Xp =i, 0 < k < n) = p(io) [[ plim—1,im)

m=1

When n =1
Pu(X1 =) Zu 7) = pp(j)

i.e., the product of the row vector p with the matrix p. When n = 2,

Pi(Xy=k) = pr p(j, k) = p*(i, k)

i.e., the second power of the matrix p. Combining the two formulas and generalizing

Zu 7) = wp" ()

EXERCISES

6.2.2. Suppose S = {1,2,3} and

NSO

1 9
p=\|.7 0
0 6

Compute p?(1,2) and p?(2, 3) by considering the different ways to get from 1 to 2 in
two steps and from 2 to 3 in three steps.

(1—a a>
P=\p 1-p

B B
PuX,=0)=——+(1-a-p)"{u0) -
(0 =0) = Lo (= a—p)" (o) -
6.2.4. Let &, &1, ... beiid. € {H, T}, taking each value with probability 1/2. Show
that X,, = (§n,&n+1) is a Markov chain and compute its transition probability p.
What is p??

6.2.3. Suppose S ={0,1} and

Use induction to show that
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6.2.5. Brother-sister mating. In this scheme, two animals are mated, and among
their direct descendants two individuals of opposite sex are selected at random. These
animals are mated and the process continues. Suppose each individual can be one of
three genotypes AA, Aa, aa, and suppose that the type of the offspring is determined
by selecting a letter from each parent. With these rules, the pair of genotypes in the
nth generation is a Markov chain with six states:

AAAA AA Aa AA,aa Aa,Aa Aa,aa aa,aa

Compute its transition probability.

6.2.6. Bernoulli-Laplace model of diffusion. Suppose two urns, which we will
call left and right, have m balls each. b (which we will assume is < m) balls are black,
and 2m — b are white. At each time, we pick one ball from each urn and interchange
them. Let the state at time n be the number of black balls in the left urn. Compute
the transition probability.

6.2.7. Let &,&o,... be iid. € {1,2,..., N} and taking each value with probability
1/N. Show that X,, = [{{1,...,&,}] is a Markov chain and compute its transition
probability.

6.2.8. Let &1,&,... be iid. € {—1,1}, taking each value with probability 1/2. Let
So=0,5, =&+ &, and X, = max{S,, : 0 < m < n}. Show that X, is not a
Markov chain.

6.2.9. Let 0, Uy, Us, ... be independent and uniform on (0,1). Let X; = 1if U; < 0,
=—-1ifU; >0, and let S, = X7 +--- + X,,. In words, we first pick 6 according to
the uniform distribution and then flip a coin with probability € of heads to generate
a random walk. Compute P(X,+1 = 1|X1,...,X,) and conclude S,, is a temporally
inhomogeneous Markov chain. This is due to the fact that “S,, is a sufficient statistic
for estimating 6.”

6.3 Extensions of the Markov Property
If X, is a Markov chain with transition probability p, then by definition,
P(Xyt1 € BlF,) = p(Xy, B)

In this section, we will prove two extensions of the last equality in which {X,,+1 € B}
is replaced by a bounded function of the future, h(X,,, X,,+1,...), and n is replaced by
a stopping time N. These results, especially the second, will be the keys to developing
the theory of Markov chains.

As mentioned in Section 6.1, we can and will suppose that the X,, are the coordi-
nate maps on sequence space

(Q,, F) = (5{0,1,._.}’3{0,1,.._})

Fn = 0(Xo,X1,...,X,), and for each initial distribution ¢ we have a measure P,
defined by (6.1.1) that makes X,, a Markov chain with P,(Xo € A) = pu(A). Define
the shift operators 6, : Q, — Q, by (,w)(m) = w(m + n).

Theorem 6.3.1. The Markov property. Let Y : Q, — R be bounded and mea-
surable.
E, (Y 00,,|Fn) =Ex,Y
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Remark. Here the subscript p on the left-hand side indicates that the conditional
expectation is taken with respect to P,. The right-hand side is the function p(z) =
E.Y evaluated at ¢ = X,,. To make the connection with the introduction of this
section, let

Y(w) = h(wo,wl, . )
We denote the function by Y, a letter usually used for random variables, because

that’s exactly what Y is, a measurable function defined on our probability space §2,.

Proof. We begin by proving the result in a special case and then use the 7 — A and
monotone class theorems to get the general result. Let A = {w : wg € Ag,...,wnm €
Ap} and go, ... gn be bounded and measurable. Applying (6.1.3) with fi = 14, for
k<m, fm =1a, g0, and fr = gx—m for m < k < m +n gives

E, (ggk(Xm+k);A> = /Ao u(dmo)/Alp(xo’dxl).../Am (@1, dzm)

'gO(xm)/p(xmadxm—&-l)gl(xm-&-l)

e '/p(mm+n717 dmm+n)gn(xm+n)

=Ly (Exm (ﬁ gk(Xk)> ;A>
k=0

The collection of sets for which the last formula holds is a A-system, and the collection
for which it has been proved is a m-system, so using the 7 — X\ theorem, Theorem 2.1.2,
shows that the last identity holds for all A € F,,.

Fix A € F,, and let ‘H be the collection of bounded measurable Y for which

(*) E,(Y 00,;A)=E,(Ex,Y;A)

The last computation shows that (x) holds when

Y= [T orlwr)

0<k<n

To finish the proof, we will apply the monotone class theorem, Theorem 6.1.3. Let A
be the collection of sets of the form {w : wy € Ag,...,wr € Ar}. A is a m-system, so
taking gr = 14, shows (i) holds. H clearly has properties (ii) and (iii), so Theorem
6.1.3 implies that H contains the bounded functions measurable w.r.t o(.A), and the
proof is complete. O

Exercise 6.3.1. Use the Markov property to show that if A € o(Xo,...,X,) and
B e o(X,, Xnt1,...), then for any initial distribution p

Pu(ANB|Xy) = P, (A[Xy)Pu(B|Xn)

In words, the past and future are conditionally independent given the present.
Hint: Write the left-hand side as E,(E,(1a1p|Fpn)|Xn).

The next two results illustrate the use of Theorem 6.3.1. We will see many other
applications below.
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Theorem 6.3.2. Chapman-Kolmogorov equation.

Intuitively, in order to go from x to z in m + n steps we have to be at some y at time
m and the Markov property implies that for a given y the two parts of the journey
are independent.

Proof. Pp(Xpim = 2) = Ex(Pe(Xntm = 2|Fm)) = Ex(Px,, (X, = 2)) by the Markov

m

property, Theorem 6.3.1 since 1(x, —.) 0 0m = 1(x,,,.=2)- O
Theorem 6.3.3. Let X,, be a Markov chain and suppose

P(Up_pi1{Xm € Bn}| Xn) 26 >0 on{X, € 4,}
Then P({X,, € A, i.0.} —{X,, € B, i.0.}) =0.

Remark. To quote Chung, “The intuitive meaning of the preceding theorem has
been given by Doeblin as follows: if the chance of a pedestrian’s getting run over is
greater than 6 > 0 each time he crosses a certain street, then he will not be crossing
it indefinitely (since he will be killed first)!”

Proof. Let Ay, = Upe_, 1{Xm € B}, let A = NA, = {X,, € B, io.}, and let
I ={X, € 4,1i0.}. Let 7, = 0(X0,X1,...,X,) and Fx = 0(UF,). Using the
Markov property and the dominated convergence theorem for conditional expecta-
tions, Theorem 5.5.9,

E(14,

Xyn) = E(1p,|Fn) — E(1a|Fs) = 1a
On I, the left-hand side is > ¢ i.0. This is only possible if I" C A. O

Exercise 6.3.2. A state a is called absorbing if P,(X; =a)=1. Let D ={X,, =a
for some n > 1} and let h(x) = Py(D). (i) Use Theorem 6.3.3 to conclude that
hX,) — 0 as. on D° Here a.s. means P, a.s. for any initial distribution p. (ii)
Obtain the result in Exercise 5.5.5 as a special case.

We are now ready for our second extension of the Markov property. Recall N is
said to be a stopping time if {N =n} € F,. As in Chapter 4, let

Fn={A: An{N =n} € F, for all n}
be the information known at time N, and let
O — f,w on{N =n}
A on{N =}

where A is an extra point that we add to €,. In the next result and its applications,
we will explicitly restrict our attention to {N < oo}, so the reader does not have to
worry about the second part of the definition of 6.

Theorem 6.3.4. Strong Markov property. Suppose that for eachn, Y, : 0y — R
is measurable and |Y,| < M for all n. Then

E/L(YN OQN‘fN) = EXNYN on {N < OO}

where the right-hand side is p(xz,n) = E,Y,, evaluated at x = Xy, n = N.
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Proof. Let A € Fy. Breaking things down according to the value of V.

E,(YnobOn;AN{N < oo}) = iE#(Yn 00,; AN{N =n})

n=0
Since AN{N = n} € F,, using Theorem 6.3.1 now converts the right side into

> Eu(Ex,Yn; AN{N =n}) = E,(Ex,Yn; AN {N < co}) o

n=0

Remark. The reader should notice that the proof is trivial. All we do is break things
down according to the value of N, replace N by n, apply the Markov property, and
reverse the process. This is the standard technique for proving results about stopping
times.

The next example illustrates the use of Theorem 6.3.4, and explains why we want
to allow the Y that we apply to the shifted path to depend on n.

Theorem 6.3.5. Reflection principle. Let &1, &s,. .. be independent and identically
distributed with a distribution that is symmetric about 0. Let S, = & + -+ &,. If
a > 0 then
P (sup Sm > a) < 2P(S,, > a)
m<n

Remark. First, a trivial comment: The strictness of the inequality is not important.
If the result holds for >, it holds for > and vice versa.

A second more important one: We do the proof in two steps because that is how
formulas like this are derived in practice. First, one computes intuitively and then
figures out how to extract the desired formula from Theorem 6.3.4.

Figure 6.3: Proof by picture of the reflection principle.

Proof in words. First note that if Z has a distribution that is symmetric about 0,

then 1 1
P(Z20) > P(Z>0)+3P(Z=0)=
If we let N =inf{m <n:S,, > a} (with inf ) = o), then on {N < o}, S,, — Sy is

independent of Sy and has P(S,, — Sy > 0) > 1/2. So

P(S, >a) > =P(N <n)

N |
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Proof. Let YV, (w) =1if m < n and wy,—pm > a, Yip(w) = 0 otherwise. The definition
of Yy, is chosen so that (Yy o 0y)(w) = 1 if w, > a (and hence N < n), and = 0
otherwise. The strong Markov property implies

Eo(Yn oOn|FN) = EsyYn on{N <oo}={N <n}
To evaluate the right-hand side, we note that if y > a, then
EyYm = Py(Sn—m > a) > Py(Sp—m >y) > 1/2
So integrating over { N < n} and using the definition of conditional expectation gives

1
§P(N S n) S Eo(Eo(YN o 9N|~7:N)7N S ’I’L) = EO(YN OQN;N S n)

since {N < n} € Fy. Recalling that Yy o 5 = 115,54}, the last quantity
= Eo(14s,>a}; N < n) = Py(Sn > a)

since {S,, > a} C {N <n}. O

EXERCISES
The next five exercises concern the hitting times
T4 =inf{n >0:X, € A} Ty = Tiy}
Ty = inf{n >1:X, € A} Ty = T{y}
To keep the two definitions straight, note that the symbol 7 is smaller than T. Some
of the results below are valid for a general S but for simplicity.

We will suppose throughout that S is countable.

6.3.3. First entrance decomposition. Let T, = inf{n > 1: X,, = y}. Show that

P (@) = > Pol(Ty = m)p" " (y,y)
m=1

6.3.4. Show that 3.7 _ Po(X,, = 2) > Y P(X,, = ).

6.3.5. Suppose that S — C is finite and for each z € S — C P,(7¢ < 00) > 0. Then
there is an N < oo and € > 0 so that Py(tc > kN) < (1 — e)*.

6.3.6. Let h(z) = Py(ta < 7B). Suppose ANB = (), S — (AU B) is finite, and
P.(taup < o0) >0 for all z € S — (AU B). (i) Show that

(+) h(z) = plx,y)h(y) forz ¢ AUB

(ii) Show that if h satisfies (x) then h(X(nATaup)) is a martingale. (iii) Use this and
Exercise 6.3.5 to conclude that h(x) = P,(74 < 7p) is the only solution of () that is
lon Aand 0 on B.

6.3.7. Let X,, be a Markov chain with S = {0,1,..., N} and suppose that X,, is a
martingale and P, (19 A 7 < 00) > 0 for all x. (i) Show that 0 and N are absorbing
states, i.e., p(0,0) = p(N,N) = 1. (ii) Show P,(7n < 79) = x/N.
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6.3.8. Wright-Fisher model. Suppose S ={0,1,..., N} and consider
ptiod) = () )iy = igwyv

Show that this chain satisfies the hypotheses of Exercise 6.3.7.

6.3.9. In brother-sister mating described in Exercise 6.2.5, AA, AA and aa, aa are
absorbing states. Show that the number of A’s in the pair is a martingale and use
this to compute the probability of getting absorbed in AA, AA starting from each of
the states.

6.3.10. Let 74 = inf{n > 0: X,, € A} and g(x) = E,74. Suppose that S — A is finite
and for each x € S — A, P,(14 < 00) > 0. (i) Show that

() g(x) =1+ plz,y)g(y) forz¢ A

(ii) Show that if g satisfies (%), g(X(n A 7Ta)) +n A T4 is a martingale. (iii) Use this
to conclude that g(z) = E,74 is the only solution of (x) that is 0 on A.

6.3.11. Let &y, &y,... be iid. € {H, T}, taking each value with probability 1/2, and
let X,, = (&n,&n+1) be the Markov chain from Exercise 6.2.4. Let Ny = inf{n > 0 :
(&n,&nt1) = (H, H)}. Use the results in the last exercise to compute EN;. [No, there
is no missing subscript on E, but you will need to first compute g(z).]

6.3.12. Consider simple random walk S, the Markov chain with p(z,z + 1) = 1/2
and p(z,x — 1) = 1/2.let 7 = min{n : S, € (0, N)}. Use the result from Exercise
6.3.10to show that E,7 = z(N — z).

6.4 Recurrence and Transience

In this section and the next two, we will consider only Markov chains on a countable
state space. Let TS =0, and for k£ > 1, let

Ty =inf{n >T,"": X, =y}

T; is the time of the kth return to y. The reader should note that Ty1 > 0 so any
visit at time O does not count. We adopt this convention so that if we let T}, = Ty1
and pgy = P, (T, < 00), then

Theorem 6.4.1. ng(TéC < o0) = Pmy/)]@j;1~

Intuitively, in order to make k visits to y, we first have to go from x to y and then
return k£ — 1 times to y.

Proof. When k = 1, the result is trivial, so we suppose k > 2. Let Y(w) =1ifw, =y
for some n > 1, Y(w) = 0 otherwise. If N = T ~! then Y o Oy = 1 if T} < co. The
strong Markov property, Theorem 6.3.4, implies

Em(Y 09N|.7N) = EXNY on {N < OO}

On {N < oo}, Xy =y, so the right-hand side is P, (T}, < 00) = pyy, and it follows
that

Py(T) < 00) = Ey(Y 0 0n; N < 00)
= FE,(E,(Y oOn|Fn); N < o0)
=E,(pyy; N < 00) = pnyz(T;*1 < 0)

The result now follows by induction. O
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A state y is said to be recurrent if py, = 1 and transient if p,, < 1. If y is
recurrent, Theorem 6.4.1 implies P, (T} < co) =1 for all k, so Py(X,, =y io0.) = 1.

Exercise 6.4.1. Suppose y is recurrent and for k& > 0, let Ry = T; be the time
of the kth return to y, and for £ > 1 let rp, = R — Rrp_1 be the kth interarrival
time. Use the strong Markov property to conclude that under P, the vectors v, =
(re, Xpy sy XRpo—1), k> 1 are ii.d.

If y is transient and we let N(y) = > -

ne1 L(x,=y) be the number of visits to y at
positive times, then

k=1 k=1
=3 paplyt = P <o (6.4.1)
=D Prlyy =T 4.
k=1 vy

Combining the last computation with our result for recurrent states gives a result
that generalizes Theorem 4.2.2.

Theorem 6.4.2. y is recurrent if and only if E,N(y) = co.

Exercise 6.4.2. Let a € S, f, = P,(T, = n), and u, = P,(X,, = a). (i) Show that

Un = Y 1<men fmUn—m. (i) Let u(s) = > S uns™, f(s) = >~ fns™, and show
u(s) =1/(1 — f(s)). Setting s = 1 gives (6.4.1) forx =y =a.

Exercise 6.4.3. Consider asymmetric simple random walk on Z, i.e., we have p(i,i+
1) =p, p(i,i —1) = g=1—p. In this case,

2
p°™(0,0) = (::)pmqm and p*™*1(0,0) =0

(i) Use the Taylor series expansion for h(z) = (1 — z)~*/? to show u(s) = (1 —
4pqs?)~1/? and use the last exercise to conclude f(s) = 1 — (1 — 4pgs?)/2. (ii) Set
s = 1 to get the probability the random walk will return to 0 and check that this is
the same as the answer given in part (c¢) of Theorem 5.7.7.

The next result shows that recurrence is contagious.
Theorem 6.4.3. If x is recurrent and py > 0 then y is recurrent and py, = 1.

Proof. We will first show p,, = 1 by showing that if p;, > 0 and p,, < 1 then
pee < 1. Let K = inf{k : p*(x,y) > 0}. There is a sequence yi,...,yx_1 S0 that

p(@,y1)p(y1,y2) -+ p(Yx-1,9) > 0
Since K is minimal, y; # « for 1 <i < K — 1. If p,, < 1, we have

P (T, = o0) > p(x,y1)p(y1,y2) - - - p(Yr —1,4)(1 = pyz) >0

a contradiction. So py, = 1.
To prove that y is recurrent, observe that p,, > 0 implies there is an L so that
pL(y,x) > 0. Now

p TR (y, ) > pP(y, 2)p" (z, 2)p" (2, y)
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Summing over n, we see

(o]
Zp”"”((y y) = p"(yx z_:

n=1

so Theorem 6.4.2 implies y is recurrent. O

Exercise 6.4.4. Use the strong Markov property to show that p,. > pzypy--

The next fact will help us identify recurrent states in examples. First we need
two definitions. C' is closed if x € C and p,, > 0 implies y € C. The name comes
from the fact that if C is closed and z € C then P,(X, € C) =1 for all n. D is
irreducible if x,y € D implies p,y > 0.

Theorem 6.4.4. Let C be a finite closed set. Then C contains a recurrent state. If
C is irreducible then all states in C are recurrent.

Proof. In view of Theorem 6.4.3, it suffices to prove the first claim. Suppose it is
false. Then for all y € C, pyy < 1 and E;N(y) = pgy/(1 — pyy), but this is ridiculous
since it implies

oo>ZEN ZZ}) x,y) ZZp"xy:Z
yel yeC n=1 n=1yeC n=1

The first inequality follows from the fact that C is finite and the last equality from
the fact that C' is closed. O

To illustrate the use of the last result consider:

Example 6.4.1. A Seven-state chain. Consider the transition probability:

N O OUR W

CO OO by
Cooco0ooivwoN
C OO i O W
N < R S < I
CopOOO W
OO mo oo
O oo oo o

To identify the states that are recurrent and those that are transient, we begin by
drawing a graph that will contain an arc from i to j if p(,j) > 0 and i # j. We do
not worry about drawing the self-loops corresponding to states with p(i,7) > 0 since
such transitions cannot help the chain get somewhere new.

In the case under consideration we draw arcs from 1 — 5,2 — 1,2 — 3, 2 — 4,
3—54,4—-6,4—-75—-1,6—-4,6—7,7—4.

(i) p21 > 0 and p12 = 0 so 2 must be transient, or we would contradict Theorem 6.4.3.
Similarly, ps4 > 0 and ps3 = 0 so 3 must be transient

(ii) {1,5} and {4,6,7} are irreducible closed sets, so Theorem 6.4.4 implies these
states are recurrent.

The last reasoning can be used to identify transient and recurrent states when
S is finite since for z € S either: (i) there is a y with py, > 0 and py, = 0 and «
must be transient, or (ii) pg, > 0 implies p,,; > 0. In case (ii), Exercise 6.4.4 implies
Cy ={y : pgy > 0} is an irreducible closed set. (If y, z € Cy then p,, > pyapsz. > 0. If
Pyw > 0 then pry > puypyw > 0, so w € Cy.) So Theorem 6.4.4 implies x is recurrent.
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i

Figure 6.4: Graph for the seven state chain.

Exercise 6.4.5. Show that in the Ehrenfest chain (Example 6.2.5), all states are
recurrent.

Example 6.4.1 motivates the following:

Theorem 6.4.5. Decomposition theorem. Let R = {x : p,, = 1} be the recurrent
states of a Markov chain. R can be written as U;R;, where each R; is closed and
irreducible.

Remark. This result shows that for the study of recurrent states we can, without
loss of generality, consider a single irreducible closed set.

Proof. If © € R let Cp = {y : pzy > 0}. By Theorem 6.4.3, C; C R, and if y € C,
then p,, > 0. From this it follows easily that either C, N C, = 0 or C;, = C,. To
prove the last claim, suppose C,, N Cy # 0. If z € C, N Cy then pyy > pr2psy > 0,
so if w € C, we have pgy > prypyw > 0 and it follows that C; O Cy. Interchanging
the roles of x and y gives C, D C,, and we have proved our claim. If we let R; be a
listing of the sets that appear as some C,, we have the desired decomposition. O

The rest of this section is devoted to examples. Specifically we concentrate on the
question: How do we tell whether a state is recurrent or transient? Reasoning based
on Theorem 6.4.3 works occasionally when S is infinite.

Example 6.4.2. Branching process. If the probability of no children is positive
then prg > 0 and por, = 0 for £ > 1, so Theorem 6.4.4 implies all states £ > 1 are
transient. The state 0 has p(0,0) = 1 and is recurrent. It is called an absorbing
state to reflect the fact that once the chain enters 0, it remains there for all time.

If S is infinite and irreducible, all that Theorem 6.4.3 tells us is that either all
the states are recurrent or all are transient, and we are left to figure out which case
occurs.

Example 6.4.3. Renewal chain. Since p(i,i — 1) = 1 for ¢ > 1, it is clear that
pio = 1 for all 4 > 1 and hence also for ¢ = 0, i.e., 0 is recurrent. If we recall that
p(0,4) = fj+1 and suppose that {k : fr > 0} is unbounded, then pg; > 0 for all ¢ and
all states are recurrent. If K = sup{k : fr > 0} < oo then {0,1,...,K — 1} is an
irreducible closed set of recurrent states and all states k > K are transient.

Example 6.4.4. Birth and death chains on {0,1,2,...}. Let

pli,i+1)=p; pli,i—1)=¢q; p(i,i)=mr;
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where go = 0. Let N = inf{n : X,, = 0}. To analyze this example, we are going to
define a function ¢ so that p(Xna,) is a martingale. We start by setting ¢(0) = 0
and ¢(1) = 1. For the martingale property to hold when X,, = k > 1, we must have

(k) = pro(k + 1) + (k) + qre(k — 1)

Using 7, = 1 — (pr + qx), we can rewrite the last equation as
ar(p(k) — o(k — 1)) = pr(p(k + 1) — (k)

or p(k+1) - (k) = %(w(k) — (k- 1))

Here and in what follows, we suppose that pg, gr > 0 for k > 1. Otherwise, the chain
is not irreducible. Since p(1) — ¢(0) = 1, iterating the last result gives

go(m—i—l)—cp(m):H% form >1
=1 i
n—1 m 4
go(n):ZH—] forn>1
m=0j=1Pi

if we interpret the product as 1 when m = 0. Let T, = inf{n > 1: X,, = c¢}. Now I
claim that:

Theorem 6.4.6. Ifa < x < b then
b) — p(x z) —¢(a
(T, < Th) = Z‘;( ! “’E ) R <T)-= i( )=o)

Proof. If we let T'= T, AT}, then o(X,,o7) is a bounded martingale and T < oo a.s.
by Theorem 6.3.3, so ¢(x) = E,¢(Xr) by Theorem 5.7.4. Since Xr € {a,b} a.s.,

() = p(a)Pe(Toy < Tp) + ()1 — Pu(Ta < Tp)]
and solving gives the indicated formula. O

Remark. The answer and the proof should remind the reader of Example 4.1.5 and
Theorem 5.7.7. To help remember the formula, observe that for any « and (3, if
we let ¥(z) = ap(x) + B then (X, A7) is also a martingale and the answer we get
using ) must be the same. The last observation explains why the answer is a ratio of
differences. To help remember which one, observe that the answer is 1 if z = a and 0
if z =b.

Letting a = 0 and b = M in Theorem 6.4.6 gives
Py(To > Tn) = ¢(x)/ (M)
Letting M — oo and observing that Ty > M — x, P, a.s. we have proved:
Theorem 6.4.7. 0 is recurrent if and only if o(M) — 00 as M — oo, i.e.,

oo m q
> 11
m=0j=1

|¢5

=00
J

p(c0)

3

If p(00) < 0o then Py(Ty = 00) = ¢(x)/p(00).
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We will now see what Theorem 6.4.7 says about some concrete cases.

Example 6.4.5. Asymmetric simple random walk. Suppose p; = p and ¢; =
1 —p for 5 > 1. In this case,

- 552

From Theorem 6.4.7, it follows that 0 is recurrent if and only if p < 1/2; and if

p > 1/2, then
— 1— z
Ty < ) - £ —¢t) _ (10
p(o0) p

Exercise 6.4.6. A gambler is playing roulette and betting $1 on black each time.
The probability she wins $1 is 18/38, and the probability she loses $1 is 20/38. (i)
Calculate the probability that starting with $20 she reaches $40 before losing her
money. (ii) Use the fact that X,, + 2n/38 is a martingale to calculate E(Tyo A Tp).

Example 6.4.6. To probe the boundary between recurrence and transience, suppose
pj =1/24¢€; where ¢; ~ Cj~% as j — oo, and ¢; = 1 —p;. A little arithmetic shows
qj_1/2—€j_ 2€j

i 1/24+¢  1/2+¢

~1—-4C5~< for large j

Case 1: o> 1. It is easy to show that if 0 < §; < 1, then [[;(1 —J;) > 0 if and only
if 2,05 < oo, (see Exercise 5.3.5), so if @ > 1, [[,;(¢;/p;) | a positive limit, and 0
is recurrent.

Case 2: a < 1. Using the fact that log(1 — 0) ~ —§ as 6 — 0, we see that

k k e
loquj/pj ~ —Z4C’j‘a ~ —mkl_a as k — oo
j=1

Jj=1

so, for k > K, H?Zl q;/p; < exp(—2Ck'~*/(1 — a)) and >, H?:l Z—j < oo and
hence 0 is transient.

Case 3: a = 1. Repeating the argument for Case 2 shows log H§:1 % ~ —4C'log k.
So, if C' > 1/4, 0 is transient, and if C' < 1/4, 0 is recurrent. The case C = 1/4 can

go either way.

Example 6.4.7. M/G/1 queue. Let ;1 = )" kaj be the mean number of customers
that arrive during one service time. We will now show that if u > 1, the chain is
transient (i.e., all states are), but if u < 1, it is recurrent. For the case p > 1,
we observe that if &1, &, ... are i.i.d. with P(&, = j) = a;j41 for j > —1 and S, =
&1+ - +&n, then Xo+S, and X, behave the same until time N = inf{n : Xy+5, = 0}.
When p > 1, E¢,, = p—1> 0,80 S, — oo a.s., and inf S,, > —oco a.s. It follows from
the last observation that if z is large, P,(N < o0) < 1, and the chain is transient.

To deal with the case u < 1, we observe that it follows from arguments in the
last paragraph that X,y is a supermartingale. Let T = inf{n : X,, > M}. Since
XnaN is a nonnegative supermartingale, using Theorem 5.7.6 at time 7 = T'A N, and
observing X, > M on {T' < N}, X, =0on {N < T} gives

x> MP,(T < N)

Letting M — oo shows P, (N < 00) = 1, so the chain is recurrent.
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Remark. There is another way of seeing that the M/G/1 queue is transient when
u > 1. If we consider the customers that arrive during a person’s service time to be
her children, then we get a branching process. Results in Section 5.3 imply that when
1 < 1 the branching process dies out with probability one (i.e., the queue becomes
empty), so the chain is recurrent. When g > 1, Theorem 5.3.9 implies P, (Tp < 00) =
p®, where p is the unique fixed point € (0,1) of the function p(0) = > r-, axd*.

The next result encapsulates the techniques we used for birth and death chains
and the M/G/1 queue.

Theorem 6.4.8. Suppose S is irreducible, and ¢ > 0 with E,p(X1) < ¢(x) for
x & F, a finite set, and p(x) — 00 as © — o0, i.e., {x : p(x) < M} is finite for any
M < oo, then the chain is recurrent.

Proof. Let 7 = inf{n > 0 : X,, € F}. Our assumptions imply that Y, = o(X,nr)
is a supermartingale. Let Tpy = inf{n > 0 : X,, € For ¢(X,) > M}. Since
{z : p(x) < M} is finite and the chain is irreducible, Th; < oo a.s. Using Theorem
5.7.6 4 now, we see that

since ¢(Xr,,) > M when Ty < 7. Letting M — oo, we see that P, (7 < oco) = 1 for all
x ¢ F. So Py(X, € Fio.)=1forally € S, and since F is finite, P,(X,, = z i.0.) =1
for some z € F. O

Exercise 6.4.7. Show that if we replace “p(z) — o0” by “p(z) — 0” in the last
theorem and assume that ¢(x) > 0 for x € F', then we can conclude that the chain is
transient.

Exercise 6.4.8. Let X,, be a birth and death chain with p; —1/2 ~ C/j as j — o0
and ¢; = 1 — p;. (i) Show that if we take C' < 1/4 then we can pick o > 0 so that
(x) = z satisfies the hypotheses of Theorem 6.4.8. (ii) Show that when C' > 1/4,
we can take a < 0 and apply Exercise 6.4.7.

Remark. An advantage of the method of Exercise 6.4.8 over that of Example 6.4.6
is that it applies if we assume P, (| X1 — 2| < M) =1 and E,(X; — z) ~ 2C/x.

Exercise 6.4.9. f is said to be superharmonic if f(z) > >_, p(z,y)f(y), or equiv-
alently f(X,) is a supermartingale. Suppose p is irreducible. Show that p is recurrent
if and only if every nonnegative superharmonic function is constant.

Exercise 6.4.10. M/M/oco queue. Consider a telephone system with an infinite
number of lines. Let X,, = the number of lines in use at time n, and suppose

Xn
Xn+1 - Z fmm + Yn+1

m=1

where the &, ,,, are 1.i.d. with P(§,, = 1) =p and P({,,, =0) =1—p, and Y}, is an
independent i.i.d. sequence of Poisson mean A\ r.v.’s. In words, for each conversation
we flip a coin with probability p of heads to see if it continues for another minute.
Meanwhile, a Poisson mean A number of conversations start between time n and n+1.
Use Theorem 6.4.8 with ¢(2) = 2 to show that the chain is recurrent for any p < 1.
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6.5 Stationary Measures

A measure p is said to be a stationary measure if

> w@)p(e,y) = p(y)

The last equation says P, (X1 = y) = p(y). Using the Markov property and induction,
it follows that P,(X, = y) = p(y) for all n > 1. If p is a probability measure, we
call p a stationary distribution, and it represents a possible equilibrium for the
chain. That is, if X, has distribution p then so does X, for all n > 1. If we stretch
our imagination a little, we can also apply this interpretation when g is an infinite
measure. (When the total mass is finite, we can divide by u(S) to get a stationary
distribution.) Before getting into the theory, we consider some examples.

Example 6.5.1. Random walk. S = Z¢. p(z,y) = f(y — ), where f(z) > 0 and
> f(z) = 1. In this case, u(z) = 1 is a stationary measure since

dopy)=> fly-x)=1

A transition probability that has >~ p(x,y) = 1 is called doubly stochastic. This is
obviously a necessary and sufficient condition for u(z) = 1 to be a stationary measure.

Example 6.5.2. Asymmetric simple random walk. S = Z.
pl,x+1)=p  plz,z—-1)=q=1-p

By the last example, p(z) =1 is a stationary measure. When p # ¢, u(z) = (p/q)® is
a second one. To check this, we observe that

> u@)p(x,y) = p(y + Dp(y +1,y) + ply — Dply — 1,y)

= (p/9)"q+ (/)" 'p = (/9)’lp + ) = (p/q)"
Example 6.5.3. The Ehrenfest chain. S ={0,1,...,r}.
pk,k+1)=(r—k)/r plk,k—1)=k/r

In this case, p(z) = 277(") is a stationary distribution. One can check this without
pencil and paper by observing that p corresponds to flipping 7 coins to determine
which urn each ball is to be placed in, and the transitions of the chain correspond
to picking a coin at random and turning it over. Alternatively, you can pick up your
pencil and check that p(k + 1)p(k + 1,k) + p(k — D)p(k — 1, k) = u(k).

Example 6.5.4. Birth and death chains. S ={0,1,2,...}
p(l’,l’+1) = Pz p(l’,.’b) =Ty P(x,m—l) =z
with go = 0 and p(i, j) = 0 otherwise. In this case, there is the measure

u(x)ZH%

k=1

which has

. Pk—-1
p(x)p(z,z+1) =p, [| . pw(z+ p(z + 1, 2)
k=1
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Since p(z,y) = 0 when |z — y| > 1, it follows that

w(@)p(e,y) = p(y)p(y,z) for all z,y (6.5.1)

Summing over x gives

> u@)p(@,y) = p(y)

so (6.5.1) is stronger than being a stationary measure. (6.5.1) asserts that the amount
of mass that moves from z to y in one jump is exactly the same as the amount that
moves from y to . A measure p that satisfies (6.5.1) is said to be a reversible
measure. Since Examples 6.5.2 and 6.5.3 are birth and death chains, they have
reversible measures. In Example 6.5.1 (random walks), u(xz) = 1 is a reversible
measure if and only if p(z,y) = p(y, ).

The next exercise explains the name “reversible.”

Exercise 6.5.1. Let i be a stationary measure and suppose Xy has “distribution”
p. Then Y,, = X,,—m, 0 < m < n is a Markov chain with initial measure p and
transition probability

q(z,y) = p(y)py, z)/n(z)

q is called the dual transition probability. If u is a reversible measure then g = p.

Exercise 6.5.2. Find the stationary distribution for the Bernoulli-Laplace model of
diffusion from Exercise 6.2.6.

Example 6.5.5. Random walks on graphs. A graph is described by giving a
countable set of vertices S and an adjacency matrix a;; that has a;; = 1 if i and j are
adjacent and 0 otherwise. To have an undirected graph with no loops, we suppose
ai; = aj; and az;; = 0. If we suppose that

p(i) = Zaij <oo andlet p(i,j) = a;;/p(i)
J
then p is a transition probability that corresponds to picking an edge at random and
jumping to the other end. It is clear from the definition that

w(@)p(i, j) = ai; = aji = p(j)p(j, i)

so p is a reversible measure for p. A little thought reveals that if we assume only that

aij =aj; >0, p(i) = Zaij <oo and p(i,j) = ay;/p(i)
J
the same conclusion is valid. This is the most general example because if u is a
reversible measure for p, we can let a;; = p(i)p(s, 5)-

Reviewing the last five examples might convince you that most chains have re-
versible measures. This is a false impression. The M/G/1 queue has no reversible
measures because if z > y + 1, p(z,y) = 0 but p(y,2) > 0. The renewal chain has
similar problems.

Theorem 6.5.1. Suppose p is irreducible. A necessary and sufficient condition for
the existence of a reversible measure is that (i) p(x,y) > 0 implies p(y,z) > 0, and
(it) for any loop xo,x1,. ..,y = xo with [, p(xi, xi—1) > 0,

- p(xiqafi)

=1
p(xi, zi-1)

i=1
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Proof. To prove the necessity of this cycle condition, due to Kolmogorov, we note
that irreducibility implies that any stationary measure has p(z) > 0 for all z, so
(6.5.1) implies (i) holds. To check (ii), note that (6.5.1) implies that for the sequences

considered above
n

n
le'z 1,T;) H
izlpCM7$zl i=1 le

To prove sufficiency, fix a € S, set u(a) = 1, and if g = a, x1, ..., x, = x is a sequence
with [], <, p(zi, ;—1) > 0 (irreducibility implies such a sequence will exist), we let

- P(xi—l,xi)

wle) = -1 p(@i, i-1)

i
The cycle condition guarantees that the last definition is independent of the path. To
check (6.5.1) now, observe that if p(y,z) > 0 then adding z,+1; = y to the end of a
path to x we have

p(x) )= 1(y) 0
Only special chains have reversible measures, but as the next result shows, many
Markov chains have stationary measures.

Theorem 6.5.2. Let © be a recurrent state, and let T = inf{n > 1: X,, = x}. Then

T-1 00
=E, (Z 1{Xn=y}> =Y Pu(X,=y,T>n)
n=0 n=0

defines a stationary measure.

Proof. This is called the “cycle trick.” The proof in words is simple. p,(y) is the
expected number of visits to y in {0,...,T — 1}. puzp(y) = > pua(2)p(2,y) is the
expected number of visits to y in {1,...,T}, which is = p,(y) since X7 = Xy = z.

y '

0 T

Figure 6.5: Picture of the cycle trick.

To translate this intuition into a proof, let p,(z,y) = Py(X, =y,T > n) and use
Fubini’s theorem to get

D e Wp(y,2) =Y > bale,y)p(y, 2)

n=0 y
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Case 1. z # x.
> Balz )y 2) =Y Po(Xp =y, T > 1, Xpiy = 2)
y y
=Pp(T>n+1,Xp41 =2) = Pny1(2, 2)

SO fo:o Zy [)n(x, y)p(ya Z) = ZZO:O ﬁn-l—l(xv Z) = Ur(z) since ﬁo(xa Z) =0.

Case 2. z = x.

Zﬁn(x,y)p(y,x) = ZPQJ(X,L =y, T>nXpp1=2)=FP,(T=n+1)
y Y

80 >0 0 2, D@ y)p(y,x) = 32,2 Po(T = n+1) = 1 = p,(x) since by definition
P.(T = 0) = 0. O

Remark. If x is transient, then we have u,p(z) < p,(z) with equality for all z # z.

Technical Note. To show that we are not cheating, we should prove that p,(y) < co
for all y. First, observe that p,p = p, implies p,p"™ = p, for alln > 1, and p,(z) = 1,
so if p™(y,x) > 0 then p,(y) < co. Since the last result is true for all n, we see that
pz(y) < oo whenever py, > 0, but this is good enough. By Theorem 6.4.3, when z
is recurrent p,, > 0 implies p,, > 0, and it follows from the argument above that

pz(y) < 00. If pyy = 0 then p,(y) = 0.

Exercise 6.5.3. Use the construction in the proof of Theorem 6.5.2 to show that
#(j) = > k> fu+1 defines a stationary measure for the renewal chain (Example 6.2.3).

Theorem 6.5.2 allows us to construct a stationary measure for each closed set of
recurrent states. Conversely, we have:

Theorem 6.5.3. If p is irreducible and recurrent (i.e., all states are) then the sta-
tionary measure is unique up to constant multiples.

Proof. Let v be a stationary measure and let a € S.

v(z) =Y v(y)p(y, 2) = v(a)pla, z) + > v(y)p(y, 2)

Yy y#a

Using the last identity to replace v(y) on the right-hand side,

v(z) = v(a)p(a, z) + Y _ v(a)p(a,y)p(y, 2)
y#a
+ ) v(@)p(z, y)p(y, 2)
r#a y#a
=v(a)P,(X1 = 2) + v(a)Pu(X1 # a, Xy = 2)
+PZ,(X0 # G,Xl 7& a,X2 = Z)

Continuing in the obvious way, we get
V(Z):V(a) ZPa(Xk#av]- §k<maXm:Z)

m=1

+P,(X;#a,0<j<n X, =2)
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The last term is > 0. Letting n — oo gives v(z) > v(a)uq(2), where p, is the measure
defined in Theorem 6.5.2 for z = a.
It is tempting to claim that recurrence implies

P,(X;#a,0<j<n)—0

but ¥ may be an infinite measure, so we need another approach. It follows from
Theorem 6.5.2 that p, is a stationary measure with p,(a) = 1. (Here we are summing
from 1 to T rather than from 0 to T'— 1.) To turn the > in the last equation into =,
we observe

via) =Y v(@)p"(z.a) = v(a) Y pa(2)p" (z,a) = v(a)ua(a) = v(a)

xT

Since v(x) > v(a)pe(x) and the left- and right-hand sides are equal we must have
v(z) = v(a)pq(x) whenever p™(x,a) > 0. Since p is irreducible, it follows that v(x) =
v(a)pq(x) for all € S, and the proof is complete. O

Theorems 6.5.2 and 6.5.3 make a good team. The first result gives us a formula for
a stationary distribution we call u,, and the second shows it is unique up to constant
multiples. Together they allow us to derive a lot of formulas.

Exercise 6.5.4. Let wyy, = P, (T, < T,). Show that p,(y) = way/wys.

Exercise 6.5.5. Show that if p is irreducible and recurrent then

P (Y) poy (2) = piz(2)

Exercise 6.5.6. Use Theorems 6.5.2 and 6.5.3 to show that for simple random walk,
(i) the expected number of visits to k between successive visits to 0 is 1 for all &, and
(ii) if we start from k the expected number of visits to k before hitting 0 is 2k.

Exercise 6.5.7. Another proof of Theorem 6.5.3. Suppose p is irreducible and
recurrent and let u be the stationary measure constructed in Theorem 6.5.2. p(z) >0
for all z, and

q(z,y) = p(y)p(y, ©)/pu(x) > 0

defines a “dual” transition probability. (See Exercise 6.5.1.) (i) Show that ¢ is ir-
reducible and recurrent. (ii) Suppose v(y) > > v(x)p(x,y) (i.e, v is an excessive
measure) and let h(x) = v(z)/pu(z). Verify that h(y) > > q(y,z)h(z) and use
Exercise 6.4.9 to conclude that h is constant, i.e., v = cp.

Remark. The last result is stronger than Theorem 6.5.3 since it shows that in
the recurrent case any excessive measure is a constant multiple of one stationary
measure. The remark after the proof of Theorem 6.5.3 shows that if p is irreducible
and transient, there is an excessive measure for each z € S.

Having examined the existence and uniqueness of stationary measures, we turn
our attention now to stationary distributions, i.e., probability measures 7 with
mp = w. Stationary measures may exist for transient chains, e.g., random walks in

d > 3, but

Theorem 6.5.4. If there is a stationary distribution then all states y that have w(y) >
0 are recurrent.
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Proof. Since wp™ = m, Fubini’s theorem implies
(oo} oo
> w(@)Y pMy) =) w(y) = oo
T n=1 n=1

when 7(y) > 0. Using Theorem 6.4.2 now gives

Py 1
co=>» m(x <
zz: )1 —Pyy L= pyy

since p,y < 1 and 7 is a probability measure. So p,, = 1. O
Theorem 6.5.5. If p is irreducible and has stationary distribution mw, then
m(x) =1/E,T,

Remark. Recycling Chung’s quote regarding Theorem 5.5.8, we note that the proof
will make 7(z) = 1/E, T, obvious, but it seems incredible that

> e ploy) = 5
b1, P\ T BT

- yly

Proof. Irreducibility implies 7(x) > 0 so all states are recurrent by Theorem 6.5.4.
From Theorem 6.5.2,

oo

n=0

defines a stationary measure with u,(z) = 1, and Fubini’s theorem implies
oo
> paly) =Y Pu(Ty >n) = E,T,
Yy n=0

By Theorem 6.5.3, the stationary measure is unique up to constant multiples, so
m(x) = po(z)/EyTy. Since p,(x) = 1 by definition, the desired result follows. O

Exercise 6.5.8. Compute the expected number of moves it takes a knight to return
to its initial position if it starts in a corner of the chessboard, assuming there are no
other pieces on the board, and each time it chooses a move at random from its legal
moves. (Note: A chessboard is {0,1,...,7}2. A knight’s move is L-shaped; two steps
in one direction followed by one step in a perpendicular direction.)

If a state x has E,T, < oo, it is said to be positive recurrent. A recurrent
state with F,T, = oo is said to be null recurrent. Theorem 6.6.1 will explain these
names. The next result helps us identify positive recurrent states.

Theorem 6.5.6. If p is irreducible then the following are equivalent:
(i) Some x is positive recurrent.

(ii) There is a stationary distribution.

(i5i) All states are positive recurrent.

Proof. (i) implies (ii). If x is positive recurrent then

m(y) =D Pe(Xn =y, Tp > n)/E,T,
n=0
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defines a stationary distribution.

(i) implies (4i). Theorem 6.5.5 implies w(y) = 1/E,T,, and irreducibility tells us
m(y) > 0 for all y, so E,T, < cc.

143) implies (1). Trivial. O
(i) imp

Exercise 6.5.9. Suppose p is irreducible and positive recurrent. Then E,T, < oo
for all x,y.

Exercise 6.5.10. Suppose p is irreducible and has a stationary measure p with
>, t(x) = oo. Then p is not positive recurrent.

Theorem 6.5.6 shows that being positive recurrent is a class property. If it holds
for one state in an irreducible set, then it is true for all. Turning to our examples, since
u(x) = 1is a stationary measure, Exercise 6.5.10 implies that random walks (Example
6.5.1) are never positive recurrent. Random walks on graphs (Example 6.5.5) are
irreducible if and only if the graph is connected. Since p() > 1 in the connected case,
we have positive recurrence if and only if the graph is finite. The Ehrenfest chain
(Example 6.5.3) is positive recurrent. To see this note that the state space is finite,
so there is a stationary distribution and the conclusion follows from Theorem 6.5.4.
A renewal chain is irreducible if {k : fx > 0} is unbounded (see Example 6.4.3) it is
positive recurrent (i.e., all the states are) if and only if EgTy =Y kfi < oc.

Birth and death chains (Example 6.5.4) have a stationary distribution if and only

ST <o

r k=1

if

By Theorem 6.4.7, the chain is recurrent if and only if

oo m q
> 11
m=0 j=1

IS

=00
J

3

When p; = p and g; = (1 — p) for j > 1, there is a stationary distribution if and
only if p < 1/2 and the chain is transient when p > 1/2. In Section 6.4, we probed
the boundary between recurrence and transience by looking at examples with p; =
1/2 + ¢, where ¢; ~ C j7% as j — oo and C,a € (0,00). Since €¢; > 0 and hence
pj—1/q; > 1 for large j, none of these chains have stationary distributions. If we look
at chains with p; = 1/2 — ¢;, then all we have done is interchange the roles of p and
q, and results from the last section imply that the chain is positive recurrent when
a<l,ora=1and C >1/4.

Example 6.5.6. M/G/1 queue. Let ;1 = )" kay be the mean number of customers
that arrive during one service time. In Example 6.4.7, we showed that the chain is
recurrent if and only if © < 1. We will now show that the chain is positive recurrent
if and only if p < 1. First, suppose that p < 1. When X,, > 0, the chain behaves like
a random walk that has jumps with mean p — 1, so if N = inf{n > 0: X,, = 0} then
Xnan — (b= 1)(N An) is a martingale. If Xy = x > 0 then the martingale property
implies
2=E; XN+ (1 —p)E;(NAn)>(1—pu)E.(N An)

since Xyan > 0, and it follows that E,N < z/(1 — p).
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To prove that there is equality, observe that X, decreases by at most one each
time and for z > 1, E,T,_1 = E1Ty, so E, N = cx. To identify the constant, observe
that

E\N =1+ axExN
k=0

soc=14pcand c=1/(1—p). If Xg =0 then p(0,0) = ap+ a1 and p(0,k—1) = ai

for k > 2. By considering what happens on the first jump, we see that (the first term
may look wrong, but recall kK — 1 =0 when k£ = 1)

= k-1 p—(1—ap) ag

040 +;ak1—u + -5 - 00

This shows that the chain is positive recurrent if 4 < 1. To prove the converse,
observe that the arguments above show that if FyT) < oo then ExN < oo for all k,
EyN = ck, and ¢ =1/(1 — p), which is impossible if p > 1.

The last result when combined with Theorem 6.5.2 and 6.5.5 allows us to conclude
that the stationary distribution has 7(0) = (1 — p)/ag. This may not seem like much,
but the equations in 7p = 7 are:

71'(0) = W(O)(ao + al) + ﬂ(l)ao
(1) = 7(0)ag + m(1)a; + 7(2)ag
m(2) = w(0)asz + 7(1)az + 7(2)a; + 7(3)ag
or, in general, for j > 1
Jj+1
m(j) = Zﬂ(i)ag‘ﬂﬂ‘
i=0

The equations have a “triangular” form, so knowing 7 (0), we can solve for 7(1),7(2), ...
The first expression,

m(1) = m(0)(1 = (a0 + a1))/ao

is simple, but the formulas get progressively messier, and there is no nice closed form
solution.

Exercise 6.5.11. Let &1,&,... be iid. with P(&,, = k) = agq1 for £ > —1, let
Sp=x+& + -+ &, where x > 0, and let

X,=5,+ (min Sm>
m<n

(6.2.1) shows that X,, has the same distribution as the M/G/1 queue starting from
Xo = x. Use this representation to conclude that if p = kay < 1, then as n — oo

1
ﬁ|{m <n:Xpmo1=0,§,=-1} - (1—pn) as.

and hence 7(0) = (1 — u)/ap as proved above.

Example 6.5.7. M/M /oo queue. In this chain, introduced in Exercise 6.4.10,

Xn
Xn-l—l = Z Sn,m + Yn+1

m=1



260 CHAPTER 6. MARKOV CHAINS

where &, »,, are i.i.d. Bernoulli with mean p and Y,,41 is an independent Poisson mean
A. It follows from properties of the Poisson distribution that if X, is Poisson with
mean y, then X,y is Poisson with mean pp + A. Setting p = pup + A, we find that a
Poisson distribution with mean p = A/(1 — p) is a stationary distribution.

There is a general result that handles Examples 6.5.6 and 6.5.7 and is useful in a
number of other situations. This will be developed in the next two exercises.

Exercise 6.5.12. Let X,, > 0 be a Markov chain and suppose E,X; < z — € for
x> K, where e > 0. Let Y,, = X, + ne and 7 = inf{n : X, < K}. YA, is a positive
supermartingale and the optional stopping theorem implies E,7 < x/e.

Exercise 6.5.13. Suppose that X, has state space {0,1,2,...}, the conditions of the
last exercise hold when K = 0, and EyX; < oo. Then 0 is positive recurrent. We
leave it to the reader to formulate and prove a similar result when K > 0.

To close the section, we will give a self-contained proof of

Theorem 6.5.7. If p is irreducible and has a stationary distribution w then any other
stationary measure is a multiple of .

Remark. This result is a consequence of Theorems 6.5.4 and Theorem 6.5.3, but we
find the method of proof amusing.

Proof. Since p is irreducible, w(x) > 0 for all z. Let ¢ be a concave function that is
bounded on (0,00), e.g., p(x) = x/(x + 1). Define the entropy of u by

£ = Yo (42 70

” m(y)

The reason for the name will become clear during the proof.

E(up) = ng (Z W) m(y) = Z(p (Z ig; . W(I)p(l‘,y)> (y)

m(y m(y)

>3 Yo (55) Ry

m(y)

since ¢ is concave, and v(x) = m(z)p(x,y)/7(y) is a probability distribution. Since
the 7(y)’s cancel and }° p(x,y) = 1, the last expression = €(u), and we have shown
E(up) > E(u), ie., the entropy of an arbitrary initial measure p is increased by an
application of p.

If p(z,y) > 0 for all x and y, and up = p, it follows that p(z)/7(z) must be
constant, for otherwise there would be strict inequality in the application of Jensen’s
inequality. To get from the last special case to the general result, observe that if p is
irreducible

o0
p(x,y) = Z 27"p"(x,y) >0 for all z,y
n=1

and pp = p implies up = p. O
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6.6 Asymptotic Behavior

The first topic in this section is to investigate the asymptotic behavior of p™(x,y). If y
is transient, > p"(x,y) < 00, so p"(x,y) — 0 as n — oco. To deal with the recurrent

states, we let
n

m=1

be the number of visits to y by time n.

Theorem 6.6.1. Suppose y is recurrent. For any x € S, as n — oo

Nn(y) - 1

L R
EyTy {Ty<oo} a.s

n
Here 1/00 = 0.

Proof. Suppose first that we start at y. Let R(k) = min{n > 1: N,(y) = k} = the
time of the kth return to y. Let ¢, = R(k) — R(k — 1), where R(0) = 0. Since we have
assumed Xg =y, t1,%s,... are i.i.d. and the strong law of large numbers implies

R(k)/k — E,T, P,as
Since R(N,(y)) <n < R(N,(y) + 1),
R(Na(y)) _ 7 R(Nn(y) +1)  Na(y) +1

Nn(y) — Na(y) = Nu(y) +1 No(y)

Letting n — oo, and recalling N, (y) — oo a.s. since y is recurrent, we have

n
— — E,T, P,as.
Na(y) e

To generalize now to « # y, observe that if T, = oo then N,(y) = 0 for all n and
hence
Nn(y)/n— 0 on{T, = oo}

The strong Markov property implies that conditional on {T,, < oo}, to,t3,... are
iid. and have P,(t, = n) = P,(T, =n), so

R(k)/k=t1/k+ (ta+---+t)/k = 0+ E,T, P,-as.
Repeating the proof for the case x = y shows
N,(y)/n — 1/E,T, Pgas. on{T, < oo}
and combining this with the result for {T,, = oo} completes the proof. O

Remark. Theorem 6.6.1 should help explain the terms positive and null recurrent.
If we start from x, then in the first case the asymptotic fraction of time spent at z is
positive and in the second case it is 0.

Since 0 < N, (y)/n < 1, it follows from the bounded convergence theorem that
Ean(y)/n - Ez(]-{Ty<oo}/EyTy)7 50

1 n
- Z p"(2,Y) = pay/EyT, (6.6.1)

m=1
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The last result was proved for recurrent y but also holds for transient y, since in that
case, B, T, = oo, and the limit is 0, since y_, p"(z,y) < co.

(6.6.1) shows that the sequence p™(x, y) always converges in the Cesaro sense. The
next example shows that p™(z,y) need not converge.

Example 6.6.1.

_ (0 1 o (10 3 4 9

A similar problem also occurs in the Ehrenfest chain. In that case, if X is even, then
X1 is odd, Xs is even, ... so p"(z,z) = 0 unless n is even. It is easy to construct
examples with p™(z,x) = 0 unless n is a multiple of 3 or 17 or ...

Theorem 6.6.4 below will show that this “periodicity” is the only thing that can
prevent the convergence of the p™(z,y). First, we need a definition and two prelimi-
nary results. Let x be a recurrent state, let I, = {n > 1: p"(x,x) > 0}, and let d,
be the greatest common divisor of I,,. d, is called the period of x. The first result
says that the period is a class property.

Lemma 6.6.2. If p,, > 0 then d, = d.

Proof. Let K and L be such that p (z,y) > 0 and p”(y,z) > 0. (z is recurrent, so
pyz > 0.)

Py y) 2 P (y,2)p"™ (2,y) > 0
so dy divides K + L, abbreviated d,|(K + L). Let n be such that p™(z,z) > 0.

pE T (y,y) > p(y, 2)p™ (z, 2)p"™ (2,y) > 0

so dy|(K + n + L), and hence dy|n. Since n € I, is arbitrary, dy|d,. Interchanging
the roles of y and x gives d;|d,, and hence d,; = d,. O

If a chain is irreducible and d, = 1 it is said to be aperiodic. The easiest way to
check this is to find a state with p(z,x) > 0. The M/G/1 queue has a; > 0 for all
k > 0, so it has this property. The renewal chain is aperiodic if g.c.d.{k : fr > 0} = 1.

Lemma 6.6.3. Ifd, =1 then p™(z,z) > 0 for m > my.

Proof by example. Suppose 4,7 € I,. p™ ™" (z,z) > p"™(x,z)p"(z,z) so I, is closed
under addition, i.e., if m,n € I, then m +n € I,. A little calculation shows that in
the example

I, > {4, 7.8 11,12, 14,15,16, 18,19,20,21, ...}

so the result is true with mg = 18. (Once I, contains four consecutive integers, it will
contain all the rest.)

Proof. Our first goal is to prove that I, contains two consecutive integers. Let ng,
no+ k € I,. If k =1, we are done. If not, then since the greatest common divisor of
I, is 1, there is an n; € I, so that k is not a divisor of ny. Write n;y = mk + r with
0 <r < k. Since I, is closed under addition, (m + 1)(ng + k) > (m + 1)ng + n; are
both in I,. Their difference is

Em+1)—ny=k—-r<k

Repeating the last argument (at most k times), we eventually arrive at a pair of
consecutive integers N, N + 1 € I,. It is now easy to show that the result holds
for mg = N2. Let m > N? and write m — N2 = kN +r with 0 < r < N. Then
m=r+N2+kN=r(1+N)+(N—r+k)N € I,. O
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Theorem 6.6.4. Convergence theorem. Suppose p is irreducible, aperiodic (i.e.,
all states have d, = 1), and has stationary distribution 7. Then, as n — o0,

p"(z,y) — w(y).
Proof. Let S2 = S x S. Define a transition probability p on S x S by

p((z1,91), (¥2,92)) = p(x1, 22)p(Y1, Y2)

i.e., each coordinate moves independently. Our first step is to check that p is irre-
ducible. This may seem like a silly thing to do first, but this is the only step that
requires aperiodicity. Since p is irreducible, there are K, L, so that pX(z1,22) > 0
and p*(y1,y2) > 0. From Lemma 6.6.3 it follows that if M is large p“*™ (29, 29) > 0
and pK+M(y27 y?) >0, so
pK+L+M((x1a yl)? (x27 y2)) >0

Our second step is to observe that since the two coordinates are independent,
7(a,b) = m(a)m(b) defines a stationary distribution for p, and Theorem 6.5.4 implies
that for p all states are recurrent. Let (X,,Y,) denote the chain on S x S, and let
T be the first time that this chain hits the diagonal {(y,y) : y € S}. Let T, 4 be
the hitting time of (z, ). Since p is irreducible and recurrent, T{, ;) < oo a.s. and
hence T' < oo a.s. The final step is to observe that on {T" < n}, the two coordinates
X, and Y,, have the same distribution. By considering the time and place of the first
intersection and then using the Markov property,

P(X, =y, T<n)= Zn: > P(T=m,Xpm=2,X, =)

m=1 =z

=> > P(T=m Xy, =2)P(X, = y| X, = )
m=1 x

=3 Y P(T=m,Yy =2)P(Y, =y|Vy, = 1)
m=1 =z

:P(Yn:vaSn)
To finish up, we observe that

P(Xn=y)=PY,=y,T <n)+P(X,, =y, T >n)
< PY,=y)+P(X,=yT>n)
and similarly, P(Y, =y) < P(X, =y)+ P(Y, =y,T > n). So
|P(X,=y)—PY,=y)|<PXpn=y,T>n)+PY,=y,T>n)

and summing over y gives

> IP(X, =y) — P(Y, =y)| <2P(T > n)

If we let Xg = x and let Y have the stationary distribution 7, then Y;, has distribution
m, and it follows that

S 10" (@, y) — 7(y)] < 2P(T > n) — 0
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proving the desired result. If we recall the definition of the total variation distance
given in Section 3.6, the last conclusion can be written as

”pn(x")_ﬂ-(')ll SP(T>H)—>0 0

At first glance, it may seem strange to prove the convergence theorem by running
independent copies of the chain. An approach that is slightly more complicated but
explains better what is happening is to define

p(xy, 22)p(y1,y2) if o1 #
q((x1,y1), (z2,92)) = { p(x1, x2) if 1 =y1, 22 = Yo
0 otherwise

In words, the two coordinates move independently until they hit and then move
together. It is easy to see from the definition that each coordinate is a copy of the
original process. If T’ is the hitting time of the diagonal for the new chain (X/,Y),
then X! =Y, on T" < n, so it is clear that

Y IP(X, =y) = P(Y; =y)| <2 P(X;, #Y,;) = 2P(T' > n)

On the other hand, T' and 7" have the same distribution so P(7” > n) — 0, and the
conclusion follows as before. The technique used in the last proof is called coupling.
Generally, this term refers to building two sequences X,, and Y,, on the same space
to conclude that X, converges in distribution by showing P(X,, # Y,,) — 0, or more
generally, that for some metric p, p(Xy,,Y,) — 0 in probability.

Finite state space
The convergence theorem is much easier when the state space is finite.

Exercise 6.6.1. Show that if S is finite and p is irreducible and aperiodic, then there
is an m so that p™(x,y) > 0 for all z,y.

Exercise 6.6.2. Show that if S is finite, p is irreducible and aperiodic, and T is the
coupling time defined in the proof of Theorem 6.6.4 then P(T > n) < Cr™ for some
r < 1and C < co. So the convergence to equilibrium occurs exponentially rapidly in
this case. Hint: First consider the case in which p(z,y) > 0 for all  and y and reduce
the general case to this one by looking at a power of p.

Exercise 6.6.3. For any transition matrix p, define
1 ) .
Qp = SBJP 5 zk: |pn(2’ k) - pn(.]a k)|

The 1/2 is there because for any ¢ and j we can define r.v.’s X and Y so that
P(X = k) =p"(i,k), P(Y = k) = p"(j, k), and

P(X #Y)=(1/2) Y p"(i,k) = p" (G, k)|
k

Show that a1 < apa,,. Here you may find the coupling interpretation may help
you from getting lost in the algebra. Using Lemma 2.6.1, we can conclude that
1

. 1
-~ log oy, — Tilnzfl o log a,

so if a, < 1 for some m, it approaches 0 exponentially fast.
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As the last two exercises show, Markov chains on finite state spaces converge
exponentially fast to their stationary distributions. In applications, however, it is
important to have rates of convergence. The next two problems are a taste of an
exciting research area.

Example 6.6.2. Shuffling cards. The state of a deck of n cards can be represented
by a permutation, 7(¢) giving the location of the ith card. Consider the following
method of mixing the deck up. The top card is removed and inserted under one of
the n — 1 cards that remain. I claim that by following the bottom card of the deck
we can see that it takes about mlogn moves to mix up the deck. This card stays
at the bottom until the first time (77) a card is inserted below it. It is easy to see
that when the kth card is inserted below the original bottom card (at time T}), all
k! arrangements of the cards below are equally likely, so at time 7, = T,,_1 + 1 all n!
arrangements are equally likely. If welet Tp = 0and ty, = T —Tp—1 for 1 <k <n-—1,
then these r.v.’s are independent, and t; has a geometric distribution with success
probability k/(n — 1). These waiting times are the same as the ones in the coupon
collector’s problem (Example 2.2.3), so 7,/(nlogn) — 1 in probability as n — oo.
For more on card shuffling, see Aldous and Diaconis (1986).

Example 6.6.3. Random walk on the hypercube. Consider {0,1}¢ as a graph
with edges connecting each pair of points that differ in only one coordinate. Let
X,, be a random walk on {0,1}¢ that stays put with probability 1/2 and jumps
to one of its d neighbors with probability 1/2d each. Let Y, be another copy of
the chain in which Yy (and hence Y,,, n > 1) is uniformly distributed on {0, 1}
We construct a coupling of X,, and Y,, by letting Uy, Us,... be i.i.d. uniform on
{1,2,...,d}, and letting Vi, V5, ... be independent i.i.d. uniform on {0, 1} At time n,
the U,th coordinates of X and Y are each set equal to V,,. The other coordinates are
unchanged. Let Ty = inf{m : {Uy,...,U,} ={1,2,...,d}}. Whenn > Ty, X,, =Y.
Results for the coupon collectors problem (Example 2.2.3) show that Ty/(dlogd) — 1
in probability as d — oo.

EXERCISES
6.6.4. Strong law for additive functionals. Suppose p is irreducible and has

stationary distribution 7. Let f be a function that has 3" | f(y)|7(y) < oo. Let T* be
the time of the kth return to z. (i) Show that

ka = f(X(T*) + -+ f(X(TF - 1)), k>1areiid.

with E|V/| < co. (ii) Let K,, = inf{k : T* > n} and show that

& f
1 EV,
f T
W Vi e = TS0 Bimes
(iif) Show that maxi<m<n nlmf‘/n — 0 and conclude

S (Xm) = S fy)n(y) P —as.

m=1

3=

for any initial distribution .
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6.6.5. Central limit theorem for additive functionals. Suppose in addition to
the conditions in the Exercise 6.6.4 that Y f(y)m(y) = 0, and E,;(Vklf‘)2 < o0. (i)
Use the random index central limit theorem (Exercise 3.4.6) to conclude that for any
initial distribution p

Z 7 = cx under P,

(i) Show that maxi<m<n v/ /+/n — 0 in probability and conclude

fo ) = cx under P,

6.6.6. Ratio Limit Theorems. Theorem 6.6.1 does not say much in the null
recurrent case. To get a more informative limit theorem, suppose that y is recurrent
and m is the (unique up to constant multiples) stationary measure on C, = {z :
pyz > 0}. Let N, (2) = [{m < n: X, = z}|. Break up the path at successive returns
to y and show that N, (z)/N,(y) — m(z)/m(y) Ps-a.s. for all z,z € C,. Note that
n — N, (z) is increasing, so this is much easier than the previous problem.

6.6.7. We got (6.6.1) from Theorem 6.6.1 by taking expected value. This does not
work for the ratio in the previous exercise, so we need another approach. Suppose
z #y. (i) Let pp(x,2) = Pp(X, = 2,Ty > n) and decompose p”(x, z) according to
the value of J = sup{j € [1,m) : X; =y} to get

Zp mzzmzn:

n—

1 n—
P ()Y prly, 2
1 1

(ii) Show that

e ]SS g m2)
> p ) [ Y )

m=1 m=1

6.7 Periodicity, Tail o-field*

Lemma 6.7.1. Suppose p is irreducible, recurrent, and all states have period d. Fix
x € 8, and for each y € S, let K, = {n > 1 : p"(z,y) > 0}. (i) There is an
ry € {0,1,...,d — 1} so that if n € K, then n =r, mod d, i.e., the difference n —r,
is a multiple of d. (i) Let S, ={y:ry =1} for0<r <d. IfyesS;, z€S;, and
p"(y,z) > 0 then n = (j — i) mod d. (iii) So,S1,...,S4—1 are irreducible classes for

p?, and all states have period 1.

Proof. (i) Let m(y) be such that p™®¥)(y,z) > 0. If n € K, then p"*"W)(z, x) is
positive so d|(n+m). Let ry = (d—m(y)) mod d. (ii) Let m,n be such that p"(y, z),
p™(x,y) > 0. Since p"T™(z,z) > 0, it follows from (i) that n +m = j mod d.
Since m = ¢ mod d, the result follows. The irreducibility in (iii) follows immediately
from (ii). The aperiodicity follows from the definition of the period as the g.c.d.
{z: p"(z,x) > 0}. O

A partition of the state space Sy, Si,...,S4—1 satisfying (ii) in Lemma 6.7.1 is
called a cyclic decomposition of the state space. Except for the choice of the set
to put first, it is unique. (Pick an = € S. It lies in some S}, but once the value of j
is known, irreducibility and (ii) allow us to calculate all the sets.)
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Exercise 6.7.1. Find the decomposition for the Markov chain with transition prob-
ability

O U W=

OO DO O
oo OoOoON
OO rR R OO W
O OO OOtk
OO OO OO ;W
=N eNeloNoNolle)
cCooco R JOoON

Theorem 6.7.2. Convergence theorem, periodic case. Suppose p is irreducible,
has a stationary distribution w, and all states have period d. Let x € S, and let
S0,51,.-.,54-1 be the cyclic decomposition of the state space with x € Sy. Ify € S,

then
lim p™**7 (z,y) = 7(y)d

m— 00

Proof. If y € Sy then using (iii) in Lemma 6.7.1 and applying Theorem 6.6.4 to p?
shows
lim p™4(x,y) exists

m—00

To identify the limit, we note that (6.6.1) implies

% > " (a,y) — 7 (y)

m=1

and (ii) of Lemma 6.7.1 implies p™(z,y) = 0 unless d|m, so the limit in the first
display must be 7(y)d. If y € S, with 1 <r < d then

pmd+r Z p y>

z€S,

Since y, z € S, it follows from the first case in the proof that p™?(z,y) — n(y)d as
m — o0. p™4(z,y) < 1,and Y, p"(z,z) = 1, so the result follows from the dominated
convergence theorem. O

Let F), = 0(Xnt1, Xnt2,...) and T = N, F) be the tail o-field. The next result
is due to Orey. The proof we give is from Blackwell and Freedman (1964).

Theorem 6.7.3. Suppose p is irreducible, recurrent, and all states have period d,
T=0({Xo€ S }:0<r<d).
Remark. To be precise, if p is any initial distribution and A € 7 then there is an r

so that A ={X, € S,} P,-as.

Proof. We build up to the general result in three steps.

Case 1. Suppose P(Xo =x) = 1. Let To = 0, and for n > 1, let T}, = inf{m > T,,_1 :
X, = x} be the time of the nth return to z. Let

Vi =(X(Th-1),...,X(T, — 1))

The vectors V,, are i.i.d. by Exercise 6.4.1, and the tail o-field is contained in the
exchangeable field of the V;,, so the Hewitt-Savage 0-1 law (Theorem 4.1.1, proved
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there for r.v’s taking values in a general measurable space) implies that 7 is trivial
in this case.

Case 2. Suppose that the initial distribution is concentrated on one cyclic class, say
So. If A €T then P,(A) € {0,1} for each x by case 1. If P,(A) =0 for all z € S
then P,(A) = 0. Suppose P,(A) > 0, and hence = 1, for some y € Sy. Let z € Sp.
Since p? is irreducible and aperiodic on Sy, there is an n so that p"(z,y) > 0 and
p"(y,y) > 0. If we write 14 = 1p 0#6,, then the Markov property implies

1 = B,(A) = E,(E,(1p 0 6, F.)) = E,(Ex, 15)
so P,(B) = 1. Another application of the Markov property gives
PZ(A) = EZ(EanB) > pn(zvy) >0

so P,(A) =1, and since z € S is arbitrary, P,(A) = 1.

General Case. From case 2, we see that P(A|Xo =y) = 1 or = 0 on each cyclic class.
This implies that either {Xo € S,} C Aor {Xy € S;} N A =0 P, as. Conversely, it
is clear that {Xy € S} = {X,q € S 1.0.} € T, and the proof is complete. O

The next result will help us identify the tail o-field in transient examples.

Theorem 6.7.4. Suppose X has initial distribution . The equations

hWXy,n) =E,(Z|F,) and Z= lim h(X,,n)
n—oo
set up a 1-1 correspondence between bounded Z € T and bounded space-time har-
monic functions, i.e., bounded h : S x {0,1,...} — R, so that h(X,,n) is a mar-
tingale.

Proof. Let Z € T, write Z =Y,, 00, and let h(x,n) = E,Y,.
Eu(Z|Fn) = Eu(Yn 0 0, Fn) = M(X;,n)

by the Markov property, so h(X,,n) is a martingale. Conversely, if h(X,,n) is a
bounded martingale, using Theorems 5.2.8 and 5.5.6 shows h(X,,n) — Z € T as
n — oo, and h(X,,n) = E,(Z|F,). O

Exercise 6.7.2. A random variable Z with Z = Z 0 0, and hence = Z o 6,, for all n,
is called invariant. Show there is a 1-1 correspondence between bounded invariant
random variables and bounded harmonic functions. We will have more to say about
invariant r.v.’s in Section 7.1.

Example 6.7.1. Simple random walk in d dimensions. We begin by construct-
ing a coupling for this process. Let i,ia,... be i.i.d. uniform on {1,...,d}. Let
&1,&,... and n1,72,... be i.i.d. uniform on {—1,1}. Let e; be the jth unit vector.
Construct a coupled pair of d-dimensional simple random walks by

Xy = Xn—1 +e(in)én
Y, = Yno1+ e(ln)gn if X,ilw;l = Yéﬁl
T Yaor e(in)mn X A Y

In words, the coordinate that changes is always the same in the two walks, and once
they agree in one coordinate, future movements in that direction are the same. It is
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easy to see that if Xé — Yoi is even for 1 < ¢ < d, then the two random walks will hit
with probability one.

Let Lo = {z € Z4: 2t + ... + 2% is even } and L; = Z? — Ly. Although we
have only defined the notion for the recurrent case, it should be clear that Lg, Ly is
the cyclic decomposition of the state space for simple random walk. If S,, € L; then
Sn+1 € L1—; and p? is irreducible on each L;. To couple two random walks starting
from z,y € L;, let them run independently until the first time all the coordinate
differences are even, and then use the last coupling. In the remaining case, x € Lo,
y € Ly coupling is impossible.

The next result should explain our interest in coupling two d-dimensional simple
random walks.

Theorem 6.7.5. For d-dimensional simple random walk,
T = O‘({Xo S Li},i = 0,1)

Proof. Let x,y € L;, and let X,,, Y,, be a realization of the coupling defined above
for Xo = z and Yy = y. Let h(x,n) be a bounded space-time harmonic function.
The martingale property implies h(z,0) = E, h(X,,n). If |h| < C, it follows from the
coupling that

|h(x,0) = h(y,0)| = |ER(Xy,n) — ER(Yy,n)| < 20P(X, #Y,) — 0

so h(x,0) is constant on Lo and L;. Applying the last result to h'(x, m) = h(z,n+m),
we see that h(z,n) = a’, on L;. The martingale property implies a!, = a,,;, and the
desired result follows from Theorem 6.7.4. O

Example 6.7.2. Ornstein’s coupling. Let p(z,y) = f(y — ) be the transition
probability for an irreducible aperiodic random walk on Z. To prove that the tail
o-field is trivial, pick M large enough so that the random walk generated by the
probability distribution fas(x) with fas(x) = car f(2x) for |x| < M and far(x) = 0 for
|z| > M is irreducible and aperiodic. Let Zy, Zs,. .. be i.i.d. with distribution f and
let Wy, Wy, ... be i.i.d. with distribution fp;. Let X, = X,,_1 + Z, for n > 1. If
X1 =Y,_1, we set X,, =Y,,. Otherwise, we let

v _ Y+ Zn i |Zp]>m
" Yo+ W, if | Z,] <m

In words, the big jumps are taken in parallel and the small jumps are independent. The
recurrence of one-dimensional random walks with mean 0 implies P(X,, # Y,) — 0.
Repeating the proof of Theorem 6.7.5, we see that 7 is trivial.

The tail o-field in Theorem 6.7.5 is essentially the same as in Theorem 6.7.3. To
get a more interesting 7, we look at:

Example 6.7.3. Random walk on a tree. To facilitate definitions, we will consider
the system as a random walk on a group with 3 generators a, b, ¢ that have a? = b2 =
c? = e, the identity element. To form the random walk, let &1, &s, ... be i.i.d. with
P&, =2)=1/3forxz =a,b,c,and let X,, = X,,_1&,. (This is equivalent to a random
walk on the tree in which each vertex has degree 3 but the algebraic formulation is
convenient for computations.) Let L,, be the length of the word X,, when it has been
reduced as much as possible, with L,, = 0 if X,, = e. The reduction can be done

as we go along. If the last letter of X,,_1 is the same as &,, we erase it, otherwise
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we add the new letter. It is easy to see that L, is a Markov chain with a transition
probability that has p(0,1) = 1 and

P, —1)=1/3  p(G,j+1)=2/3 forj=1

Asn — oo, L, — oo. From this, it follows easily that the word X,, has a limit in the
sense that the ith letter X! stays the same for large n. Let X, be the limiting word,
ie, X!, =1limX.. 7 D o(X,i > 1), but it is easy to see that this is not all. If
So = the words of even length, and S; = S§, then X,, € S; implies X, +1 € S1_;, so
{Xo € So} € T . Can the reader prove that we have now found all of 77 As Fermat
once said, “I have a proof but it won’t fit in the margin.”

Remark. This time the solution does not involve elliptic curves but uses “h-paths.”
See Furstenburg (1970) or decode the following: “Condition on the exit point (the
infinite word). Then the resulting RW is an h-process, which moves closer to the
boundary with probability 2/3 and farther with probability 1/3 (1/6 each to the two
possibilities). Two such random walks couple, provided they have same parity.” The
quote is from Robin Pemantle, who says he consulted Itai Benajamini and Yuval
Peres.

6.8 General State Space*

In this section, we will generalize the results from Sections 6.4-6.6 to a collection of
Markov chains with uncountable state space called Harris chains. The developments
here are motivated by three ideas. First, the proofs for countable state space if there
is one point in the state space that the chain hits with probability one. (Think,
for example, about the construction of the stationary measure via the cycle trick.)
Second, a recurrent Harris chain can be modified to contain such a point. Third,
the collection of Harris chains is a comfortable level of generality; broad enough to
contain a large number of interesting examples, yet restrictive enough to allow for a
rich theory.

We say that a Markov chain X, is a Harris chain if we can find sets A, B € S,
a function ¢ with ¢(z,y) > ¢ > 0 for x € A, y € B, and a probability measure p
concentrated on B so that:

(i) If 74 =inf{n > 0: X,, € A}, then P,(74 < 00) >0 for all z € S.
(ii) If z € A and C C B then p(x,C) > [, q(z,y) p(dy).
To explain the definition we turn to some examples:

Example 6.8.1. Countable state space. If S is countable and there is a point a
with pgq > 0 for all z (a condition slightly weaker than irreducibility) then we can
take A = {a}, B = {b}, where b is any state with p(a,b) > 0, u = J, the point mass
at b, and ¢(a,b) = p(a,b).

Conversely, if S is countable and (A’, B') is a pair for which (i) and (ii) hold, then
we can without loss of generality reduce B’ to a single point b. Having done this, if
we set A = {b}, pick ¢ so that p(b,c) > 0, and set B = {c}, then (i) and (ii) hold with
A and B both singletons.

Example 6.8.2. Chains with continuous densities. Suppose X,, € R is a
Markov chain with a transition probability that has p(z,dy) = p(z,y)dy where
(z,y) — p(z,y) is continuous. Pick (zg,yo) so that p(xg,y0) > 0. Let A and B
be open sets around zy and yo that are small enough so that p(xz,y) > ¢ > 0 on
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A x B. If we let p(C) = |BnNC|/|B|, where |B| is the Lebesgue measure of B, then
(ii) holds. If (i) holds, then X, is a Harris chain.

For concrete examples, consider:

(a) Diffusion processes are a large class of examples that lie outside the scope
of this book, but are too important to ignore. When things are nice, specifically,
if the generator of X has Holder continuous coefficients satisfying suitable growth
conditions, see the Appendix of Dynkin (1965), then P(X; € dy) = p(x,y)dy, and p
satisfies the conditions above.

(b) ARMAP’s. Let &,&,... be iid. and V,, = 0V,_1 + &,. V, is called an
autoregressive moving average process or armap for short. We call V,, a
smooth armap if the distribution of &, has a continuous density g. In this case
p(z,dy) = g(y — 0x) dy with (z,y) — g(y — 6x) continuous.

In the analyzing the behavior of armap’s there are a number of cases to consider
depending on the nature of the support of &,. We call V,, a simple armap if the
density function for &, is positive for at all points in R. In this case we can take
A= B =[-1/2,1/2] with p = the restriction of Lebesgue measure.

(c) The discrete Ornstein-Uhlenbeck process is a special case of (a) and (b). Let
£1,&, ... beii.d. standard normals and let V,, = 0V,,_1 +&,,. The Ornstein-Uhlenbeck
process is a diffusion process {V;,t € [0,00)} that models the velocity of a particle
suspended in a liquid. See, e.g., Breiman (1968) Section 16.1. Looking at V; at integer
times (and dividing by a constant to make the variance 1) gives a Markov chain with
the indicated distributions.

Example 6.8.3. GI/G/1 queue, or storage model. Let &;,&s,... be i.i.d. and
define W, inductively by W,, = (W,,_1 + &,)". If P(§, < 0) > 0 then we can take
A =B = {0} and (i) and (ii) hold. To explain the first name in the title, consider a
queueing system in which customers arrive at times of a renewal process, i.e., at times
0=Ty<Ty <Ty...with §, =T, — Tj,—1, n > 11i.i.d. Let n,, n > 0, be the amount
of service time the nth customer requires and let &, = n,—1 — (,,. I claim that W, is
the amount of time the nth customer has to wait to enter service. To see this, notice
that the (n — 1)th customer adds 7,,—1 to the server’s workload, and if the server is
busy at all times in [T,,_1,T}), he reduces his workload by (,. If Wy,_1 + nn—1 <
then the server has enough time to finish his work and the next arriving customer will
find an empty queue.

The second name in the title refers to the fact that W,, can be used to model the
contents of a storage facility. For an intuitive description, consider water reservoirs.
We assume that rain storms occur at times of a renewal process {7}, : n > 1}, that
the nth rainstorm contributes an amount of water 7, and that water is consumed at
constant rate c. If we let ¢, = T,, — T;,—1 as before, and &, = n,-1 — ¢(,, then W,
gives the amount of water in the reservoir just before the nth rainstorm.

History Lesson. Doeblin was the first to prove results for Markov chains on general
state space. He supposed that there was an n so that p™(z,C) > €p(C) for all z € S
and C' C S. See Doob (1953), Section V.5, for an account of his results. Harris (1956)
generalized Doeblin’s result by observing that it was enough to have a set A so that (i)
holds and the chain viewed on A (Y; = X (T%), where T = inf{n > T%' : X,, € A}
and TQ = 0) satisfies Doeblin’s condition. Our formulation, as well as most of the
proofs in this section, follows Athreya and Ney (1978). For a nice description of the
“traditional approach,” see Revuz (1984).
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Given a Harris chain on (.9, S), we will construct a Markov chain X,, with transition
probability p on (S,S), where S = SU {a} and S = {B, BU{a} : B € S}. The
aim, as advertised earlier, is to manufacture a point a that the process hits with
probability 1 in the recurrent case.

fzeS—-A p(xC)=p(C)forCeS
IfzeA { €
)=p(z,C) —ep(C) for C € S

C
Ifer=« p(a, D) = [ p(dz)p(z, D) for D € S

Intuitively, X,, = « corresponds to X,, being distributed on B according to p. Here,
and in what follows, we will reserve A and B for the special sets that occur in the
definition and use C and D for generic elements of S. We will often simplify notation
by writing p(x, «) instead of p(z, {a}), u(a) instead of u({a}), etc.

Our next step is to prove three technical lemmas that will help us develop the
theory below. Define a transition probability v by

vz, {z}) =1 if z€8 v(a, C) = p(C)

In words, V' leaves mass in S alone but returns the mass at « to .S and distributes it
according to p.

Lemma 6.8.1. vp = p and pv = p.

Proof. Before giving the proof, we would like to remind the reader that measures
multiply the transition probability on the left, i.e., in the first case we want to show
pop = pp. If we first make a transition according to v and then one according to p,
this amounts to one transition according to p, since only mass at « is affected by v
and

pla, D) = / p(dz)p(z, D)

The second equality also follows easily from the definition. In words, if p acts first
and then v, then v returns the mass at o to where it came from. O

From Lemma 6.8.1, it follows easily that we have:

Lemma 6_.8.2. Let Y, be an inhomogeneous Markov chain with pox, = v and pag+1 =
p. Then X, = Y, is a Markov chain with transition probability p and X,, = Yon41
is a Markov chain with transition probability p.

Lemma 6.8.2 shows that there is an intimate relationship between the asymptotic
behavior of X;, and of X,,. To quantify this, we need a definition. If f is a bounded
measurable function on S, let f =vf, ie., f(z) = f(z) for z € S and f(a) = [ fdp.

Lemma 6.8.3. If u is a probability measure on (S,S) then
Euf(Xn) = Euf(Xn)

Proof. Observe that if X, and X,, are constructed as in Lemma 6.8.2, and P(X, €
S) =1 then Xy = Xy and X, is obtained from X,, by making a transition according
to v. O



6.8. GENERAL STATE SPACE* 273

The last three lemmas will allow us to obtain results for X,, from those for X,,. We
turn now to the task of generalizing the results of Sections 6.4-6.6 to X,,. To facilitate
comparison with the results for countable state space, we will break this section into
four subsections, the first three of which correspond to Sections 6.4—6.6. In the fourth
subsection, we take an in depth look at the GI/G/1 queue. Before developing the
theory, we will give one last example that explains why some of the statements are
messy.

Example 6.8.4. Perverted O.U. process. Take the discrete O.U. process from
part (c¢) of Example 6.8.2 and modify the transition probability at the integers x > 2
so that

pla{z+1}) =1-27?
p(z,A) =2 2|A] for AcC (0,1)

p is the transition probability of a Harris chain, but

Py(X, =n+2foraln)>0

“

I can sympathize with the reader who thinks that such chains will not arise “in
applications,” but it seems easier (and better) to adapt the theory to include them
than to modify the assumptions to exclude them.

6.8.1 Recurrence and Transience

We begin with the dichotomy between recurrence and transience. Let R = inf{n >
1:X, =a}. If P,(R< o) =1 then we call the chain recurrent, otherwise we
call it transient. Let Ry = R and for k > 2, let Ry = inf{n > Ry_; : X,, = a} be
the time of the kth return to «. The strong Markov property implies P, (Rj < 00) =
P.(R < 0¥, s0 P,(X,, = ai.0.) = 1 in the recurrent case and = 0 in the transient

case. It is easy to generalize Theorem 6.4.2 to the current setting.
Exercise 6.8.1. X,, is recurrent if and only if > 2 | p"(a, @) = oo0.
The next result generalizes Lemma 6.4.3.

Theorem 6.8.4. Let \(C) = >_7° 27"p"(, C). In the recurrent case, if \(C) > 0
then P, (X, € C i.0.) =1. For A-a.e. x, P,(R < o0) = 1.

Proof. The first conclusion follows from Lemma 6.3.3. For the second let D = {z :
P.(R < 00) < 1} and observe that if p™(a, D) > 0 for some n, then

Pu(X = aio) < /ﬁ"(a,dm)Pz(R <o)< 1 0

Remark. Example 6.8.4 shows that we cannot expect to have P,(R < oo) = 1 for
all z. To see that even when the state space is countable, we need not hit every point
starting from a do

Exercise 6.8.2. If X, is a recurrent Harris chain on a countable state space, then S
can only have one irreducible set of recurrent states but may have a nonempty set of
transient states. For a concrete example, consider a branching process in which the
probability of no children py > 0 and set A = B = {0}.
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Exercise 6.8.3. Suppose X, is a recurrent Harris chain. Show that if (A’, B) is
another pair satisfying the conditions of the definition, then Theorem 6.8.4 implies
P,(X, € A’ i.0.) =1, so the recurrence or transience does not depend on the choice
of (A, B).

As in Section 6.4, we need special methods to determine whether an example is
recurrent or transient.

Exercise 6.8.4. In the GI/G/1 queue, the waiting time W,, and the random walk
Sp = Xo+& 4+ -+&, agree until N = inf{n : S,, < 0}, and at this time W = 0. Use
this observation as we did in Example 6.4.7 to show that Example 6.8.3 is recurrent
when F¢, <0 and transient when E¢,, > 0.

Exercise 6.8.5. Let V,, be a simple smooth armap with F|§;| < oo. Show that if
0 < 1 then E,|Vi| < |z| for |z] > M. Use this and ideas from the proof of Theorem
6.4.8 to show that the chain is recurrent in this case.

Exercise 6.8.6. Let V,, be an armap (not necessarily smooth or simple) and suppose
6 > 1. Let v € (1,0) and observe that if 2 > 0 then P,(V; < vz) < C/((8 — 7)x), so
if x is large, Py (V, > v"x for all n) > 0.

Remark. In the case § = 1 the chain V,, discussed in the last two exercises is a
random walk with mean 0 and hence recurrent.

Exercise 6.8.7. In the discrete O.U. process, X, 11 is normal with mean 6X,, and
variance 1. What happens to the recurrence and transience if instead Y;, 1 is normal
with mean 0 and variance 32|Y,,|?

6.8.2 Stationary Measures
Theorem 6.8.5. In the recurrent case, there is a stationary measure.

Proof. Let R=inf{n >1: X, = a}, and let

R—-1 00
a(C) = E, (Z 1{Xnec}> =Y Pu(Xn,€C,R>n)
n=0

n=0

Repeating the proof of Theorem 6.5.2 shows that gp = . If we let p = jiv then it
follows from Lemma 6.8.1 that pvp = ppv = fiv, so up = p. O

Exercise 6.8.8. Let Gy s = {z : pF(z,a) > &}. Show that (G s) < 2k/§ and use
this to conclude that i and hence p is o-finite.

Exercise 6.8.9. Let A\ be the measure defined in Theorem 6.8.5. Show that g << A
and A\ << [i.

Exercise 6.8.10. Let V,, be an armap (not necessarily smooth or simple) with § < 1
and Elog™ |¢,| < co. Show that Ym0 0™ &m converges a.s. and defines a stationary
distribution for V,,. B

Exercise 6.8.11. In the GI/G/1 queue, the waiting time W,, and the random walk
Sn=Xo+& + -+ &, agree until N = inf{n : S,, < 0}, and at this time Wy = 0.
Use this observation as we did in Example 6.5.6 to show that if F¢, < 0, EN < oo
and hence there is a stationary distribution.

To investigate uniqueness of the stationary measure, we begin with:
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Lemma 6.8.6. If v is a o-finite stationary measure for p, then v(A) < co and v = vp
is a stationary measure for p with v(a) < co.

Proof. We will first show that v(A4) < co. If ¥(A) = oo then part (ii) of the definition
implies v(C) = oo for all sets C' with p(C) > 0. If B = U;B; with v(B;) <
then p(B;) = 0 by the last observation and p(B) = 0 by countable subadditivity, a
contradiction. So v(A) < oo and 7(a) = vp(a) = ev(A) < co. Using the fact that
vp = v, we find

vB(C) = v(C) — e A)p(B N C)

the last subtraction being well-defined since v(A) < oo, and it follows that v = v.
To check Up = v, we observe that Lemma 6.8.1 and the last result imply 7p = vvp =
vp =VU.

O

Theorem 6.8.7. Suppose p is recurrent. If v is a o-finite stationary measure then
v = v(a)pu, where p is the measure constructed in the proof of Theorem 6.8.5.

Proof. By Lemma 6.8.6, it suffices to prove that if 7 is a stationary measure for p
with 7(a)) < oo then 7 = («)fi. Repeating the proof of Theorem 6.5.3 with a = a, it
is easy to show that 7(C) > v(a)u(C). Continuing to compute as in that proof:

7(a) = / #(dn)f" (z, @) > 7(a) / A(dz)p (z, 0) = P(a)fi(a) = #(a)

Let S, = {x : p"(z,«) > 0}. By assumption, U,S, = S. If (D) > v(a)i(D)
for some D, then 7(D N S,) > v(a)a(D N Sy), and it follows that v(a) > 7(a) a
contradiction. O

6.8.3 Convergence Theorem

We say that a recurrent Harris chain X, is aperiodic if g.c.d. {n > 1: p"*(a,a) >
0} = 1. This occurs, for example, if we can take A = B in the definition for then
p(a, ) > 0.

Theorem 6.8.8. Let X,, be an aperiodic recurrent Harris chain with stationary dis-
tribution 7. If P,(R < 00) =1 then as n — oo,

Ip"(z,) =7 ()| — 0

Note. Here ||| denotes the total variation distance between the measures. Lemma
6.8.4 guarantees that m a.e. x satisfies the hypothesis.

Proof. In view of Lemma 6.8.3, it suffices to prove the result for p. We begin by
observing that the existence of a stationary probability measure and the uniqueness
result in Theorem 6.8.7 imply that the measure constructed in Theorem 6.8.5 has
E.R = pi(S) < oo. Asin the proof of Theorem 6.6.4, we let X,, and Y;, be independent
copies of the chain with initial distributions ¢, and 7, respectively, and let 7 = inf{n >
0:X,=Y,=a}. Form>0,let S, (resp. T,,,) be the times at which X,, (resp. Y},)
visit a for the (m + 1)th time. S,, — T}, is a random walk with mean 0 steps, so
M =inf{m >1:S,, =T,} < oo as., and it follows that this is true for 7 as well.
The computations in the proof of Theorem 6.6.4 show |P(X,, € C) — P(Y,, € O)] <
P(T > n). Since this is true for all C, |[p"(z,) — 7(:)|| < P(r > n), and the proof is
complete. O
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Exercise 6.8.12. Use Exercise 6.8.1 and imitate the proof of Theorem 6.5.4 to show
that a Harris chain with a stationary distribution must be recurrent.

Exercise 6.8.13. Show that an armap with 6 < 1 and Elog™ |€n| < oo converges in
distribution as n — oo. Hint: Recall the construction of 7 in Exercise 6.8.10.

6.8.4 GI/G/1 queue

For the rest of the section, we will concentrate on the GI/G/1 queue. Let &;,&o, ...
be i.i.d., let W,, = (W,_1 +&,)", and let S,, = &1 + -+ + &, Recall &, = 11 — (o,
where the n’s are service times, (’s are the interarrival times, and suppose E¢, < 0
so that Exercise 6.11 implies there is a stationary distribution.

Exercise 6.8.14. Let m,, = min(Sy, S1, ..., Sy), where S,, is the random walk defined
above. (i) Show that S, — m, =4 W,. (ii) Let &, = &{ut1-m for 1 < m < n.
Show that S, — m, = max(S{,S],...,S)). (iii) Conclude that as n — oo we have
W,, = M = max(S}, 5,55, ...).

Explicit formulas for the distribution of M are in general difficult to obtain. How-
ever, this can be done if either the arrival or service distribution is exponential. One
reason for this is:

Exercise 6.8.15. Suppose X, Y > 0 are independent and P(X > z) = e~**. Show
that P(X —Y > z) = ae™**, where a = P(X — Y > 0).

Example 6.8.5. Exponential service time. Suppose P(n, > z) = ¢ ”* and
E¢, > En,. Let T = inf{n : S, > 0} and L = Sy, setting L = —oco if T = oo. The
lack of memory property of the exponential distribution implies that P(L > z) =
re P* where r = P(T < oo0). To compute the distribution of the maximum, M, let
Ty =T and let T, = inf{n > Ty_1 : S, > S1,_,} for k > 2. Theorem 4.1.3 implies
that if Ty, < oo then S(Tk41) — S(T%) =q L and is independent of S(7}). Using this
and breaking things down according to the value of K = inf{k : Ly, = —oo}, we see
that for z > 0 the density function

P(M _ I) — ZTk(l _ r)efﬁmﬂkxkfl/(k _ 1)| _ ﬁr(l _ T)efﬂm(lfr)
k=1

To complete the calculation, we need to calculate r. To do this, let

@(0) = Eexp(0¢,) = Eexp(0n,-1)F exp(—0¢,)

which is finite for 0 < § < ( since ¢, > 0 and 7,1 has an exponential distribution.
It is easy to see that

¢'(0) = B& <0 limo(9) = oo

so there is a § € (0, 3) with ¢(0) = 1. Exercise 5.7.4 implies exp(0S,,) is a martingale.
Theorem 5.4.1 implies 1 = E exp(0Stan). Letting n — oo and noting that (S, |T = n)
has an exponential distribution and S,, — —oo on {T' = oo}, we have

1:1"/ % Be P d = !
0 p—0



6.8. GENERAL STATE SPACE* 277

Example 6.8.6. Poisson arrivals. Suppose P(¢, > z) = ¢~ ** and E(, > En,.
Let S,, = —S5,,. Reversing time as in (ii) of Exercise 6.8.14, we see (for n > 1)

P(max Sk<5_'n€A> :P< min §k>0,§n€A>
0<k<n 1<k<n

Let 1, (A) be the common value of the last two expression and let 1(A) = > - ¥n(A).
tn(A) is the probability the random walk reaches a new maximum (or ladder height,
see Example 4.1.4 in A at time n, so ¥(A) is the number of ladder points in A with
¥({0}) = 1. Letting the random walk take one more step

P (12}32”5;.3 > 0,841 < x) = /F(a: — 2)dn(2)

The last identity is valid for n = 0 if we interpret the left-hand side as F(z). Let
T =1inf{n > 1:5, <0} and z < 0. Integrating by parts on the right-hand side and
then summing over n > 0 gives

P(S,<ax)=>_P <1I<r}€ign Sk > 0,841 < x)
n=0 -

= ¥[0, 2 — y] dF (y) (6.8.1)

y<z

The limit y < x comes from the fact that ¢ ((—o00,0)) = 0.

Let & = S, — S,_1 = —&,. Exercise 6.8.15 implies P(€, > ) = ae”**. Let
T =inf{n: S, >0}. E§ >0s0 P(T < co)=1. Let J = Sr. As in the previous
example, P(J > z) = e **. Let V,, = J1 +--- + J,. V,, is a rate a Poisson process,
so [0,z —y] = 14+ a(z —y) for x —y > 0. Using (6.8.1) now and integrating by parts
gives

P(S, <) = / _(+a(e—y) dF()

= F(x)+ a/m F(y)dy for x <0 (6.8.2)

— 00

Since P(S,, = 0) = 0 for n > 1, —S, has the same distribution as St, where T' =
inf{n : S, > 0}. Combining this with part (ii) of Exercise 6.8.14 gives a “formula” for
P(M > z). Straightforward but somewhat tedious calculations show that if B(s) =
E exp(—sny,), then

(1—a-En)s

Eexp(—sM) = s—ataB(s)

a result known as the Pollaczek-Khintchine formula. The computations we omit-
ted can be found in Billingsley (1979) on p. 277 or several times in Feller, Vol. II
(1971).
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Chapter 7

Ergodic Theorems

X, n >0, is said to be a stationary sequence if for each k > 1 it has the same dis-
tribution as the shifted sequence X, 4+, n > 0. The basic fact about these sequences,
called the ergodic theorem, is that if E|f(Xo)| < oo then

1 n—1
lim — f(X,,) exists a.s.
nTmee oo
If X, is ergodic (a generalization of the notion of irreducibility for Markov chains)
then the limit is Ef(Xy). Sections 7.1 and 7.2 develop the theory needed to prove
the ergodic theorem. In Section 7.3, we apply the ergodic theorem to study the
recurrence of random walks with increments that are stationary sequences finding
remarkable generalizations of the i.i.d. case. In Section 7.4, we prove a subadditive
ergodic theorem. As the examples in Sections 7.4 and 7.5 should indicate, this is a
useful generalization of th ergodic theorem.

7.1 Definitions and Examples

Xo,X1,... is said to be a stationary sequence if for every k, the shifted se-
quence {Xjin,n > 0} has the same distribution, i.e., for each m, (Xo,..., X;n) and
(Xk, -, Xgrm) have the same distribution. We begin by giving four examples that
will be our constant companions.

Example 7.1.1. Xy, X;,... are i.i.d.

Example 7.1.2. Let X, be a Markov chain with transition probability p(z, A)
and stationary distribution 7, i.e., 7(A) = [7(dz)p(z, A). If X, has distribution
7w then Xo, X1,... is a stationary sequence. A special case to keep in mind for
counterexamples is the chain with state space S = {0,1} and transition probabil-
ity p(x, {1 — 2}) = 1. In this case, the stationary distribution has 7(0) = (1) = 1/2
and (Xo, X1,...) =(0,1,0,1,...) or (1,0,1,0,...) with probability 1/2 each.

Example 7.1.3. Rotation of the circle. Let = [0,1), F = Borel subsets, P =
Lebesgue measure. Let § € (0,1), and for n > 0, let X,,(w) = (w + n#) mod 1, where
x mod 1 = x — [z], [z] being the greatest integer < x. To see the reason for the name,
map [0,1) into C by & — exp(2miz). This example is a special case of the last one.
Let p(z,{y}) =1if y = (x + 0) mod 1.

To make new examples from old, we can use:

279
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Theorem 7.1.1. If Xo, X1,... is a stationary sequence and g : RO+ — R is

measurable then Yy, = g(Xg, Xg41,-..) 18 a stationary sequence.

Proof. If x € RI%L} et gr(z) = g(zp, Zpy1, . ..), and if B € RIOL} Jet
A={z:(90(x),q1(x),...) € B}

To check stationarity now, we observe:

Pw: (Yy,Y1,...) € B) = P(w: (Xo,X1,...) € A)
(w : (Xk;,Xk+17..-) S A)
(w : (Yk,Yk+1, . ) € B)

P
P
which proves the desired result. O

Example 7.1.4. Bernoulli shift. Q = [0,1), F = Borel subsets, P = Lebesgue
measure. Yp(w) = w and for n > 1, let Y;,(w) = (2 Y,,—1(w)) mod 1. This example is
a special case of (1.1). Let Xy, X1,... be i.i.d. with P(X; =0) = P(X; =1) = 1/2,
and let g(z) = 3250, ;27 (+1). The name comes from the fact that multiplying by 2
shifts the X’s to the left. This example is also a special case of Example 7.1.2. Let

p(z,{y}) =1if y = (2z) mod 1.

Examples 7.1.3 and 7.1.4 are special cases of the following situation.

Example 7.1.5. Let (2, F, P) be a probability space. A measurable map ¢ : Q — Q
is said to be measure preserving if P(p~1A4) = P(A) for all A € F. Let ©" be the
nth iterate of ¢ defined inductively by ¢" = (") for n > 1, where ¢©°(w) = w.
We claim that if X € F, then X, (w) = X(¢"w) defines a stationary sequence. To
check this, let B € R""! and A = {w: (Xo(w), ..., Xn(w)) € B}. Then

P((Xg,.. s Xpin) € B) = P(¢*w € A) = P(w € A) = P((Xo,...,X,) € B)

The last example is more than an important example. In fact, it is the only example!
If Yy, Y1, . .. is a stationary sequence taking values in a nice space, Kolmogorov’s exten-
sion theorem, Theorem A.3.1, allows us to construct a measure P on sequence space
(81013 - 81011 50 that the sequence X,,(w) = w,, has the same distribution as
that of {Y,,,n > 0}. If we let ¢ be the shift operator, i.e., p(wg,w1,...) = (w1,wa,...),
and let X (w) = wp, then ¢ is measure preserving and X, (w) = X (¢"w).

In some situations, e.g., in the proof of Theorem 7.3.3 below, it is useful to observe:

Theorem 7.1.2. Any stationary sequence {X,, , n > 0} can be embedded in a two-
sided stationary sequence {Yy, : n € Z}.

Proof. We observe that
P(Y,m € A(), R NS Aern) = P(X() € A(), . aXern S Am+n)

is a consistent set of finite dimensional distributions, so a trivial generalization of the
Kolmogorov extension theorem implies there is a measure P on (S%, S%) so that the
variables Y,,(w) = w,, have the desired distributions. O

In view of the observations above, it suffices to give our definitions and prove our
results in the setting of Example 7.1.5. Thus, our basic set up consists of
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(Q,F,P) a probability space
%) a map that preserves P
Xp(w) = X(¢p"w) where X is a random variable

We will now give some important definitions. Here and in what follows we assume ¢
is measure-preserving. A set A € F is said to be invariant if ¢='A = A. (Here, as
usual, two sets are considered to be equal if their symmetric difference has probability
0.) Some authors call A almost invariant if P(AA¢~!(A)) = 0. We call such sets
invariant and call B invariant in the strict sense if B = ¢~ 1(B).

Exercise 7.1.1. Show that the class of invariant events 7 is a o-field, and X € 7 if
and only if X is invariant, i.e., X o p = X a.s.

Exercise 7.1.2. (i) Let A be any set, let B = U 4~ "(A). Show ¢~ 1(B) C B. (ii)
Let B be any set with ¢ ~}(B) C B and let C = N>, "(B). Show that ¢~(C) = C.
(iii) Show that A is almost invariant if and only if there is a C invariant in the strict
sense with P(AAC) = 0.

A measure-preserving transformation on (£, F, P) is said to be ergodic if 7 is
trivial, i.e., for every A € Z, P(A) € {0,1}. If ¢ is not ergodic then the space can
be split into two sets A and A¢, each having positive measure so that ¢(A) = A and
p(A°) = A°. In words, ¢ is not “irreducible.”

To investigate further the meaning of ergodicity, we return to our examples, renum-
bering them because the new focus is on checking ergodicity.

Example 7.1.6. i.i.d. sequence. We begin by observing that if @ = R{%1} and
 is the shift operator, then an invariant set A has {w:w € A} = {w : pw € A} €
o(X1, Xo,...). Iterating gives

Aen ,0(Xn, Xpi1,...) =T, the tail o-field

so Z C 7. For an i.i.d. sequence, Kolmogorov’s 0-1 law implies 7 is trivial, so Z is
trivial and the sequence is ergodic (i.e., when the corresponding measure is put on
sequence space 0 = R{%1.2} the shift is).

Example 7.1.7. Markov chains. Suppose the state space S is countable and
the stationary distribution has 7(z) > 0 for all # € S. By Theorems 6.5.4 and
6.4.5, all states are recurrent, and we can write S = UR;, where the R; are disjoint
irreducible closed sets. If Xg € R; then with probability one, X,, € R; for all n > 1
s0 {w : Xo(w) € R;} € T . The last observation shows that if the Markov chain
is not irreducible then the sequence is not ergodic. To prove the converse, observe
that if A € 7, 14080, = 14 where 0,(wo,w1,...) = (Wn,Wnt1,-..). So if we let
Fn = 0(Xo,...,X,), the shift invariance of 14 and the Markov property imply

where h(z) = Eyl4. Lévy’s 0-1 law implies that the left-hand side converges to
1la as n — oo. If X, is irreducible and recurrent then for any y € S, the right-
hand side = h(y) i.o., so either h(x) = 0 or h(z) = 1, and P,(A) € {0,1}. This
example also shows that Z and 7 may be different. When the transition probability
p is irreducible Z is trivial, but if all the states have period d > 1, 7 is not. In
Theorem 6.7.3, we showed that if Sy, ..., S4_1 is the cyclic decomposition of S, then
T=0({Xo€ S }:0<r<d).
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Example 7.1.8. Rotation of the circle is not ergodic if § = m/n where m < n
are positive integers. If B is a Borel subset of [0,1/n) and

A= Uz (B + k/n)

then A is invariant. Conversely, if 6 is irrational, then ¢ is ergodic. To prove this,
we need a fact from Fourier analysis. If f is a measurable function on [0,1) with
J f?(z)dz < oo, then f can be written as f(z) = Y, cxe?™**® where the equality is
in the sense that as K — oo

K
Z cre®™ ™ s f(x) in L?[0,1)
k=—K

and this is possible for only one choice of the coefficients ¢ = ff(:r)e*%ik‘” dx. Now

fle(x)) = Z cpe™k(Et0) — Z(ckeQﬂ'ikQ)eZ‘n—ikgp
%

k

The uniqueness of the coefficients ¢;, implies that f(¢(x)) = f(x) if and only if
cr(e2™k — 1) = 0. If @ is irrational, this implies ¢, = 0 for k& # 0, so f is con-
stant. Applying the last result to f = 14 with A € Z shows that A = () or [0,1)
a.s.

Exercise 7.1.3. A direct proof of ergodicity. (i) Show that if 6 is irrational, z,, = né
mod 1 is dense in [0,1). Hint: All the z,, are distinct, so for any N < 00, |2, — Zp| <
1/N for some m < n < N. (ii) Use Exercise A.2.1 to show that if A is a Borel set with
|A] > 0, then for any § > 0 there is an interval J = [a,b) so that [ANJ| > (1 — §)|J|.
(iii) Combine this with (i) to conclude P(A) = 1.

Example 7.1.9. Bernoulli shift is ergodic. To prove this, we recall that the sta-
tionary sequence Y, (w) = ¢™(w) can be represented as

oo

Y, = Z 27(m+1)Xn+m

m=0
where Xo, X1,... are i.i.d. with P(X} = 1) = P(X} = 0) = 1/2, and use the following
fact:

Theorem 7.1.3. Let g : RI%L} & R be measurable. If Xo,X1,... is an ergodic
stationary sequence, then Yy, = g(Xg, Xgy1,...) is ergodic.

Proof. Suppose Xg, X1, ... is defined on sequence space with X,,(w) = w,,. If B has
{w: Y, Y1,...) € B} ={w: (W1,Ys,...) € B} then A = {w: (Yp,Y1,...) € B} is
shift invariant. O

Exercise 7.1.4. Use Fourier analysis as in Example 7.1.3 to prove that Example
7.1.4 is ergodic.
EXERCISES

7.1.5. Continued fractions. Let p(z) = 1/x—[1/z] for x € (0,1) and A(z) = [1/z],
where [1/x] = the largest integer < 1/x. a, = A(p"z), n = 0,1,2,... gives the
continued fraction representation of x, i.e.,

x=1/(ap+1/(a; +1/(az +1/...)))

Show that ¢ preserves u(A) = logl 5 Ja 1‘_% for A C (0,1).
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Remark. In his (1959) monograph, Kac claimed that it was “entirely trivial” to
check that ¢ is ergodic but retracted his claim in a later footnote. We leave it to the
reader to construct a proof or look up the answer in Ryll-Nardzewski (1951). Chapter
9 of Lévy (1937) is devoted to this topic and is still interesting reading today.

7.1.6. Independent blocks. Let X7, Xo,... be a stationary sequence. Let n < oo
and let Y7,Ys,... be a sequence so that (Ynri1,...,Ynk+1)), £ > 0 are iid. and
(Y1,...,Y,) = (X4,...,X,). Finally, let v be uniformly distributed on {1,2,...,n},
independent of Y, and let Z,, = Y, 4., for m > 1. Show that Z is stationary and
ergodic.

7.2 Birkhoft’s Ergodic Theorem

Throughout this section, ¢ is a measure-preserving transformation on (Q, F, P). See
Example 7.1.5 for details. We begin by proving a result that is usually referred to as:

Theorem 7.2.1. The ergodic theorem. For any X € L',
1 ¢ ol
— E (¢"w) — E(X|Z) a.s. andin L
n
m=0

This result due to Birkhoff (1931) is sometimes called the pointwise or individual
ergodic theorem because of the a.s. convergence in the conclusion. When the sequence
is ergodic, the limit is the mean FX. In this case, if we take X = 14, it follows that
the asymptotic fraction of time ™ € A is P(A).

The proof we give is based on an odd integration inequality due to Yosida and
Kakutani (1939). We follow Garsia (1965). The proof is not intuitive, but none of
the steps are difficult.

Lemma 7.2.2. Maximal ergodic lemma. Let X;(w) = X (p/w), S(w) = Xo(w)+
oo+ Xp—1(w), and My(w) = max(0,S1(w),...,Sk(w)). Then E(X;M; > 0) > 0.

Proof. If j < k then My (pw) > S;(pw), so adding X (w) gives
X(w) + My (pw) > X (w) + 5j(pw) = Sj41(w)
and rearranging we have
X(w) > Sjy1(w) — My(pw) for j =1,...,k

Trivially, X (w) > S1(w) — My (pw), since S;(w) = X (w) and My (pw) > 0. Therefore
E(X(w); My > 0) > / max(S1 (@), . Su(@)) — My(ow) dP
{M} >0}
_ / M (w) — My, (gw) dP
{Mk>0}
Now Mj(w) = 0 and My (pw) > 0 on {M, > 0}¢, so the last expression is

/Mk — My (pw)dP =0

since ¢ is measure preserving. O
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Proof of Theorem 7.2.1. E(X|T) is invariant under ¢ (see Exercise 7.1.1), so letting
X’ X — E(X|Z) we can assume without loss of generality that E(X|Z) = 0. Let
X = limsup S,,/n, let € > 0, and let D = {w : X(w) > €}. Our goal is to prove that
P(D) =0. X(pw) = X(w),s0 D€ T . Let

X (W)= (X(@) - )lpw)  Siw)=X"(W) +...+ X*(p" )
M (w) = max(0, St (W), ...,85(w))  Fn = {M’ >0}

n

F=uU,F, = {sup Sp/k > 0}
E>1

Since X*(w) = (X(w) — €)1p(w) and D = {limsup S /k > €}, it follows that

F= {supSk/k > e} ND=D
k>1

Lemma 7.2.2 implies that E(X*;F,) > 0. Since E|X*| < E|X| + € < oo, the
dominated convergence theorem implies E(X*; F,,) — E(X*; F), and it follows that
E(X*; F) > 0. The last conclusion looks innocent, but F' = D € Z, so it implies

0< E(X*;D) = E(X — ¢; D) = E(E(X|T); D) — eP(D) = —eP(D)
since E(X|Z) = 0. The last inequality implies that
0= P(D) = P(limsup S, /n > ¢)

and since € > 0 is arbitrary, it follows that limsup S, /n < 0. Applying the last result
to —X shows that S, /n — 0 a.s.

The clever part of the proof is over and the rest is routine. To prove that conver-
gence occurs in L', let

Xy (W) = X()(x@)<nm) and Xp(w) = X(w) — Xj,(w)

The part of the ergodic theorem we have proved implies

1
= Z — B(X)|T) as.
n

Since X, is bounded, the bounded convergence theorem implies

n—1
ZXM p"w) — E(Xy|T)| =0
To handle X7,, we observe
=
ZXM p"w) SEZED(M p"w)| = Bl Xy
and E|E(X},|T)| < EE(|X}{,IT) = E|X},|- So
=
52 S xtom - mogm| <2m1x
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and it follows that

limsup F

n—oo

n—1

1

=) X(¢"w) - B(X|T)| < 2E|Xy,
n

0

m=

As M — oo, E|XY;| — 0 by the dominated convergence theorem, which completes
the proof. O

Exercise 7.2.1. Show that if X € LP with p > 1 then the convergence in Theorem
7.2.1 occurs in LP.

Exercise 7.2.2. (i) Show that if g,(w) — g(w) a.s. and E(supy, |gr(w)]) < oo, then

n—1

1
lim = 3 gm(¢™w) = E(g|T) as.
ngrolonT;g (¢"w) = E(g]T) as

(ii) Show that if we suppose only that g, — g in L, we get L' convergence.

Before turning to examples, we would like to prove a useful result that is a simple
consequence of Lemma 7.2.2:

Theorem 7.2.3. Wiener’s maximal inequality. Let X;(w) = X(¢/w), Sg(w) =
Xo(w)+-+ 4+ Xp—1(w), Ag(w) = Sk(w)/k, and Dy, = max(Ay,...,Ag). If a >0 then

P(Dy, > a) <a 'E|X|

Proof. Let B = {Dy > a}. Applying Lemma 7.2.2 to X’ = X — a, with X}(w) =
X'(plw), Sp = X(w) + -+ X;_,, and M} = max(0,5],...,5}) we conclude that
E(X'; M > 0) > 0. Since {M}, > 0} = {Dy, > a} = B, it follows that

E|X|2/XdP2/ adP = oP(B) O
B B

Exercise 7.2.3. Use Lemma 7.2.3 and the truncation argument at the end of the
proof of Theorem 7.2.2 to conclude that if Theorem 7.2.2 holds for bounded r.v.’s,
then it holds whenever E|X| < co.

Our next step is to see what Theorem 7.2.2 says about our examples.

Example 7.2.1. i.i.d. sequences. Since 7 is trivial, the ergodic theorem implies
that

n—1
1
— E X,, — EX, as.and in L*
n

m=0

The a.s. convergence is the strong law of large numbers.

Remark. We can prove the L! convergence in the law of large numbers without
invoking the ergodic theorem. To do this, note that

1 & 1 —
=3 X5 - EX* as. E<ZX$>:EX+
n nmzl

m=1

and use Theorem 5.5.2 to conclude that > X — EX* in L'. A similar result

m=1
for the negative part and the triangle inequality now give the desired result.
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Example 7.2.2. Markov chains. Let X,, be an irreducible Markov chain on a
countable state space that has a stationary distribution 7. Let f be a function with

S| f(@)lr(@) < 5o

In Example 7.1.7, we showed that 7 is trivial, so applying the ergodic theorem to
f(Xo(w)) gives

n—1
% Z f(Xn) — Zf(x)ﬂ'(x) a.s. and in L'
m=0 x

For another proof of the almost sure convergence, see Exercise 6.6.4.

Example 7.2.3. Rotation of the circle. 2 = [0,1) p(w) = (w+6) mod 1. Suppose
that 6 € (0,1) is irrational, so that by a result in Section 7.1 7 is trivial. If we set
X(w) = 14(w), with A a Borel subset of [0,1), then the ergodic theorem implies

SRS

n—1
Z l(LpTllweA) — |A| a.s.
m=0

where |A| denotes the Lebesgue measure of A. The last result for w = 0 is usually
called Wey!’s equidistribution theorem, although Bohl and Sierpinski should also
get credit. For the history and a nonprobabilistic proof, see Hardy and Wright (1959),
p. 390-393.

To recover the number theoretic result, we will now show that:

Theorem 7.2.4. If A= [a,b) then the exceptional set is ().

Proof. Let A =[a+1/k,b—1/k). It b— a > 2/k, the ergodic theorem implies

n—1
1 2
- 1 m b—a— =
PIERE RIS

for w € Qp with P(Q;) = 1. Let G = N, where the intersection is over integers k
with b —a > 2/k. P(G) = 1so G is dense in [0,1). If z € [0,1) and wy € G with
|wk — x| < 1/k, then ¢p™wy, € Ay implies ™z € A, so

1 2

: : - m > _ _

hymL_}Orolf - E ) la(e™z)>b—a v
m=

for all large enough k. Noting that k is arbitrary and applying similar reasoning to

A€ shows
1 n—1

721A(<pmx)—>b—a |
n m=0

Example 7.2.4. Benford’s law. As Gelfand first observed, the equidistribution
theorem says something interesting about 2™. Let § = log;;2, 1 < k < 9, and
Ay, = [logqg k,logo(k + 1)) where log;, v is the logarithm of y to the base 10. Taking
z = 0 in the last result, we have

n—1
1 m k+1
Z La(¢™0) — logyg (k )

n
m=0
A little thought reveals that the first digit of 2™ is k if and only if mf mod 1 € Ay.
The numerical values of the limiting probabilities are
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1 2 3 4 ) 6 7 8 9
3010 1761 1249 .0969 .0792 .0669 .0580 .0512 .0458

The limit distribution on {1,...,9} is called Benford’s (1938) law, although it was
discovered by Newcomb (1881). As Raimi (1976) explains, in many tables the observed
frequency with which k appears as a first digit is approximately log;,((k + 1)/k).
Some of the many examples that are supposed to follow Benford’s law are: census
populations of 3259 counties, 308 numbers from Reader’s Digest, areas of 335 rivers,
342 addresses of American Men of Science. The next table compares the percentages
of the observations in the first five categories to Benford’s law:

1 2 3 4 5

Census 339 204 142 81 7.2
Reader’s Digest 33.4 185 124 75 7.1
Rivers 31.0 164 10.7 11.3 7.2
Benford’s Law 30.1 176 125 9.7 7.9
Addresses 289 19.2 126 88 8.5

The fits are far from perfect, but in each case Benford’s law matches the general shape
of the observed distribution.

Example 7.2.5. Bernoulli shift. Q =[0,1), ¢(w) = (2w) mod 1. Let iy,...,ix €
{0,1}, let 7 = 3,271 4+ -+ +4,.27% and let X(w) = 1ifr < w <7+ 27, In words,
X(w) =1 if the first k digits of the binary expansion of w are i1, ...,i;. The ergodic

theorem implies that
n—1

1 —k
- Z X(p"w) — 2 a.s.
m=0
i.e., in almost every w € [0, 1) the pattern 41,. .., i; occurs with its expected frequency.

Since there are only a countable number of patterns of finite length, it follows that al-
most every w € [0, 1) is normal, i.e., all patterns occur with their expected frequency.
This is the binary version of Borel’s (1909) normal number theorem.

7.3 Recurrence

In this section, we will study the recurrence properties of stationary sequences. Our
first result is an application of the ergodic theorem. Let X7, Xs,... be a stationary
sequence taking values in R%, let Sy = X1 +---+ Xy, let A= {S), # 0 for all k > 1},
and let R, = |{S1, ..., S, }| be the number of points visited at time n. Kesten, Spitzer,
and Whitman, see Spitzer (1964), p. 40, proved the next result when the X; are i.i.d.
In that case, 7 is trivial, so the limit is P(A).

Theorem 7.3.1. Asn — o0, R,/n — E(14|Z) a.s.

Proof. Suppose X1, Xo, ... are constructed on (R4){%1} with X,,(w) = w,, and let
 be the shift operator. It is clear that

Ry > Y 1a(p™w)
m=1

since the right-hand side = {m : 1 < m < n,Sp # Sy, for all £ > m}|. Using the
ergodic theorem now gives

liminf R, /n > E(14]Z) a.s.
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To prove the opposite inequality, let Ay = {S1 # 0,52 # 0,...,S; # 0}. It is clear

that
n—k

R, <k+ Z La, (Spmw)
m=1
since the sum on the right-hand side = [{m : 1 < m <n—k, Sy # Sy, for m < £ <
m + k}|. Using the ergodic theorem now gives

limsup R, /n < E(14,|7)
n—oo
Ask T oo, Ap | A, so the monotone convergence theorem for conditional expectations,
(¢) in Theorem 5.1.2, implies

E(La,|T) | E(AAIT) ask T oo
and the proof is complete. O

Exercise 7.3.1. Let g, = P(S1 #0,...,5, #0) for n > 1 and go = 1. Show that
ERn = Z:Ln:1 9m—1-

From Theorem 7.3.1, we get a result about the recurrence of random walks with
stationary increments that is (for integer valued random walks) a generalization of
the Chung-Fuchs theorem, 4.2.7.

Theorem 7.3.2. Let X1, Xs,... be a stationary sequence taking values in Z with
E|X;| <oo. Let S, = X1+ -+ X,, and let A = {S1 # 0,52 #0,...}. (i) If
E(X1|Z) =0 then P(A) =0. (i) If P(A) =0 then P(S, =0 i.0.) = 1.

Remark. In words, mean zero implies recurrence. The condition E(X1|Z) = 0 is
needed to rule out trivial examples that have mean 0 but are a combination of a
sequence with positive and negative means, e.g., P(X,, = 1 for all n) = P(X,, = —1
for all n) = 1/2.

Proof. If E(X41]Z) = 0 then the ergodic theorem implies S,,/n — 0 a.s. Now

lim sup (1I£I§§n|5k|/n> :limsup< ma><<n|5k/n> < (ir;ai}g|5k|/k>

n—00 n— o0 K<k

for any K and the right-hand side | 0 as K T oco. The last conclusion leads easily to

lim (max |Sk|>/n:0
n—oo \ 1<k<n

Since R,, <1+ 2maxi<g<n |Sk| it follows that R,,/n — 0 and Theorem 7.3.1 implies
P(A)=0.

Let F; = {S; # 0 for i < j,8; = 0} and G = {Sj4:. —S5; # 0 for i < k,
Sj+x —S; =0}. P(A) =0 implies that ) P(Fj) = 1. Stationarity implies P(Gj ) =
P(F},), and for fixed j the G, are disjoint, so UpG, x = Q a.s. It follows that

Y P(F;nGjx)=P(F;) and Y P(F;NGjz) =1
k 7,k

On F; NGjk, S; =0 and S;1x = 0, so we have shown P(S,, = 0 at least two times
) = 1. Repeating the last argument shows P(S,, = 0 at least k times) = 1 for all k,
and the proof is complete. O



7.3. RECURRENCE 289

Exercise 7.3.2. Imitate the proof of (i) in Theorem 7.3.2 to show that if we assume
P(X; > 1) =0, EX; > 0, and the sequence X; is ergodic in addition to the hypotheses
of Theorem 7.3.2, then P(A) = EX;.

Remark. This result was proved for asymmetric simple random walk in Exercise
4.1.13. It is interesting to note that we can use martingale theory to prove a result
for random walks that do not skip over integers on the way down, see Exercise 5.7.7.

Extending the reasoning in the proof of part (ii) of Theorem 7.3.2 gives a result
of Kac (1947b). Let Xo, X1,... be a stationary sequence taking values in (5, S). Let
A€ S, let Tp =0, and for n > 1, let T}, = inf{m > T,,_1 : X,,, € A} be the time of
the nth return to A.

Theorem 7.3.3. If P(X,, € A at least once) = 1, then under P(:| Xy € A), t
T, — T,—1 is a stationary sequence with E(T1|Xo € A) =1/P(Xy € A).

Remark. If X, is an irreducible Markov chain on a countable state space S starting
from its stationary distribution m, and A = {z}, then Theorem 7.3.3 says E,T, =
1/m(x), which is Theorem 6.5.5. Theorem 7.3.3 extends that result to an arbitrary
A C S and drops the assumption that X,, is a Markov chain.

Proof. We first show that under P(-| Xy € A), t1,to, ... is stationary. To cut down on
..’s, we will only show that

P(tl =m,ts :TL|X0 GA) :P(t2:m7t3:ﬂ‘X0 EA)

It will be clear that the same proof works for any finite-dimensional distribution. Our
first step is to extend {X,,n > 0} to a two-sided stationary sequence {X,,n € Z}
using Theorem 7.1.2. Let C, ={X_1 ¢ A,..., X 11 ¢ A, X_j, € A}

(U CL) = {Xp ¢ Afor — K <k< -1}

The last event has the same probability as {X) ¢ A for 1 < k < K}, so letting
K — o0, we get P (U2 Cy) = 1. To prove the desired stationarity, we let I;;, = {i €
[j,k] : X; € A} and observe that

[M]8

P(tgzm,tgzn,X()EA): P(X(]GA,t1:€7t2:m,t3:n)

~
Il
—

M

P(Loo4msn ={0,4,0 +m, L +m+n})

~
l

1

M

P(I_gmin ={-20,m,m+n})

~
Il
—

M

P(CZ,XO EA,tl =m,ts :n)

o~
Il

1

To complete the proof, we compute

E(t1|Xo € A)=> P(ty > k|Xo € A) = P(Xo € A)™" Y _P(t1 > k, X € A)
k=1 k=1

= P(X, € A) 1ZPCk =1/P(Xy € A)
k=1

since the C} are disjoint and their union has probability 1. O
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In the next two exercises, we continue to use the notation of Theorem 7.3.3.

Exercise 7.3.3. Show that if P(X,, € A at least once) =1 and AN B = (J then

_ P(Xp€B)
E( Z L(x,.eB) Xo € A) = m
1<m<Ty

When A = {z} and X,, is a Markov chain, this is the “cycle trick” for defining a
stationary measure. See Theorem 6.5.2.

Exercise 7.3.4. Consider the special case in which X, € {0,1}, and let P =
P(| Xy = 1). Here A = {1} and so 71 = inf{m > 0 : X,, = 1}. Show P(Th =
n) = P(Ty > n)/ET1. When tq,ts,... are i.i.d., this reduces to the formula for the
first waiting time in a stationary renewal process.

In checking the hypotheses of Kac’s theorem, a result Poincaré proved in 1899 is
useful. First, we need a definition. Let T4 = inf{n > 1: ¢"(w) € A}.

Theorem 7.3.4. Suppose ¢ : Q — Q preserves P, that is, Pop™!t = P. (i) Txa < 00
a.s. on A, that is, P(w € A, Ty = 00) = 0. (i) {¢"(w) € A i.o.} D A. (iii) If ¢ is
ergodic and P(A) > 0, then P(¢™(w) € A i.0.) = 1.

Remark. Note that in (i) and (ii) we assume only that ¢ is measure-preserving.
Extrapolating from Markov chain theory, the conclusions can be “explained” by noting
that: (i) the existence of a stationary distribution implies the sequence is recurrent,
and (ii) since we start in A we do not have to assume irreducibility. Conclusion (iii)
is, of course, a consequence of the ergodic theorem, but as the self-contained proof
below indicates, it is a much simpler fact.

Proof. Let B = {w € A, Ty = oo}. A little thought shows that if w € ¢ ™B
then ¢™(w) € A, but ¢"(w) ¢ A for n > m, so the ¢~™B are pairwise disjoint.
The fact that ¢ is measure-preserving implies P(¢~™B) = P(B), so we must have
P(B) = 0 (or P would have infinite mass). To prove (ii), note that for any k, ©* is
measure-preserving, so (i) implies

0=Pwe A ¢"*w)¢Aforaln>1)
> Plwe A ¢"(w) ¢ Afor allm > k)
Since the last probability is 0 for all k, (ii) follows. Finally, for (iii), note that B =

{w: ¢"(w) € Aio.} is invariant and D A by (b), so P(B) > 0, and it follows from
ergodicity that P(B) = 1. O

7.4 A Subadditive Ergodic Theorem*

In this section we will prove Liggett’s (1985) version of Kingman’s (1968)

Theorem 7.4.1. Subadditive ergodic theorem. Suppose X, ,, 0 < m < n
satisfy:

(Z) XO,m + XnL,n Z XO,n

(i) { Xnk,(n+1)k » 1 > 1} is a stationary sequence for each k.

(iii) The distribution of {Xm m+k,k > 1} does not depend on m.
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(iv) EXOJC1 < o0 and for each n, EXq , > von, where vy > —00.
Then

(a) lim,, .o EXon/n =inf,, EXq.m/m =7~

(b) X =limy, oo Xo,n/n exists a.s. and in L', so EX = 7.

(c) If all the stationary sequences in (ii) are ergodic then X =~y a.s.

Remark. Kingman assumed (iv), but instead of (i)—(iii) he assumed that X, +
Xmn > Xon for all £ < m < n and that the distribution of {X,, 4k ik, 0 <m < n}
does not depend on k. In two of the four applications in the next, these stronger
conditions do not hold.

Before giving the proof, which is somewhat lengthy, we will consider several exam-
ples for motivation. Since the validity of (ii) and (iii) in each case is clear, we will only
check (i) and (iv). The first example shows that Theorem 7.4.1 contains the ergodic
theorem, 7.2.1, as a special case.

Example 7.4.1. Stationary sequences. Suppose £1, &2, . .. is a stationary sequence
with E|€,| < oo, and let Xy 0, = {1 + -+ + &n. Then Xo,, = Xom + Ximn, and
(iv) holds.

Example 7.4.2. Range of random walk. Suppose &1,&s,... is a stationary se-
quence and let S, = & + -+ &,. Let Xy, = [{Sm41,.--, 50} It is clear that
Xom + Xmn > Xon. 0 < Xon < n, so (iv) holds. Applying (6.1) now gives
Xon/n — X as. and in L, but it does not tell us what the limit is.

Example 7.4.3. Longest common subsequences. Given are ergodic stationary
sequences X1, X9, X3,... and Y3,Y5,Y3,... be Let L,,,, = max{K : X; =Y, for
1<k<K,where m<ij <ig...<ig <mand m < j1 < ja... < jg <n}. Itis
clear that

LO,m + Lm,n > LO,n

80 Xymn = —Lp,n is subadditive. 0 < Ly, < n so (iv) holds. Applying Theorem
7.4.1 now, we conclude that

LO,n/n — 7Y = Sup E(LO,m/m)
m>1

Exercise 7.4.1. Suppose that in the last exercise X, Xs,... and Y7,Y5,... are
ii.d. and take the values 0 and 1 with probability 1/2 each. (a) Compute EL; and
ELy/2 to get lower bounds on . (b) Show v < 1 by computing the expected number
of i and j sequences of length K = an with the desired property.

Remark. Chvatal and Sankoff (1975) have shown 0.727273 < v < 0.866595

Example 7.4.4. Slow Convergence. Our final example shows that the convergence
in (a) of Theorem 7.4.1 may occur arbitrarily slowly. Suppose X, m+r = f(k) > 0,
where f(k)/k is decreasing.

XO,n - f(n) :m% + (n_m)@
< mf(m) +(n— m)f(n —m) — Xg + X
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The examples above should provide enough motivation for now. In the next sec-
tion, we will give four more applications of Theorem 7.4.1.

Proof of Theorem 7.4.1. There are four steps. The first, second, and fourth date
back to Kingman (1968). The half dozen proofs of subadditive ergodic theorems that
exist all do the crucial third step in a different way. Here we use the approach of S.
Leventhal (1988), who in turn based his proof on Katznelson and Weiss (1982).

Step 1. The first thing to check is that E|Xg | < Cn. To do this, we note that (i)
implies X0+, m T+ Xj,;n > Xaf »- Repeatedly using the last inequality and invoking (iii)
gives Engn < nEX(;'f1 < o0. Since |z| = 22T — =, it follows from (iv) that

E|Xo,| < 2EX{, — EXopn < COn < o0

Let a,, = EXg . (i) and (iii) imply that

Um + Ap—m > Gy (7.4.1)
From this, it follows easily that
an/n — ir;f1 G /M =y (7.4.2)

To prove this, we observe that the liminf is clearly > v, so all we have to show is that
the limsup < a,,/m for any m. The last fact is easy, for if we write n = km + £ with
0 < £ < m, then repeated use of (7.4.1) gives a,, < ka, + a;. Dividing by n = km +¢
gives

an km Cam | g

n =~ km+{ m n

Letting n — oo and recalling 0 < ¢ < m gives 7.4.2 and proves (a) in Theorem 7.4.1.

Step 2. Making repeated use of (i), we get

XO,n < XO,km + ka,n
XO,n < XO,(krfl)m + X(kfl)m,km + ka,n

and so on until the first term on the right is X ,,,. Dividing by n = km + ¢ then gives

Xon k X0m+"‘+X(k—1)mkm Xkm,n
M R ’ d 7.4.3
n ~ km+/ k A ( )

Using (ii) and the ergodic theorem now gives that

XO,m +---+ X(kfl)m,km
k

where A,,, = E(Xo m|Z) and the subscript indicates that Z,, is the shift invariant
o-field for the sequence X(x_1)m km, k¥ > 1. The exact formula for the limit is not
important, but we will need to know later that EA,, = EXq .

If we fix £ and let € > 0, then (iii) implies

— A,, as.andin L'

oo
ZPkak7,L+e> (km +0)e) <> P(Xo > ke) <
k=1 k=1

since EXS' , < 00 by the result at the beginning of Step 1. The last two observations

imply o
X =limsup Xo,/n < A, /m (7.4.4)

n—oo
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Taking expected values now gives EX < E(X,;,/m), and taking the infimum over
m, we have EX < ~. Note that if all the stationary sequences in (ii) are ergodic, we
have X <.

Remark. If (i)—(iii) hold, EXafl < 00, and inf EX ,,,/m = —oo, then it follows from
the last argument that as X, /n — —o0 a.s. as n — oo.

Step 3. The next step is to let

X =liminf X, /n
and show thatl?& > . Since oo > EXy 1 > Y =Y > —00, and we have shown in
Step 2 that EX < #, it will follow that X = X, i.e., the limit of Xy ,/n exists a.s.
Let
X, = liminf X,;, poin/n

n—oo
(1) implies
XO,m+n < XO,m + Xm,m+n

Dividing both sides by n and letting n — oo gives X < X, a.s. However, (iii) implies
that X, and X have the same distribution so X = X, a.s.
Let e >0and let Z = e+ (X V —M). Since X < X and EX < v < oo by Step 2,
E|Z| < 0. Let
Yiun =Xmn —(n—m)Z

Y satisfies (i)—(iv), since Z,, , = —(n — m)Z does, and has
Y =liminf ¥y, /n < —e (7.4.5)

Let T,, = min{n > 1: Y, s+, < 0}. (iii) implies T},, =4 Tp and
E(Ymmi1; T > N) = BE(Yo1;Ty > N)
(7.4.5) implies that P(Ty < o0) = 1, so we can pick N large enough so that
EYy1;To > N) <e

Let
5 _ T, on{T, <N}
™ on {T,,, > N}

This is not a stopping time but there is nothing special about stopping times for a
stationary sequence! Let

€ = 0 on {T,, <N}
"o Yiom+1r on{T, >N}

Since Y (m, m + T,,) < 0 always and we have S,,, = 1, Yo, ;1 > 0 on {7, > N},
we have Y(m,m + S,,) < &, and &,, > 0. Let Ry = 0, and for k > 1, let R, =
Ri—1+ S(Rg—1). Let K = max{k : Ry < n}. From (i), it follows that

Y(O, n) < Y(RO7 Rl) + -+ Y(RKfl, RK) + Y(RK/n)

Since &, > 0 and n — Rg < N, the last quantity is

n—1 N
< Z Em + Z [Yo—jn—j+1
m=0 j=1
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Here we have used (i) on Y (Rg,n). Dividing both sides by n, taking expected values,
and letting n — oo gives

limsup EYy ,/n < E&y < E(Yp1;To > N) <e¢

n—oo

It follows from (a) and the definition of Yy, that

v= lim EXy,/n <2+ E(XV-M)

Since € > 0 and M are arbitrary, it follows that EX > ~ and Step 3 is complete.

Step 4. Tt only remains to prove convergence in L!. Let I, = A,,/m be the limit in
(7.4.4), recall ET,,, = E(Xo,,/m), and let I' = inf I',,,. Observing that |z| = 227 — 2
(consider two cases z > 0 and z < 0), we can write

E|Xon/n—T|=2E(Xon/n—T)" — E(Xon/n —T) <2E(Xon/n—T)"

since

E(Xon/n) >~y =inf ET,, > ET
Using the trivial inequality (x +y)™ < z* + yT and noticing T',,, > T’ now gives
E(Xon/n—T)" < E(Xon/n—Tp)" +ET, -T)

Now ET,, — v as m — oo and ET' > EX > EX > v by steps 2 and 3, so ET' = 7,
and it follows that F(T",, —T") is small if m is large. To bound the other term, observe
that (i) implies

_ + <
E(Xon/n—T,)" < E( e

T <X(k;n, n))+

The second term = E(X,,/n) — 0 as n — oco. For the first, we observe y* < |y|, and
the ergodic theorem implies

X(0,m) + -+ X((k = Ym, km) >+

—I',l —0

E’X(O,m)+---+£(((k—1)m,km)

so the proof of Theorem 7.4.1 is complete. O

7.5 Applications*

In this section, we will give four applications of our subadditive ergodic theorem, 7.4.1.
These examples are independent of each other and can be read in any order. In the
last two, we encounter situations to which Liggett’s version applies but Kingman’s
version does not.

Example 7.5.1. Products of random matrices. Suppose Aj, As,... is a station-
ary sequence of k X k matrices with positive entries and let

am,n(i;j) == (Am,—i-l te An)(za])a
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i.e., the entry in row ¢ of column j of the product. It is clear that
Oé()’m(l, l)am,n(L 1) S aO,n(]-v 1)
so if we let X, ,, = —logam n(1,1) then Xo m + X5 o > Xopn. To check (iv), we

observe that

I An(1 ) < aon(1,1) <k ]] <supAm(i,j))

m=1 m=1 ,J

or taking logs

- Z log A, (1,1) > Xy, > —(nlogk) — Z log <sup Am(i,j)>

m=1 m=1 tJ

So if Elog A, (1,1) > —oo then EX{; < oo, and if
Elog (sup Am(i,j)> < 00
,J
then EX,, < ~on. If we observe that
P (log (SupAm(i,j)> > w) < P (log Apm(i,j) > x)
i, —
i,j
we see that it is enough to assume that
(%) E|log A, (i,j)| < oo for all 4, j
When (*) holds, applying Theorem 7.4.1 gives Xy ,/n — X a.s. Using the strict
positivity of the entries, it is easy to improve that result to

1
—log o n(i,j) —» =X as. forall 4, (7.5.1)
n

a result first proved by Furstenberg and Kesten (1960). |

The key to the proof above was the fact that o, (1,1) was supermultiplicative.
An alternative approach is to let

1Al = max Y " |A(, 5)| = max{[eA|ls : |l = 1}
J
where (zA); =", 2;A(i,j) and ||z||1 = |z1|+ - - + |z&|. From the second definition,
it is clear that ||AB|| < ||A]l - || B|l, so if we let

ﬁm,n = HAm+1 o Aﬂ”
and Yy, n, = log B n, then Y, ,, is subadditive. It is easy to use (7.5.1) to show that

1
Elog lAms1- - Anll = =X as.

where X is the limit of Xy, /n. To see the advantage in having two proofs of the
same result, we observe that if Aq, As,... is an i.i.d. sequence, then X is constant,
and we can get upper and lower bounds by observing

sup (E IOg aOJn)/m =-X= 1n>f1(E IOg ﬁO,?ﬂ)/m
m>1 m>
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Remark. Oseledéc (1968) proved a result which gives the asymptotic behavior of all
of the eigenvalues of A. As Raghunathan (1979) and Ruelle (1979) have observed, this
result can also be obtained from Theorem 7.4.1. See Krengel (1985) or the papers
cited for details. Furstenberg and Kesten (1960) and later Ishitani (1977) have proved
central limit theorems:

(log g (1,1) — pun)/n'/? = ox

where x has the standard normal distribution. For more about products of random
matrices, see Cohen, Kesten, and Newman (1985).

Example 7.5.2. Increasing sequences in random permutations. Let 7w be
a permutation of {1,2,...,n} and let ¢(m) be the length of the longest increasing
sequence in 7. That is, the largest k for which there are integers i1 < is... < i
so that m(i;) < 7w(i2) < ... < m(ir). Hammersley (1970) attacked this problem by
putting a rate one Poisson process in the plane, and for s < ¢t € [0, 00), letting Y ,
denote the length of the longest increasing path lying in the square R, with vertices
(s,5), (s,1), (t,t), and (¢,s). That is, the largest k for which there are points (z;, y;)
in the Poisson process with s < ;1 < ... <z <tand s<y; < ... <yp < t. Itis
clear that Yy, + Yo n < Y0.n. Applying Theorem 7.4.1 to —Y; 5, shows

Yo,n/n — v = sup EYy,/m  as.
m>1

For each k, Yok (ny1)k, m > 0 is ii.d., so the limit is constant. We will show that
v < oo in Exercise 7.5.2.

To get from the result about the Poisson process back to the random permutation
problem, let 7(n) be the smallest value of ¢ for which there are n points in Rg ;. Let
the n points in Ry ,(,) be written as (z;,y;) where 0 < 1 < x5... <z, < 7(n) and
let 7, be the unique permutation of {1,2,...,n} so that yr (1) < Yr.(2) -+ < Yrn(n)-
It is clear that Yj ;(,,) = £(7y,). An easy argument shows:

Lemma 7.5.1. 7(n)/y/n — 1 a.s.

Proof. Let S, be the number of points in Ry 5. S, — Sp—1 are independent Poisson
r.v.’s with mean 1, so the strong law of large numbers implies S,,/n — 1 a.s. If ¢ > 0

then for large n, Sy(1—¢) <N < Sp(14¢) and hence /(1 —e)n < 7(n) < /(1 +e)n. O

It follows from Lemma 7.5.1 and the monotonicity of m — Yg ,, that

n~Y20(r,) - as.

Hammersley (1970) has a proof that 7/2 < v < e, and Kingman (1973) shows
that 1.59 < v < 2.49. See Exercises 7.5.1 and 7.5.2. Subsequent work on the random
permutation problem, see Logan and Shepp (1977) and Vershik and Kerov (1977),
has shown that v = 2.

Exercise 7.5.1. Given a rate one Poisson process in [0, 00) X [0, 00), let (X1,Y7) be
the point that minimizes z + y. Let (Xs,Y3) be the point in [X7,00) x [Y7, 00) that
minimizes « + %, and so on. Use this construction to show that v > (8/7)/2 > 1.59.

Exercise 7.5.2. Let m, be a random permutation of {1,...,n} and let J;’ be the
number of subsets of {1,...n} of size k so that the associated 7, (j) form an increasing
subsequence. Compute EJ;' and take k ~ an'/? to conclude v < e.
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Remark. Kingman improved this by observing that ¢(m,,) > ¢ then JJ' > (i) Using
this with the bound on EJ]! and taking £ ~ Bn/? and k ~ an'/?, he showed v < 2.49.

Example 7.5.3. Age-dependent branching processes. This is a variation of the
branching process introduced in Subsection 5.3.4 in which each individual lives for an
amount of time with distribution F' before producing k offspring with probability py.
The description of the process is completed by supposing that the process starts with
one individual in generation 0 who is born at time 0, and when this particle dies, its
offspring start independent copies of the original process.

Suppose pg = 0, let Xy ,, be the birth time of the first member of generation m,
and let X, , be the time lag necessary for that individual to have an offspring in
generation n. In case of ties, pick an individual at random from those in generation
m born at time X ,,,. It is clear that X¢,, < Xo m + Xm,n. Since Xy, > 0, (iv) holds
if we assume F' has finite mean. Applying Theorem 7.4.1 now, it follows that

Xon/n— 7y as.

The limit is constant because the sequences {Xnk’(nﬂ)k, n > 0} are i.i.d.

Remark. The inequality Xy, + Xm,n > X¢,, is false when £ > 0, because if we call
im the individual that determines the value of X, , for n > m, then i,, may not be
a descendant of i,.

As usual, one has to use other methods to identify the constant. Let ¢1,%s,... be
ii.d. with distribution F, let T, = t; + -+ + tp, and p = > kpi. Let Z,(an) be the
number of individuals in generation n born by time an. Each individual in generation
n has probability P(T,, < an) to be born by time an, and the times are independent
of the offspring numbers so

EZ,(an) = EE(Z,(an)|Z,) = E(Z,P(T,, < an)) = p"P(T,, < an)

By results in Section 2.6, n=!log P(T,, < an) — —c(a) as n — oco. If log u — c(a) <
0 then Chebyshev’s inequality and the Borel-Cantelli lemma imply P(Z,(an) >
1i.0.) = 0. Conversely, if EZ,(an) > 1 for some n, then we can define a super-
critical branching process Y,, that consists of the offspring in generation mn that
are descendants of individuals in Y,,_; in generation (m — 1)n that are born less
than an units of time after their parents. This shows that with positive probability,
Xo,mn < mna for all m. Combining the last two observations with the fact that c(a)

is strictly increasing gives
~v = inf{a : log pn — c(a) > 0}

The last result is from Biggins (1977). See his (1978) and (1979) papers for
extensions and refinements. Kingman (1975) has an approach to the problem via
martingales:

Exercise 7.5.3. Let ¢(0) = Eexp(—0t;) and

Zn
Yo = (up(6))™" 3 exp(=0Tu(3)

where the sum is over individuals in generation n and T,,(7) is the ith person’s birth
time. Show that Y, is a nonnegative martingale and use this to conclude that if
exp(—6a)/up(@) > 1, then P(Xy,, < an) — 0. A little thought reveals that this
bound is the same as the answer in the last exercise.
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Example 7.5.4. First passage percolation. Consider Z? as a graph with edges
connecting each x,y € Z? with |[x—y| = 1. Assign an independent nonnegative random
variable 7(e) to each edge that represents the time required to traverse the edge going
in either direction. If e is the edge connecting x and y, let 7(z,y) = 7(y,x) = 7(e). If
To = ,Z1,...,Ty, =Yy is a path from z to y, i.e., a sequence with |z, —x,;,—1| = 1 for
1 < m < n, we define the travel time for the path to be 7(xg, 1)+ +7(Tp_1,Tn).
Define the passage time from x to y, t(z,y) = the infimum of the travel times over
all paths from z to y. Let z € Z¢ and let X, ,, = t(mu, nu), where u = (1,0,...,0).

Clearly Xom + Xmn > Xon. Xon > 0so if E7(x,y) < oo then (iv) holds,
and Theorem 7.4.1 implies that X ,/n — X a.s. To see that the limit is constant,
enumerate the edges in some order ey, es,... and observe that X is measurable with
respect to the tail o-field of the i.i.d. sequence 7(e1), 7(e2),. ..

Remark. It is not hard to see that the assumption of finite first moment can be
weakened. If 7 has distribution F' with

(%) /000(1 — F(2))*dx < oo

i.e., the minimum of 2d independent copies has finite mean, then by finding 2d disjoint
paths from 0 to u = (1,0,...,0), one concludes that E7(0,u) < oo and (6.1) can be
applied. The condition (*) is also necessary for Xy, /n to converge to a finite limit.
If (x) fails and Y, is the minimum of t(e) over all the edges from v, then

limsup Xo ,,/n > limsupY,,/n =00 as.
n—0oo n—oo

Above we considered the point-to-point passage time. A second object of
interest is the point-to-line passage time:

an = inf{t(0,z) : x1 = n}

Unfortunately, it does not seem to be possible to embed this sequence in a subadditive
family. To see the difficulty, let #(0,z) be infimum of travel times over paths from 0
to x that lie in {y : y1 > 0}, let

G = inf{#(0,2) : 1 = m}

and let 2™ be a point at which the infimum is achieved. We leave to the reader the
highly nontrivial task of proving that such a point exists; see Smythe and Wierman
(1978) for a proof. If we let @y, be the infimum of travel times over all paths that
start at =™, stay in {y : y1 > m}, and end on {y : y» = n}, then G, , is independent
of a,, and

Gm + Gm,n 2 Gn

The last inequality is true without the half-space restriction, but the independence is
not and without the half-space restriction, we cannot get the stationarity properties
needed to apply Theorem 7.4.1.

Remark. The family a,,, is another example where ¢ + Gm,n > Ge,n Deed not
hold for ¢ > 0.

A second approach to limit theorems for a,, is to prove a result about the set of
points that can be reached by time ¢: & = {z : ¢(0,z) < t}. Cox and Durrett (1981)
have shown
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Theorem 7.5.2. For any passage time distribution F with F(0) = 0, there is a
convex set A so that for any € > 0 we have with probability one

& C (1 + €)tA for all t sufficiently large
and |50 (1 — e)tANZA/t? — 0 as t — <.

Ignoring the boring details of how to state things precisely, the last result says &/t —
A as. It implies that a,/n — v a.s., where v = 1/sup{z; : = € A}. (Use the
convexity and reflection symmetry of A.) When the distribution has finite mean
(or satisfies the weaker condition in the remark above), v is the limit of ¢(0, nu)/n.
Without any assumptions, ¢(0,nu)/n — ~ in probability. For more details, see the
paper cited above. Kesten (1986) and (1987) are good sources for more about first-
passage percolation.

Exercise 7.5.4. Oriented first-passage percolation. Consider a graph with ver-
tices {(m,n) € Z* : m + n is even and n < 0}, and oriented edges connecting (m,n)
to (m+1,n—1) and (m,n) to (m—1,n—1). Assign i.i.d. exponential mean one r.v.’s
to each edge. Thinking of the number on edge e as giving the time it takes water to
travel down the edge, define ¢(m,n) = the time at which the fluid first reaches (m,n),
and a, = inf{t(m, —n)}. Show that as n — o0, a,/n converges to a limit v a.s.

Exercise 7.5.5. Continuing with the set up in the last exercise: (i) Show v < 1/2
by considering a1. (ii) Get a positive lower bound on ~ by looking at the expected
number of paths down to {(m,—n) : —n < m < n} with passage time < an and using
results from Section 2.6.

Remark. If we replace the graph in Exercise 7.5.4 by a binary tree, then we get a
problem equivalent to the first birth problem (Example 7.5.3) for ps = 2, P(t; > x) =
e~ *. In that case, the lower bound obtained by the methods of part (ii) Exercise 7.5.5
was sharp, but in this case it is not.
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Chapter 8

Brownian Motion

Brownian motion is a process of tremendous practical and theoretical significance.
It originated (a) as a model of the phenomenon observed by Robert Brown in 1828
that “pollen grains suspended in water perform a continual swarming motion,” and
(b) in Bachelier’s (1900) work as a model of the stock market. These are just two
of many systems that Brownian motion has been used to model. On the theoretical
side, Brownian motion is a Gaussian Markov process with stationary independent
increments. It lies in the intersection of three important classes of processes and is a
fundamental example in each theory.

The first part of this chapter develops properties of Brownian motion. In Section
8.1, we define Brownian motion and investigate continuity properties of its paths. In
Section 8.2, we prove the Markov property and a related 0-1 law. In Section 8.3, we
define stopping times and prove the strong Markov property. In Section 8.4, we take
a close look at the zero set of Brownian motion. In Section 8.5, we introduce some
martingales associated with Brownian motion and use them to obtain information
about its properties. Section 8.6 introduces It6’s formula.

The second part of this chapter applies Brownian motion to some of the problems
considered in Chapters 2 and 3. In Section 8.7, we embed random walks into Brow-
nian motion to prove Donsker’s theorem, a far-reaching generalization of the central
limit theorem. In Section 8.8, we use the embedding technique to prove an almost
sure convergence result and a a central limit theorem for martingales. In Section 8.9,
we show that the discrepancy between the empirical distribution and the true distri-
bution when suitably magnified converges to Brownian bridge. The results in the two
previous sections are done by ad hoc techniques designed to avoid the machinery of
weak convergence, which is briefly explained in Section 8.10. Finally, in Section 8.11,
we prove laws of the iterated logarithm for Brownian motion and random walks with
finite variance.

8.1 Definition and Construction

A one-dimensional Brownian motion is a real-valued process By, t > 0 that has the
following properties:

(a) If tg < t1 < ... <ty then B(ty), B(t1) — B(to),...,B(tn) — B(tn—1) are indepen-
dent.

301
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(b) If s, ¢ > 0 then

P(B(s+t)—B(s) € A) = /A(Qﬂ)_l/2 exp(—2?/2t) dx

¢) With probability one, t — B; is continuous.

(a) says that B; has independent increments. (b) says that the increment B(s +t) —
B(s) has a normal distribution with mean 0 and variance ¢. (c) is self-explanatory.

Thinking of Brown’s pollen grain (c) is certainly reasonable. (a) and (b) can be
justified by noting that the movement of the pollen grain is due to the net effect of
the bombardment of millions of water molecules, so by the central limit theorem, the
displacement in any one interval should have a normal distribution, and the displace-
ments in two disjoint intervals should be independent.

Figure 8.1: Simulation of two dimensional Brownian motion

Two immediate consequences of the definition that will be useful many times are:

Translation invariance. {B; — By,t > 0} is independent of By and has the same
distribution as a Brownian motion with By = 0.

Proof. Let A1 = 0(Bg) and Az be the events of the form
{B(tl) - B(t()) € Ala ceey B(tn) - B(tn—l) € An}

The A; are m-systems that are independent, so the desired result follows from the
7 — A theorem 2.1.2. O

The Brownian scaling relation. If By = 0 then for any ¢ > 0,
{By,s >0} £ {£*/2B,,s > 0} (8.1.1)

To be precise, the two families of r.v.’s have the same finite dimensional distributions,
ie., if s1 <... < s, then

(Bayts-- > Baye) < (tY°B,,,...tY/?B,)
Proof. To check this when n = 1, we note that ¢'/2 times a normal with mean 0 and

variance s is a normal with mean 0 and variance st. The result for n > 1 follows from
independent increments. O
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A second equivalent definition of Brownian motion starting from By = 0, that we
will occasionally find useful is that By, ¢ > 0, is a real-valued process satisfying

(a’) B(t) is a Gaussian process (i.e., all its finite dimensional distributions are
multivariate normal).

(b') EBs =0 and EB;B; = s A't.
C 1th probability one, ¢ — B; 1s continuous.
") With babili t— By i i

It is easy to see that (a) and (b) imply (a’). To get (b’) from (a) and (b), suppose
s <t and write
EB,B; = E(B?) + E(Bs(B; — By)) = s

The converse is even easier. (a’) and (b’) specify the finite dimensional distributions
of By, which by the last calculation must agree with the ones defined in (a) and (b).

The first question that must be addressed in any treatment of Brownian motion
is, “Is there a process with these properties?” The answer is “Yes,” of course, or this
chapter would not exist. For pedagogical reasons, we will pursue an approach that
leads to a dead end and then retreat a little to rectify the difficulty. Fix an x € R
and for each 0 < t; < ... < t,, define a measure on R" by

Hotnnn (A1 X X Ay) = / dy - / dn T Proto s (o) (812)
Ay A,

m=1

where A; € R, xg = x, tg = 0, and
pi(a,b) = (27775)_1/2 exp(—(b —a)?/2t)

From the formula above, it is easy to see that for fixed = the family p is a consistent
set of finite dimensional distributions (f.d.d.’s), that is, if {s1,...,sp—1} C {t1,...,tn}
and t; ¢ {s1,...,5,—1} then

/Uf:v,sl,...,sn_1<Al XX Ap_q) = /lz,tl,...,tn(Al X X Aj—l x R x Aj X o x Ap_q)

This is clear when j = n. To check the equality when 1 < j < n, it is enough to show
that

/pt]’*t]’—l (iC, y)pt]‘-#l*tj (yv Z) dy = pt]‘+17tj—1 (1'7 Z)

By translation invariance, we can without loss of generality assume x = 0, but all this
says is that the sum of independent normals with mean 0 and variances t; —¢;_; and
tj+1 — t; has a normal distribution with mean 0 and variance ¢;41 —t;_1.

With the consistency of f.d.d.’s verified, we get our first construction of Brownian
motion:

Theorem 8.1.1. Let Q, = {functionsw : [0,00) — R} and F, be the o-field generated
by the finite dimensional sets {w : w(t;) € A; for 1 <i <n}, where A; € R. For each
x € R, there is a unique probability measure v, on (,,F,) so that vy{w : w(0) =
2} =1 and when 0 <t < ...<t,

vpdw rw(t;) € A} = pgy 4, (A1 X - X Ay) (8.1.3)

This follows from a generalization of Kolmogorov’s extension theorem, (7.1) in the
Appendix. We will not bother with the details since at this point we are at the dead
end referred to above. If C = {w : t — w(¢) is continuous} then C ¢ F,, that is, C is
not a measurable set. The easiest way of proving C' ¢ F, is to do:
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Exercise 8.1.1. A € F, if and only if there is a sequence of times t1, s, ... in [0, 00)
and a B € R11:2} 5o that A = {w : (w(t1),w(t2),...) € B}. In words, all events in
F, depend on only countably many coordinates.

The above problem is easy to solve. Let Qo = {m2~" : m,n > 0} be the dyadic
rationals. If Q, = {w : Q2 — R} and F, is the o-field generated by the finite
dimensional sets, then enumerating the rationals q1, go, . . . and applying Kolmogorov’s
extension theorem shows that we can construct a probability v, on (€4, F;) so that
Vg{w : w(0) =z} = 1 and (8.1.3) holds when the ¢; € Q2. To extend B; to a process
defined on [0, o), we will show:

Theorem 8.1.2. Let T < oo and v € R. v, assigns probability one to paths w :
Q2 — R that are uniformly continuous on Qg N [0,T].

Remark. It will take quite a bit of work to prove Theorem 8.1.2. Before taking on
that task, we will attend to the last measure theoretic detail: We tidy things up by
moving our probability measures to (C,C), where C' = {continuous w : [0,00) — R}
and C is the o-field generated by the coordinate maps ¢ — w(t). To do this, we
observe that the map 9 that takes a uniformly continuous point in €, to its unique
continuous extension in C' is measurable, and we set

P,=v,oy !

Our construction guarantees that B;(w) = w; has the right finite dimensional distri-
butions for ¢ € Q2. Continuity of paths and a simple limiting argument shows that
this is true when ¢ € [0,00). Finally, the reader should note that, as in the case of
Markov chains, we have one set of random variables Bi(w) = w(t), and a family of
probability measures P,, x € R, so that under P,, B; is a Brownian motion with

Proof. By translation invariance and scaling (8.1.1), we can without loss of generality
suppose By = 0 and prove the result for 7' = 1. In this case, part (b) of the definition
and the scaling relation imply

Eo(|B: — Bl)* = Bo|Bi_o|* = C(t - 5)°

where C' = Ey|B1|* < co. From the last observation, we get the desired uniform con-
tinuity by using the following result due to Kolmogorov. Thanks to Robin Pemantle,
the proof is now much simpler than in previous editions.

Theorem 8.1.3. Suppose E|X, — X;|? < K|t — s|'*® where a, 8 > 0. If v < /3
then with probability one there is a constant C(w) so that

| X(q) — X(r)| <Clg—r|" forallg,r € QaN[0,1]

Proof. Let G,, = {|X (i/2™) — X ((: —1)/2™)] < 277" for all 0 < ¢ < 2"}. Chebyshev’s
inequality implies P(|Y| > a) < a PE|Y|?, so if we let A = a — 3y > 0 then

P(Gy) <2"- 2" EIX(j27") — X(i27")| = K27

Lemma 8.1.4. On Hy = N2 Gy, we have

[ X(q) = X(r)| <

Ty la—r”

for q,r € QN [0,1] with |q —r| <27V,
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(i —2)/2m (i —1)/2m i/2m (i—1)/2m

q r
| Pl | | | le |
I T I I 1T I

Proof of Lemma 8.1.4. Let q¢,7 € Q2N [0,1] with 0 < r — ¢ < 27V, For some m > N
we can write

r=i2"m 4277 4490
g=(i—1)27m —2791) ... _ 9=k

where m < r(1) <--- <r(f) and m < ¢(1) < --- < ¢q(k). On Hy

X (27™) — X((i —1)27™)| <27

[X(g) = X(( —1)27™)[ < Z 271y < Z 277)
h=1

2—m

T1-27

|X(r) - X(@27™)] < 1_9—

Combining the last three inequalities with 27™ < |¢ — r| and 1 — 277 > 1 completes
the proof of Lemma 8.1.4. O

To prove Theorem 8.1.3 now, we note that

PHF) < Y PGy <K Y 27 =Ko "/(1-27%)
n=N n=N

Since Y %_; P(HS) < oo, the Borel-Cantelli lemma, Theorem 2.3.1, implies
|X(q) = X(r)| < Alg—r[" for q,r € Qz with |g — 7| < d(w).

To extend this to ¢, € QaN[0,1],let sp =¢ < 81 <...< 8y, =71 with [s; — ;1] <
d(w) and use the triangle inequality to conclude | X (¢) — X ()| < C(w)|q — r|* where
Clw)=1+6w)" " O

The scaling relation, (8.1.1), implies
E|B; — Bs|*™ = Cy|t — s|™  where C,, = E|B;[*™

so using Theorem 8.1.3 with 8 = 2m, a = m — 1 and letting m — oo gives a result of
Wiener (1923).

Theorem 8.1.5. Brownian paths are Holder continuous for any exponent v < 1/2.
It is easy to show:

Theorem 8.1.6. With probability one, Brownian paths are not Lipschitz continuous
(and hence not differentiable) at any point.

Remark. The nondifferentiability of Brownian paths was discovered by Paley, Wiener,
and Zygmund (1933). Paley died in 1933 at the age of 26 in a skiing accident while
the paper was in press. The proof we are about to give is due to Dvoretsky, Erdos,
and Kakutani (1961).
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Proof. Fix a constant C' < oo and let A, = {w : there is an s € [0,1] so that
|B; — Bs| < C|t — s| when [t —s] < 3/n}. For 1 <k <n-—2 let

k+3j k+j5—-1
n n

B,, = { at least one Y, < 5C/n}

The triangle inequality implies A,, C B,,. The worst case is s = 1. We pick k =n — 2
and observe

() - (5=l () oo e - (7))

< C(3/n+2/n)

Using A,, C B, and the scaling relation (8.1.1) now gives

P(Ay) < P(By,) < nP(|B(1/n)| < 5C/n)® = nP(|B(1)| < 5C/n'/?)3
< n{(10C/n'/?) . (27)~1/2}3

since exp(—z%/2) < 1. Letting n — oo shows P(4,) — 0. Noticing n — A, is
increasing shows P(A,) = 0 for all n and completes the proof. O

Exercise 8.1.2. Looking at the proof of Theorem 8.1.6 carefully shows that if v > 5/6
then B; is not Holder continuous with exponent v at any point in [0,1]. Show, by
considering k increments instead of 3, that the last conclusion is true for all v >
1/2+1/k.

The next result is more evidence that the sample paths of Brownian motion behave
locally like v/%.

Exercise 8.1.3. Fix t and let A,, , = B(tm2™") — B(t(m — 1)27"). Compute

2
E( S Az, —t)
m<2n

and use Borel-Cantelli to conclude that 3 . A2 tas. asn — o0o.

,n

Remark. The last result is true if we consider a sequence of partitions II; C II; C
. with mesh — 0. See Freedman (1971a) p. 42-46. However, the true quadratic
variation, defined as the sup over all partitions, is cc.

Multidimensional Brownian motion

All of the result in this section have been for one-dimensional Brownian motion.
To define a d-dimensional Brownian motion starting at = € R? we let B}, ... B¢ be
independent Brownian motions with B = z;. Asin the case d = 1 these are realized as
probability measures P, on (C,C) where C' = {continuous w : [0,00) — R%} and C is
the o-field generated by the coordinate maps. Since the coordinates are independent,
it is easy to see that the finite dimensional distributions satisfy (8.1.2) with transition
probability

pe(z,y) = (2mt) 2 exp(—|y — x|?/2t) (8.1.4)
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8.2 Markov Property, Blumenthal’s 0-1 Law

Intuitively, the Markov property says “if s > 0 then B(t +s) — B(s), t > 0 is a
Brownian motion that is independent of what happened before time s.” The first
step in making this into a precise statement is to explain what we mean by “what
happened before time s.” The first thing that comes to mind is

Fl=0(B,:r<s)

S

For reasons that will become clear as we go along, it is convenient to replace F¢ by
]:: = mt>s~7:to

The fields F; are nicer because they are right continuous:

ﬁt>sft+ =Ni>s (ﬂu>t~7:3) = mu>sf3 = ]::

In words, the F; allow us an “infinitesimal peek at the future,” i.e., A € FJ if it is
in F¢, . for any € > 0. If f(u) > 0 for all u > 0, then in d = 1 the random variable

. Bt - Bs
lim sup

tls m

is measurable with respect to F;" but not 2. We will see below that there are no
interesting examples, i.e., ;7 and F? are the same (up to null sets).

To state the Markov property, we need some notation. Recall that we have a
family of measures P,, * € R% on (C,C) so that under P,, B;(w) = w(t) is a
Brownian motion starting at x. For s > 0, we define the shift transformation
fs : C — C by

Osw)(t) =w(s+t) fort>0

In words, we cut off the part of the path before time s and then shift the path so that
time s becomes time 0.

Theorem 8.2.1. Markov property. If s > 0 and Y is bounded and C measurable,
then for all x € R4
Ey(Y 0 0,|F]) = Ep,Y

where the right-hand side is the function p(z) = E.Y evaluated at x = By.

Proof. By the definition of conditional expectation, what we need to show is that
E,(Y o0 A)=FE,(EgY;A) forall Ac FS (8.2.1)

We will begin by proving the result for a carefully chosen special case and then
use the monotone class theorem (MCT) to get the general case. Suppose Y (w) =
[[i<,n<n fr(w(tm)), where 0 < t; < ... < t, and the f,, are bounded and measurable.
Let 0 < h <t1,let 0<s1...<sp<s+h,andlet A={w:w(s;) € A4;,1<j <k},
where A; € R for 1 < j < k. From the definition of Brownian motion, it follows that

BV o0, 4) = [

dxlpm(xawl)/ d$2p52751($1,$2)"'
A

Az

/A 0k Poy—er, (41, 21) / 0y Deshss (2 8) 0, 1)
k



308 CHAPTER 8. BROWNIAN MOTION

where
o(y,h) :/dylptl—h(yvyl)fl(yl)"'/dynptn—tn_1(yn—hyn)fn(yn)

For more details, see the proof of (6.1.3), which applies without change here. Using
that identity on the right-hand side, we have

E.(Y o065 A) = E,(o(Bsyn,h); A) (8.2.2)

The last equality holds for all finite dimensional sets A so the m — \ theorem, Theorem
2.1.2, implies that it is valid for all A € F?,, D F;.
It is easy to see by induction on n that

wun>=ﬁuny/dmpw7n@hy9ﬁxm>
-'-/dynpt"fmhl(ynflvyn)fn(yn)

is bounded and measurable. Letting A | 0 and using the dominated convergence
theorem shows that if z;, — z, then

me:/@mﬁm%mwmﬁmam

as h | 0. Using (8.2.2) and the bounded convergence theorem now gives
E.(YofsA) = E;(¢(Bs,0); A)

for all A € FJ. This shows that (8.2.1) holds for Y = [],.,,<,, fm(w(ty)) and the
fm are bounded and measurable.

The desired conclusion now follows from the monotone class theorem, 6.1.3. Let
‘H = the collection of bounded functions for which (8.2.1) holds. H clearly has prop-
erties (ii) and (iii). Let A be the collection of sets of the form {w : w(t;) € A;}, where
Aj; € R. The special case treated above shows (i) holds and the desired conclusion
follows. O

The next two exercises give typical applications of the Markov property. In Section
8.4, we will use these equalities to compute the distributions of L and R.

Exercise 8.2.1. Let Ty = inf{s > 0: B; =0} and let R =inf{t > 1: B, =0}. R is
for right or return. Use the Markov property at time 1 to get

P,(R>1+41t) = / p1(z,y)Py(To > t)dy (8.2.3)

Exercise 8.2.2. Let Ty = inf{s > 0: By =0} and let L =sup{t <1: B, =0}. L is
for left or last. Use the Markov property at time 0 < ¢ < 1 to conclude

Po(L <t) = / pe(0,9)Py(Ty > 1 — ) dy (8.2.4)

The reader will see many applications of the Markov property below, so we turn
our attention now to a “triviality” that has surprising consequences. Since

Em(Y o 95|.7:5+) = EB(S)Y e F?
it follows from Theorem 5.1.5 that
E.(Y o 08|'7:j) =E,(Yo 93|-7:§)

From the last equation, it is a short step to:
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Theorem 8.2.2. If Z € C is bounded then for all s > 0 and € R?,
E.(Z|F]) = Eo(Z|F7)
Proof. As in the proof of Theorem 8.2.1, it suffices to prove the result when
Z= 1] fu(B(tm))
m=1

and the f,, are bounded and measurable. In this case, Z can be written as X (Y o#,),
where X € 77 and Y is C measurable, so

E(Z|Ff) = XE, (Y 00s|Ff) = XEpY € F?
and the proof is complete. O

If we let Z € F;, then Theorem 8.2.2 implies Z = E,(Z|F?) € F?2, so the two

o-fields are the same up to null sets. At first glance, this conclusion is not exciting.
The fun starts when we take s = 0 in Theorem 8.2.2 to get:

Theorem 8.2.3. Blumenthal’s 0-1 law. If A € F; then for all x € R?,
P.(A) € {0,1}.
Proof. Using A € F;, Theorem 8.2.2, and F§ = o(By) is trivial under P, gives
1a=E,(14|F) = Ex(14|F) = P.(A) Py as.

This shows that the indicator function 14 is a.s. equal to the number P,(A), and the
result follows. O

In words, the last result says that the germ field, _7-'0+ , is trivial. This result
is very useful in studying the local behavior of Brownian paths. For the rest of the
section we restrict our attention to d = 1.

Theorem 8.2.4. If 7 =inf{t > 0: B; > 0} then Py(t =0) = 1.

Proof. Py(t < t) > Py(By > 0) = 1/2 since the normal distribution is symmetric
about 0. Letting ¢ | 0, we conclude

Py(r=0) = ltilrf)lpo(T <t)>1/2

so it follows from Theorem 8.2.3 that Py(r = 0) = 1. O

Once Brownian motion must hit (0, c0) immediately starting from 0, it must also
hit (—o0,0) immediately. Since t — By is continuous, this forces:

Theorem 8.2.5. If Ty = inf{t > 0: B, = 0} then Py(Tp =0) = 1.
A corollary of Theorem 8.2.5 is:

Exercise 8.2.3. If a < b, then with probability one there is a local maximum of By
in (a,b). So the set of local maxima of B is almost surely a dense set.

Another typical application of Theorem 8.2.3 is:
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Exercise 8.2.4. (i) Suppose f(¢) > 0 for all ¢ > 0. Use Theorem 8.2.3 to conclude
that limsup, o B(t)/f(t) = ¢, Py a.s., where ¢ € [0,00] is a constant. (ii) Show that
if f(t) = v/t then ¢ = oo, so with probability one Brownian paths are not Holder
continuous of order 1/2 at 0.

Remark. Let H,(w) be the set of times at which the path w € C'is Hélder continuous
of order . Theorem 8.1.5 shows that P(H., = [0,00)) = 1 for v < 1/2. Exercise 8.1.2
shows that P(H, = 0) = 1 for v > 1/2. The last exercise shows P(t € H;/3) = 0
for each ¢, but B. Davis (1983) has shown P(H;,2 # @) = 1. Perkins (1983) has
computed the Hausdorff dimension of

Biin — B,
{t €(0,1): limsupM < c}

h10 h1/2

Theorem 8.2.3 concerns the behavior of By as t — 0. By using a trick, we can use
this result to get information about the behavior as t — oc.

Theorem 8.2.6. If B; is a Brownian motion starting at 0, then so is the process
defined by Xo =0 and Xy =tB(1/t) fort > 0.

Proof. Here we will check the second definition of Brownian motion. To do this, we
note: (i) If 0 < ¢ < ... < tp, then (X(¢1),...,X(¢,)) has a multivariate normal
distribution with mean 0. (ii) EX; =0 and if s < ¢ then

B(X,X;) = stB(B(1/$)B(1/t)) = s

For (iii) we note that X is clearly continuous at ¢ # 0.

To handle t = 0, we begin by observing that the strong law of large numbers
implies B, /n — 0 as n — oo through the integers. To handle values in between
integers, we note that Kolmogorov’s inequality, Theorem 2.5.2, implies

P ( sup |B(n+k2™™) — B,| > n2/3> <n *3E(B,;1 — By,)?
0<k<2m

Letting m — oo, we have

P sup |By, — By >n?/3 | <p~Y3
u€[n,n+1|

Since ), n~*/3 < oo, the Borel-Cantelli lemma implies B, /u — 0 as u — oo. Taking
u=1/t, we have X; — 0 ast — 0. O

Theorem 8.2.6 allows us to relate the behavior of By as t — oo and as t — 0.
Combining this idea with Blumenthal’s 0-1 law leads to a very useful result. Let

F,; =0(Bs:s>t) = the future at time ¢
T = Ny>0F; = the tail o-field.

Theorem 8.2.7. If A € T then either P,(A) =0 or P,(A) = 1.

Remark. Notice that this is stronger than the conclusion of Blumenthal’s 0-1 law.
The examples A = {w : w(0) € D} show that for A in the germ o-field 7, the value
of P,(A), 1p(z) in this case, may depend on z.
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Proof. Since the tail o-field of B is the same as the germ o-field for X, it follows that
Py(A) € {0,1}. To improve this to the conclusion given, observe that A € F}, so 14
can be written as 1p o 6. Applying the Markov property gives

Py(A) = E;(1p 0 61) = E,(E.(1p © 61|F1)) = E+(Ep, 1p)

— [0 ey - 0 /2P D) dy

Taking x = 0, we see that if Py(A) = 0, then Py(D) = 0 for a.e. y with respect to
Lebesgue measure, and using the formula again shows P,(A) = 0 for all z. To handle
the case Py(A) = 1, observe that A° € 7 and Py(A°) = 0, so the last result implies
P,(A°) =0 for all . O

The next result is a typical application of Theorem 8.2.7.

Theorem 8.2.8. Let B; be a one-dimensional Brownian motion starting at 0 then
with probability 1,

limsup B, /vt = oo litminth/\/f:foo

t—o0

Proof. Let K < co. By Exercise 2.3.1 and scaling

Py(By,/v/n > K i.0.) > limsup Py(B, > Ky/n) = Py(B1 > K) >0

n—oo

so the 0-1 law in Theorem 8.2.7 implies the probability is 1. Since K is arbitrary, this
proves the first result. The second one follows from symmetry. O

From Theorem 8.2.8, translation invariance, and the continuity of Brownian paths
it follows that we have:

Theorem 8.2.9. Let B; be a one-dimensional Brownian motion and let A = N, {B; =
0 for some t > n}. Then P,(A) =1 for all x.

In words, one-dimensional Brownian motion is recurrent. For any starting point x,
it will return to 0 “infinitely often,” i.e., there is a sequence of times t, T oo so that
B, = 0. We have to be careful with the interpretation of the phrase in quotes since
starting from 0, B; will hit 0 infinitely many times by time € > 0.

Last rites. With our discussion of Blumenthal’s 0-1 law complete, the distinction
between FJ and F? is no longer important, so we will make one final improvement

in our o-fields and remove the superscripts. Let

N, ={A:AC D with P,(D) =0}
Fr =o(FHUN)
Fs =N F2

N, are the null sets and F¥ are the completed o-fields for P,. Since we do not

want the filtration to depend on the initial state, we take the intersection of all the
o-fields. The reader should note that it follows from the definition that the F, are
right-continuous.
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8.3 Stopping Times, Strong Markov Property

Generalizing a definition in Section 4.1, we call a random variable S taking values in
[0, ¢] a stopping time if for all t > 0, {S < t} € F;. In the last definition, we have
obviously made a choice between {S < t} and {S < t}. This makes a big difference
in discrete time but none in continuous time (for a right continuous filtration F;) :

If{S <t} e Fthen {S <t} =U,{S<t—1/n} € F.

If {S<t}eFthen {S<t}=n,{S<t+1/n} € F.
The first conclusion requires only that ¢ — F; is increasing. The second relies on the
fact that ¢ — F; is right continuous. Theorem 8.3.2 and 8.3.3 below show that when

checking something is a stopping time, it is nice to know that the two definitions are
equivalent.

Theorem 8.3.1. If G is an open set and T = inf{t > 0 : B, € G} then T is a

stopping time.

Proof. Since G is open and ¢t — By is continuous, {T' < t} = Uz« {By € G}, where
the union is over all rational ¢, so {T" < t} € F;. Here we need to use the rationals to
get a countable union, and hence a measurable set. O

Theorem 8.3.2. If T, is a sequence of stopping times and T,, | T then T is a stopping
time.

Proof. {T <t} =U,{T, <t} O

Theorem 8.3.3. If T, is a sequence of stopping times and T, T T then T is a stopping
time.

Proof. {T <t} =n,{T,, <t} O
Theorem 8.3.4. If K is a closed set and T = inf{t > 0: By € K} then T is a
stopping time.

Proof. Let B(z,r) ={y: |y — x| <r}, let G, = Upex B(x,1/n) and let T,, = inf{t >
0: B; € G,}. Since G, is open, it follows from Theorem 8.3.1 that T,, is a stopping
time. I claim that as n | oo, T, T 1. To prove this, notice that T' > T,, for all n,
so lim T, < T. To prove T < lim 7T,,, we can suppose that T,, T ¢ < oo. Since
B(T,) € Gy, for all n and B(T,,) — B(t), it follows that B(t) € K and T < t. O

Exercise 8.3.1. Let S be a stopping time and let S,, = ([2"5] + 1)/2" where [z] =
the largest integer < z. That is,

Sp=(m+1)27"if m2"<S<(m+1)27"
In words, we stop at the first time of the form k2~™ after S (i.e., > S). From the
verbal description, it should be clear that S,, is a stopping time. Prove that it is.

Exercise 8.3.2. If S and T are stopping times, then S AT = min{S, T}, SVT =
max{S,T}, and S + T are also stopping times. In particular, if ¢ > 0, then S A t,
SVt,and S+t are stopping times.

Exercise 8.3.3. Let T,, be a sequence of stopping times. Show that

supT,, infT,, limsupT,, liminfT,
n n n n

are stopping times.



8.3. STOPPING TIMES, STRONG MARKOV PROPERTY 313

Theorems 8.3.4 and 8.3.1 will take care of all the hitting times we will consider.
Our next goal is to state and prove the strong Markov property. To do this, we need
to generalize two definitions from Section 4.1. Given a nonnegative random variable
S(w) we define the random shift g, which “cuts off the part of w before S(w) and
then shifts the path so that time S(w) becomes time 0.” In symbols, we set

(050)(t) = {w(S(w) +t) on {S < oo}
A on {S = oo}
where A is an extra point we add to C. As in Section 6.3, we will usually explicitly
restrict our attention to {S < oo}, so the reader does not have to worry about the
second half of the definition.
The second quantity Fg, “the information known at time S,” is a little more
subtle. Imitating the discrete time definition from Section 4.1, we let

Fs={A: An{S <t} € F for all t > 0}

In words, this makes the reasonable demand that the part of A that lies in {S < ¢}
should be measurable with respect to the information available at time ¢. Again we
have made a choice between < t and < ¢, but as in the case of stopping times, this
makes no difference, and it is useful to know that the two definitions are equivalent.

Exercise 8.3.4. Show that when F; is right continuous, the last definition is un-
changed if we replace {S < ¢} by {S < t}.

For practice with the definition of Fg, do:

Exercise 8.3.5. Let S be a stopping time, let A € Fg, and let R = S on A and
R = 0o on A°. Show that R is a stopping time.

Exercise 8.3.6. Let S and T be stopping times.
(i) {S < t}, {S > t}, {S =t} are in Fg.
(i) {S < T}, {S>T}, and {S =T} are in Fg (and in Fr).

Most of the properties of F derived in Section 4.1 carry over to continuous time.
The next two will be useful below. The first is intuitively obvious: at a later time we
have more information.

Theorem 8.3.5. If S < T are stopping times then Fg C Fr.
Proof. If A € Fg then AN{T <t} =(ANn{S<t})n{T <t} e F. O
Theorem 8.3.6. IfT,, | T are stopping times then Fr = NF(T,,).

Proof. Theorem 8.3.5 implies F(T,,) D Fr for all n. To prove the other inclusion, let
A e NF(T,). Since AN{T,, <t} € Fyand T, | T, it follows that AN{T < t} € F;,. O

The last result allows you to prove something that is obvious from the verbal
definition.

Exercise 8.3.7. Bg € Fg, i.e., the value of Bg is measurable with respect to the
information known at time S! To prove this, let S, = ([2"S] + 1)/2™ be the stopping
times defined in Exercise 8.3.1. Show B(S,,) € Fg,, , then let n — oo and use Theorem
8.3.6.
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We are now ready to state the strong Markov property, which says that the Markov
property holds at stopping times. It is interesting that the notion of Brownian mo-
tion dates to the the very beginning of the 20th century, but the first proofs of
the strong Markov property were given independently by Hunt (1956), and Dynkin
and Yushkevich (1956). Hunt writes “Although mathematicians use this extended
Markoff property, at least as a heuristic principle, I have nowhere found it discussed
with rigor.”

Theorem 8.3.7. Strong Markov property. Let (s,w) — Yi(w) be bounded and
R x C measurable. If S is a stopping time, then for all x € R?

Ez<YS o 95‘.7:5) = EB(S)YS on {S < OO}

where the right-hand side is the function p(z,t) = E,Y; evaluated at x = B(S), t = S.

Remark. The only facts about Brownian motion used here are that (i) it is a Markov
process, and (ii) if f is bounded and continuous then x — E, f(B;) is continuous. In
Markov process theory (ii) is called the Feller property. While Hunt’s proof only
applies to Brownian motion, and Dynkin and Yushkevich proved the result in this
generality.

Proof. We first prove the result under the assumption that there is a sequence of
times t,, T 00, so that P,(S < 00) = Y P,(S = ¢,). In this case, the proof is basically
the same as the proof of Theorem 6.3.4. We break things down according to the
value of S, apply the Markov property, and put the pieces back together. If we let
Zy, =Y, (w) and A € Fg, then

E,(Yso00s;AN{S <o0}) =Y Eu(Znoby; AN{S =tn})

n=1

Now if A € Fg, AN{S =t} = (AN{S <t,})—(AN{S < t,_1}) € F,, so it follows
from the Markov property that the above sum is

=Y Eu(Ep(t,)Zn; AN{S = t,}) = Ex(Ep(s)Ys; AN {S < o0})
n=1

To prove the result in general, we let S,, = ([2"S5]+1)/2" be the stopping time defined
in Exercise 8.3.1. To be able to let n — oo, we restrict our attention to Y’s of the

form
n

Ya(w) = fO(S) H fm(w(tm)) (831)
m=1

where 0 < t; < ... <, and fy,..., fn are bounded and continuous. If f is bounded
and continuous then the dominated convergence theorem implies that

xﬁ/@mmwﬂw

is continuous. From this and induction, it follows that
p(a.5) = oY, = o) [ don o (.0 a(n)

---/dynptn—tnfl(yn—layn)fn(yn)
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is bounded and continuous.

Having assembled the necessary ingredients, we can now complete the proof. Let
A € Fg. Since S < S,,, Theorem 8.3.5 implies A € F(S,,). Applying the special case
proved above to S, and observing that {S, < co} = {S < oo} gives

E:v(YS,,L o 95”;14 N {S < OO}) = Ez(@(B(Sn)a Sn)a AN {S < OO})
Now, as n — o0, Sy, | S, B(S,) — B(S), ¢(B(S,), Sn) — ¢(B(S5),S) and
Ys, 0bs, — Ygo0s

so the bounded convergence theorem implies that the result holds when Y has the
form given in (8.3.1).

To complete the proof now, we will apply the monotone class theorem. As in the
proof of Theorem 8.2.1, we let H be the collection of Y for which

Em(YS o 95;14) = Ez(EB(S)YS;A) for all A € Fg

and it is easy to see that (ii) and (iii) hold. This time, however, we take A4 to be
the sets of the form A = Gy x {w : w(s;) € G;,1 < j < k}, where the G, are
open sets. To verify (i), we note that if K; = G§ and f]'(z) = 1 A np(z, Kj), where
p(z,K) = inf{|z —y[ : y € K} then f}' are continuous functions with f}' T 1g; as
n T oo. The facts that

k
VI (w) = [ (o) [T £ (w(s)) €

and (iii) holds for H imply that 14 € H. This verifies (i) in the monotone class
theorem and completes the proof. O

8.4 Path Properites

In this section, we will use the strong Markov property to derive properties of the
zero set {t : B; = 0}, the hitting times T, = inf{¢ : B, = a}, and max<<; B, for one
dimensional Brownian motion.

0.8

0.6 4

0.4 4

-0.4

Figure 8.2: Simulation one-dimensional Brownian motion.
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8.4.1 Zeros of Brownian Motion

Let Ry = inf{u >t : B, = 0} and let Ty = inf{u > 0: B, = 0}. Now Theorem 8.2.9
implies P, (R; < o0) =1, so B(R;) = 0 and the strong Markov property and Theorem
8.2.5 imply

Paj(To o QRt > O‘th) = P()(To > 0) =0

Taking expected value of the last equation, we see that
P.(Tp o O, > 0 for some rational t) =0

From this, it follows that if a point u € Z(w) = {t : B;(w) = 0} is isolated on the left
(i.e., there is a rational ¢ < w so that (¢,u) N Z(w) = @), then it is, with probability
one, a decreasing limit of points in Z(w). This shows that the closed set Z(w) has
no isolated points and hence must be uncountable. For the last step, see Hewitt and
Stromberg (1965), page 72.

If we let | Z(w)| denote the Lebesgue measure of Z(w) then Fubini’s theorem implies

T
F,(1Z(@)|n[0,T]) =/0 Po(B, = 0)dt =0

So Z(w) is a set of measure zero.

The last four observations show that Z is like the Cantor set that is obtained by
removing (1/3,2/3) from [0, 1] and then repeatedly removing the middle third from
the intervals that remain. The Cantor set is bigger however. Its Hausdorff dimension
is log 2/ log 3, while Z has dimension 1/2.

8.4.2 Hitting times
Theorem 8.4.1. Under Py, {T,, a > 0} has stationary independent increments.

Proof. The first step is to notice that if 0 < a < b then
Ty o001, =T, —Tq,

so if f is bounded and measurable, the strong Markov property, 8.3.7 and translation
invariance imply
Eo (f(Ty = Ta) |Fr, ) = Eo (f(Ty) © 0r, | Fr, )
= E.f(Th) = Eo f (Tv—a)
To show that the increments are independent, let ag < a1 ... < an, let f;, 1 <i<n

be bounded and measurable, and let F; = f;(T,, — T,,_,). Conditioning on Fr,
and using the preceding calculation we have

n n—1 n—1
Ey <H Fz) = Ey <H F; - Eo(Fn|fTan1)> = Ey (H Fi) EoF,
i1

i=1 i=1

-1

By induction, it follows that Eo[];_, F; = []., EoF;, which implies the desired
conclusion. O

The scaling relation (8.1.1) implies

4

T, < a*Th (8.4.1)
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Combining Theorem 8.4.1 and (8.4.1), we see that t;, = Ty, — T—1 are i.i.d. and

ty+--+t,

— Tl
n2

so using Theorem 3.7.4, we see that T, has a stable law. Since we are dividng by n?
and T, > 0, the index o = 1/2 and the skewness parameter x = 1, see (3.7.11).

Without knowing the theory mentioned in the previous paragraph, it is easy to
determine the Laplace transform

wa(A) = Egexp(—AT,) fora>0

and reach the same conclusion. To do this, we start by observing that Theorem 8.4.1
implies
P2 (AN)py(A) = Papy(N).

It follows easily from this that
©a(A) = exp(—ac(N)) (8.4.2)

Proof. Let ¢(A\) = —log ¢1(A) so (8.4.2) holds when a = 1. Using the previous identity
with x = y = 27™ and induction gives the result for a = 27™, m > 1. Then, letting
x=k27™ and y = 27™ we get the result for a = (k + 1)2~™ with k£ > 1. Finally, to
extend to a € [0, 00), note that a — ¢,(A) is decreasing. O

To identify ¢()), we observe that (8.4.1) implies
Eexp(—T,) = Eexp(—ad*Th)

s0 ac(1) = ¢(a?), i.e., ¢(A) = ¢(1)v/X. Since all of our arguments also apply to o B; we
cannot hope to compute ¢(1). Theorem 8.5.7 will show

Eo(exp(—AT,)) = exp(—av/2)\) (8.4.3)

Our next goal is to compute the distribution of the hitting times T,. This applica-
tion of the strong Markov property shows why we want to allow the function Y that
we apply to the shifted path to depend on the stopping time S.

Example 8.4.1. Reflection principle. Let a > 0 and let T, = inf{t : B; = a}.
Then

Py(T, < t) = 2Py(B, > a) (8.4.4)

Intuitive proof. We observe that if B, hits a at some time s < ¢, then the strong
Markov property implies that B, — B(T,) is independent of what happened before
time T,. The symmetry of the normal distribution and P,(B, = a) = 0 for u > 0
then imply

1
Py(T, <t,By >a) = §P0(Ta <t) (8.4.5)
Rearranging the last equation and using {B; > a} C {1, < t} gives

Py(T, <t)=2Py(Ty, <t,B; >a)=2Py(B; > a)
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Figure 8.3: Proof by picture of the reflection principle.

Proof. To make the intuitive proof rigorous, we only have to prove (8.4.5). To extract
this from the strong Markov property, Theorem 8.3.7, we let

1 ifs<t,w(t—s)>a

i) = =)
0 otherwise

We do this so that if we let S = inf{s < t: B, = a} with inf ) = oo, then

1 ifS<t, By >a
Ys(6 = ’
s(6sw) {0 otherwise
and the strong Markov property implies
Eo(Ys00g|Fs) =¢(Bs,S) on{S<oo}={T, <t}

where p(x,s) = E,Ys. Bs = a on {S < oo} and ¢(a,s) = 1/2 if s < ¢, so taking
expected values gives

Py(T, <t,B; > a) = FEy(Ys00g;5 < 0)
= Eo(E()(YS o 95‘.7:3), S < OO) = E0(1/2,Ta < t)

which proves (8.4.5). O
Exercise 8.4.1. Generalize the proof of (8.4.5) to conclude that if u < v < a then
Py(T, < tyu < By <v) = FPy(2a —v < By < 2a —u) (8.4.6)

This should be obvious from the picture in Figure 8.3. Your task is to extract this
from the strong Markov property.

Letting (u,v) shrink down to x in (8.4.6) we have for a < z
Py(T, < t,By =1z) =pi(0,2a — x)
Py(T, > t,By = x) = pe(0,2) — p(0,2a — x) (8.4.7)

i.e., the (subprobability) density for B; on the two indicated events. Since {T, < t} =
{M; > a}, differentiating with respect to a gives the joint density

2(2a =) _(9q_)2/2t
a,r) = ——e
fou, B, (a;2) o3
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Using (8.4.4), we can compute the probability density of T,,. We begin by noting
that

P(T, <t)=2 Py(B; >a) = 2/ (2mt) Y2 exp(—x?/2t)dx

then change variables z = (t'/2a)/s'/? to get

0
Po(T <) =2 [ (2nt) /2 exp(-a/25) (~12a/25912) ds

t

= /Ot(27rs3)‘1/2aexr>(—a2/2s) ds (8.4.8)

Using the last formula, we can compute:

Example 8.4.2. The distribution of L = sup{t < 1: B; = 0}. By (8.2.4),

o0

Py(L<s)= / ps(0,2) P (To > 1 — s)dx

— 0o

:2/ (2ms) /2 exp(fzz/Qs)/ (27r3) "V 22 exp(—a? /2r) dr dx:
0 1-s

:i/ (87‘3)_1/2/ xexp(—xz(r—i—s)/%s)dacdr
1 0

m -5

_ 1 /100 (sr) " 2rs/(r + s) dr

™ —s

Our next step is to let t = s/(r + s) to convert the integral over r € [1 — s, 00) into
one over t € [0,s]. dt = —s/(r + s)%dr, so to make the calculations easier we first

rewrite the integral as
1/2
1 /°° (r+s)? s
=— dr
T Jis TS (r+s)?

and then change variables to get

Po(L <) =+ /O 41— 0) 2 = 2 arcsin(v/5) (8.4.9)

s s

Since L is the time of the last zero before time 1, it is remarkable that the density
is symmetric about 1/2 and blows up at 0. The arcsin may remind the reader of the
limit theorem for Lo, = sup{m < 2n: S,, = 0} given in Theorem 4.3.5. We will see
in Section 8.6 that our new result is a consequence of the old one.

Exercise 8.4.2. Use (8.2.3) to show that R = inf{¢t > 1 : B, = 0} has probability
density
Py(R=1+41) =1/(xt"/?(1 4+ 1))
8.4.3 Lévy’s Modulus of Continuity
Let osc(d) = sup{|Bs — By| : s,t € [0,1], |t — 5] < &}
Theorem 8.4.2. With probability 1,

lim sup osc(8) /(6 log(1/6))/? < 6
6—0
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Remark. The constant 6 is not the best possible because the end of the proof is
sloppy. Lévy (1937) showed

lim sup osc(0) /(8 log(1/8))Y/? = V2
6—0

See McKean (1969), p. 14-16, or It6 and McKean (1965), p. 36-38, where a sharper
result due to Chung, Erdos and Sirao (1959) is proved. In contrast, if we look at the
behavior at a single point, Theorem 8.11.7 below shows

limsup |Bi|/+/2tloglog(1/t) =1 as.
t—0

Proof. Let Iy, , = [m2™", (m+1)27"], and A, ,, = sup{|B; — B(m2™")| : t € Iy, n}.
From (8.4.4) and the scaling relation, it follows that

P(Apy > a27"/?) <AP(B(27") 2 a27"/?)
=4P(B(1) > a) < 4exp(—d®/2)

by Theorem 1.2.3 if a > 1. If € > 0, b = 2(1 + ¢)(log 2), and a,, = (bn)'/?, then the
last result implies

P(Apn > 0,272 for some m < 2") < 27 - dexp(—bn/2) = 4-27"¢

so the Borel-Cantelli lemma implies that if n > N(w), A, < (bn)Y/2277/2. Now if
$€Lyn, s<tand |s—t| <27, thent € I, or Ipt1,. I claim that in either case
the triangle inequality implies

|B; — B,| < 3(bn)1/227"/2
To see this, note that the worst case is t € I;;,41,,, but even in this case
|B: — Bs| < |Bi — B((m +1)27")]
+ |B((m+1)27") — B(m2™")| + |B(m2™") — Bs]|
It follows from the last estimate that for 2= (1) < § < 2—n
osc(8) < 3(bn)'/227/2 < 3(blogy(1/6))1/2(26)1/2 = 6((1 + €)d log(1/48))'/?

Recall b = 2(1 + €) log 2 and observe exp((log 2)(log, 1/0)) = 1/4. O

8.5 Martingales

At the end of Section 5.7 we used martingales to study the hitting times of random
walks. The same methods can be used on Brownian motion once we prove:

Theorem 8.5.1. Let X; be a right continuous martingale adapted to a right contin-
uwous filtration. If T is a bounded stopping time, then EXp = EXj.

Proof. Let n be an integer so that P(T' < n — 1) = 1. As in the proof of the strong
Markov property, let T, = ([2"T] + 1)/2™. Y™ = X(k2~™) is a martingale with
respect to F' = F(k27™) and S,, = 2T, is a stopping time for (Y, F*), so by
Exercise 5.4.3

X(T) = Y, = B(Y30

Fs,,) = E(X| F(Tn))
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Asm T oo, X(T},) — X (T) by right continuity and F(T,) | F(T') by Theorem 8.3.6,
so it follows from Theorem 5.6.3 that

X(T) = E(Xn|F(T))
Taking expected values gives EX(T) = EX,, = EXj, since X,, is a martingale. O

Theorem 8.5.2. B; is a martingale w.r.t. the o-fields F; defined in Section 8.2.

Note: We will use these o-fields in all of the martingale results but will not mention
them explicitly in the statements.

Proof. The Markov property implies that
Ey(B|Fs) = Ep,(Bi-s) = Bs
since symmetry implies E, B, =y for all u > 0. O
From Theorem 8.5.2, it follows immediately that we have:
Theorem 8.5.3. Ifa <z <b then P,(T, <Tp) = (b—z)/(b—a).

Proof. Let T = T, N'Tp. Theorem 8.2.8 implies that T' < oo a.s. Using Theorems
8.5.1 and 8.5.2, it follows that © = E,B(T At). Letting ¢ — oo and using the bounded
convergence theorem, it follows that

x=aP, (T, <Tp) +b(1 — P,(Ta < Tp))
Solving for P, (T, < T,) now gives the desired result. O

Example 8.5.1. Optimal doubling in Backgammon (Keeler and Spencer (1975)).
In our idealization, backgammon is a Brownian motion starting at 1/2 run until it
hits 1 or 0, and B, is the probability you will win given the events up to time t.
Initially, the “doubling cube” sits in the middle of the board and either player can
“double,” that is, tell the other player to play on for twice the stakes or give up and
pay the current wager. If a player accepts the double (i.e., decides to play on), she
gets possession of the doubling cube and is the only one who can offer the next double.

A doubling strategy is given by two numbers b < 1/2 < a, i.e., offer a double when
By > a and give up if the other player doubles and B; < b. It is not hard to see that
for the optimal strategy b* = 1 — ¢* and that when B; = b* accepting and giving
up must have the same payoff. If you accept when your probability of winning is b*,
then you lose 2 dollars when your probability hits 0 but you win 2 dollars when your
probability of winning hits a*, since at that moment you can double and the other
player gets the same payoff if they give up or play on. If giving up or playing on at
b* is to have the same payoff, we must have

b* *_b*
_1:7*.24_@ .
a

(=2)

a*

Writing b* = ¢ and a* = 1 — ¢ and solving, we have —(1 — ¢) = 2¢ — 2(1 — 2¢) or
1 =5¢c. Thus b* =1/5 and a* = 4/5. In words you should offer a double if your odds
of winning are 80% and accept if they are > 20%.

Theorem 8.5.4. B? —t is a martingale.
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Proof. Writing B? = (B + B; — B;)? we have
Er(B}|F.) = Eo(B? +2B:(B: — Bs) + (By — B)*|Fy)
= BY +2B.Ey(B, — Bi|F:) + Eo((B — By)?|Fy)
=B2+0+(t—s)
since By — By is independent of F, and has mean 0 and variance ¢t — s. O
Theorem 8.5.5. Let T =inf{t: B, ¢ (a,b)}, where a <0 < b.
EyT = —ab

Proof Theorem 8.5.1 and 8.5.4 imply Eo(B?(T'At)) = Eo(T At)). Letting t — oo and
using the monotone convergence theorem gives Eg(T At) | EoT. Using the bounded
convergence theorem and Theorem 8.5.3, we have

b 9 —a a—b

EgB(T At) = BoB = o®y—— + b —— = aby—

Theorem 8.5.6. exp(0B; — (6%t/2)) is a martingale.

—ab O

Proof. Bringing exp(6B;) outside
E.(exp(0B;)|Fs) = exp(6Bs) E(exp(0(B; — Bs))|Fs)
— exp(6B,) exp(63(t — 5)/2)

since B; — By is independent of F, and has a normal distribution with mean 0 and
variance t — s. O

Theorem 8.5.7. If T, = inf{t : B; = a} then Eyexp(—AT,) = exp(—av2\).

Proof. Theorem 8.5.1 and 8.5.6 imply that 1 = Egexp(B(T A t) — 60*(T, A t)/2).
Taking 8 = /2, letting ¢ — oo and using the bounded convergence theorem gives
1 = Epexp(av2h — \T,). O

Exercise 8.5.1. Let T' = inf{B; &€ (—a,a)}. Show that
Eexp(—AT) = 1/ cosh(aVv2\).

Exercise 8.5.2. The point of this exercise is to get information about the amount
of time it takes Brownian motion with drift —b, X; = B, — bt to hit level a. Let
7 =inf{t : B, = a + bt}, where a > 0. (i) Use the martingale exp(0B; — 0°t/2) with
0 =0b+ (b2 +2))'/2 to show

Eoexp(—A7) = exp(—a{b+ (b* + 2)\)'/?})
Letting A — 0 gives Py(7 < 00) = exp(—2ab).

Exercise 8.5.3. Let o = inf{t : B; ¢ (a,b)} and let A > 0. Use the strong Markov
property to show

E,exp(—AT,) = Ez(e*)‘U;Ta <Ty)+ Ez((f)‘U;Tl7 < T,)Epexp(—ATy)

(ii) Interchange the roles of a and b to get a second equation, use Theorem 8.5.7, and
solve to get

E,(e72%; T, < Ty) = sinh(V2A(b — z))/sinh(V2A(b — a))
E,(e7?: Ty, < T,) = sinh(V2\(x — a))/sinh(V2XA(b — a))
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Theorem 8.5.8. If u(t,x) is a polynomial in t and x with

ou 10%u
—+-===0 8.5.1
ot + 2 Ox? ( )
then u(t, B) is a martingale.

Proof. Let py(x,y) = (27) /2t~ /2 exp(—(y — z)?/2t). The first step is to check that
pq satisfies the heat equation: dp; /0t = (1/2)9%p,/dy>.

Op 1, (9*1)2
L ¢ A
ot = ot Pt Top P
o _ y-u

ayi ; Y27

#p 1 (y—a)?
aiygffgthert

Interchanging 9/0t and [, and using the heat equation

Sy Bt ) = [ £ oyutt, ) dy

10 0
= /Qa—yzpt(x,y)u(t,y)+pt($vy)§“(t’y) dy

Integrating by parts twice the above

0 1 0
= /pt(a%y) (at + wyg) u(t,y)dy =0

Since u(t,y) is a polynomial there is no question about the convergence of integrals
and there is no contribution from the boundary terms when we integrate by parts.

At this point we have shown that ¢ — FE,u(t, B;) is constant. To check the
martingale property we need to show that

E(ult, By)|Fy) = u(s, B;)

To do this we note that v(r, z) = u(s +r,z) satisfies Jv/dr = (1/2)0v? /022, so using
the Markov property

E(u(ta Bt)‘fg) = E(’U(t - S, Bt—s) © 09|-7:9)
= Ep(sv(t — 5, Bi—s) = v(0, Bs) = u(s, Bs)

where in the next to last step we have used the previously proved constancy of the
expected value. O

Examples of polynomials that satisfy (8.5.1) are x, 22 —t, 2% —3tx, 2* —622t4+3t2 . ..
The result can also be extended to exp(fz — 6%t/2). The only place we used the fact
that u(t, z) was a polynomial was in checking the convergence of the integral to justify
integration by parts.

Theorem 8.5.9. If T = inf{t: B; ¢ (—a,a)} then ET? = 5a*/3.
Proof. Theorem 8.5.1 implies

E(B(T At)* —6(T ANt)B(T At)?) = —3B(T A t)2.
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From Theorem 8.5.5, we know that ET = a? < oo. Letting ¢t — oo, using the
dominated convergence theorem on the left-hand side, and the monotone convergence
theorem on the right gives

a* —6a*ET = —3E(T?)
Plugging in ET = a? gives the desired result. O

Exercise 8.5.4. If T = inf{t : B, ¢ (a,b)}, where a < 0 < b and a # —b, then T
and B2 are not independent, so we cannot calculate ET? as we did in the proof of
Theorem 8.5.9. Use the Cauchy-Schwarz inequality to estimate E(T B2.) and conclude
ET? < C E(B%), where C is independent of a and b.

Exercise 8.5.5. Find a martingale of the form BS — ¢;tB} + cot? B? — c3t® and use
it to compute the third moment of T = inf{t : B; ¢ (—a,a)}.

Exercise 8.5.6. Show that (14¢)~'/2exp(B?/2(1 +1)) is a martingale and use this
to conclude that limsup,_ . B:/((1 +t)log(1 +¢))'/2 <1 ass.
8.5.1 Multidimensional Brownian Motion

Let Af = Z?Zl 02 f /0x? be the Laplacian of f. The starting point for our investiga-
tion is to note that repeating the calculation from the proof of Theorem 8.5.8 shows
that in d > 1 dimensions

pe(z,y) = (2mt) "2 exp(—|y — x|?/2t)

satisfies the heat equation Op, /0t = (1/2)A,p., where the subscript y on A indicates
at the Laplacian acts in the y variable.

Theorem 8.5.10. Suppose v € C?, i.e., all first and second order partial derivatives
exist and are continuous, and v has compact support. Then
‘1
v(By) — / §Av(Bs)ds is a martingale.
0

Proof. Repeating the proof of Theorem 8.5.8

%EzU(Bt) = /v(y)%pt(%y) dy

- / %pt(w, ¥)A,(y) dy

the calculus steps being justified by our assumptions. O

We will use this result for two special cases:

(z) log || d=2
xTr) =
4 |24 d>3

We leave it to the reader to check that in each case Ap = 0. Let S, = inf{t : |B,| = r},
r < R, and 7 = S A Sg. The first detail is to note that Theorem 8.2.8 implies that
if |#| < R then P;(Sgr < o0). Once we know this we can conclude
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Theorem 8.5.11. If |z| < R then E,.Sg = (R* — |z|?)/d.

Proof. Tt follows from Theorem 8.5.4 that |B;|> — dt = Z?=1(BZ)2 —t is a martingale.
Theorem 8.5.1 implies |z|? = E|Bs;a:|? —dE(SrAt). Letting t — oo gives the desired
result. O

Lemma 8.5.12. ¢(z) = E,¢(B;)

Proof. Define 9(z) = g(|z|) to be C? and have compact support, and have i(z) =
¢(x) when r < |z| < R. Theorem 8.5.10 implies that ¢(z) = E9(Biar). Letting
t — oo now gives the desired result. O

Lemma 8.5.12 implies that
cp(m) = @(T)Px(sr < SR) + ‘P(R)(l - Pa:(Sr < SR))

where ¢(r) is short for the value of ¢(z) on {z : |x| = r}. Solving now gives

p(R) — p(x)
P,(S, < Sp) = Y P 8.5.2
(5 <50 = R — o) (552
In d = 2, the last formula says
log R — log ||
P, (S, S i 5.
(S < Sg) log R — logr (8:53)

If we fix r and let R — oo in (8.5.3), the right-hand side goes to 1. So
P.(S, <o0)=1 forany x and any r > 0

It follows that two-dimensional Brownian motion is recurrent in the sense that if G
is any open set, then P,(B; € G i.0.) = 1.
If we fix R, let r — 0 in (8.5.3), and let Sy = inf{¢t > 0: B, = 0}, then for x # 0

PI(S() < SR) < liI%Pw(ST < SR) =0

Since this holds for all R and since the continuity of Brownian paths implies Sg T oo
as R 1 oo, we have P,(Sp < 00) =0 for all  # 0. To extend the last result to z =0
we note that the Markov property implies

Py(By =0 for some t > €) = Ey[Pp,(Tp < o) =0

for all € > 0, so Py(B; = 0 for some t > 0) = 0, and thanks to our definition of
So = inf{t > 0: B; = 0}, we have

P.(Sp <o0)=0 forallx (8.5.4)

Thus, in d > 2 Brownian motion will not hit 0 at a positive time even if it starts
there.
For d > 3, formula (8.5.2) says

R27d _ |1,|27d

Po(Sr <Sr) = —mma—,2=a

(8.5.5)

There is no point in fixing R and letting » — 0, here. The fact that two dimensional
Brownian motion does not hit 0 implies that three dimensional Brownian motion does
not hit 0 and indeed will not hit the line {z : 1 = 23 = 0}. If we fix r and let R — o0
in (8.5.5) we get

P.(S, < 00) = (r/|lz)2 <1 if |z| >r (8.5.6)
From the last result it follows easily that for d > 3, Brownian motion is transient,
i.e. it does not return infinitely often to any bounded set.
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Theorem 8.5.13. Ast — oo, |Bi| — o0 a.s.
Proof. Let A, = {|By| > n'~¢ for all t > S,,}. The strong Markov property implies
P(A},) = Ez(Pp(s,)(Sp1-« < 0)) = (n'=¢/n)4"% -0
as n — oo. Now limsup 4, = NF_; USS y A, has
P(limsup A,,) > limsup P(A4,) =1

So infinitely often the Brownian path never returns to {x : |z| < n'=¢} after time S,
and this implies the desired result. O

The scaling relation (8.1.1) implies that Sz =a tS1, so the proof of Theorem
8.5.13 suggests that
B0 — oo

Dvoretsky and Erdos (1951) have proved the following result about how fast Brownian
motion goes to co in d > 3.

Theorem 8.5.14. Suppose ¢(t) is positive and decreasing. Then
Po(|B| < g(t)Vt i.0. ast T o0) =1 or 0
according as [~ g(t)?=2/tdt = 0o or < co.

Here the absence of the lower limit implies that we are only concerned with the
behavior of the integral “near co.” A little calculus shows that

oo
/ t71log ¥ tdt = 0o or < 00

according as a < 1 or a > 1, so B, goes to oo faster than v/#/(logt)®/4=2 for any
«a > 1. Note that in view of the Brownian scaling relationship B; =4 t1/2B; we could
not sensibly expect escape at a faster rate than v/¢. The last result shows that the
escape rate is not much slower.
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8.6 Itd’s formula*
Our goal in this section is to prove three versions of Ito’s formula. The first one, for

one dimensional Brownian motion is

Theorem 8.6.1. Suppose that f € C2, i.e., it has two continuous derivatives. The
with probability one, for allt > 0,

f(Bi) = f(Bo) /f )dBs + - /f” (8.6.1)

Of course, as part of the derivation we have to explain the meaning of the second
term. In contrast if A is continuous and has bounded variation on each finite interval,

and f € C:
t
fa) - 50 = [
0
where the Reimann-Steiltjes integral on the right-hand side is

k(n)

Jm 377 Gy A - A )]
=
over a sequence of partitions 0 =¢f <t} < ... < t"( y =t with mesh max; t' —t7*_;
0.

Proof. To derive (8.6.1) we let ¢ = ¢i/2™ for 0 < i < k(n) = 2™. From calculus we
know that for any a and b, there is a ¢(a, b) in between a and b such that

1

() = f(a) = (b= a)f'(a) + 5 (b~ a)* " (e(a,D) (8.6.2)
Using the calculus fact, it follows that
f(B Zf Byy,,) = f(Bs)
= Z f'(Biz)(Biz,, — Bin) (8.6.3)

1 n
+5 2 9 (@) (B, — Bip)?

where g}'(w) = f"(c(Bip, Byy, ). Comparing (8.6.3) with (8.6.1), it becomes clear
that we want to show

S By By, = Bi) = [ (B a, (8.6.4)

1
5297( (B, — Byn)? /f” (8.6.5)

in probability as n — oco.
We will prove the result first under the assumption that |f/(x)|,|f"(z)| < K. If
m < n then we can write

I,=Y " f(Bun)(Bin, = Byp) =Y H"(Bin — Bin)
i J
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where HI" = f'(Bs(m,jn)) and s(m,j,n) = sup{ti/2™ : i/2™ < j/2"}. If we let
K} = f'(Bir) then we have

I =1 = > _(H" = K)(By,, = Byy)

J
Squaring we have
1 1\2 m n\2 2
(I, - 12)? = Z(H- — K2(Bys,, - Byy)
+2 Z — K})(H{" = Ki')(Bi,, — Bix)(Bip,, — Buy)
<k

The next step is to take expected value. The expected value of the second sum
vanishes because if we take expected value of of the j, k term with respect to F» the
first three terms can be taken outside the expected value

(Hj" = K})(H* — K) (B, — B )E([Big,, — Bupl|Fip) =0

Conditioning on ]—'t; in the first sum we have

E(I ZE —KP)?-27" (8.6.6)

Since |s(m, j,n) —j7/2" < 1/2™ and |f"(z)| < K, we have

sup [H;" — KJ'| < Ksup{|Bs — B,|: 0 <r <s<t|s—r| <277}
j<2n

Since Brownian motion is uniformly continuous on [0,¢] and Esup,, |B,|* < oo it
follows from the dominated convergence theorem that

lim E(I}, —I})?=0

m,n— 00

This shows that I} is a Cauchy sequence in L? so there is an I, so that I}, — I in

L?. The limit defines fo <) dBs as a limit of approximating Reimann sums.
To prove (8.6.5), we let Gf’ = g;'(w) = f"(c(Bep, Byy, ) when s € (&7, 47, ] and let

A? = Z (Bti+1 - Bti)Q
tit1<s

so that .
Zgz )(Xip,, — Xin)? :/ GydAY
0

and what we want to show is

t t
/ GndA™ — / #"(B,)ds (8.6.7)
0 0

To do this we begin by observing that continuity of f” implies that if s, — s as
n — oo then G — f"(B;), while Exercise 8.1.3 implies that A7 converges almost
surely to s. At this point, we can fix w and deduce (8.6.7) from the following simple
result:
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Lemma 8.6.2. If (i) measures pu, on [0,t] converge weakly to pi, a finite measure,
and (i1) gn is a sequence of functions with |g,| < K that have the property that
whenever s, € [0,t] — s we have gn(sn) — g(s), then as n — oo

/gndﬂn %/gdﬂoo

Proof. By letting u!, (A) = pun(A)/un([0,t]), we can assume that all the u, are prob-
ability measures. A standard construction (see Theorem 3.2.2) shows that there is
a sequence of random variables X, with distribution p, so that X,, — X, a.s. as
n — oo The convergence of g, to g implies g,(X,) — g(Xoo), so the result follows
from the bounded convergence theorem. O

Lemma 8.6.2 is the last piece in the proof of Theorem under the additional as-
sumptions that |f'(z)|,|f”(x)] < M. Tracing back through the proof, we see that
Lemma 8.6.2 implies (8.6.7), which in turn completes the proof of (8.6.5). So adding
(8.6.4) and using (8.6.3) gives that

F(By) — f(By) = / f(B)dB + = / /(B a.s.

To remove the assumed bounds on the derivatives we let M be large and define fj,
with far = f on [—M, M] and |f},],|f1;] < M. The formula holds for fy; but on
{supy<; |Bs| < M} there is no dlfference in the formula between using fa; and f. O

Example 8.6.1. Taking f = 22 in (8.6.1) we have
t
B - B} :/ 2B, dB, +1
0
so if By = 0, we have

i
/ 2B,dB, = B? —t
0

In contrast to the calculus formula foa 2z dr = a?.

To give one reason for the difference, we note that

Theorem 8.6.3. If f € C? and Efot |f'(Bs)|?ds < oo then f(f 1" (Bs)dBs is a con-
tinuous martingale.

Proof. We first prove the result assuming |f’|, |f”| < K. Let

Iis)= > f(Biw)Bui, —Bw)+ [ (B, )(Bs — Bn)

utl  <s
It is easy to check that Il(s), s <t is a continuous martingale with

EI(t ZE (Byr)?] - 127"

For more details see (8.6.6). The L? maximal inequality implies that

E (sup I3 (s) I;<s>|2) < AB(IL, — 1LY

s<t
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The right-hand side — 0 by the previous proof, so I} (s) — Il (s) uniformly on [0, .
Let Y € F, with EY? < oo. Since I(s) is a martingale, if r < s < t we have
BY{l,(s) = I,(r)}] =0

From this and the Cauchy-Schwarz inequality we conclude that

EY{I5(s) = I5(r)}] =0
Since this holds for Y = 14 with A € F,., we have proved the desired result under the
assumption |f'|, |f"| < K.
Approximating f by fu as before and stopping at time Ty = inf{t : |B;| > M}
we can conclude that if f € C? then

sAT '\
/ F/(B,)dB,
0

is a continuous martingale with

sAT v 2 sANTm )
E(/O f(BodBT) :E/o (B dr

Letting M — oo it follows that if Efot |f(Bs)|>ds < oo then f(f f(Bs)dBs is a
continuous martingale. O

Our second version of It6’s formula allows f to depend on t as well

Theorem 8.6.4. Suppose f € C?, i.c., it has continuous partial derivatives up to
order two. Then with probability 1, for allt >0

8 - 10.80) = [ G Bodst [ Shen)a

0*f
- Bs)ds .6.
+ 5 /0 9 +-5 (5, Bs) (8.6.8)
Proof. Perhaps the simplest way to give a completely rigorous proof of this result
(and the next one) is to prove the result when f is a polynomial in ¢ and x and
then note that for any f € C? and M < oo, we can find polynomials ¢,, so that ¢,
and all of its partial derivatives up to order two converge to those of f uniformly on
[0,t] x [-M, M]. Here we will content ourselves to explain why this result is true.
Expanding to second order and being a little less precise about the error term
(which is easy to control when f is a polynomial)
0 0
F(.D) ~ f(s,0) = T (s, a)(t — ) + 92 (5,0)(b — a)
10%f , , O%f *f 2
+ = 5 9% 5 (s,a)(b—a)” + Btﬁx(s’a)(t_ s)(b—a)+ iﬁ(s a)(t —s)

Let t be a fixed positive number and let ¢} = tk/2". As before, we first prove the
result under the assumption that all of the first and second order partial derivatives
are bounded by K. The details of the convergence of the first three terms to their
limits is similar to the previous proof. To see that the fifth term vanishes in the limit,
use the fact that ¢, | — ' = 27" to conclude that

Z‘ (7', B )’(tznﬂ_tn) < Ki27" =0
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To treat the fourth term, we first consider

Vi (t) = Y (0 — t)|B(t) — B

%

EVIUt) = 3, Ci(tr, — t1)%/? where C; = Ex'/? and x is a standard normal.
Arguing as before,

EZ ‘ )‘ (7 — t|B(th) — Bt?)| < KCit-27™2 — 0
Using Markov’s inequality now we see that if € > 0

<Z ’ (t, B >‘ (tiy = 1) B(t40) = BE)| > ) < KCit27"? /e =0

and hence the sum converges to 0 in probability.

To remove the assumption that the partial derivatives are bounded, let Ty =
min{¢ : |B;| > M} and use the previous calculation to conclude that the formula
holds up to time Ty; At. O

Example 8.6.2. Using (8.6.8) we can prove Theorem 8.5.8: if u(¢, z) is a polynomial
in t and z with Ou/0t + (1/2)0%u/d2% = 0 then Ito’s formula implies

t Ou

u(t, Bt) — u(0, By) = 5

—(s, Bs) dBs

Since du/dz is a polynomial it satisfies the integrability condition in Theorem 8.6.3,
u(t, By) is a martingale. To get a new conclusion, let u(t,z) = exp(ut + ox). Ex-
ponential Brownian motion X; = u(t, By) is often used as a model of the price of a
stock. Since

ou du Pu
=ou =0

ot p oz 0z?

t 2 t
Xt—on/ (u—(72>Xsds+/ oX,dB,
0 0

From this we see that if u = 02/2 then X; is a martingale, but this formula gives
more information about how X; behaves.

Tto’s formula gives

Our third and final version of Itd’s formula is for multi-dimensional Brownian
motion. To simplify notation we write D; f = df/0x; and D;; = 0*f /0x;0x;

Theorem 8.6.5. Suppose f € C%. Then with probability 1, for all t > 0
t 8f d t )
f6.B1) - 1(0.B0) = | GBI+ / Dif(B.)dB!
o Ot —Jo
1 [
33 | pari (56.9)

In the special case where f(t,z) = v(x), we get Theorem 8.5.10.



332 CHAPTER 8. BROWNIAN MOTION

Proof. Let 2o = t and write Dof = 0f/0x¢. Expanding to second order and again
not worrying about the error term

f(y) = @)~ 3 Dif (@) (ys = w:)
+ % ZDzz.f($)(yz - JCi)Q + Z Dz]f(l’)(yZ — mi)(yj _ xj)

Let ¢ be a fixed positive number and let ¢7'¢i/2™. The details of the convergence of
the first two terms to their limits are similar to the previous two proofs. To handle
the third term, we let

F; j(ty) = Diz f(B(ty))
and note that independence of coordinates implies
B(F;;(t0)(B' (i) = B' (1)) - (B (i) — BY (1)1 Fp)
= Fij(tR) E((B'(tgy1) — B'(t})) - (B (tg1) — BY(t7))|Fip) = 0

Fix i < j and let Gy = F ;(t})(B'(ty,,) — B'(t})) - (B (t},1) — B (t})) The last
calculation shows that
E (Z Gk> =0
k

To compute the variance of the sum we note that
2
E(ZGk> —EY G 4+2EY ) GiGe
k k k<t

Again we first comlete the proof under the assumption that |9%f/0z;0z;] < C. In
this case, conditioning on Fi» in order to bring F7;(t}) outside the first term,

E(FZ,(t0)(B'(ti1) — B'(t})? - (B’ (ti1) — B (1)) | Fip )
= FE (BBt 0) = B - (B (6,0) = B E)1Fg) = FL ()t — 6)°
and it follows that

EY Gy <K*) (i, — 1) < K*t27" >0
k k

To handle the cross terms, we condition on Fp to get
E(GrG|Fiy) = GiF j(t7)E((B(t}41) — B'(t}) (B’ (ti41) — B’ (t]))|Fez) = 0

At this point we have shown E (3, Gr)? — 0 and the desired result follows from
Markov’s inequality. The assumption that the second derivatives are bounded can be
removed as before. O



8.7. DONSKER’S THEOREM 333

8.7 Donsker’s Theorem

Let X1, X5,... beiid. with EX =0and EX? =1, and let S, = X; +--- + X,,.
In this section, we will show that as n — oo, S(nt)/n'/2, 0 <t < 1 converges in
distribution to By, 0 < ¢t < 1, a Brownian motion starting from By = 0. We will say
precisely what the last sentence means below. The key to its proof is:

Theorem 8.7.1. Skorokhod’s representation theorem. If EX =0 and EX? <
oo then there is a stopping time T for Brownian motion so that By =4 X and ET =
EXZ.

Remark. The Brownian motion in the statement and all the Brownian motions in
this section have By = 0.

Proof. Suppose first that X is supported on {a, b}, where a < 0 < b. Since EX =0,
we must have

P(Xza):% P(X =b) = 7—

If we let T = Ty, = inf{t : By ¢ (a,b)} then Theorem 8.5.3 implies By =4 X and
Theorem 8.5.5 tells us that
ET = —ab = EB2Z

To treat the general case, we will write F(z) = P(X < z) as a mixture of two
point distributions with mean 0. Let

c= /0 (—u)dF(u) = /000 vdF(v)

— 00

If ¢ is bounded and (0) = 0, then using the two formulas for ¢

e [owyare) = ([~ ewarw) [ (udrw)
/ ( )/
+ (/_OOO o(u) dF(u)) /OoovdF(v)

- /OOO dF (v) /_OOO dF (u) (vp(u) — up(v))

So we have

[etwrare = [ ar) / ar(w -0 { o) + ()

— 00

The last equation gives the desired mixture. If we let (U, V) € R? have
P{(U,V) = (0,0)} = F({0})

PUU,V) € A) = ! //( A aF) (0 w) (8.7.1)

for A C (—00,0) x (0,00) and define probability measures by 10,0({0}) =1 and

v —u
Puo({v}) = pr— foru<0<wv

fru({u}) =

v—1Uu

[ e ar = ( [ o i)

then
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We proved the last formula when ¢(0) = 0, but it is easy to see that it is true in
general. Letting ¢ = 1 in the last equation shows that the measure defined in (8.7.1)
has total mass 1.

From the calculations above it follows that if we have (U,V) with distribution
given in (8.7.1) and an independent Brownian motion defined on the same space then
B(Ty,v) =a X. Sticklers for detail will notice that Ty is not a stopping time for B,
since (U, V) is independent of the Brownian motion. This is not a serious problem
since if we condition on U = u and V = v, then T, , is a stopping time, and this
is good enough for all the calculations below. For instance, to compute E(Ty,y) we
observe

E(Tyyv) = E{E(Tuv|(U,V))} = E(-UV)

by Theorem 8.5.5. (8.7.1) implies

0

E(-UV)= [ dF (u)(—u) /000 dF (v)v(v —u)c™?

_ /Ooo dF (u)(—u) {—u + /OOO dF(u)clv2}

c:/ooovdF(v):/O (—u) dF (u)

— 00

since

Using the second expression for ¢ now gives
0 oo
E(Tyyv)=E(-UV) = / u?dF (u) + / v?dF(v) = EX? |
—0o0 0

Exercise 8.7.1. Use Exercise 8.5.4 to conclude that E(T5 ) < CEX*.

Remark. One can embed distributions in Brownian motion without adding random
variables to the probability space: See Dubins (1968), Root (1969), or Sheu (1986).

From Theorem 8.7.1, it is only a small step to:

Theorem 8.7.2. Let X1, Xo, ... be i.i.d. with a distribution F, which has mean 0 and
variance 1, and let S, = X1 + ...+ X,,. There is a sequence of stopping times Ty =
0,71, T5, ... such that S, =4 B(T},) and T,, — T,_1 are independent and identically
distributed.

Proof. Let (U, V1), (U2, V), ... be i.i.d. and have distribution given in (8.7.1) and let
B; be an independent Brownian motion. Let Ty = 0, and for n > 1, let

T, =inf{t > Ty 1 : By — B(Tu_1) ¢ (Un,Vi)} O

As a corollary of Theorem 8.7.2, we get:

Theorem 8.7.3. Central limit theorem. Under the hypotheses of Theorem 8.7.2,
Sn//m = X, where x has the standard normal distribution.

Proof. If we let W,,(t) = B(nt)/\/n =4 B; by Brownian scaling, then

Sn /v L B(T,) /v = Wa(Ty /)
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The weak law of large numbers implies that T,,/n — 1 in probability. It should be
clear from this that S,,/y/n = By. To fill in the details, let € > 0, pick ¢ so that

P(|B; — By| > e for some t € (1—46,140)) <e/2

then pick N large enough so that for n > N, P(|T,,/n — 1| > 6) < €/2. The last two
estimates imply that for n > N

P(|Wn(Tn/n) - Wn(1)| > 6) <€

Since € is arbitrary, it follows that W,, (T}, /n)—W,,(1) — 0 in probability. Applying the
converging together lemma, Exercise 3.2.13, with X,, = W,,(1) and Z,, = W,,(T,,/n),
the desired result follows. O

Our next goal is to prove a strengthening of the central limit theorem that allows
us to obtain limit theorems for functionals of {S,, : 0 < m < n}, e.g., maxo<m<n Sm
or [{m <n:S, >0} Let C|[0,1] = {continuous w : [0,1] — R}. When equipped
with the norm |w|| = sup{|w(s)| : s € [0,1]}, C[0,1] becomes a complete separable
metric space. To fit C[0, 1] into the framework of Section 3.9, we want our measures
defined on B = the o-field generated by the open sets. Fortunately,

Lemma 8.7.4. B is the same as C the o-field generated by the finite dimensional sets
{w:w(t;) € A;}.

Proof. Observe that if £ is a given continuous function
{willw =&l <r—1/n} =Ngfw: [w(g) — E9)| <7 —1/n}

where the intersection is over all rationals in [0,1]. Letting n — oo shows {w : [[w—¢]| <
r} € C and B C C . To prove the reverse inclusion, observe that if the A; are open
the finite dimensional set {w : w(t;) € A;} is open, so the m — A theorem implies

B>C. O

A sequence of probability measures p,, on C[0,1] is said to converge weakly to
a limit p if for all bounded continuous functions ¢ : C[0,1] — R, [¢du, — [ dpu.
Let N be the nonnegative integers and let

Sk fu=keN
Su) =1 .
linear on [k, k+1] for ke N

We will prove:

Theorem 8.7.5. Donsker’s theorem. Under the hypotheses of Theorem 8.7.2,
S(n)/vn= B(),
i.e., the associated measures on C[0,1] converge weakly.

To motivate ourselves for the proof we will begin by extracting several corollar-
ies. The key to each one is a consequence of the following result which follows from
Theorem 3.9.1.

Theorem 8.7.6. If1) : C[0,1] — R has the property that it is continuous Py-a.s. then

»(S(n-)/vn) = (B("))
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Example 8.7.1. Let ¢(w) = w(1). In this case, ¢ : C[0,1] — R is continuous and
Theorem 8.7.6 gives the central limit theorem.

Example 8.7.2. Maxima. Let ¢)(w) = max{w(t) : 0 <t < 1}. Again, ¢ : C[0,1] —
R is continuous. This time Theorem 8.7.6 implies

max S n = M; = max B;
0<m<n m/Vn 0<t<1

To complete the picture, we observe that by (8.4.4) the distribution of the right-hand
side is

Po(Ml Z a) = PO(Ta S 1) = 2P0(Bl Z a)
Exercise 8.7.2. Suppose S, is one-dimensional simple random walk and let

R, =1+ maxS,, — min S,,
m<n m<n

be the number of points visited by time n. Show that R, /v/n = a limit.

Example 8.7.3. Last 0 before time n. Let )(w) = sup{t < 1: w(t) = 0}. This
time, 1 is not continuous, for if w, with w.(0) = 0 is piecewise linear with slope 1
on [0,1/3+ €], —1 on [1/3 + ¢,2/3], and slope 1 on [2/3,1], then ¢¥(wy) = 2/3 but
Y(we) =0 for € > 0.

We

wo

It is easy to see that if ¥(w) < 1 and w(t) has positive and negative values in each
interval (¢ (w)— 6,9 (w)), then v is continuous at w. By arguments in Subection 8.4.1,
the last set has Py measure 1. (If the zero at ¥(w) was isolated on the left, it would
not be isolated on the right.) It follows that

sup{m <n:S,-1-S, <0}/n=L=sup{t<1:B, =0}

The distribution of L is given in (8.4.9). The last result shows that the arcsine law,
Theorem 4.3.5, proved for simple random walks holds when the mean is 0 and variance
is finite.

Example 8.7.4. Occupation times of half-lines. Let

Y(w) =|{t €10,1] : w(t) > a}|.
The point w = a shows that 1 is not continuous, but it is easy to see that  is
continuous at paths w with |[{t € [0,1] : w(t) = a}| = 0. Fubini’s theorem implies that

Eol{t € [0,1]: B; = a}| = /O Py(B, = a)dt = 0

so v is continuous Py-a.s. Using Theorem 8.7.6, we now get that
Hu <n:S(u)>ayn}/n=|{t€[0,1]: By > a}|

As we will now show, with a little work, one can convert this into the more natural
result

H{m <n:8S, >ayn}/n=1{t€[0,1]: By > a}|
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Proof. Application of Theorem 8.7.6 gives that for any a,
{t € [0,1] : S(nt) > ay/n}| = |{t € [0,1] : By > a}|

To convert this into a result about [{m < n : S,, > ay/n}|, we note that on
{max;,<n | Xm| < ev/n}, which by Chebyshev’s inequality has a probability — 1,
we have

{t €[0,1]: S(nt) > (a+ e)Vn}| < %Hm <n:Sm>ayvnl
<[{te0,1]: S(nt) > (a — e)v/n}|

Combining this with the first conclusion of the proof and using the fact that b — |{t €
[0,1] : B; > b}| is continuous at b = a with probability one, one arrives easily at the
desired conclusion. O

A

To compute the distribution of |[{¢ € [0,1] : By > 0}|, observe that we proved in
Theorem 4.3.7 that if S,, =4 —S,, and P(S,, =0) =0 for all m > 1, e.g., the X; have
a symmetric continuous distribution, then the left-hand side converges to the arcsine
law, so the right-hand side has that distribution and is the limit for any random walk
with mean 0 and finite variance. The last argument uses an idea called the “invariance
principle” that originated with Erdés and Kac (1946, 1947): The asymptotic behavior
of functionals of S,, should be the same as long as the central limit theorem applies.
Our final application is from the original paper of Donsker (1951). Erdds and Kac
(1946) give the limit distribution for the case k = 2.

Example 8.7.5. Let ¢)(w) = f[o,u
so applying Theorem 8.7.6 gives

w(t)Fdt where k > 0 is an integer. 1 is continuous,

/1(S(nt)/\/ﬁ)kdt N /135 dt
0 0

To convert this into a result about the original sequence, we begin by observing that
if x <y with |2 —y| <eand |z],|y] < M, then

y
|k — y*| < / Elz|"~t dz < keM*1
From this, it follows that on
G () = Xl < MV a5, < 0|

we have

k
<
- M

/O (S(t)/ VA dt — 1t S (S /i)

For fixed M, it follows from Chebyshev’s inequality, Example 8.7.2, and Theorem
3.2.5 that

liminf P(G,(M)) > P (maxl |Bi| < M)

n—oo o<t

The right-hand side is close to 0 if M is large, so

1 n
/ (S(nt)/v/n)k dt —n=1=F/2 N " gk — 0
0 m=1
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in probability, and it follows from the converging together lemma (Exercise 3.2.13)

that . )
nt=(k/2) Z Sk é/ BF dt
m=1 0
It is remarkable that the last result holds under the assumption that FX; = 0 and
EX?2 =1, ie., we do not need to assume that E|XF| < cc.

Exercise 8.7.3. When k = 1, the last result says that if X, Xo,... are i.i.d. with
EX;=0and EX? =1, then

n 1
n=3/2 Z (n+1-—m)X,, = / Bydt
m=1 0

(i) Show that the right-hand side has a normal distribution with mean 0 and variance
1/3. (ii) Deduce this result from the Lindeberg-Feller theorem.

Proof of Theorem 8.7.5. To simplify the proof and prepare for generalizations in
the next section, let X, ,,, 1 < m < n, be a triangular array of random variables,
Spom = Xn1+ -+ Xn,m and suppose Sy, ., = B(7),). Let

S B Sn,m ifu:m€{0,1,~-~,n}
() 7\ linear for u € [m —1,m] whenm € {1,...,n}

Lemma 8.7.7. If 7/, — s in probability for each s € [0,1] then
1S, (ny — B(-)|| = 0 in probability

To make the connection with the original problem, let X, ., = X,,/+/n and
define 7',..., 7 so that (Sn1,...,S0n) =a (B({),....,B(7})). If T1,T5,... are

r'n n

the stopping times defined in the proof of Theorem 8.7.3, Brownian scaling implies
7 =4 T /0, so the hypothesis of Lemma 8.7.7 is satisfied.

Proof. The fact that B has continuous paths (and hence uniformly continuous on
[0,1]) implies that if € > 0 then there is a § > 0 so that 1/ is an integer and

(a) P(|B,— Bs| <eforall0<s<1,Jt—s]<20)>1—c¢
The hypothesis of Lemma 8.7.7 implies that if n > Ns then
Pl — k6| <6 fork=1,2,...,1/6) > 1—¢

Since m — 7% is increasing, it follows that if s € ((k — 1)d, k0)

Tins]

Tins] — $ < Tlnis) — (kK +1)0

ns]

— S Z T[”:L(k—l)(s] —ké

so if n > Ns,

(b) P(sup |Tﬁls]—s|<25)>1—e
0<s<1

When the events in (a) and (b) occur

(c) |Sn.m — Bm/n| < eforal m<mn



8.7. DONSKER’S THEOREM 339

To deal with ¢t = (m + 0)/n with 0 < 6 < 1, we observe that

|Sn,(nt) - Bt| S (]‘ - 9)‘577«,7774 - BWL/n‘ + Q‘Sn,m+1 - B(m+1)/n|
+ (1= 0)|Bpn — Bt| + 0| Bms1)m — Bl

Using (c) on the first two terms and (a) on the last two, we see that if n > Ns and
1/n < 26, then ||S, .y — B(-)|| < 2¢ with probability > 1 — 2¢. Since € is arbitrary,
the proof of Lemma 8.7.7 is complete. O

To get Theorem 8.7.5 now, we have to show:

Lemma 8.7.8. If ¢ is bounded and continuous then E@(S,, n.)) — Eo(B(-)).

Proof. For fixed € > 0, let G5 = {w : if ||w — w'|| < J then |p(w) — p(w’)] < €}. Since
@ is continuous, G5 T C[0,1] as § | 0. Let A = [|S,, .y — B(-)||. The desired result
now follows from Lemma 8.7.7 and the trivial inequality

[E@(Sn,(n)) = E@(B(-))| < €+ (2sup[p(w)){P(G5) + P(A = 0)} 0

To accommodate our final example, we need a trivial generalization of Theorem
8.7.5. Let C[0,00) = {continuous w : [0,00) — R} and let C[0,00) be the o-field
generated by the finite dimensional sets. Given a probability measure p on C[0, 00),
there is a corresponding measure 7y, on C[0, M] = {continuous w : [0, M] — R}
(with C[0, M] the o-field generated by the finite dimensional sets) obtained by “cutting
off the paths at time M.” Let (¢pw)(t) = w(t) for t € [0, M] and let mprp = pohy,
We say that a sequence of probability measures u, on C[0,00) converges weakly to
w if for all M, marp, converges weakly to masp on C[0, M|, the last concept being
defined by a trivial extension of the definitions for M = 1. With these definitions, it
is easy to conclude:

Theorem 8.7.9. S(n-)/v/n = B(:), i.e., the associated measures on C[0,00) con-
verge weakly.

Proof. By definition, all we have to show is that weak convergence occurs on C[0, M]
for all M < oco. The proof of Theorem 8.7.5 works in the same way when 1 is replaced
by M. O

Example 8.7.6. Let N, = inf{m : S,,, > /n} and T} = inf{¢t : B; > 1}. Since
Y(w) = T1(w) A1 is continuous Py a.s. on C[0,1] and the distribution of T3 is contin-
uous, it follows from Theorem 8.7.6 that for 0 < ¢t < 1

Repeating the last argument with 1 replaced by M and using Theorem 8.7.9 shows
that the last conclusion holds for all ¢.
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8.8 CLT’s for Martingales™

In this section, we will prove central limit theorems for martingales. The key is an
embedding theorem due to Strassen (1967). See his Theorem 4.3.

Theorem 8.8.1. If S, is a square integrable martingale with Sy = 0, and By is a
Brownian motion, then there is a sequence of stopping times 0 =Ty < Ty < Ts ... for
the Brownian motion so that

(S0, 51, ... Sk) L (B(Ty), B(TY), ..., B(Tx)) forall k>0

Proof. We include Sy = 0 = B(Tp) ounly for the sake of starting the induction argu-
ment. Suppose we have (S, ..., S—1) =a (B(Tv),...,B(Tk_1)) for some k > 1. The
strong Markov property implies that {B(Ty—1 +t) — B(Tx—1) : t > 0} is a Brownian
motion that is independent of F(Tj;_1). Let ug(so,...,sk—1;-) be a regular condi-
tional distribution of Sj — Si_1, given S; = s;, 0 < j < k — 1, that is, for each Borel
set A

P(Sk — Sp_1 € A|S(), ey Skfl) = ,U,k(So, .. .,Skfl;A)

By Exercises 5.1.16 and 5.1.14, this exists, and we have
0= E(Sk — Sk-1[S0, ..., Sk-1) = /xﬂk(Sm ooy Sp—1;dz)

so the mean of the conditional distribution is 0 almost surely. Using Theorem 8.7.1
now we see that for almost every S = (So,...,Sk—1), there is a stopping time 7¢ (for
{B(Tx-1 +t) — B(Tk—1) : t > 0}) so that

B(Ty—1+ 1) — B(Tk—1) = pr(Soy -y Ske—1;+)

If we let Ty, = Tj,_1 +75 then (So, - .., S) < (B(Ty), ..., B(Tx)) and the result follows
by induction. O

Remark. While the details of the proof are fresh in the reader’s mind, we would like
to observe that if E(Sy — Sk_1)? < oo, then

E(74]S0,...,9%-1) = /xzuk(So,...,Sk_l;dx)
since B? — t is a martingale and T4 is the exit time from a randomly chosen interval

(Sk—1+ Ug, Sp—1 + V).

Before getting involved in the details of the central limit theorem, we show that
the existence of the embedding allows us to give an easy proof of Theorem 5.4.9.

Theorem 8.8.2. Let F,, = 0(S0,51,...5m). lim, o S, exists and is finite on
Zf::l E((Sm — m—1)2|~7:m—1) < 0.

Proof. Let B; be the filtration generated by Brownian motion, and let t,, = T;, —
T.n_1. By construction we have

E((Sm - m—l)z‘fm—l) = E(tm|B(Tm—1))
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Let M = inf{n : X" E(t,|B(T,_1)) > A}. M is a stopping time and by its
definition has "M E(t,,|B(Tn-1)) < A. Now {M > m} € Fy,_1 so

m=1
M oo
EY tm=Y E(tm;M >m)
m=1 m=1

M
E(E(ty|B(Tn-1);M >m)=E> E(ty|B(Tm-1)) < A

m=1

M

3
£

From this we see that Z%:l tm < 00. As A — o0, P(M < 00) | 080 T =
S tm < 00. Since B(T,) — B(Tx) as n — oo the desired result follows. O

m=1

Our first step toward the promised Lindeberg-Feller theorem is to prove a result of
Freedman (1971a). We say that X,, ., Fnm, 1 < m < n, is a martingale difference
array if X, ,, € Fp, m and E(X,, | Frm—1) = 0 for 1 < m < n, where F, o = {0, Q2}.
Let Spm = Xna+ ...+ Xpm. Let N ={0,1,2,...}. Throughout the section, S, (.
denotes the linear interpolation of .S, ,,, defined by

s s ifu=keN
molu) = linear for u € [k, k+1] when k€ N

and B(-) is a Brownian motion with By = 0. Let

Vn,k = Z E(Xs,m|‘7:n,m*1)

1<m<k
Theorem 8.8.3. Suppose {X,, m, Fnm} is a martingale difference array.
If (i) for each t, V,, ny) — t in probability,
(i) | Xn.m| < €, for all m with €, — 0, and
then Sy, (n.) = B(:).

Proof. (i) implies V,, ,, — 1 in probability. By stopping each sequence at the first time
Vi k > 2 and setting the later X, ,,, = 0, we can suppose without loss of generality that
Vi <2+ €2 for all n. By Theorem 8.8.1, we can find stopping times Ty Tun
so that (Sp1,.--,5m) =4 (B(Th1),.-.,B(Thn)). By Lemma 8.7.7, it suffices to
show that T), ,,;j — t in probability for each ¢ € [0,1]. To do this we let ¢, =
T.m — Tnym—1 (with T}, o = 0) observe that by the remark after the proof of Theorem
8.8.1, E(tnm|Fnm—-1) = E(X2 .| Fnm—1). The last observation and hypothesis (i)

imply -
nt

Z E(tnm|Fnm—1) —t in probability
m=1

To get from this to T}, 5, — t in probability, we observe

[nt] 2 [nt]

E Z tn,m - E(tn,m|-7:n,m71) =F Z {tn,m - E(tn,m|-7:n,m71)}2
m=1 m=1

by the orthogonality of martingale increments, Theorem 5.4.6. Now

E({tn,m - E(tn,m|‘7:n,m71)}2|fn,mfl) S E(ti}m|fn,mfl)
< CE(Xg,m|}—n,m—l) < CEELE(XEL,WL‘fn-,m_l)
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by Exercise 8.5.4 and assumption (ii). Summing over n, taking expected values, and
recalling we have assumed V;, , <2+ €2, it follows that

n’

[nt] 2

E Z t”’m - E(t”am|‘7:n;m*1) - CeiEVn,n —0
m=1

Unscrambling the definitions, we have shown E(T}, (ns) — Vi [ne)° — 0, so Chebyshev’s
inequality implies P(|Ty (ng — Va,mel > €) — 0, and using (ii) now completes the
proof. U

2

Remark. We can get rid of assumption (i) in Theorem 8.8.3 by putting the martingale
on its “natural time scale.” Let X, 1, From, 1 < m < 00, be a martingale difference
array with | X, .| < €, where ¢, — 0, and suppose that V,, ,, — 0o as m — oc.
Define B, (t) by requiring B, (V;,.;m) = Spm and By(t) is linear on each interval
[Vim—1, Va,m]- A generalization of the proof of Theorem 8.8.3 shows that B, (-) =
B(-). See Freedman (1971a), p. 89-93 for details.

With Theorem 8.8.3 established, a truncation argument gives us:

Theorem 8.8.4. Lindeberg-Feller theorem for martingales. Suppose X, ,,
Frm, 1 <m < nis a martingale difference array.

If (i) Vi ey — t in probability for all t € [0,1] and
(i) for alle >0, >, ., E(X2 11X m>e) [ Frm—1) — 0 in probability,
then Sn,(n.) = B().

Remark. Literally dozens of papers have been written proving results like this. See
Hall and Heyde (1980) for some history. Here we follow Durrett and Resnick (1978).

Proof. The first step is to truncate so that we can apply Theorem 8.8.3. Let

Vn(e) = Z E(Xg,ml(\xmmpsn)|]'—n,m—1)

m=1
Lemma 8.8.5. If €, — 0 slowly enough then E;QVn(en) — 0 in probability.
Remark. The ¢, in front is so that we can conclude

Z P(|Xp,m| > €n|Fn,m—1) — 0 in probability

m<n

Proof. Let N, be chosen so that P(m2V,(1/m) > 1/m) < 1/m for n > N,,. Let
€n = 1/m for n € [Ny, Nppy1) and €, = 1if n < Ny. If § > 0 and 1/m < § then for
n e [Nm,Nm+1)

P2V, (e) > 8) < P(m2V(1/m) > 1/m) < 1/m |

n

Let X m = Xnm (X, [>en)s Xnim = Xnim (X, | <e,) and

Xn,m = Xn,m - E(Xn,m|]:n7m—1)

Our next step is to show:
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Lemma 8.8.6. If we define Sn’(n_) in the obvious way then Theorem 8.8.3 implies
Sn,(n-) = B()

Proof. Since \)N(nm| < 2¢,, we only have to check (ii) in Theorem 8.8.3. To do this,
we observe that the conditional variance formula, Theorem 5.4.7, implies

E(Xzb,m‘jrn,m—l) = E(X2 |-7:n,m—1) - E(j(n,m‘-Frz,'rrn—l)2

n,m

For the first term, we observe
E(X?l,murn,m—l) = E(Xi,m|‘7:n,m—l) - E(Xg,,mu:n,mrl)
For the second, we observe that E(X,, 1, |Fpn,m—1) = 0 implies
E(Xn,m|‘7:n,mfl)2 = E()Z'n,m|~7:n,mfl)2 < E(szz,mlfn,mfl)
by Jensen’s inequality, so it follows from (a) and (i) that

[nt]
> E(X2,|Fam-1) —t foralltel0,1] O

m=1

Having proved Lemma 8.8.6, it remains to estimate the difference between S, (,,.
and S‘n’(n.). On {|X,,.m| <€, for all 1 <m < n}, we have

HSn,(n‘) - Svn,(n‘)H < Z ‘E(Xn,m‘fn,m—l)‘ (8'8'1)

m=1

To handle the right-hand side, we observe

Z |E<Xn,m|]:n,m71)| = Z |E(Xn,m|—7:n,m71)|
m=1 m=1

NE

<e,! Z E(Xi,m|-7:n,m—1) —0

m=1

in probability by Lemma 8.8.5. To complete the proof now, it suffices to show
P(|Xp,m| > €, for some m <n)—0 (8.8.3)

for with (8.8.2) and (8.8.1) this implies ||, .) — S’n’(n.)H — 0 in probability. The
proof of Theorem 8.8.3 constructs a Brownian motion with HS’n’(n.) — B()|l — 0, so

the desired result follows from the triangle inequality and Lemma 8.7.8.
To prove (8.8.3), we will use Lemma 3.5 of Dvoretsky (1972).

Lemma 8.8.7. If A, is adapted to G, then for any nonnegative 6 € Gy,

)

P (Ul _1An|Go) <6+ P ( > P(An|Gm-1) > 6

m=1
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Proof. We proceed by induction. When n = 1, the conclusion says
P(A1|Go) <6+ P(P(A1|Go) > 6|Go)

This is obviously true on Q_ = {P(A;|Gy) < ¢} and also on 4 = {P(41]Gy) > 4} €
Go since on Q4
P(P(A1|Go) > 0]Go) =1 > P(A1|Go)

To prove the result for n sets, observe that by the last argument the inequality is trivial
on Q4. Let By, = A, NQ_. Since Q_ € Gy C Gp—1, P(B|Gm-1) = P(Amn|Gm—1) on
Q_. (See Exercise 5.1.1.) Applying the result for n—1 sets with v = 6 — P(B1]Go) > 0,

P(U?n=2Bm|g1) <~y+P < Z P(Bm|gm—1) > gl)

m=2

Taking conditional expectation w.r.t. Gy and noting v € Gy,

m=1
Us<m<nBm = (Ua<m<nAm) N Q_ and another use of Exercise 5.1.1 shows
1<m<n 1<m<n

on 2_. So, on _,

P (U3 Am|Go) < 6 — P(A1[Go) + P (Z P(A|Gr1) > 5|go>

m=1

The result now follows from
P (U,21Am|Go) < P(A1]Go) + P (U —0Am|Go)

To see this, let C' = Us<pm<nAm, observe that 14,uc < 14, + 1¢, and use the

monotonicity of conditional expectations. O

Proof of (8.8.3). Let Ap, = {|Xnm| > €}, Gm = Fnm, and let § be a positive
number. Lemma 8.8.7 implies

P(|Xp,m| > € for some m <n) <§+ P <Z P(| X m| > €| Fnm—1) > (5>

m=1

To estimate the right-hand side, we observe that “Chebyshev’s inequality” (Exercise
1.3 in Chapter 4) implies

n

Z P(|Xnm| > €n|Fnm—1) < 61:2 Z E(szz,m|}—n,mfl) -0

m=1 m=1

so limsup,, oo P(|Xy,m| > €, for some m < n) < 4. Since ¢ is arbitrary, the proof of
(e) and hence of Theorem 8.8.4 is complete. O

For applications, it is useful to have a result for a single sequence.
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Theorem 8.8.8. Martingale central limit theorem. Suppose X,,, F,,, n > 1, is
a martingale difference sequence and let Vi = 3, <) E(X2|Fn1).

If (i) Vi./k — o* > 0 in probability and

(i) 01 Y e B0 11X, 5 eym) — 0

then S(n,)/\/ﬁ = O'B()

Proof. Let Xy, y = X;n/ov/n , Frmm = Fmp. Changing notation and letting k = nt,
our first assumption becomes (i) of Theorem 8.8.4. To check (ii), observe that

n

n
EY  E(X (x>0l Fam-1) =007 > E(X21(x, [>covm) — 0

m=1 m=1



346 CHAPTER 8. BROWNIAN MOTION

8.9 Empirical Distributions, Brownian Bridge

Let X1, Xo,... be i.i.d. with distribution F'. Theorem 2.4.7 shows that with proba-
bility one, the empirical distribution

- 1
F,(z) = E|{m <n:X, <z}

converges uniformly to F(z). In this section, we will investigate the rate of conver-
gence when F' is continuous. We impose this restriction so we can reduce to the case
of a uniform distribution on (0,1) by setting Y,, = F(X,,). (See Exercise 1.2.4.) Since
x — F(z) is nondecreasing and continuous and no observations land in intervals of
constancy of F, it is easy to see that if we let

1
Gnly) = 5|{m <n:Yn <yl

then . .
sup [Fy, (z) — F(z)| = sup |Gn(y) -yl
T 0<y<1
For the rest of the section then, we will assume Y7,Ys, ... is i.i.d. uniform on (0,1).
To be able to apply Donsker’s theorem, we will transform the problem. Put the
observations Y7, ...,Y,, in increasing order: UT* < UY < ... < U}}. I claim that

. m
sup Gn(y) —y= sup — —Up
0<y<1 1<m<n N
N m—1
inf G —y = inf
0<1y<1 n(y) —y 1<m<n n

-uy (8.9.1)
since the sup occurs at a jump of G, and the inf right before a jump. For a picture,
see Figure 8.4. We will show that

D, =n'? sup |G(y) —y|
0<y<1

has a limit, so the extra —1/n in the inf does not make any difference.

Figure 8.4: Picture proof of formulas in (8.9.1).

Our third and final maneuver is to give a special construction of the order statistics
U < Uy ... < Ur. Let Wi, Wa,... be iid. with P(W; > t) = e and let Z,, =
Wi+ W,
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Lemma 8.9.1. {U]’ :1 <k <n} < {Zk)Zp41:1<k<n}

Proof. We change variables v = r(t), where v; = t;/t,41 for i <n, v,41 = t,y1. The
inverse function is
$(v) = (V1Vn41s - -« s UVnUnt1s Unt)

which has matrix of partial derivatives ds;/0v; given by

Un+1 0 ‘e 0 (%1
0 Unt1l - - 0 Vo
0 0 cee Upg1l Up
0 0o ... 0 1
The determinant of this matrix is v)}, |, soif welet W = (Vi,..., V1) = 7(Z1, ..., Zni1),

the change of variables formula implies W has joint density

n
fwi, ..., vp, Un+1) = ( H /\e—)\vn+1(vm—vm1)> )\€_>\U"’+1(1_v"’)vz+1

m=1

To find the joint density of V' = (V1,...,V,), we simplify the preceding formula and
integrate out the last coordinate to get

o0
1 ~Avn _
fv(vi,... vn) :/ A Hon e duy g = !
0

for 0 < vy <ws...<w, <1, which is the desired joint density. O

We turn now to the limit law for D,,. As argued above, it suffices to consider

Zm m
D! =n'/? max - —
1<m<n Zn—i—l n

n Zm m i1

nl/2 o pl/2

max
Zn+1 1<m<n

n Zmm—m m Lpi1—n

(8.9.2)

Zni1 1213%% ﬁ1/2 T a2
If we let
Byt {(.Zm_m)/nl/2 if t =m/n with m € {0,1,...,n}
linear on [(m —1)/n,m/n)
then

n
max
L1 0<t<1

/o
Dn_

Zn *Zn
Ba(t) —t{Bn<1>++,;/2H

The strong law of large numbers implies Z,11/n — 1 a.s., so the first factor will
disappear in the limit. To find the limit of the second, we observe that Donsker’s
theorem, Theorem 8.7.5, implies B, (-) = B(:), a Brownian motion, and computing
second moments shows

(Zny1 — Zn)/nl/2 — 0 in probability

(w) = maxg<i<1 |w(t) —tw(1)] is a continuous function from C[0, 1] to R, so it follows
from Donsker’s theorem that:
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Theorem 8.9.2. D,, = maxo<<1 |B;—tB1|, where By is a Brownian motion starting
at 0.

Remark. Doob (1949) suggested this approach to deriving results of Kolmogorov
and Smirnov, which was later justified by Donsker (1952). Our proof follows Breiman
(1968).

To identify the distribution of the limit in Theorem 8.9.2, we will first prove
(B, —tB,,0<t<1} < {B,,0<t<1|B; =0} (8.9.3)

a process we will denote by BY and call the Brownian bridge. The event B; = 0
has probability 0, but it is easy to see what the conditional probability should mean.
Ifo=to<t1 <...<t, <tpt1=1,290=0, xp41 =0, and x1,...,x, € R, then
P(B(tl) = L1y B(tn) = wn|B(1) = 0)
1 n+1

~ p1(0,0) - m—1s,<m 894
pl(0,0) wglptm tm—1(x v —1, L ) ( )

where py(z,y) = (2rt) /2 exp(—(y — )2 /2t).

Proof of (8.9.8). Formula (8.9.4) shows that the f.d.d.’s of BY are multivariate normal
and have mean 0. Since B; — tB; also has this property, it suffices to show that the
covariances are equal. We begin with the easier computation. If s < ¢ then

E((Bs —sB1)(B; —tBy)) = s — st — st + st = s(1 — t) (8.9.5)
For the other process, P(B? = z, BY = y) is

exp(—x2/28) | exp(—(y — $)2/2(t —3)) . exp(—y2/2(1 —t)) . (271_)1/2
(@n )12 2r(t—s))1/2 (2m(1 —¢))1/2

= (2m) " H(s(t — s)(1 — )"V 2 exp(—(az? + 2bzy + cy?)/2)

where

1+ 1 t b 1
a = — = = —
s t—s s(t—s) t—s

. N I 1—-s
S t—s 1—t (t—s)(1-1)

Recalling the discussion at the end of Section 3.9 and noticing

B 1
s(tt—ls) (i—ls) _ (5(1 —s) s(1— t)>
= I =T s(1—1) t(1-¢)

(multiply the matrices!) shows (8.9.3) holds. O

Our final step in investigating the limit distribution of D, is to compute the
distribution of maxg<;<1 |BY|. To do this, we first prove

Theorem 8.9.3. The density function of By on {T, ATy >t} is

Po(Tu ATy > t,Bi=y) = > Pu(Bi=y+2n(b—a)) (8.9.6)

n—=—oo

— Py(By=2b—y+2n(b—a))
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2b—y—2(b—a) 2b—y 2b—y+2(b—a)
y—20b-a) y b yr20-a

+ | - + | - + | -

—b+2a a b 2b—a 3b—2a

Figure 8.5: Picture of the infinite series in (8.9.6). Note that the array of + and — is
anti-symmetric when seen from a or b.

Proof. We begin by observing that if A C (a,b)
P.(TyNTy >t,Br € A) = P,(By € A) — P,(T, < Ty, T, < t,B; € A)
— P.(Ty < Ty, Ty < t,B, € A) (8.9.7)

If we let p,(y) = 2a — y be reflection through a and observe that {T, < Tp} is F(T,)
measurable, then it follows from the proof of (8.4.5) that

P.(T, <Ty,, T, <t,By € A) = P,(T, < Ty, B; € p,A)
where p, A = {pa(y) : y € A}. To get rid of the T, < T}, we observe that
P’I‘(T(L < Tba Bt S paA) = P’I'(Bf S paA) - PT(E} < Taa Bt S paA)

Noticing that B, € p,A and T}, < T, imply T < t and using the reflection principle
again gives
P.(Ty < Ty, Bt € paA) = Pp(Ty < Ty, By € pppaA)
= Pw(Bt € PbPaA) - PI(TII <Ty,Bs € pbpaA)

Repeating the last two calculations n more times gives

Po(To < Th, By € paA) = Y Pu(By € pa(pppa)™A) — Po(By € (pppa)™ " A)

m=0

+ Po(T, < Ty, By € (pppa)™ T A)

Each pair of reflections pushes A further away from 0, so letting n — oo shows

Px(Ta < TbaBt S paA) = Z PT(Bt € pa(pbpa)mA) - PI(Bt € (pbpa)m+1A)

m=0

Interchanging the roles of a and b gives

Po(Ty < To, By € ppA) = Y Pu(Bi € py(paps)™A) — Po(By € (papy)™ ' A)
m=0
Combining the last two expressions with (8.9.7) and using p.' = pe, (papp) ™t =
py ot gives
(oo}

Po(To ATy > t,By € A)= > Po(Bi € (pppa)"A) — Pu(Bt € palpopa)”A)

m=—0o0
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To prepare for applications, let A = (u,v) where a < u < v < b, notice that pppa(y) =

y+ 2(b— a), and change variables in the second sum to get

P.(To NTp > t,u < By <v) =

i {Pe(u+2n(b—a) < By <v+2n(b—a)) (8.9.8)

n=-—oo
— P, (2b—v+2n(b—a) < B, <2b—u+2n(b—a))}
Letting u = y — €, v = y + ¢, dividing both sides by 2¢, and letting ¢ — 0 (leaving
it to the reader to check that the dominated convergence theorem applies) gives the
desired result. O
Setting x = y = 0, t = 1, and dividing by (27)~'/2 = Py(B; = 0), we get a result
for the Brownian bridge By:
Py (a < min B} < max B < b) (8.9.9)
0<t<1 0<t<1

_ Z e~ (2n(b—a))?/2 _ —(2b+2n(b—a))?/2

Taking a = —b, we have
0 o - _1\m —2m?2b?
Py (OIE?<X1 |By| < b> = g (=1)™e (8.9.10)

m=—0o0

This formula gives the distribution of the Kolmogorv-Smirnov statistic, which can
be used to test if an i.i.d. sequence Xi,..., X, has distribution F. To do this, we
transform the data to F(X,) and look at the maximum discrepancy between the
empirical distribution and the uniform. (8.9.10) tells us the distribution of the error
when the X; have distribution F.

(8.9.9) gives the joint distribution of the maximum and minimum of Brownian
bridge. In theory, one can let a — —oo in this formula to find the distribution of the
maximum, but in practice it is easier to start over again.

Exercise 8.9.1. Use Exercise 8.4.6 and the reasoning that led to (8.9.9) to conclude

0 _ o2
P (Oréltaz:l B; > b> = exp(—2b)
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8.10 Weak convergence*

In the last two sections we have taken a direct approach to avoid technicalities. In
this section we will give the reader a glimpse of the machinery of weak convergence.

8.10.1 The space C

In this section we will take a more traditional approach to Donsker’s theorem. Let
0<t;<ty<...<tp,<landm:C — (R%)" be defined by

m(w) = (w(ty),...,w(tn))

Given a measure p on (C,C), the measures o, *, which give the distribution of the
vectors (Xy,,..., X, ) under u, are called the finite dimensional distributions or
f.d.d.’s for short. Since the f.d.d.’s determine the measure one might hope that their
convergence might be enough for weak convergence of the u,. However, a simple
example shows this is false.

Example 8.10.1. Let a,, = 1/2 —1/2n, b, = 1/2 — 1/4n, and let u,, be the point
mass on the function that is 1 at b, is 0 at 0, a,, 1/2, and 1, and linear in between
these points

bn

0 an 1/2 1

Asn — 00, fn(t) = foo = 0 but not uniformly. To see that p, does not converge
weakly to pioo, note that h(w) = supg<;<; w(t) is a continuous function but

[ rhntdo) =140 = [ hw)pn(a)

Let II be a family of probability measures on a metric space (S, p). We call I
relatively compact if every sequence p, of elements of II contains a subsequence
I, that converges weakly to a limit p, which may be ¢ II. We call II tight if for
each € > 0 there is a compact set K so that pu(K) > 1 — € for all u € II. Prokhorov
prove the following useful results

Theorem 8.10.1. IfII is tight then it is relatively compact.

Theorem 8.10.2. Suppose S is complete and separable. If 11 is relatively compact,
it 18 tight.
The first result is the one we want for applications, but the second one is comforting

since it says that, in nice spaces, the two notions are equivalent.

Theorem 8.10.3. Let p,,1 < n < oo be probability measures on C. If the finite
dimensional distributions of p, converge to those of j~ and if the p, are tight then
Hn = Hoo-
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Proof. If p,, is tight then by Theorem 8.10.1 it is relatively compact and hence each
subsequence fi,,,, has a further subsequence ji,,; that converges to a limit v. If f :
R* — R is bounded and continuous then f(X;,,...Xy,) is bounded and continuous
from C to R and hence

/f(th,...th),un;n(dw)e/f(th,...th)u(dw)

The last conclusion implies that p,,; om,” HES voTm, 1 so from the assumed convergence
of the f.d.d.’s we see that the f.d.d’s of v are determined and hence there is only one
subsequential limit.

To see that this implies that the whole sequence converges to v, we use the following
result, which as the proof shows, is valid for weak convergence on any space. To
prepare for the proof we ask the reader to do

Exercise 8.10.1. Let 7, be a sequence of real numbers. If each subsequence of r,
has a further subsequence that converges to r then r,, — r.

Lemma 8.10.4. If each subsequence of p, has a further subsequence that converges
to v then p, = v.

Proof. Note that if f is a bounded continuous function, the sequence of real numbers
J f(w)pn(dw) have the property that every subsequence has a further subsequence
that converges to [ f(w)v(dw). Exercise 8.10.1 implies that the whole sequence of real
numbers converges to the indicated limit. Since this holds for any bounded continuous
f we have proved the lemma and completed the proof of Theorem 8.10.3. O

As Example 8.10.1 suggests, p,, will not be tight if it concentrates on paths that
oscillate too much. To find conditions that guarantee tightness, we introduce the
modulus of continuity

oscs(w) = sup{ |w(s) —w(t)] : |s —t| < 4}

Theorem 8.10.5. The sequence ., is tight if and only if for each € > 0 there are
ng, M and § so that

(1) i (Jw(0)] > M) < e for all n > ng
(i) pn(0scs > €) < € for all n > ny

Remark. Of course by increasing M and decreasing § we can always check the
condition with ng = 1 but the formulation in Theorem 8.10.5 eliminates the need for
that final adjustment. Also by taking e = A ( it follows that if p,, is tight then there
is a 6 and an ng so that p,(ws > n) < ¢ for n > ng.

Proof. We begin by recalling (see e.g., Royden (1988), page 169)

Theorem 8.10.6. Arzela-Ascoli Theorem. A subset A of C has compact closure
if and only if sup,,c 4 |w(0)] < 0o and lims_.osup,,c 4 0scs(w) = 0.

To prove the necessity of (i) and (ii), we note that if u, is tight and € > 0 we
can choose a compact set K so that p,(K) > 1 — e for all n. By Theorem 8.10.6,
K C {X(0) < M} for large M and if € > 0 then K C {ws < €} for small 4.

To prove the sufficiency of (i) and (ii), choose M so that u,(|X(0)] > M) < €/2
for all n and choose &) so that p,(oscs, > 1/k) < e/2FF1 for all n. If we let K be
the closure of {X(0) < M,oscs, < 1/k for all k} then Theorem 8.10.6 implies K is
compact and p,(K) > 1 — € for all n. O
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8.10.2 The Space D

In the proof of Donsker’s theorem, forming the piecewise linear approximation was
an annoying bookkeeping detail. However, when one considers processes that jump
at random times, making things piecewise linear is a genuine nuisance. To avoid the
necessity of making the approximating process continuous, we will introduce the space
D([0,1],R%) of functions from [0, 1] into R? that are right continuous and have left
limits. Once all is said and done it is no more difficult to prove tightness when the
approximating processes take values in D, see Theorem 8.10.10.

Since one can find this material in Chapter 3 of Billingsley (1968), Chapter 3 of
Ethier and Kurtz (1986), or Chapter VI of Jacod and Shiryaev (1987), we will content
ourselves to simply state the results.

We begin by defining the Skorohod topology on D. To motivate this consider

Example 8.10.2. For 1 <n < oo let

o teo,(n+1)/2n)
fn(t)_{l te[(n+1)/2n71]

where (n 4 1)/2n = 1/2 for n = co. We certainly want f, — foo but || fn — fool =1
for all n.

Let A be the class of strictly increasing continuous mappings of [0, 1] onto itself.
Such functions necessarily have A(0) = 0 and A\(1) = 1. For f,g € D define d(f, g) to
be the infimum of those positive e for which there is a A € A so that

sup|A(t) —#] < e and sup|f(t) - g(AB) < e

It is easy to see that d is a metric. If we consider f = f, and g = f,, in Example
8.10.2 then for € < 1 we must take A((n +1)/2n) = (m + 1)/2m so

1 1

2n  2m

n+1 m+1 _

d(f’rL7 fm) =

2n 2m

When m = oo we have d(fp, foo) = 1/2n 80 f,, — foo in the metric d.
We will see in Theorem 8.10.8 that d defines the correct topology on D. However,
in view of Theorem 8.10.2, it is unfortunate that the metric d is not complete.

Example 8.10.3. For 1 < n < oo let

0 tel0,1/2)
gn(t) =<1 te[1/2,(n+1)/2n)
0 te[(n+1)/2n,1]

In order to have € < 1 in the definition of d(g,, g,») we must have A\(1/2) = 1/2 and
A((n+1)/2n) = (m+1)/2m so

1 1

The pointwise limit of g, is goo = 0 but d(gn, goo) = 1.



354 CHAPTER 8. BROWNIAN MOTION

To fix the problem with completeness we require that A\ be close to the identity in
a more stringent sense: the slopes of all of its chords are close to 1. If A € A let

g (A2 ‘

t—s

Al = sup
s#£t

For f,g € D define dy(x,y) to be the infimum of those positive e for which there is a
A € A so that
IA < e and sup|£(t) —g(A()| <€

It is easy to see that dy is a metric. The functions g,, in Example 8.10.3 have
do(gn, gm) = min{1, |log(n/m)|}
so they no longer form a Cauchy sequence. In fact, there are no more problems.
Theorem 8.10.7. The space D is complete under the metric dy.
For the reader who is curious why we discussed the simpler metric d we note:

Theorem 8.10.8. The metrics d and dy are equivalent, i.e., they give rise to the
same topology on D.

Our first step in studying weak convergence in D is to characterize tightness.
Generalizing a definition from the previous section, we let

oscs(f) =sup{|f(t) — f(s)] : s,t € S}
for each S C [0,1]. For 0 < § < 1 put

’U.)(/;(f) = %RE OIE?SXT Osc[ti,tiJrl) (f)

where the infimum extends over the finite sets {¢;} with
O=to<t1 <---<t, and t;—t;_1>dfor1 <i<r
The analogue of Theorem 8.10.5 in the current setting is

Theorem 8.10.9. The sequence p,, is tight if and only if for each € > 0 there are
ng, M, and é so that

(1) i (Jw(0)] > M) < e for all n > ng
(ii) pn(ws > €) < € for all n > ng

Note that the only difference from Theorem 8.10.5 is the ’ in (ii). If we remove
the  we get the main result we need.

Theorem 8.10.10. If for each € > 0 there are ng, M, and § so that
(i) pn(Jw(0)] > M) < e for all n > ng
(i) pn(0scs > €) < € for alln > ny

then wy, is tight and every subsequential limit p has p(C) = 1.

The last four results are Theorems 14.2, 14.1, 15.2, and 15.5 in Billingsley (1968).
We will also need the following, which is a consequence of the proof of Lemma 8.10.4.

Theorem 8.10.11. If each subsequence of a sequence of measures p, on D has a
further subsequence that converges to p then p, = .
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8.11 Laws of the Iterated Logarithm™*

Our first goal is to show:

Theorem 8.11.1. LIL for Brownian motion.

limsup B;/(2tloglogt)!/? =1 a.s.
t—oo
Here LIL is short for “law of the iterated logarithm,” a name that refers to the loglog¢
in the denominator. Once Theorem 8.11.1 is established, we can use the Skorokhod
representation to prove the analogous result for random walks with mean 0 and finite
variance.

Proof. The key to the proof is (8.4.4).

Po <Olga§1 B > a> =Py(To <1) =2 Py(B1 = a) (8.11.1)
To bound the right-hand side, we use Theorem 1.2.3.
o 1
/ exp(—y*/2)dy < —exp(—2?/2) (8.11.2)
3’,'00 1
/ exp(—y®/2)dy ~ ~ exp(—2?/2) as z — o0 (8.11.3)
T x

where f(x) ~ g(z) means f(z)/g(xz) — 1 as x — oco. The last result and Brownian
scaling imply that

Po(By > (tf(8))'/?) ~ wf ()72 exp(—f(1)/2)
where x = (27)~1/? is a constant that we will try to ignore below. The last result
implies that if € > 0, then

< oo when f(n)=(24¢)logn

3 nf(n))/?
;P0(3n>( f(n)) ){oo when f(n) = (2 —€)logn

and hence by the Borel-Cantelli lemma that

limsup B,,/(2nlogn)'/? <1 as.

n—oo

To replace logn by loglogn, we have to look along exponentially growing sequences.
Let t, = o™, where o > 1.

1/2
PO ( max Bs > (tnf(tn))1/2) S PO ( max BS/t:L/fl ” (f(Ctkn)> )

tn<s<tnit 0<5<tn 11
< 26(f(tn) /)2 exp(—f(ta) /20)
by (8.11.1) and (8.11.2). If f(t) = 2a?loglogt, then
loglogt, = log(nloga) =logn + loglog «

so exp(—f(tn)/2a) < Coun™®, where C,, is a constant that depends only on «, and
hence

tn<s<tn41

ZPO ( max By > (tnf(tn))l/Q) < oo
n=1
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Since t — (tf(t))'/? is increasing and a > 1 is arbitrary, it follows that
lim sup B, /(2tloglogt)}/? < 1 (8.11.4)

To prove the other half of Theorem 8.11.1, again let t,, = o', but this time a will be
large, since to get independent events, we will we look at

Py (Bltus1) = Blta) > (i1 f(tar1))/2) = Po (B > (Bf(tn41))'?)
where 8 = t11/(tht1 — tn) = a/(a — 1) > 1. The last quantity is
> 2B (tn41)) ™/ exp(=B (tns1)/2)
if n is large by (8.11.3). If f(t) = (2/3%)loglogt, then loglogt, = logn + loglog o so

exp(—Bf(tn41)/2) > Con™ /P

where C\, is a constant that depends only on «, and hence

ZPO (B(th) — B(t,) > (tn+1f(tn+1))1/2> = 00

n=1

Since the events in question are independent, it follows from the second Borel-Cantelli
lemma that

B(tni1) — B(tn) > ((2/8%)tni1loglogt,1)Y? i.o. (8.11.5)
From (8.11.4), we get

lim sup B(ty,)/(2t, loglogt,)/? < 1 (8.11.6)

n—oo

Since t, = tp41/a and ¢ — loglogt is increasing, combining (8.11.5) and (8.11.6),
and recalling 8 = o/(a — 1) gives

a—1 1

lim SupB(t’ﬂ+1)/(2tn+1 IOg 1Og tn+1)1/2 > o m

Letting @ — oo now gives the desired lower bound, and the proof of Theorem 8.11.1
is complete. O

Exercise 8.11.1. Let ¢, = exp(e*). Show that

lim sup B(ty)/ (2t logloglog i)/ =1 a.s.
k—o00
Theorem 8.2.6 implies that X; = ¢tB(1/t) is a Brownian motion. Changing vari-
ables and using Theorem 8.11.1, we conclude

limsup | B;|/(2tloglog(1/t))Y/? =1 as. (8.11.7)
t—0

To take a closer look at the local behavior of Brownian paths, we note that Blumen-
thal’s 0-1 law, Theorem 8.2.3 implies Py(B; < h(t) for all ¢ sufficiently small) € {0, 1}.
h is said to belong to the upper class if the probability is 1, the lower class if it is
0.
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Theorem 8.11.2. Kolmogorov’s test. If h(t) T and t='/2h(t) | then h is upper or
lower class according as

1
/t—3/2h(t)exp(—h2(t)/2t)dt converges or diverges
0

Recalling (8.4.8), we see that the integrand is the probability of hitting h(t) at
time ¢. To see what Theorem 8.11.2 says, define lg (¢t) = log(lg;_(¢)) for & > 2 and
t > ap = exp(ag—1), where lg;(t) = log(t) and a; = 0. A little calculus shows that
when n > 4,

n—1 1/2
h(t) = <2t {lgz(l/t) + glgs(l/t) + > lgn(1/t)+(1+e) lgn(l/t)}>
m=4

is upper or lower class according as € > 0 or € < 0.

Approximating h from above by piecewise constant functions, it is easy to show
that if the integral in Theorem 8.11.2 converges, h(t) is an upper class function. The
proof of the other direction is much more difficult; see Motoo (1959) or Section 4.12
of It6 and McKean (1965).

Turning to random walk, we will prove a result due to Hartman and Wintner
(1941):

Theorem 8.11.3. If X, X, ... are i.i.d. with EX; =0 and EX? =1 then

limsup S, /(2nloglogn)'/? = 1

n—oo

Proof. By Theorem 8.7.2, we can write S, = B(T,,) with T,,/n — 1 a.s. As in the
proof of Donsker’s theorem, this is all we will use in the argument below. Theorem
8.11.3 will follow from Theorem 8.11.1 once we show

(S — By)/(tloglogt)/? = 0 as. (8.11.8)

To do this, we begin by observing that if ¢ > 0 and ¢ > ¢,(w)
Ty € [t/(1+¢€),t(1 +€)] (8.11.9)
To estimate Sy — By, we let M(t) = sup{|B(s) = B(t)| : t/(1+¢€) <5 <t(14¢€)}. To
control the last quantity, we let ¢, = (1 + ¢)* and notice that if ¢, <t < tj41
M(t) < sup{|B(s) — B(t)| : tg—1 < s,t < tpia}
<2 sup{|B(s) — B(tg—1)| : ti—1 < 8 < tpia}

Noticing tj2 — ti_1 = dtx_1, where § = (1 + €)® — 1, scaling implies

P ( max  |B(s) — B(t)| > (30t_1 loglog tkl)l/Q)

th—1<s<tp42

=P ( max |B(r)| > (3log10gtk1)1/2)

0<r<1
< 2k(3loglog tk,l)_1/2 exp(—3loglogty_1/2)

by a now familiar application of (8.11.1) and (8.11.2). Summing over k and using (b)
gives
lim sup(Spy — By)/(tloglogt)'/? < (36)'/2

t—o0

If we recall 6 = (1+ €)% — 1 and let € | 0, (a) follows and the proof is complete. [
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Exercise 8.11.2. Show that if F|X;|* = oo for some o < 2 then

lim sup | X,,|/n'/*

n—oo

=00  a.s.

so the law of the iterated logarithm fails.

Strassen (1965) has shown an exact converse. If Theorem 8.11.3 holds then EX; =
0 and EX? = 1. Another one of his contributions to this subject is

Theorem 8.11.4. Strassen’s (1964) invariance principle. Let X;, Xo,... be
i.i.d. with EX; = 0 and EXZ»2 =1,1let S, = X1+ -+ X, and let S(n,) be the
usual linear interpolation. The limit set (i.e., the collection of limits of convergent

subsequences) of
Zn() = (2nloglogn)~Y2S(n-)  forn >3

is K ={f: f(z) = [y 9(y)dy with [, g(y)*dy <1}.

Jensen’s inequality implies f(1)? < fol g(y)?dy < 1 with equality if and only if
f(t) = t, so Theorem 8.11.4 contains Theorem 8.11.3 as a special case and provides
some information about how the large value of S,, came about.

Exercise 8.11.3. Give a direct proof that, under the hypotheses of Theorem 8.11.4,
the limit set of {S,,/(2nloglogn)'/?} is [~1,1].



Appendix A

Measure Theory Details

This Appendix proves the results from measure theory that were stated but not proved
in the text.

A.1 Carathe
’eodory’s Extension Theorem

This section is devoted to the proof of:

Theorem A.1.1. Let S be a semialgebra and let p defined on S have u() = 0.
Suppose (i) if S € S is a finite disjoint union of sets S; € S then u(S) = >, n(S:),
and (i) if S;, S € S with S = +i>15; then u(S) < >, u(S;). Then p has a unique
extension i that is a measure on S the algebra generated by S. If the extension is
o-finite then there is a unique extension v that is a measure on o(S).

Proof. Lemma 1.1.3 shows that S is the collection of finite disjoint unions of sets in
S. We define fi on S by fi(A) = >, u(S;) whenever A = +;5;. To check that fi is well
defined, suppose that A = +;7}; and observe S; = +;(S; NT;) and T; = +;(S; N T}),

so (i) implies
Don(Si) =D p(SinTy) =3 u(Ty)

In Section 1.1 we proved:

Lemma A.1.2. Suppose only that (i) holds.
(a) If A, B; € S with A =47 B, then i(4) =Y, i(B;).

To extend the additivity property to A € S that are countable disjoint unions
A = +;>1B;, where B; € S, we observe that each B; = +;5;; with §; ; € S and
> is1 B(Bi) = 32,51 j 1(Si;), so replacing the Bi’s by Si;'s we can without loss of
generality suppose that the B; € S. Now A € § implies A = +,T; (a finite disjoint
union) and Tj = +;>17; N B;, so (ii) implies

w(Ty) <> (TN By)

i>1

359
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Summing over j and observing that nonnegative numbers can be summed in any

order,
(A) = ZH(TJ) <Y D T NB) =Y (B

i>1 g i>1
the last equality following from (i). To prove the opposite inequality, let A, = By +
---+B,,and C,, = AN AS. C, € S, since S is an algebra, so finite additivity of i
implies
A(A) = i(By) + -+ i(Ba) + i(Ca) = i(By) + -+ + i(B)

and letting n — oo, fi(A) > > ,< A(B;).

Having defined a measure on the algebra S we now complete the proof by estab-
lishing

Theorem A.1.3. Carathéodory’s Extension Theorem. Let i be a o-finite mea-
sure on an algebra A. Then u has a unique extension to o(A) = the smallest o-algebra
containing A.

Uniqueness. We will prove that the extension is unique before tackling the more
difficult problem of proving its existence. The key to our uniqueness proof is Dynkin’s
7 — X theorem, a result that we will use many times in the book. As usual, we need
a few definitions before we can state the result. P is said to be a w-system if it is
closed under intersection, i.e., if A, B € P then ANB € P. For example, the collection
of rectangles (aq,b1] X -+ X (aq,bq] is a w-system. L is said to be a A-system if it
satisfies: (i) Qe L. (i) f A,Be€ Land A C Bthen B— A€ £ . (iii) If A, € £
and A, T A then A € L . The reader will see in a moment that the next result is just
what we need to prove uniqueness of the extension.

Theorem A.1.4. 7 — X\ Theorem. If P is a w-system and L is a \-system that
contains P then o(P) C L.

Proof. We will show that
(a) if £(P) is the smallest A-system containing P then ¢(P) is a o-field.

The desired result follows from (a). To see this, note that since o(P) is the smallest
o-field and £(P) is the smallest A-system containing P we have

o(P)CUP)CL

To prove (a) we begin by noting that a A-system that is closed under intersection is
a o-field since

ifAc Lthen A=Q—-AcLl
AUB = (A°N B°)°
Ut A TUZ A asn T oo
Thus, it is enough to show
(b) £(P) is closed under intersection.
To prove (b), we let G4 = {B: AN B € {(P)} and prove
(c) if A € ¢(P) then G4 is a A-system.
To check this, we note: (i) Q € G4 since A € £(P).
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(i) if B,C € G4 and B D C then AN(B—-C) = (ANB)— (ANC) € £(P) since
ANB,ANC € {(P) and £(P) is a A\-system.

(iii) if B, € G4 and B,, 1 B then AN B, T AN B € {(P) since AN B,, € {(P) and
¢(P) is a A-system.
To get from (c) to (b), we note that since P is a w-system,

if A€ P then G4 D P and so (c) implies G4 D £(P)

ie,if A€ P and B € {(P) then AN B € {(P). Interchanging A and B in the last
sentence: if A € ¢(P) and B € P then AN B € {(P) but this implies

if A € {(P) then G4 D P and so (c) implies G4 D £(P).

This conclusion implies that if A, B € {(P) then AN B € {(P), which proves (b) and
completes the proof. O

To prove that the extension in Theorem A.1.3 is unique, we will show:

Theorem A.1.5. Let P be a w-system. If vy and va are measures (on o-fields Fy and
Fs) that agree on P and there is a sequence A, € P with A, 1 Q and v;(4,,) < oo,
then v1 and vs agree on o(P).

Proof. Let A € P have v1(A) = v3(A4) < co. Let
L={Beco(P):1n(ANB)=1(ANDB)}

We will now show that £ is a A-system. Since A € P, v1(A) = 12(A) and Q € L. If
B,C € L with C C B then

Vl(Am (B —C)) = Vl(AﬂB) - Vl(AﬂC)
= I/Q(AOB) — I/Q(AOC) = I/Q(Am (B — C))

Here we use the fact that v;(A) < oo to justify the subtraction. Finally, if B, € £
and B,, 1 B, then part (iii) of Theorem 1.1.1 implies

(ANB)= lim (AN B,) = lim »n(ANB,) = (ANB)
Since P is closed under intersection by assumption, the m — A theorem implies £ D
o(P), ie., if A € P with 11(4) = 1n(4) < 0o and B € o(P) then 11(AN B) =
vo(AN B). Letting A, € P with 4,, 1 Q, v1(4,) = 12(A,) < 0o, and using the last
result and part (iii) of Theorem 1.1.1, we have the desired conclusion. O

Exercise A.1.1. Give an example of two probability measures p # v on F = all
subsets of {1,2,3,4} that agree on a collection of sets C with o(C) = F, i.e., the
smallest o-algebra containing C is F.

Existence. Our next step is to show that a measure (not necessarily o-finite) defined
on an algebra A has an extension to the o-algebra generated by A. If £ C Q, we let
p(E) =inf )", u(A;) where the infimum is taken over all sequences from A so that
E C U;A;. Intuitively, if v is a measure that agrees with p on A, then it follows from
part (ii) of Theorem 1.1.1 that

V(E) < v(UiAi) < D u(di) = 37 u(Ai)
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so p*(F) is an upper bound on the measure of E. Intuitively, the measurable sets are
the ones for which the upper bound is tight. Formally, we say that E is measurable
if

w(F)=p (FNE)+ " (FNE°) forall sets F CQ (A.1.1)

The last definition is not very intuitive, but we will see in the proofs below that it
works very well.
It is immediate from the definition that p* has the following properties:

(i) monotonicity. If E C F' then p*(E) < pu*(F).
(ii) subadditivity. If F' C U;F;, a countable union, then p*(F) < 3. p*(F;).
Any set function with p*(@) = 0 that satisfies (i) and (i called an outer

i) is
measure. Using (ii) with /7 = FNE and F; = F N E° (and F; = () otherwise), we
see that to prove a set is measurable, it is enough to show

WH(F) > " (FNE) + u* (F N E°) (A.1.2)

We begin by showing that our new definition extends the old one.
Lemma A.1.6. If A€ A then p*(A) = u(A) and A is measurable.

Proof. Part (ii) of Theorem 1.1.1 implies that if A C U;A; then
p(A) < ()
i

so pu(A) < p*(A). Of course, we can always take A7 = A and the other 4, = @ so
it (4) < u(A).

To prove that any A € A is measurable, we begin by noting that the inequality is
(A.1.2) trivial when p*(F') = 00, so we can without loss of generality assume p*(F) <
oo. To prove that (A.1.2) holds when F = A, we observe that since p*(F) < oo there
is a sequence B; € A so that U; B; D F and

Zu(Bi) <p*(F)+e
Since u is additive on A, and p = p* on A we have
u(By) = 1" (B; 1 A) + " (B; 1 A°)
Summing over i and using the subadditivity of u* gives

pr(F)+e>Y p(BinA)+ Y p*(B;NA°) > p*(FNA) + p*(F° N A)

which proves the desired result since € is arbitrary. O

Lemma A.1.7. The class A* of measurable sets is a o-field, and the restriction of
u* to A* is a measure.

Remark. This result is true for any outer measure.
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Proof. 1t is clear from the definition that:
(a) If E is measurable then E° is.
Our first nontrivial task is to prove:
(b) If Fy and Ey are measurable then Fy U Es and Ey N Ey are.
Proof of (b). To prove the first conclusion, let G be any subset of §2. Using subaddi-
tivity, the measurability of Es (let F = G N E{ in (A.1.1), and the measurability of
FE4, we get
W (G (By U Bz)) + (G 0 (BS N ES))
<p(GNE)+pu (GNE{NEy))+ " (GNE{NES)
— (GO Ey) 4+ 1 (G0 ES) = i (G)
To prove that £y N Es is measurable, we observe By N Ey = (E{U ES)¢ and use (a). O
(¢) Let G C Q and Ej, ..., E, be disjoint measurable sets. Then

n

P (GNULE) =Y ' (GNE;)

i=1
Proof of (¢). Let F,, = Uij<, E;. E, is measurable, F,, D E,, and F,,_1 N E, =0, so
wW(GNE,)=p(GNF,NE,)+u (GNF,NE)
= H*(G N En) + H*(G N Fn—l)

The desired result follows from this by induction. O

(d) If the sets Ej; are measurable then F = U2, E; is measurable.

Proof of (d). Let E] = E; N (N;j<;Ef). (a) and (b) imply Ej is measurable, so
we can suppose without loss of generality that the F; are pairwise disjoint. Let
F,=F,U...UE,. F, is measurable by (b), so using monotonicity and (c¢) we have

pr(G) = p (G N F) + 7 (GNEY) > p (GO E,) + 57 (G N ES)

w (GNE;)+ u (GNE°)

I
NIE

1

o
I

Letting n — oo and using subadditivity

p(G) = iu*(GﬁEi) T (GNE®) 2 p*(GNE) +p*(GNE)

i=1
which is (A.1.2). O
The last step in the proof of Theorem A.1.7 is

(e) If E =U;E; where Eq, Es, ... are disjoint and measurable, then

W (B) = 3w (B)

Proof of (e). Let F,, = E1 U...U E,. By monotonicity and (c)

WH(E) = 5t (Fp) = Y u(Ey)

=1

Letting n — 0o now and using subadditivity gives the desired conclusion. O
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A.2 Which Sets Are Measurable?

The proof of Theorem A.1.3 given in the last section defines an extension to A* D
o(A). Our next goal is to describe the relationship between these two o-algebras.
Let A, denote the collection of countable unions of sets in A, and let A,s denote the
collection of countable intersections of sets in A,. Our first goal is to show that every
measurable set is almost a set in Ags.

Define the symetric difference by AAB = (A — B)U (B — A).

Lemma A.2.1. Let E be any set with p*(FE) < oo.

(i) For any € > 0, there is an A € A, with A D E and p*(A) < p*(E) +e.
(i1) For any € > 0, there is a B € A with n(BAE) < 2¢, where

(i) There is a C € Ays with C D E and p*(C) = p*(E).

Proof. By the definition of p*, there is a sequence A; so that A = U;A; D F and
> (Ai) < p*(E) + e. The definition of p* implies p*(A) < >, p(A;), establishing
(i).

For (ii) we note that there is a finite union B = Ui = 1" A4; so that pu(A — B) <,
and hence u(E — B) <e. Since u(B — E) < (A — E) < € the desired result follows.

For (iii), let A,, € A, with A, D F and pu*(A,) < p*(E)+1/n, and let C = N, A,.
Clearly, C € A,s, B D E, and hence by monotonicity, u*(C) > p*(E). To prove the
other inequality, notice that B C A,, and hence p*(C) < p*(A4,) < p*(E) + 1/n for
any n. O

Theorem A.2.2. Suppose i is o-finite on A. B € A* if and only if there is an
A€ Ays and a set N with p*(N) =0 so that B= A — N(= AN N°).

Proof. 1t follows from Lemma A.1.6 and A.1.7if A € A,s then A € A*. A.1.2 in
Section A.1 and monotonicity imply sets with p*(IN) = 0 are measurable, so using
Lemma A.1.7 again it follows that AN N¢ € A*. To prove the other direction, let §;
be a disjoint collection of sets with u(;) < oo and Q = U;Q;. Let B, = BN Q; and
use Lemma A.2.1 to find A? € A, so that A? D B; and u(A?) < p*(E;) +1/n2%. Let
A, =U;A?. BC A, and

A, —BC i(A? ~B;)
=1

so, by subadditivity,
*(A, — B) Z (A" —B;) <1/n

Since A,, € A,, theset A =N, A, € Ay5. Clearly, A D B. Since N =A—-B C A,—B
for all n, monotonicity implies p*(N) = 0, and the proof of is complete. O

A measure space (2, F, i) is said to be complete if F contains all subsets of sets
of measure 0. In the proof of Theorem A.2.2, we showed that (2, A4*, u*) is complete.
Our next result shows that (€2, A*, u*) is the completion of (Q, o(A), u).

Theorem A.2.3. If (Q,F,u) is a measure space, then there is a complete measure
space (Q, F, i), called the completion of (2, F, 1), so that: (i) E € F if and only if
E =AUB, where A€ F and B C N € F with u(N) =0, (i) i agrees with p1 on F.
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Proof. The first step is to check that F is a o-algebra. If E; = A; U B; where
A; € F and B; C N; where u(N;) = 0, then U;A; € F and subadditivity implies
(Ui N;) < 57 u(N;) = 0, so U;E; € F . As for complements, if E = AU B and
B C N, then B¢ D N€ so

E¢=A°NB°=(A°NN°)U(A°NB°NN)

A°NN¢isin F and A°NB°NN C N, so E¢ € F.

We define i in the obvious way: If B = AU B where A € F and B C N where
u(N) =0, then we let fi(E) = p(A). The first thing to show is that fi is well defined,
ie, if E = A;UB;, i = 1,2, are two decompositions, then p(A;) = u(Az). Let
Ag=A1NAs and By = BiUBy. E= AgU By is a third decomposition with Ag € F
and By C Ny U Ny, and has the pleasant property that if i = 1 or 2

1(Ag) < pu(Ai) < p(Ao) + p(N1 U Na) = p(Ao)

The last detail is to check that g is measure, but that is easy. If F; = A; U B; are
disjoint, then U; F; can be decomposed as U; A; U(U; B;), and the A; C E; are disjoint,

(Ui E) = (Ui A;) = ZM(Ai) = Zﬁ(Ei) m

Theorem 1.1.6 allows us to construct Lebesgue measure A on (R4, R%). Using
Theorem A.2.3, we can extend A to be a measure on (R, R?) where R? is the comple-
tion of R?. Having done this, it is natural (if somewhat optimistic) to ask: Are there
any sets that are not in R%? The answer is “Yes” and we will now give an example of
a nonmeasurable B in R.

A nonmeasurable subset of [0,1)

The key to our construction is the observation that \ is translation invariant: i.e.,
ifAcRandz+A={z+y:yec A}, thenx+ A € R and A(A) = A\(z + A). We
say that x,y € [0,1) are equivalent and write © ~ y if  — y is a rational number.
By the axiom of choice, there is a set B that contains exactly one element from each
equivalence class. B is our nonmeasurable set, that is,

Theorem A.2.4. B¢ R.
Proof. The key is the following:

Lemma A.2.5. If E C [0,1) isin R, x € (0,1), and x +' E = {(z + y) mod 1 :
y € E}, then A(E) = ANz +' E).

Proof. et A= EN[0,1—z)and B=EN[l—x,1). Let ' =2+ A={z+y:
y€ A} and B’ =z — 14 B. A, B € R, so by translation invariance A’, B’ € R and
A(A) = A(A"), A(B) = A(B’). Since A’ C [z,1) and B’ C [0, z) are disjoint,

ME) = XA)+ X(B) = XMA) + X(B') = XNz +'E) m|
From Lemma A.2.5, it follows easily that B is not measurable; if it were, then ¢+’ B,

qg € QN[0,1) would be a countable disjoint collection of measurable subsets of [0,1),
all with the same measure a and having

Ugeqnpo,) (¢+' B) =10,1)

If o > 0 then A([0,1)) = oo, and if @ = 0 then A([0,1)) = 0. Neither conclusion is
compatible with the fact that A([0,1)) =1 so B ¢ R. O
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Exercise A.2.1. Let B be the nonmeasurable set constructed in Theorem A.2.4. (i)
Let B, = ¢ +' B and show that if D, C B, is measurable, then A\(D,) = 0. (ii) Use
(i) to conclude that if A C R has A(A) > 0, there is a nonmeasurable S C A.

Letting B’ = B x [0,1]~! where B is our nonmeasurable subset of (0,1), we get
a nonmeasurable set in d > 1. In d = 3, there is a much more interesting example,
but we need the reader to do some preliminary work. In Euclidean geometry, two
subsets of R? are said to be congruent if one set can be mapped onto the other by
translations and rotations.

Claim. Two congruent measurable sets must have the same Lebesgue measure.

Exercise A.2.2. Prove the claim in d = 2 by showing (i) if B is a rotation of a
rectangle A then \*(B) = A(A). (ii) If C is congruent to D then A*(C) = A*(D).

Banach-Tarski Theorem

Banach and Tarski (1924) used the axiom of choice to show that it is possible to
partition the sphere {z : |z| < 1} in R? into a finite number of sets A;,..., A, and
find congruent sets By, ..., B, whose union is two disjoint spheres of radius 1! Since
congruent sets have the same Lebesgue measure, at least one of the sets A; must
be nonmeasurable. The construction relies on the fact that the group generated by
rotations in R3 is not Abelian. Lindenbaum (1926) showed that this cannot be done
with any bounded set in R?. For a popular account of the Banach-Tarski theorem,
see French (1988).

Solovay’s Theorem

The axiom of choice played an important role in the last two constructions of
nonmeasurable sets. Solovay (1970) proved that its use is unavoidable. In his own
words, “We show that the existence of a non-Lebesgue measurable set cannot be
proved in Zermelo-Frankel set theory if the use of the axiom of choice is disallowed.”
This should convince the reader that all subsets of R? that arise “in practice” are in
R

A.3 Kolmogorov’s Extension Theorem

To construct some of the basic objects of study in probability theory, we will need an
existence theorem for measures on infinite product spaces. Let N = {1,2,...} and

RN = {(wl,wg,...) Wy € R}

We equip RN with the product o-algebra RN, which is generated by the finite
dimensional rectangles = sets of the form {w : w; € (a;,b;] fori =1,...,n}, where
—00 < a; < b; < oo.

Theorem A.3.1. Kolmogorov’s extension theorem. Suppose we are given prob-
ability measures p, on (R™,R"™) that are consistent, that is,

tnt1((a1,b1] X .o. X (ap,bn] X R) = pn((a1,b1] X ... X (an, by])
Then there is a unique probability measure P on (RN, RN) with

(%) P(w:w; € (a;,b;],1 <i<n)=p,((a1,b1] x ... X (an,bn))
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An important example of a consistent sequence of measures is

Example A.3.1. Let Fy, Fy, ... be distribution functions and let u,, be the measure
on R™ with

pin((a1,b1] X ... X (an, by]) = H (Fimn (bm) = Fin(am))

m=1

In this case, if we let X, (w) = wy,, then the X,, are independent and X,, has distri-
bution F,.

Proof of Theorem A.3.1. Let S be the sets of the form {w : w; € (a;,b;],1 <i < n},
and use (*) to define P on S. S is a semialgebra, so by Theorem A.1.1 it is enough to
show that if A € S is a disjoint union of A; € §, then P(A) < >, P(A;). If the union
is finite, then all the A; are determined by the values of a finite number of coordinates
and the conclusion follows from the proof of Theorem 1.1.6.

Suppose now that the union is infinite. Let A = { finite disjoint unions of sets in
S} be the algebra generated by S. Since A is an algebra (by Lemma 1.1.3)

Bn=A— U A,

is a finite disjoint union of rectangles, and by the result for finite unions,

n

P(A) =) P(A;) + P(B,)

i=1
It suffices then to show
Lemma A.3.2. If B, € A and B, | 0 then P(B,) | 0.

Proof. Suppose P(B,,) | 6 > 0. By repeating sets in the sequence, we can suppose

B, = U {w:w; € (a,b8],1 <i<n} where — oo <af <bf <o

1971

The strategy of the proof is to approximate the B,, from within by compact rectangles
with almost the same probability and then use a diagonal argument to show that
Ny By # 0. There is a set C,, C By, of the form

anufgl{w:wie [@¥, 0,1 <i<n} with —oo < al < bl < oo

197

that has P(B, — C,) < §/2""1. Let D,, = N%_,Cp,.

P(Bn_Dn)S zn:P(Bm_Cm)S(S/Q

m=1
so P(D,,) | alimit > ¢/2. Now there are sets C*, D} C R" so that
Cp={w:(w1,...,w,) €Cr} and D, ={w: (w1,...,w,) € D;}
Note that
Ch,=C'xRxRx... and D,=D;, xRxRx...

so Cy, and C} (and D,, and D7) are closely related but C,, C Q and C} C R™.
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C? is a finite union of closed rectangles, so

D} = Gk (O x RY™)
is a compact set. For each m, let w,, € Dyy,. D, C D1 80wy, 1 (i.¢., the first coordinate
of wy,) is in D} Since DF is compact, we can pick a subsequence m(1,7) > j so that
as j — oo,

wm(l,jm — a limit 91

For m > 2, D,, C Dy and hence (wp,1,wm,2) € Dj. Since D3 is compact, we can
pick a subsequence of the previous subsequence (i.e., m(2, j) = m(1,i;) with i; > j)
so that as j — oo

wm(g,j)g — a limit 92

Continuing in this way, we define m(k,j) a subsequence of m(k — 1,j) so that as
J — 00,
Wi (k,j),k — @ limit 6y,

Let w] = Wy (i,i). wj is a subsequence of all the subsequences so W;,k — 0y, for all k.
Now wj; € Dj for all i > 1 and D7 is closed so ; € Df. Turning to the second
set, (wj 1,wj,) € Dj for i > 2 and D3 is closed, so (01,02) € D3. Repeating the last
argument, we conclude that (61,...,0;) € D for all k, so w = (61,62,...) € Dy (no

star here since we are now talking about subsets of 2) for all k£ and
1] # N Dy C N By

a contradiction that proves the desired result. O

A.4 Radon-Nikodym Theorem

In this section, we prove the Radon-Nikodym theorem. To develop that result, we
begin with a topic that at first may appear to be unrelated. Let (Q, F) be a measurable
space. « is said to be a signed measure on (2, F) if (i) « takes values in (—oo, 00|,
(ii) a(@) = 0, and (iii) if £ = +,E; is a disjoint union then o(E) = >, a(E;), in the
following sense:

If a(E) < oo, the sum converges absolutely and = «a(E).
If a(FE) = oo, then ), a(FE;)” < oo and ), a(E;)T = oo.

Clearly, a signed measure cannot be allowed to take both the values co and —oo,
since a(A) + «(B) might not make sense. In most formulations, a signed measure
is allowed to take values in either (—oo,00] or [—00,00). We will ignore the second
possibility to simplify statements later. As usual, we turn to examples to help explain
the definition.

Example A.4.1. Let p be a measure, f be a function with [ f~ dp < oo, and let
a(A) = [, fdp. Exercise 5.8 implies that a is a signed measure.

Example A.4.2. Let p; and pg be measures with po(2) < oo, and let a(A) =
p1(A) = p2(A).

The Jordan decomposition, Theorem A.4.4 below, will show that Example A.4.2
is the general case. To derive that result, we begin with two definitions. A set A is
positive if every measurable B C A has «(B) > 0. A set A is negative if every
measurable B C A has a(B) <0.
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Exercise A.4.1. In Example A.4.1, A is positive if and only if p(AN{z : f(z) <
0} =o0.

Lemma A.4.1. (i) Every measurable subset of a positive set is positive. (ii) If the
sets A, are positive then A = U, A,, is also positive.

Proof. (i) is trivial. To prove (ii), observe that

B, =A,n (NHAS) C A,

m=1

are positive, disjoint, and U,B,, = U, A,. Let E C A be measurable, and let E,, =
ENB,. a(E,) > 0 since B, is positive, so a(F) =>_ «a(F,) > 0. O

n

The conclusions in Lemma A.4.1 remain valid if positive is replaced by negative.
The next result is the key to the proof of Theorem A.4.3.

Lemma A.4.2. Let E be a measurable set with «(E) < 0. Then there is a negative
set F C E with o(F) <0.

Proof. If E is negative, this is true. If not, let n; be the smallest positive integer so
that there is an Ey C E with «(Fy) > 1/n;. Let k > 2. f F, = E—(E1U.. .UFE;_1) is
negative, we are done. If not, we continue the construction letting nj be the smallest
positive integer so that there is an Ej C Fy, with a(Fy) > 1/ny. If the construction
does not stop for any k < oo, let

F=nyF,=FE— (UkEk)

Since 0 > a(E) > —oo and a(E)) > 0, it follows from the definition of signed measure
that

a(E) = a(F) + > a(Ey)
k=1

a(F) < a(F) < 0, and the sum is finite. From the last observation and the construc-
tion, it follows that F' can have no subset G with a(G) > 0, for then «(G) > 1/N for
some N and we would have a contradiction. O

Theorem A.4.3. Hahn decompositon. Let a be a signed measure. Then there is
a positive set A and a negative set B so that Q = AU B and AN B = (.

Proof. Let ¢ = inf{a(B) : B is negative} < 0. Let B; be negative sets with a(B;) | c.
Let B = U;B;. By Lemma A.4.1, B is negative, so by the definition of ¢, a(B) > c.
To prove a(B) < ¢, we observe that a(B) = «a(B;) + a(B — B;) < «a(B;), since B is
negative, and let ¢ — co. The last two inequalities show that a(B) = ¢, and it follows
from our definition of a signed measure that ¢ > —oo. Let A = B¢. To show A is
positive, observe that if A contains a set with a(E) < 0, then by Lemma A.4.2, it
contains a negative set F' with a(F') < 0, but then BUF would be a negative set that
has a(BU F) = a(B) + a(F') < ¢, a contradiction. O

The Hahn decomposition is not unique. In Example A.4.1, A can be any set with
{z:f(z)>0} CcAcC{x: f(z) >0} ae.

where B C C a.e. means u(B N C¢ = 0. The last example is typical of the general
situation. Suppose Q = Ay U By = Ay U By are two Hahn decompositions. As N By is
positive and negative, so it is a null set: All its subsets have measure 0. Similarly,
A1 N By is a null set.

Two measures i1 and o are said to be mutually singular if there is a set A with
p1(A) =0 and pg(A°) = 0. In this case, we also say 1 is singular with respect to
o and write gy L po.
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Exercise A.4.2. Show that the uniform distribution on the Cantor set (Example
1.2.4) is singular with respect to Lebesgue measure.

Theorem A.4.4. Jordan decomposition. Let o be a signed measure. There are
mutually singular measures oy and o so that o = oy —a—_. Moreover, there is only
one such pair.

Proof. Let Q = AU B be a Hahn decomposition. Let
ar(Ey=a(ENA) and a_(F)=-a(ENB)

Since A is positive and B is negative, ; and «_ are measures. a4 (A°) = 0 and
a_(A) =0, so they are mutually singular. To prove uniqueness, suppose o = vy — Vs
and D is a set with v1 (D) = 0 and v»(D°) = 0. If we set C' = D¢, then Q = CU D is
a Hahn decomposition, and it follows from the choice of D that

(E)=a(CNE) and 1n(F)=—-a(DNE)
Our uniqueness result for the Hahn decomposition shows that AN D = AN C*¢ and

BNC = A°NC are null sets, so «(ENC) = a(EN(AUC)) = a(EN A) and
V= Qg O

Exercise A.4.3. Show that oy (E) = sup{a(F): F C E}.

Remark. Let a be a finite signed measure (i.e., one that does not take the value
oo or —o0) on (R, R). Let @« = ay — a— be its Jordan decomposition. Let A(x) =
a((=00,2]), F(x) = ay((—o0,2]), and G(z) = a_((~o0,z]). A(z) = F(z) — G(z) s0
the distribution function for a finite signed measure can be written as a difference of
two bounded increasing functions. It follows from Example A.4.2 that the converse
is also true. Let |a| = a™ + a~. |a| is called the total variation of «, since in
this example |a|((a,b]) is the total variation of A over (a,b] as defined in analysis
textbooks. See, for example, Royden (1988), p. 103. We exclude the left endpoint of
the interval since a jump there makes no contribution to the total variation on [a, b],
but it does appear in |a].

Our third and final decomposition is:

Theorem A.4.5. Lebesgue decomposition. Let p,v be o-finite measures. v can
be written as v, + v, where vy is singular with respect to p and

v (E) = /Egdu

Proof. By decomposing 2 = +;€);, we can suppose without loss of generality that p
and v are finite measures. Let G be the set of g > 0 so that [}, g du < v(E) for all E.
(a) If g,h € G then gV h eg.

Proof of (a). Let A={g > h}, B={g <h}.

/g\/hdu:/ gdu—i—/ hdu<v(ENA)+v(ENB)=v(E)
B ENA ENB
Let k = sup{ [ gdp : g € G} < v(Q2) < co. Pick g, so that [g,dp >k — 1/n and

let hy =g1V...Vgn By (a), hy €G. Asn T oo, hy, T h. The definition of &, the
monotone convergence theorem, and the choice of g,, imply that

nz/hd,u: lim hy dp > lim /gndu:n
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Let v.(E) = [, hdp and vy(E) = v(E) — v,(E). The last detail is to show:
(b) v is singular with respect to p.

Proof of (b). Let € > 0 and let Q = A.UB, be a Hahn decomposition for vs—eu. Using
the definition of v, and then the fact that A, is positive for v, — ep (so eu(A.NE) <
vs(Ac N E)),
(h+ela,) dj = v, (E) + en(A. N E) < v(E)
E

This holds for all E, so k = h 4+ €ly, € G. It follows that pu(A.) = 0 ,for if not,
then [kdu > r a contradiction. Letting A = U,A;,,, we have u(A) = 0. To see
that v5(A°) = 0, observe that if v4(A°) > 0, then (vs — ep)(A°) > 0 for small €, a
contradiction since A¢ C B, a negative set. O

Exercise A.4.4. Prove that the Lebesgue decomposition is unique. Note that you
can suppose without loss of generality that u and v are finite.

We are finally ready for the main business of the section. We say a measure v is
absolutely continuous with respect to p (and write v << p) if u(A) = 0 implies
that v(A) = 0.

Exercise A.4.5. If yy << po and po L v then py L v

Theorem A.4.6. Radon-Nikodym theorem. If u,v are o-finite measures and v
is absolutely continuous with respect to u, then there is a g > 0 so that v(E) = fE gdu.
If h is another such function then g = h pu a.e.

Proof. Let v = v, + vy be any Lebesgue decomposition. Let A be chosen so that
vs(A°) = 0 and p(A) = 0. Since v << p, 0 = v(A) > v4(A) and v, = 0. To prove
uniqueness, observe that if ngd,u = fE hdu for all E, then letting E C {g > h,g <
n} be any subset of finite measure, we conclude pu(g > h, g < n) = 0 for all n, so
(g > h) =0, and, similarly, u(g < h) = 0. O

Example A.4.3. Theorem A.4.6 may fail if p is not o-finite. Let (Q,F) = (R, R),
= counting measure and v = Lebesgue measure.

The function g whose existence is proved in Theorem A.4.6 is often denoted dv/d .
This notation suggests the following properties, whose proofs are left to the reader.

Exercise A.4.6. If v1,v5 << pthen vy + 10 < p

d(vi + o) /dp = dvi /dp + dve /dp
Exercise A.4.7. If v << pand f >0 then [ fdv= [ f ng d.
Exercise A.4.8. If 7 < v << p then dn/dp = (dr/dv) - (dv/dp).

Exercise A.4.9. If v << p and p << v then du/dv = (dv/du)~1L.

A.5 Differentiating under the Integral

At several places in the text, we need to interchange differentiate inside a sum or
an integral. This section is devoted to results that can be used to justify those
computations.
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Theorem A.5.1. Let (S,S, 1) be a measure space. Let f be a complex valued function
deﬁned on R x S. Let 6 > 0, and suppose that for v € (y — 6,y + 0) we have

(i) u(x) = [ f(z,s) u(ds) with [¢|f(x,s)|p(ds) < oo
(i) for fized s, (9]”/8:10(1‘7 s) exists and is a continuous function of x,

(iii) v(z) = [¢ gi( ,8) u(ds) is continuous at x =y,

and (iv) [q [°5

then u'(y) = v(y).

Proof. Letting |h| < ¢ and using (i), (ii), (iv), and Fubini’s theorem in the form given
in Exercise 1.7.4, we have

uly + 1) — u(y /fy+hs F(y.8) u(ds)

:// g(erG,s)dGu(ds)

/ / (y+0,s)u(ds) do
The last equation implies

uly +h) —uly) _ 1/hv(y+9)d9
0

’ ‘Gf (y+0, s)’ df p(ds) < oo

h h
Since v is continuous at y by (iii), letting A — 0 gives the desired result. O

Example A.5.1. For a result in Section 3.3, we need to know that we can differentiate
under the integral sign in

u(zx) = /cos(xs)e_sz/2 ds

For convenience, we have dropped a factor (27)~'/? and changed variables to match
Theorem A.5.1. Clearly, (i) and (ii) hold. The dominated convergence theorem implies

(i)
T — /—,ssirl(<s:v)(fs2/2 ds

is a continuous. For (iv), we note

e

and the value does not depend on z, so (iv) holds.

ds = / |5|ef$2/2 ds < o0

For some examples the following form is more convenient:

Theorem A.5.2. Let (S, S, p) be a measure space. Let f be a complex valued function
deﬁned on R x S. Let 6 > 0, and suppose that for x € (y — 6,y + 0) we have

(i) u(z) = [g f( p(ds) with [o|f(x,s)|p(ds) < oo
(i) for fized s, 8]"/81‘( x,s) exists and is a continuous function of x,
(444') / sup ﬂ(y +6,5)| p(ds) < oo

s 0e[-5,8) | O

then u'(y) = v(y).
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Proof. In view of Theorem A.5.1 it is enough to show that (iii) and (iv) of that result

hold. Since
/ °|of of
-5

—(y+40,s) —(y+46,s)
it is clear that (iv) holds. To check (iii), we note that

or r
0 0
ai‘i(xa 8) - Fi(ya S)

df <26 sup
0e[—6,5]

o) - v(y)]| < /

S

p(ds)

(ii) implies that the integrand — 0 as * — y. The desired result follows from (iii’)
and the dominated convergence theorem. O

To indicate the usefulness of the new result, we prove:
Example A.5.2. If ¢(0) = Ee?? < oo for 0 € [—¢, €] then ¢/(0) = EZ.

Proof. Here 6 plays the role of x, and we take u to be the distribution of Z. Let
§d =¢€/2. f(x,s) = €™ >0, so (i) holds by assumption. df/dx = se™ is clearly a
continuous function, so (ii) holds. To check (iii’), we note that there is a constant C
so that if x € (—6,0), then |s|e™® < C (e~ + e). O

Taking S = Z with S = all subsets of S and p = counting measure in Theorem
A.5.2 gives the following;:

Theorem A.5.3. Let § > 0. Suppose that for x € (y — 6,y + &) we have
(1) w(x) = 3207 ful@) with 307 | fu(@)] < 00

(ii) for each n, f!(x) exists and is a continuous function of x,

and (i) 307 | suPge(_s5) [ (y +0)] < o0

then u'(x) = v(x).

Example A.5.3. In Section 2.6 we want to show that if p € (0,1) then

(Z(l — p)") ==Y n(l-p"!

n=1

Proof. Let f,(z) = (1—2)", y = p, and pick ¢ so that [y —d,y+3d] C (0,1). Clearly (i)
S 1(1—2)"| < oo and (ii) fl(z) = n(l—z)" ! is continuous for z in [y — d,y + 4.

To check (iii), we note that if we let 2np = y — ¢ then there is a constant C' so that if
x €[y—0,y+ 6] and n > 1, then

n — T n—1
n(l -2 = ((11_77)21-1'(177)"1 <CA-nt O
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