
Modular Verification of OO Programs with Interfaces∗
(Technical Report)

Qiu Zongyan, Hong Ali, and Liu Yijing

LMAM and Department of Informatics, School of Math., Peking University, CHINA
{qzy,hongali,liuyijing}@math.pku.edu.cn

Abstract. Interface type in OO languages supports polymorphism, abstraction
and information hiding by separating interfaces from their implementations, and
thus enhances modularity of programs. However, they cause also challenges to
the formal verification. Here we present a study on interface types, and develop
a specification and verification theory based on our former VeriJ framework. We
suppose multi-specifications for classes inherited from interfaces and the super-
class, and keep the verification modular without re-touching the verified codes.
The concepts developed in VeriJ, namely the abstract specification and specifi-
cation predicate, play still important roles in this extension, and thus are proved
widely useful and very natural in the formal proofs of OO programs.

1 Introduction

The reliability and correctness for software systems attract more and more atten-
tions, because faults in an important system may cause serious damages or even lose of
life. Object-Oriented (OO) techniques are widely used in software practice, and thus the
useful techniques supporting high-quality OO development are really demanded, e.g.,
the formal verification techniques. Core OO features, saying modularity, encapsulation,
inheritance, polymorphism, etc., enhance scalability of programs greatly in practice,
but they bring also challenges to formal verification. Encapsulation implies information
hiding and invisible (and replaceable) implementation details; polymorphism enables
dynamic determined behaviors. Both cause difficulties to the verification.

Separating the interface from real implementation is one of the most important tech-
niques in OO development. With this separation, clients can refer to objects of different
types via a common interface, and then call methods determined by types of the objects.
This enables low coupling of clients from the implementations, and makes the system
easily to modify and extend. The technique is used widely, e.g., we can find it in many
design patterns [6]. To support this important technique, many OO languages, notably
Java and C#, offer special features. In languages without direct support, various features
to support the utilization of the interface techniques are available.

To verify OO programs with interfaces raises new challenges. We must define for-
mally the roles played by interfaces, and make clear not only relations among them,
but also their connections with the classes. Then we should develop ways for verifying
∗ Supported by NNSFC Grand No. 90718002 and 61100061.

the implementation classes, as well as verification of the client code which uses the
classes via variables of interface types. In addition, we want that the verification could
be done modularly: neither re-verifying class implementations, nor touching implemen-
tation details of the classes in verifying client code.

Behavioral subtyping [13] is one of most important concepts in OO world, which is
a cornerstone in OO practice, as well as an important ingredient of many formal work in
OO area, e.g. [2, 9]. An OO program obeying behavioral subtyping gives good support
to reason its behavior modularly. However, when multiple interfaces present, how can
we think about and define behavioral subtyping without implementations?

Many concepts have been proposed for the verification in OO area, e.g., model
field/abstract field [3, 11, 14], data group [12], and pure methods [17], etc. Verifying
OO programs with interfaces is also studied in some work, e.g. [16, 14, 7, 2, 5]. [16]
integrated interface types and proposed some techniques which inspired many later
research. The work on JML and Spec# [7, 2] introduced specifications for interface
types with data abstraction to some extent, ensured behavioral subtyping and also de-
veloped some verification tools. However, these early work have some avoidable weak
points. For example, as pointed by [15], none of these work addresses the inheritance
in a satisfactory way, because they either restrict behaviors of subclasses, or require
re-verification of inherited methods. In addition, mutable object structures are largely
neglected. To remedy the situation, [15, 4] provided one similar idea by suggesting dual
specifications for a method, where the static one describes its detailed behavior for ver-
ifying implementation, and the dynamic one supports verifying dynamically bound in-
vocations. However, dual specifications are not necessary, and our VeriJ framework [18]
can handle the problem where only one specification for each method is provided.

To develop a verification framework for OO languages with interface types is the
goal of this study. It seems not easy to extend the dual specification approaches to cover
interface types, because interfaces do not have behaviors, neither static nor dynamic.
Our VeriJ framework is based on abstract specifications and specification predicates,
while the former supports specifying method behavior on a suitable abstract level, and
the later serves to connect the specification with concrete implementations. Based on
these concepts, we develop a framework which seems very satisfactory.

The main contributions of this paper are: (1). we give a deep analysis for interface
types when the verification is the goal. (2). we define a framework to support abstract
specification for interface-based information hiding and encapsulation, and define rules
for the verification. We show that the specification predicates play the role to connect
abstract specification with implementation details, and support modular verification of
different implementing classes under an interface. (3). we propose a general model
for dealing with multi-inheritance of specifications, and inference rules for proving the
implementation and client code on this sitting modularly. In supporting the verification
of Java and C# style interface types, multi-inherited specifications are unavoidable. (4).
we developed some examples to show the power and usefulness of our framework. To
our limited knowledge, this is the first framework which can avoid reverification of
method bodies in a language with rich OO features and interface types.

In the next section, we discuss the crucial situations that a useful theoretical work for
interface types must address. We introduce briefly our assertion language and a small

inter I1 { T1 m(..); T2 f(..); } inter I2 { T1 m(..); T3 g(..); }
class B : Object { T1 m(..){. . .} T3 g(..){. . .} T4 h(..){. . .} T5 k(..){. . .} }
class D : B ¤ I1, I2 { T1 m(..){. . .} T2 f(..){. . .} T5 k(..){. . .} T6 n(..){. . .} }
class E : Object ¤ I1 { T1 m(..){. . .} T2 f(..){. . .} T7 p(..){. . .} }

Fig. 1. A Program with Interfaces

OO language VeriJ in Section 3, and define its verification framework in Section 4. We
illustrate our ideas for modular specification and verification by examples in Section 5,
and then discuss some related work and conclude. We have, in the Appendix, some
details for OOSL, and some more verification examples.

2 Interfaces and Verification: Basics

To give some ideas for the problem, code in Fig. 1 is used in the discussion. The basic
language we use is similar to Java or JML with some abbreviations for saving space.
We will present some issues related to the specification and verification of OO programs
with interfaces. We take “type” as a generic word for either a class or an interface.

Code in Fig. 1 illustrates some cases in programs using interfaces. Here are two in-
terfaces I1 and I2, each of which declares some method prototypes. Different interfaces
can declare methods with the same name, e.g. m here. Here are also three classes, where
class B takes Object as its superclass and implements some methods (with bodies then
they are method definitions). B has nothing to do with the interfaces. However, another
class D is defined as a subclass of B, which inherits g, h from B, overrides m, k of
B, and implements itself new methods f, n. In addition, D implements both interfaces
I1 and I2, and thus it must implement all methods declared in I1 and I2 as required.
There are some interesting phenomena: D implements f of I1 itself, but inherits g from
its superclass B to implement g of I2. The situation for method m is more complex.
Here each of interfaces to be implemented has declared a method prototype with name
m, in addition, a method with name m is implemented in B too. In D, a new method
definition overrides m in B and implements the m in both I1 and I2. At last, another
class E implements also I1 with necessary method definitions.

We think that an interface defines a type, while a class defines a type with an imple-
mentation. When a class implements some interfaces or inherits a superclass, it defines a
subtype of them. To simplify the discussion, we assume that all the data fields in classes
are protected, and thus are not visible out of their classes. Under this assumption, a type
is just a set of methods with signatures. We must have some type-related constraints.
As in Java, when a class implements an interface I , it must provide all implementations
for the methods declared in I , by either defining in itself or inheriting from its super-
class. When a class implements several interfaces, a method with multiple declarations
in these interfaces and/or the superclass, e.g. m in our example code, must have the
same signature. Constraints like these should be checked to ensure well-formedness. In
the below, we suppose all programs under discussion to be well-formed.

For verification, we need specifications for methods. Assume method m in D has
the specification π

D
, then we need to prove that the implementation of m in D satisfies

π
D

. In addition, we should support verifications of the client code which calls methods.
With interfaces, we need to support verification of programs as:

I1 x = new D(..); I2 y = (D)x; . . . x.m(..); y.m(..); (1)

Here an object of type D is created and assigned to variable x of type I1, and then
to variable y of type I2. Afterward, method m is called from x and y, where the D
object is used from variables of types I1 and I2. To verify the code, we can only refer
to information for m in I1 or I2, but neither its implementation nor its specification in
D. This restriction is clear, because there may be another creation, e.g.,

I1 z = new E(..);

and then the object is passed to the same call statement from x in (1). This means that
methods in interfaces must go with their specifications to support verification of client
code as (1). The method declarations in interfaces have no body, thus their specifica-
tions must be abstract and say nothing about the implementation.

We extend method declarations and definitions in interfaces/classes as follows:

T1 m(..) 〈ϕ〉〈ψ〉; T1 m(..) 〈ϕ〉〈ψ〉 { . . . }
where ϕ and ψ are the pre and post conditions of m, respectively. In I1 and I2, we need
to specify m based on its parameters and return only, because m has no body here.

To support modular verification, a class C should be not only a behavioral subtype
of its superclass, but also a behavioral subtype of its implementing interfaces, because
a C object may be used via variables of any of C’s supertypes. In our example, D must
be a behavioral subtype of B, I1 and I2. Suppose the specifications of m in I1, I2,
and B are π1, π2, and π

B
respectively, then we must prove that m’s implementation in

D satisfies these three specifications. As a simplification, we may prove some correct
relations between π

D
with each of π1, π2, and π

B
.

If a method is explicitly specified, its specification is obvious. We also allow speci-
fication inheritance in our framework as in JML and Spec#. This means, when a method
is not explicitly specified, its specification is inherited from the supertype(s). Because
one class can have more than one supertypes (some interfaces and one superclass), a
method may inherit several specifications. For example, if m in D is not explicitly
specified, then it inherits specifications π1, π2, and π

B
. In this case, we take its spec-

ification as a set {π1, π2, πB
}. Then we should define how a method body satisfies a

specification as this, and how this specification is used in verifying client code.
Until now, we complete an outline for the problems when we think about the ver-

ification of OO programs with interfaces. Based on our previous work VeriJ, with the
concepts of abstract specification and specification predication, we can develop a mod-
ular verification framework for these OO programs.

3 VeriJ: An OO Language with Specifications

Now we introduce our specification and programming language used in the work.

In [19] we developed OO Separation Logic (OOSL) for describing OO states and
reasoning programs. We use it as the assertion language in this work. Here we give a
short introduction to OOSL. Readers can refer [19] to find more details.

OOSL is similar to the Separation Logic with some revisions:

ρ ::= true | false | r1 = r2 | r : T | r <: T | v = r
η ::= emp | r1.a 7→ r2 | obj(r, T)
ψ ::= ρ | η | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ ⇒ ψ | ψ ∗ ψ | ψ —∗ψ | ∃r · ψ | ∀r · ψ

where T is a type, v a variable or constant, r1, r2 references, ψ an assertion:

– ρ denotes assertions independent of heaps. For any references r1 and r2, r1 = r2

iff r1 and r2 are identical. r : T means that r refers to an object with exact type T .
r <: T means that r refers to an object of T or its subtype. And v = r asserts that
the value of variable or constant v is r.

– η denotes assertions involving heaps: emp asserts an empty heap; the singleton
assertion r1.a 7→ r2 means that the heap is exact a field a of an object (denoted by
r1) holding value r2; obj(r, T) means that the heap is exact an entire object of type
T , which r refers to. Because the existence of empty objects in OO, we cannot use
r.a 7→- or r.a ↪→- to assert the existence of objects in heaps.

– ∗ and —∗ are from Separation Logic: ψ1 ∗ ψ2 means the heap can be split into two
parts, where ψ1 and ψ2 hold on each part respectively; ψ1 —∗ψ2 means that if a
heap satisfying ψ1 is added to the heap, the whole heap satisfies ψ2.

We allow user-defined predicates to extend vocabulary of the assertion language. A
predicate definition takes the form p(x) : ψ, where p is a symbol (predicate name), r
are its formal parameters, and ψ is the body which is an assertion correlated with r.
Recursive definitions are allowed. In fact, the recursive predicates are indispensable to
support specification and verification of programs involving recursive data structures,
e.g., lists, trees, etc. Having a definition for symbol p, expression p(e) can be used as a
basic assertion. We use Ψ to denote the set of OOSL assertions.

We use ψ[v/x] (or ψ[r/x], ψ[r1/r2]) to denote substitutions. We treat r = v the
same as v = r, and define v.a 7→ r (which is not a basic assertion here) as ∃r′ · (v =
r′ ∧ r′.a 7→ r). Some common abbreviations are:

r.a 7→- = ∃r′ · r.a 7→ r′ r.a ↪→ r′ = r.a 7→ r′ ∗ true

We use type(r) to denote type of the object which r refers to. Sometimes we need it.
In [19] we defined the semantics for OOSL and proved that most axioms and in-

ference rules for Separation Logic are also correct in OOSL. In practice, we often need
to add some mathematical concepts into OOSL, such as relation, set, sequence, etc., to
enhance its expressiveness. Such extensions are orthogonal with the core.

We use in this work a small OO language VeriJ which is an extension of a subset
of Java with essential OO features. It integrates features of interface, specification and
verification with the syntax given in Fig. 2, where:

– C and I are class and interface names, respectively. pub is used to announce that
a date field or predicate is publicly accessible. Mutation, field accessing, casting,
method invocation, and object creation are all taken as special assignments.

v ::= this | x e ::= true | false | null | v | d | e¯ e
b ::= true | false | e < e | e > e | e = e | ¬b | b ∨ b | b ∧ b
c ::= skip | x := e | v.a := e | x := v.a | x := (C)v | x := v.m(e) |

x := new C(e) | return e | c; c | if b c else c | while b c

T ::= Bool | Object | Int | C | I π ::= 〈ϕ〉〈ψ〉 M ::= T ′ m(T1 z)

P ::= def [pub] p(this, a) L ::= inter I [: J] {P ; M [π];}
K ::= class C : B [¤I]{[pub] T a; P : ψ; C(T1 z) [π] {T2 y ; c} M [π] {T2 y ; c}}
G ::= (K | L) | (K | L) G

Fig. 2. Syntax of VeriJ

– We can have a specification π for a constructor or method in a class or interface.
In postcondition ψ we can use old(e) to denote the value of e in the pre-state.
Specifications in a supertype can be inherited or overridden in the subtypes. If a
non-overridden method is not explicitly specified, it takes default “〈true〉〈true〉”.

– We have user-defined predicates (specification predicates in our words) in the lan-
guage. P denotes a predicate definition including a body ψ. We ask for that this is
written explicitly as the first parameter to denote the current object. The non-pub
predicates defined in the class can be used in method specification to make it ab-
stract and hide implementation details. In addition, methods declared in interfaces
have no implementation, and we often need to declare some predicates and specify
the methods based on them. When a class C implements an interface I , it should
not only provide implementations for methods declared in I , but also definitions
for the predicates declared in I , to connect the method specifications in I (and C)
with C’s implementations.

– L declares an interface which may inherit another interface J . A class C may imple-
ment some interfaces I , and inherit a class B. A sub-interface should not redeclare
the same methods of its super-interfaces. As in Java, each class has a superclass,
possibly Object, but may implement zero or more interfaces. We assume all meth-
ods are public. For simple we omit method overloading here.

We consider only well-typed programs in verification, and use a static environment
to record information in the program text. The environment for program G takes the
form ΓG = (∆G, ΘG,ΠG, ΦG), where ∆ is the typing environment recording struc-
tural information of declarations; Θ is a method lookup environment mapping C, m to
its body; Π records method specifications; and Φ records the specification predicates
defined in G. We will omit the subscript G when no ambiguity.

As said before, an interface defines a type, and a class defines a type with implemen-
tation. We always assume that types in discussion are valid in the program, and use C,D
for class names, I for interface name, T for type names, to avoid simple conditions. We
use (T, T ′) ∈ ∆.super to mean that T ′ is a direct supertype of T . We often omit ∆. In
the example of Fig. 1, we have super(D, I1), super(D, I2), and super(D, B). We use
super(C) to get all supertypes of C. In addition, C <: T means that C is a subtype
of T (<: is the transitive and reflective closure of super). We use ∆(T) to get the map
from the method name set of T to their signatures, and then ∆(T)(m) is the signa-

[P-DECLA] inter I . . . {. . . def [pub] p(this, a); . . .}
(p(this, a), [pub] undef) ∈ Φ(I)

[P-DEF] class C . . . {. . .def [pub] p(this, a) : ψ; . . .}
(p(this, a), [pub] ψ) ∈ Φ(C)

[P-INH-I] p not declared in I, (I, J) ∈ super, (p(this, a), [pub] undef) ∈ Φ(J)
(p(this, a), [pub] undef) ∈ Φ(I)

[P-INH-C] p not defined in C, (C, B) ∈ super, (p(this, a), [pub] ψ) ∈ Φ(B)
(p(this, a), [pub] ψ) ∈ Φ(C)

[S-DEF] [inter | class] T . . . {. . . T ′ m(T1 z) 〈ϕ〉〈ψ〉 . . .}
Π(T.m) = 〈ϕ〉〈ψ〉

[S-CON] class C . . . {. . . C(T1 z) 〈ϕ〉〈ψ〉{T2 y ; c} . . .}
Π(C.C) = 〈ϕ〉〈ψ〉

[S-INH1]

class C : B ¤ I{. . . T ′ m(T1 z) {T2 y ; c} . . .},
Π(I)(m) = {πi}k

i=1, Π(B.m) = {πj}n
j=k+1

Π(C.m) = {πi}k
i=1 ∪ {πj}n

j=k+1

[S-INH2]
class C : B . . . {. . .}, C inherits m from B, Π(B.m) = {πi}k

i=1

Π(C.m) = {πi}k
i=1

Fig. 3. Constructing predicate and specification environments

ture of method m in type T , with the form of (T1 z) : T . We will use ∆(T.m) as an
abbreviation of ∆(T)(m). The similar abbreviations will be used throughout this paper.

We record all inherited components (fields, method signatures, bodies and specifi-
cations, and predicates) for a class as if they are redeclared in the class. Because the
basic language supports only single inheritance, all the inherited components are sim-
ple to record. A method in a class has a body, either given by a definition, or inherited
from the superclass. For a type T , we use Θ(T) to get the map from method names in
T to their bodies. If m is a method name of C, then Θ(C.m) gets its body. If T is an
interface, we suppose Θ(T) = ∅. We allow method overridden but not overloading.

For predicates, we record its publicity (pub or not) with the body, and use Φ(T.p)
to take p’s definition in T with the pub label if existing. For an interface, because there
is no implementation, bodies of its predicates are recorded as undef. The specification
environment is singular. If method m is defined in class C with specification, its spec-
ification is clear, while if it is not explicitly specified, m inherits specification from
all C’s supertypes. If C inherits m from its superclass, it inherits m’s specification in
the superclass too. Due to the specification inheritance, when class C implements in-
terfaces I1, I2, . . ., and defines method m without giving a specification, m in C may
have multiple specifications π1, π2, . . . , πk if more than one of the interfaces and/or C’s
superclass have specifications for m. Then, Π(T) is a relation from method names to
specifications. We write 〈ϕ〉〈ψ〉 ∈ Π(T.m) when 〈ϕ〉〈ψ〉 is a specification of m in T ,
and Π(T.m) = 〈ϕ〉〈ψ〉 when 〈ϕ〉〈ψ〉 is the only specification.

These components are easy to build by scanning the program text. We give some
construction rules of specification predicate and specification environment in Fig. 3.

For constructing the predicate environment Φ, [P-DECLA] says that if a specifica-
tion predicate p is declared with its signature and public modifier in interface I , the

signature and visibility of p and label undef for p’s body is recorded for I . Notice that,
undef stands here because here the predicate p has not a definition yet. [P-DEF] says
that if a definition for predicate p appears in class C, whether it is declared in an im-
plemented interface of C, or firstly defined in C, or already defined in a superclass, this
definition of p is recorded for C. [P-INH-I] says if interface I inherits another interface
J and p is not declared in I but declared in J , p with its declared information in J is
also recorded for I . [P-INH-C] says if C inherits a class B and p is declared in B but
not in C, then p’d definition in B is also recorded for C.

For specification environment Π , the constructing rules are also given in Fig. 3
too. [S-DEF] says if a method is declared either in an interface or class T with the
specification 〈ϕ〉〈ψ〉, we record directly that Π(T.m) = 〈ϕ〉〈ψ〉. [S-CON] says we
always record the only specification for the constructor. Rule [S-INH1] says if m is
defined in C without a specification, then it inherits the specifications of m from all
the supertypes (either interfaces or superclass) of C, if any. Of course, there should be
some of them which have m declared. For [S-INH2] deals with the case that C does not
have a definition for m but inherits m from its superclass. In this case, it inherits all the
specifications of m from its superclass B.

With the environment, the type checking is easy to conduct. We omit it here. One
notable fact is that we need also type-checking specifications in VeriJ programs. For a
method declaration (or definition) to be well-formed, its pre and post conditions must
be well-formed, and the predicates declared in an interface must be realized in its im-
plementation classes, etc. We omit all these details.

4 Verification Framework

Now we develop a framework for modular specification and verification of VeriJ pro-
grams. We introduce some notations and definitions in the first.

We use Γ, C, m ` ψ to denote the fact that assertion ψ holds in method m of
class C under Γ . Clearly, here ψ can only be a state-independent assertion. We use
Γ, C, m ` {ϕ} c{ψ} to denote the fact that command c in method m satisfies the
specification consisting of precondition ϕ and postcondition ψ, and Γ ` {ϕ} C.C{ψ}
denotes that constructor C is correct with respect to specification 〈ϕ〉〈ψ〉 under Γ . For
a method, because it may have multiple specifications, we use Γ, C.m ` Π(C.m) to
say that C.m is correct wrt. its every specification. We write Γ ` {ϕ}C.m{ψ} to state
C.m is correct wrt. specification 〈ϕ〉〈ψ〉.

For OO programs, behavioral subtyping is crucial in modular verification. To intro-
duce it into our framework, we define a refinement relation between specifications.

Definition 1 (Refinement of Specification). Given two specifications 〈ϕ1〉〈ψ1〉 and
〈ϕ2〉〈ψ2〉, we say that the latter one refines the former in context Γ, C, iff there exists
an assertion R which is free of the program variables, such that Γ, C ` (ϕ1 ⇒ ϕ2 ∗
R) ∧ (ψ2 ∗R ⇒ ψ1). We use Γ, C ` 〈ϕ1〉〈ψ1〉 v 〈ϕ2〉〈ψ2〉 to denote this fact. ut
Liskov [13] defined the condition for specification refinement as ϕ1 ⇒ ϕ2 ∧ ψ2 ⇒ ψ1.
Above definition is its extension by taking the storage extension into account. This
definition follows also the nature refinement order proposed in [8].

[H-THIS] Γ, T, m ` this : T [H-SKIP] Γ ` {ϕ} skip{ϕ} [H-ASN] Γ ` {ϕ[e/x]} x := e; {ϕ}
[H-MUT] Γ ` {v = r1 ∧ e = r2 ∧ r1.a 7→-} v.a := e; {v = r1 ∧ e = r2 ∧ r1.a 7→ r2}

[H-LKUP] Γ ` {v = r1 ∧ r1.a 7→ r2} x := v.a; {x = r2 ∧ v = r1 ∧ r1.a 7→ r2}
[H-CAST] Γ ` {v = r ∧ r <: N} x := (N)v; {x = r} [H-RET] Γ ` {ϕ[e/res]} return e; {ϕ}

[H-SEQ]
Γ ` {ϕ} c1{ψ}, Γ ` {ψ} c2{R}

Γ ` {ϕ} c1 c2{R}
[H-COND]

Γ ` {b ∧ ϕ} c1{ψ}, Γ ` {¬b ∧ ϕ} c2{ψ}
Γ ` {ϕ} if b c1 else c2{ψ}

[H-ITER]
Γ ` {b ∧ I} c{I}

Γ ` {I}while b c{¬b ∧ I}
[H-FRAME]

Γ, C, m ` {ϕ} c{ψ} FV(R) ∩MD(c) = ∅
Γ, C, m ` {ϕ ∗R} c{ψ ∗R}

[H-CONS]

Γ, C, m ` ϕ ⇒ ϕ′, Γ, C ` ψ′ ⇒ ψ
Γ, C, m ` {ϕ′} c{ψ′}
Γ, C, m ` {ϕ} c{ψ}

[H-EX]

Γ, C, m ` {ϕ} c{ψ}
r is free in ϕ, ψ

Γ, C, m ` {∃r · ϕ} c{∃r · ψ}
[H-OLD]

∀〈ϕ〉〈ψ〉 ∈ Π(T.m) • Γ, T, m ` (z = r ∧ ϕ[r/z]) ⇒ ψ′

Γ, T, m ` ψ′[old(e)/e]
[H-DPRE]

r : D, C <: D, Φ(D.p(this, a)) = ψ
Γ, C, m ` p(r, r′) ⇔ ψ[r, r′/this, a]

[H-SPRE]

C <: D, Φ(D.p(this, a)) = ψ
Γ, C, m ` D.p(r, r′) ⇔ fix(D, ψ)[r, r′/this, a]

[H-PDPRE]

r : D, Φ(D.p(this, a)) = pub ψ
Γ, C, m ` p(r, r′) ⇔ ψ[r, r′/this, a′]

[H-PSPRE]

Φ(D.p(this, a)) = pubψ
Γ, C, m ` D.p(r, r′) ⇔ fix(D, ψ)[r, r′/this, a]

Fig. 4. Basic Inference Rules

Interfaces, their inheritance, and the behavioral subtyping relation also correlate
with verifications, which we call static verification. For an interface I with super-
interface I ′, if method m in I has a new specification 〈ϕ〉〈ψ〉 overriding its original
〈ϕ′〉〈ψ′〉 in I ′, we must verify refinement relation Γ, I ` 〈ϕ′〉〈ψ′〉 v 〈ϕ〉〈ψ〉. This ver-
ification is done only on the logic level, because of no method body in interfaces. This
verification is supported by the abstract specifications in our framework.

Now we define the correct program, which demands us to verify that every method
in a program meets its specification.

Definition 2 (Correct Program). Program G is correct, iff for each 〈ϕ〉〈ψ〉 ∈ ΠG(T.m)
(and ΠG(C.C) = 〈ϕ〉〈ψ〉), we have ΓG ` {ϕ}T.m{ψ} (and ΓG ` {ϕ}C.C{ψ}). ut

Basic inference rules are given in Fig. 4. Rules for assignment, mutation and lookup
are similar as their counterparts in Separation Logic. [H-CAST] is special for type cast-
ing, and [H-RET] is similar to [H-ASN] but the target is res specially. Rules for com-
position structures, and rules [H-CONS], [H-EX] take the same forms as what in Hoare
logic. [H-FRAME] is the important frame rule, where FV(R) is the set of all program
variables (including internal res) in assertion R, and MD(c) is the set of variables modi-
fied by command c. [H-THIS] is simply a type assertion. [H-OLD] says that if assertion
ψ′ is provable in the pre-state, then ψ′[old(e)/e] is provable in the body of the method.
A similar rule for constructors is omitted here. Note that here ∀ is used only as a short-
hand but not a quantifier in logic. Similar notations are used below.

Rules [H-DPRE], [H-SPRE] are key to show our idea that non-public specification
predicates have their scopes, and thus can have more than one definitions in the classes
crossing the class hierarchy, to implement polymorphism. If a predicate invoked is in
scope (in its class or the subclasses), it can be unfolded to its definition. These rules
support hiding implementation details, even the details are in the definition of the pred-
icates used in method specifications. However, these two rules are different. [H-DPRE]
says if r is of the type D, then in any subclass of D, p(r, r′) can be unfolded to the
body of p. [H-SPRE] is for the static binding, in that case, D.p(r, r′) is unfolded to its
definition in D, where fix(D, ψ) gives the instantiation of ψ in D:

fix(D, ψ) =

¬fix(D, ψ′), if ψ is ¬ψ′

fix(D, ψ1)⊗ fix(D, ψ2), if ψ is ψ1 ⊗ ψ2

∃r · fix(D, ψ′), if ψ is ∃r · ψ′
D.q(this, r), if ψ is q(this, r)
ψ, otherwise.

Here ⊗ can be ∨, ∗, or —∗. Intuitively, fix substitutes predicate names with their defi-
nitions in D to their complete names, and then uses the resulting assertion, so it fixes
the meaning of an assertion with respect to D. In other words, this function provides a
static and fixed explanation for ψ according to a given class. Notice here in unfolding
D.q(r, r′), we use fix(D, ψ) to fix the meaning of q at first, then do the substitution.
With this definition, we can have the correct expansion, and at the same time, avoid
infinite expansion in unfolding the recursive defined predicate.

Rules [H-PDPRE] and [H-PSPRE] are similar to [H-DPRE], [H-SPRE], but deal
with public predicates. Comparing to above rules, they do not restrict the scope.

Rules related to methods and constructors are given in Fig. 5 where there is a de-
fault side-condition that local variables y are not free in ϕ,ψ. This can be provided by
renaming when necessary. An available method in class C can have a specification in
C, thus have a definition, or have no specification in C but might be a definition, or an
inherited definition with also inherited specification from its superclass. Therefore, we
define rules according to these three cases for verifying methods.

[H-MTHD1] is for verifying methods with a specification (and of course a defi-
nition) in a class. The rule demands firstly that C.m’s body meets its specification,
and then asks to check the refinement relations between specifications of m in C and
C’s supertypes, if existed. Here we promote Π to type set, thus Π(super(C))(m) gives
specifications for m in C’s supertypes. If there are such specifications, we have to prove
the refinement relation with each of them. If there is no, this check is true by default.

[H-MTHD2] is for verifying methods defined in classes without specification. Tak-
ing m of C as an example, in this case, we need to verify that the body of m implements
correctly with every specification of m in C’s supertypes, because C inherits all these
specifications, and m may be called from variables of these types. Here Π(C.m) is the
same set as if we took the type set super(C) then took all specifications of m from these
types. Now we do not need to prove specification refinement relation anymore even if
some predicates used in the specifications have been overridden in C. After we have
verified m’s new body with its each specification in Π(C.m), the abstract specifica-
tions seem to equivalence from view of the clients.

[H-MTHD1]

C has specification for m, Θ(C.m) = λ(z){var y ; c}, Π(C.m) = 〈ϕ〉〈ψ〉
Γ, C, m ` {this : C ∧ z = r ∧ y = nil ∧ ϕ[r/z]} c{ψ[r/z]}
∀ 〈ϕ′〉〈ψ′〉 ∈ Π(super(C))(m) • Γ, C ` 〈ϕ′〉〈ψ′〉 v 〈ϕ〉〈ψ〉

Γ ` {ϕ} C.m{ψ}

[H-MTHD2]

C defines m without specification, Θ(C.m) = λ(z){var y ; c}
∀ 〈ϕ〉〈ψ〉 ∈ Π(C.m) • Γ, C, m ` {this : C ∧ z = r ∧ y = nil ∧ ϕ[r/z]} c{ψ[r/z]}

Γ, C.m ` Π(C.m)

[H-MINH]

C inherits D.m, ∀ 〈ϕ〉〈ψ〉 ∈ Π(C.m) • Γ, C ` 〈ϕ〉〈ψ〉 v 〈fix(D, ϕ)〉〈fix(D, ψ)〉
∀ I ∈ super(C) ∧Π(I.m) = 〈ϕ′〉〈ψ′〉 • Γ, C ` 〈ϕ′〉〈ψ′〉 v Π(C.m)

Γ, C.m ` Π(C.m)

[H-CONSTR]

Π(C.C) = 〈ϕ〉〈ψ〉, Θ(C.C) = λ(z){var y ; c}
Γ, C, C ` {z = r ∧ y = nil ∧ raw(this, C) ∗ ϕ[r/z]} c{ψ[r/z]}

Γ ` {ϕ} C.C{ψ}
[H-INV]

Γ, C, m ` v : T, 〈ϕ〉〈ψ〉 ∈ Π(T.n)

Γ, C, m ` {v = r ∧ e = r′ ∧ ϕ[r, r′/this, z]} x := v.n(e) {ψ[r, r′, x/this, z , res]}
[H-NEW]

Π(C′.C′) = 〈ϕ〉〈ψ〉
Γ, C, m ` {e = r′ ∧ ϕ[r′/z]} x := new C′(e){∃r · x = r ∧ ψ[r, r′/this, z]}

Fig. 5. Inference Rules related to Methods and Constructors

[H-MINH] is for verifying inherited methods. The rule asks specially to check if
m’s specification(s) (inheriting from D, maybe more than one because D might inherit
some specifications from its supertype(s)) interpreted in C is compatible with its inter-
pretation in D. Here we use fix(D, •) to fix the meaning of predicates. In addition, we
check if the method satisfies each specification of m in C’s implementing interfaces (if
any) by proving the refinement relation. Here π v {πi}i is defined as ∃i · π v πi.

Rule [H-CONSTR] is for constructors which has a similar form with [H-MTHD1].
However, a constructor will not have multiple specifications. Here raw(this, C) spec-
ifies that this refers to a newly created raw object of type C, and then c modifies its
state. The definition of raw(r,N) is

raw(r,N) =̂
{

obj(r,N), N has no field
r :N ∧ (r.a1 7→ nil) ∗ · · · ∗ (r.ak 7→ nil), fields of N is a1, . . . , ak

Last two rules are for method invocation and object creation. Note that T.n may
have multiple specifications, and we can use any of them in proving client code. Due to
the behavioral subtyping, it is enough to do the verification by the type of variable v.
Because [H-INV] refers to only specifications, recursive methods are supported.

The soundness of these rules are easy to prove. However, readers may think that
[H-MTHD2] is not very satisfactory because it asks for verifying method body for pos-
sibly several times. The first answer is that this is necessary, because different specifi-
cations for m in the superclass or implemented interfaces may cover different aspects
of m’s behavior. The definition of m in subclass C must satisfy each of these specifi-
cations. However, we may give a new (and weaker) rule to avoid some method body

verifications, if we can find that a specification 〈ϕ〉〈ψ〉 is the strongest:

[H-MTHD2’]

C defines m without specification, Θ(C.m) = λ(z){var y ; c}
∃ 〈ϕ〉〈ψ〉 ∈ Π(C.m) • ((∀ 〈ϕ′〉〈ψ′〉 ∈ Π(C.m) • Γ, C ` 〈ϕ′〉〈ψ′〉 v 〈ϕ〉〈ψ〉)

∧ Γ, C, m ` {this :C ∧ z = r ∧ y = nil ∧ ϕ[r/z]} c{ψ[r/z]})
Γ, C.m ` Π(C.m)

Here 〈ϕ〉〈ψ〉 is the strongest one which refines all the other specifications, including
itself. However, if there is no strongest one in Π(C.m), this rule will be not applicable,
even the method body in C does satisfy all the specifications. In addition, based on the
general [H-MTHD2], we may develop some other rules in advance.

Here we see how the information given by developers affects the verification. A
given specification for a method is a specific requirement and induces some special
proof obligations. It forms a connection between the implementation with the surround-
ing world: the implemented interfaces, the superclass, and the client codes. When no
given specification, we will need to verify more to ensure all the possibilities.

Clearly, our verification framework is modular, because we do not need to re-touch
the code in superclass when consider a subclass. In adding a new class to existed code,
we just need to verify the new class but not re-consider the existing part. On the other
side, in verifying client code, no matter the method invocation is from a variable of
a class or an interface, we do not need to consider the real object the variable refers
to. This shows that our basic framework, based on the abstract specification and spec-
ification predicate concepts, can be naturally extended to support the verification of
programs with interfaces. From this extension, we see our framework is nature in deal-
ing with wide spectrum of OO programs. To reveal these good properties, we consider
an examples in the next section. More examples can be found in the Appendix.

5 An Example

The hierarchy of classes used here is given in Fig. 6 with a UML class diagram. It is a
variant of a typical example used in OO program’s specification and verification study.
A class Cell offers simple methods to set and get value of its field x. Then we want
to have some class which can roll back one previous value, and thus declare an inter-
face Undoable with one more method undo than Cell . To offer a real class, we define
ReCell which inherits Cell and implements Undoable . This subclass contains a new
field y for saving the old value of x when it is set. To implement the methods declared
in Undoable , class ReCell defines a method undo, inherits Cell .get , and overrides
Cell .set by a new definition. Here we omit the constructors for simple.

In Fig. 6 we give also specifications for some methods, in which some specification
predicates are used to hide internal information of classes from its clients. Class Cell
defines predicate cell(this, v) to denote that the value of x is v, in ReCell this predi-
cate is overridden by a new definition. Interface Undoable defines predicates cell and
bak to assert the current and backup values. Implementations of these predicates is left
to its implementing class. Note that predicate ReCell .cell(this, v) records both cur-
rent value v in x and some unconcerned value for y, and ReCell .bak(this, v) records

Undoable

 set();get();undo()

Cell

 x

 Cell();set();get()

ReCell

 y

 ReCell();set();undo()

class Cell : Object{
Int x;
def cell(this, v) : this.x ↪→ v;
void set(Int v)
〈cell(this,-)〉〈cell(this, v)〉
{ this.x = v; }
Int get() 〈cell(this, v)〉〈res = v〉
{ Int c; c = this.x; return c; }

}

interUndoable{
def cell(this, v);
def bak(this, v);
void set(Int v) 〈cell(this, b)〉
〈cell(this, v) ∧ bak(this, b)〉;

Int get() 〈cell(this, v)〉〈res = v〉;
void undo() 〈bak(this, b)〉〈cell(this, b)〉;

}
class ReCell : Cell ¤ Undoable{

Int y;
def cell(this, v) : this.x ↪→ v ∗ this.y ↪→-;
def bak(this, v) : this.x ↪→- ∗ this.y ↪→ v;
void set(Int v) { Int c;

c = this.x; this.y = c; this.x = v; }
void undo() { Int c;

c = this.y; this.x = c; }
}

Fig. 6. Codes and specifications of interface Undoable and classes Cell ,ReCell

Proving Cell .set:
{cell(this,-)}
{this.x ↪→-}
this.x = v;
{this.x ↪→ v}

Proving Cell .get:
{cell(this, v) ∧ c = 0}
{this.x ↪→ v ∧ c = 0}
c = this.x;
{this.x ↪→ v ∧ c = v}
return c;
{res = v}

Proving ReCell .undo:
{bak(this, b) ∧ c = 0}
{c = 0 ∧ this.x ↪→ - ∗ this.y ↪→ b}
c = this.y; this.x = c;
{c = b ∧ this.x ↪→ c ∗ this.y ↪→ b}
{this.x ↪→ b ∗ this.y ↪→ b}
{cell(this, b) ∧ bak(this, b)}
{cell(this, b)}

Fig. 7. Proofs for Some Simple Cases

v as the value of y and leaves value of x unconcerned. Because ReCell .set is not ex-
plicitly specified, it inherits two specifications from Undoable.set and Cell .set . In the
same way, ReCell .get inherits a specification from Cell .get ; and ReCell .undo inher-
its a specification from Undoable.undo. All of these are recorded in the specification
environment, and can be used for verifying the program.

We need to prove that the code is correct by the related inference rules given in
Section 4 before give the code to clients. Due to the page limited, we give here only
main part of the proof to illustrate the usage of our framework. It is clear that, to verify
methods in Cell , we should use rule [H-MTHD1] because all of the methods are defined
and specified in Cell . Here the premise for specification refinement is vain and thus is
trivially true. We only need to verify the method bodies. The two proofs are simple and
given in Fig. 7.

For ReCell .set and ReCell .undo, we need to prove that their bodies meet the re-
spectively inherited specifications from the supertypes of ReCell , because these meth-
ods are not specified explicitly. This situation asks us to use rule [H-MTHD2]. The
proof for ReCell .undo is simple and given also in Fig. 7. For ReCell .set , we need

Proving ReCell .set with Π(Undoable.set):
{cell(this, b) ∧ c = 0}
{c = 0 ∧ this.x ↪→ b ∗ this.y ↪→-}
c = this.x; this.y = c;
{c = b ∧ this.x ↪→ b ∗ this.y ↪→ c}
this.x = v;
{this.x ↪→ v ∗ this.y ↪→ b}
{(this.x ↪→ v ∗ this.y ↪→-)∧

(this.x ↪→- ∗ this.y ↪→ b)}
{cell(this, v) ∧ bak(this, b)}

Proving ReCell .set with Π(Cell .set):
{cell(this,-) ∧ c = 0}
{c = 0 ∧ this.x ↪→-}
{c = 0 ∧ ∃b · this.x ↪→ b ∗ this.y ↪→-}
c = this.x; this.y = c;
{∃ b · c = b ∧ this.x ↪→ b ∗ this.y ↪→ c}
this.x = v;
{∃ b · this.x ↪→ v ∗ this.y ↪→ b}
{this.x ↪→ v}
{cell(this, v)}

Fig. 8. Proofs for ReCell .set with two specifications

to prove that it meets its two inherited specifications from Undoable and Cell firstly.
The proofs are given in Fig. 8. Based on these proofs, we can easily conclude that
ReCell .set meets its specification.

In addition, we find that rule [H-MTHD2’] can also be used here to avoid verifying
the method body more times because there exists a refinement relation between the
specifications. We show the proof here as an example. To prove in this way, due to we
have proved that ReCell .set meets its specification inherited from Undoable , now we
need only check the refinement relation. By Definition 1, we have trivially:

Γ,ReCell `
〈cell(this, b)〉〈cell(this, v) ∧ bak(this, b)〉 ⇒ 〈cell(this,-)〉〈cell(this, v)〉
⇒
〈cell(this,-)〉〈cell(this, v)〉 v 〈cell(this, b)〉〈cell(this, v) ∧ bak(this, b)〉

This derivation tells us “Γ,ReCell ` Π(Cell .set) v Π(Undoable.set)”. Thus, the
body of ReCell .set also meets the inherited specification from its superclass Cell ac-
cording to our weaker rule [H-MTHD2’].

For ReCell .get , rule [H-MINH] asks us to prove only specification refinement
relations, thus we avoid re-verifying method body and achieve modular verification.
The specification of ReCell .get is inherited from Cell .get , which is a single spec-
ification. Thus, the refinement relation between specifications of Undoable.get and
ReCell .get is “Γ,ReCell ` 〈ϕ′〉〈ψ′〉 v 〈ϕ〉〈ψ〉”, where ϕ = ϕ′ = cell(this, v)
and ψ = ψ′ = (res = v). This relation holds trivially.

For proving the specification refinement relation between Cell .get and ReCell .get ,
the case is different, that is to prove

Γ,ReCell ` 〈cell(this, v)〉〈res = v〉 v 〈fix(Cell , cell(this, v))〉〈fix(Cell , res = v)〉
By the Definition 1 and the definition of fix, we need to prove that there exists an
assertion R such that

Γ,ReCell `
(cell(this, v) ⇒ fix(Cell , cell(this, v)) ∗R) ∧ (fix(Cell , res = v) ∗R ⇒ (res = v))
⇒
(cell(this, v) ⇒ Cell .cell(this, v) ∗R) ∧ (Cell .(res = v) ∗R ⇒ (res = v))
⇒
((this.x ↪→ v ∗ this.y ↪→-) ⇒ (this.x ↪→ v ∗R)) ∧ ((res = v) ⇒ (res = v))

Bool cell test()
〈true〉〈res = rtrue〉
{

Int c1, c2;
Bool b = false;
Cell t1;
Undoable t2;
t1 = new ReCell();
t2 = (Undoable)t1;
t1.set(5);
c1 = t2.get();
t2.set(3);
t2.undo();
c2 = t1.get();
if (c1==c2) b = true;
return b;

}

{c1 = 0 ∧ c2 = 0 ∧ b = rfalse ∧ t1 = rnull ∧ t2 = rnull}
t1 = new ReCell(); t2 = (Undoable)t1;
{∃r1, r2, v1, v2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 0 ∧ c2 = 0 ∧

b = rfalse ∧ r1 = r2 ∧ cell(r1, v1) ∧ bak(r1, v2)}
t1.set(5); c1 = t2.get();
{∃r1, r2, v1 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 0 ∧

b = rfalse ∧ r1 = r2 ∧ cell(r1, 5) ∧ bak(r1, v1)}
t2.set(3);
{∃r1, r2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 0 ∧ b = rfalse ∧

r1 = r2 ∧ cell(r1, 3) ∧ bak(r1, 5)}
t2.undo(); c2 = t1.get();
{∃r1, r2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 5 ∧ b = rfalse∧

r1 = r2 ∧ cell(r1, 5) ∧ bak(r1, 5)}
if (c1==c2)
{∃r1, r2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 5 ∧ b = rfalse ∧

c1 = c2 ∧ r1 = r2 ∧ cell(r1, 5) ∧ bak(r1, 5)}
b = true;
{∃r1, r2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 5 ∧ b = rtrue ∧

c1 = c2 ∧ r1 = r2 ∧ cell(r1, 5) ∧ bak(r1, 5)}
{b = rtrue}
return b;
{res = rtrue}

Fig. 9. A Client Method and Its Proof

Let “R = this.y ↪→-”, then we have the above implications true easily. Therefore, we
can conclude that ReCell .get meets its specification.

Now we show how a client code can be verified by just referring to the specifications
in interfaces and classes, thus is done abstractly and modularly. In Fig. 9 (left), we
define a method cell test which declares a variable of type Cell but actually assigns it
an object of ReCell . Then a new variable t2 is declared and assigned the same object
by casting t1 to Undoable . We give the proof of this method in detail in the figure too.
The proof involves only the abstract specifications of the interface and classes.

6 Related Work and Conclusion

To support specifications and verification of OO programs with interface types, we
develop here a formal framework which offers modularity for both specification and
verification. The OO language VeriJ used here takes the pure reference semantics. A
version of Separation Logic, named OOSL, is used for specifying and reasoning VeriJ
programs. We suggest abstract specifications for describe behaviors of methods. This
technique can support also “behavioral” specification for the method declarations in
interfaces which have no implementations. We introduce specification predicates to
link abstract specifications with implementation details, which serve also the connection
between the classes with the interfaces which they implement.

We design rules for visibility, inheritance and overriding of specification predicates
and method specifications, and develop a set of inference rules which can derive proof
obligations from program with specifications for verifying VeriJ programs. Our ap-
proach supports full encapsulation for the implementation details, and can also avoid
re-verification of inherited methods. In contrast to the work presented in [15, 4], we
use only one specification for each method. As in the main-stream OO languages, e.g.
Java and C#, here one class may implement several interfaces, as well as inherits a su-
perclass. Our framework support inheriting multi-specifications for methods, and we
propose inference rules for proving programs in this situation. By an example, with
more examples in Appendix B, we show that the framework can dealing with various
common problems encountered in OO practice.

The research on the specification and verification in JML and Spec# frameworks [9,
7, 10, 2, 1] considered also interface types. Similarly, these frameworks support method
specifications in interfaces, and allow specification inheritance. The refinement relation
between supertypes and their subtypes are defined to pursue modular reasoning and be-
havioral subtyping. Differently, Spec# requires overriding methods in a subtype inherit
the same preconditions from its supertypes while postconditions can be strengthened.
This brings a big constraint on implementations in subtypes. Actually, to allow more
flexible behaviors, we should permit not only strengthening postconditions but also
weakening preconditions in subtypes, as what we and JML do. Notably, our framework
is more general. In one side, we develop an approach for the inheritance with multi-
ple specifications for methods. In addition, our definition for specification refinement
allows storage extension of subclass, which is necessary for dealing with mutable OO
structures but totally omitted in Spec# and JML frameworks.

The abstraction techniques adopted in JML and Spec# are similar. Both use model
fields and calls of pure methods in their specifications. We find that such calls in specifi-
cation is not abstract and convenient enough for clients to use and understand. Because
it may enforce clients to know about what these pure methods do. We propose spec-
ification predicates to hide information from clients and use them in specifications in
interfaces (and classes) to provide enough information for verifying class and client
codes conveniently by suitable verification rules. In addition, as pointed by [15], the
early work, including JML and Spec#, can not avoid re-verification of the inherited
methods. That might be another weakness of the approaches based on the model fields
and pure methods etc.

In this work, we utilize structures in programs and specification predicates, as the
semantic link over the class hierarchy, rather than only linking the abstract predicate
families [15] to classes by the type of their first parameter and a tag. Use only one
specification for a method, we can get rid of repeated expressions, and express the se-
mantic decision for the class design only in the local defined predicates. This feature
makes it better to support the single point rule in the specifications of programs, which
is extremely important in programming practice. In addition, it is not clear how the ab-
stract predicate families and dual specifications mechanisms can be used (extended) to
support specification and verification of OO programs with interface types. By success-
fully extend our framework to support the interface features, we see more clearly the
usefulness of the concept specification predicates and its potential power. In fact, the

key point of our approach is to introduce polymorphism concepts into the specification
and verification framework, that is learnt from the successful OO practice.

As the future work, we will explore further the potentials of our approach, to sup-
port more OO and verification features, such as object invariants, frame problems and
confinement, open programs, and so on.

References

1. M. Barnett, M. Fähndrich, K.R.M. Leino, P. Müller, W. Schulte, and H. Venter. Specification
and verification: the spec# experience. Communications of the ACM, 54(6):81–91, 2011.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS 2004, volume 3362 of LNCS, pages 49–69. Springer, 2005.

3. Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Edwards. Model variables:
cleanly supporting abstraction in design by contract. Software: Practice and Experience,
35(6):583–599, 2005.

4. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Enhancing modular
OO verification with separation logic. In POPL ’08, pages 87–99, New York, NY, USA,
2008. ACM.

5. D. Distefano and M.J. Parkinson J. jstar: Towards practical verification for java. ACM
SIGPLAN Notices, 43(10):213–226, 2008.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addlison Wesley, 1994.

7. G. Leavens. JML’s rich, inherited specifications for behavioral subtypes. Formal Methods
and Software Engineering, pages 2–34, 2006.

8. Gary T. Leavens and David A. Naumann. Behavioral subtyping is equivalent to modular
reasoning for object-oriented programs. Technical Report 06-36, Department of Computer
Science, Iowa State University, Ames, Iowa, 50011, 2006.

9. G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. SIGSOFT Software Engineering Notes, 31(3):1–38, 2006.

10. G.T. Leavens and P. Müller. Information hiding and visibility in interface specifications. In
Software Engineering.

11. K. R. M. Leino. Toward reliable modular programs. PhD thesis, California Institute of
Technology, Pasadena, CA, USA, 1995. UMI Order No. GAX95-26835.

12. K. R. M. Leino. Data groups: specifying the modification of extended state. SIGPLAN
Notices, 33:144–153, 1998.

13. Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programing Languages and Systems, 16(6):1811–1841, 1994.

14. P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume
2262 of LNCS. Springer, 2000.

15. Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and inheritance.
In POPL ’08, pages 75–86, New York, NY, USA, 2008. ACM.

16. A. Poetzsch-Heffter. Specification and verification of object-oriented programs. Technische
Universität München, 1997.

17. Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In Sophia Drossopoulou, editor, ECOOP 2009, volume 5653 of
LNCS, pages 148–172. Springer, 2009.

18. Liu Yijing, Hong Ali, and Qiu Zongyan. Inheritance and modularity in specification and
verification of OO programs. In TASE 2011, pages 19–26. IEEE Computer Society, 2011.

19. Liu Yijing and Qiu Zongyan. A separation logic for OO programs. In FACS 2010, volume
6921 of LNCS, pages 88–105. Springer, 2011.

A OOSL: Some Details and Its Semantics

Here we give some details about OOSL. A complete treatment can be found in [19], including
some properties of OOSL, and a careful comparison with some related works.

We use a revised Stack-Heap state model for OO programs. A state s = (σ, O) ∈ State
consists of a store and a heap:

Store =̂ Name ⇀fin Ref, Heap =̂ Ref ⇀fin Name ⇀fin Ref
State =̂ Store×Heap

Name is an infinite set of names, with specially true, false,null for boolean constants and null
value respectively. Type is an infinite set of types, where Object,Null,Bool, Int ∈ Type.
Ref is an infinite set of references, i.e., object identities. It contains three constants: rtrue, rfalse
refer to the two Bool objects, and rnull. For any σ ∈ Store, we assume σtrue = rtrue,
σfalse = rfalse and σnull = rnull. We will use r, r1, . . . to denote references, and a, a1, . . . for
fields of objects. References are atomic.

To represent the states of OO programs, we use three basic sets Name, Type and Ref .
Because references in Ref are atomic, we assume two primitive functions:1

– eqref : Ref → Ref → bool, justifies whether two references are the same, i.e. for any
r1, r2 ∈ Ref , eqref(r1, r2) iff r1 is same to r2.

– type : Ref → Type decides the type of the object referred by some reference. We define
type(rtrue) = type(rfalse) = Bool, and type(rnull) = Null.

A program state s = (σ, O) ∈ State consists of a store and a heap. An element of O is a
pair (r, f), where f is an abstraction of some object o pointed by r, a function from fields of o to
values.2 For domain of O, we refer to either a subset of Ref associated with objects, or a subset
of Ref × Name associated with values. We use dom O to denote the domain of O, and define
dom2 O =̂ {(r, a) | r ∈ dom O, a ∈ dom O(r)} for the second case.

For the program states, we define the well-typedness as follows.

Definition 3 (Well-Typed States). State s = (σ, O) is well-typed if both its store σ and heap O
are well-typed, where store σ is well-typed if ∀v ∈ dom σ · type(σ(v)) <: dtype(v); and heap
O is well-typed if the following two conditions hold:

– ∀(r, a) ∈ dom2 O · a ∈ fields(type(r)) ∧ type(O(r)(a)) <: fdtypes(type(r))(a), and
– ∀r ∈ dom O · fields(type(r)) = ∅ ∨ (fields(type(r)) ∩ dom O(r) 6= ∅). ut

Clearly, a well-typed store has all its variables taking values of the valid types. On the other
hand, a well-typed heap requires that: 1) all fields in O are valid according to their objects, and
hold values of valid types; and 2) for a non-empty object (according to its type), only when at
least one of its fields is in O, we can say the object is in O. Thus we can identify empty objects
in any heap. We will only consider well-typed states in our study.

1 One possible implementation, for example, is to define a reference as a pair (t, id) where
t ∈ Type and id ∈ N, and define eqref as the pair equality, and type(r) = r.first.

2 Please pay attention that Ref ⇀fin Name ⇀fin Ref is very different from Ref × Name ⇀fin

Ref . Informally speaking, the former is a map from references to objects, while the latter is
a map from object fields to field values. So objects have no direct presentations in the latter,
especially empty objects.

[I-FALSE] MJ (false) = ∅ [I-TRUE] MJ (true) = State

[I-LOOKUP] MJ (v = r) = {(σ, O) | σ(v) = r} [I-REF-EQ] M(r1 = r2) =

{
State if eqref(r1, r2)
∅ otherwise

[I-REF-TP] M(r : T) =

{
State if type(r) = T
∅ otherwise

[I-REF-STP] M(r <: T) =

{
State if type(r) <: T
∅ otherwise

[I-EMPTY] MJ (emp) = {(σ, ∅)} [I-SINGLE] MJ (r1.a 7→ r2) = {(σ, {(r1, a, r2)})}
[I-OBJ] MJ (obj(r, T)) = {(σ, O) | dom O = {r} ∧ dom (O(r)) = fields(type(r))}

[I-APP] MJ (p(r)) = J (p)(r) [I-EX] MJ (∃r · ϕ) = {(σ, O) | ∃r ∈ Ref · (σ, O) ∈MJ (ϕ)}
[I-NEG] MJ (¬ϕ) = State \MJ (ϕ) [I-OR] MJ (ϕ1 ∨ ϕ2) = MJ (ϕ1) ∪MJ (ϕ2)

[I-S-CONJ] MJ (ϕ1 ∗ ϕ2) =
{(σ, O) | ∃O1, O2 ·O1 ∗O2 = O ∧ (σ, O1) ∈MJ (ϕ1) ∧ (σ, O2) ∈MJ (ϕ2)}

[I-S-IMPLY] MJ (ϕ1 —∗ϕ2) =
{(σ, O) | ∀O1 ·O1⊥O ∧ (σ, O1) ∈MJ (ϕ1) implies (σ, O1 ∗O) ∈MJ (ϕ2)}

Fig. 10. Semantic for OOSL wrt. the least fixed point model J of the given logic environment

We define a special overriding operator ⊕ on Opool:

(O1 ⊕O2)(r) =̂

{
O1(r)⊕O2(r) if r ∈ dom O2

O1(r) otherwise

The ⊕ operator on the right hand side is the standard function overriding. Thus, for heap O1,
O1 ⊕ {(r, a, r′)} gives a new heap, where the value for only one field (the value for a) of the
object pointed by r is modified (to the value denoted by r′).

We use O1 ⊥ O2 to indicate that O1 and O2 are separated from each other:

O1 ⊥ O2 =̂ ∀r ∈ dom O1 ∩ dom O2 · (O1(r) 6= ∅ ∧O2(r) 6= ∅ ∧
dom (O1(r)) ∩ dom (O2(r)) = ∅).

If a reference, to some object o, is in both domains of two heaps O1 and O2, then each of O1

and O2 must contain a non-empty subset o’s fields (the well-typedness guarantees this), and the
two subsets must be disjoint. This means that we can separate fields of a non-empty object into
different heaps, but not an empty object. With this definition, we have O ⊥ ∅ for any O, as well
as ∅ ⊥ ∅. When O1 ⊥ O2, we will use O1 ∗O2 for the union O1 ∪O2.

The storage model defined above, with the definition for the separation concept, gives us both
an object view and a field view for the heaps. With this model, we can correctly handle both the
whole objects and the fields of objects.

To define the semantics for OOSL, we need to have a careful treatment about the user-defined
assertions. Because we allow recursive definitions (either self-recursion or mutual recursion for
predicates), any reasonable definition for their semantics must involve some fixed point. We
record all the definitions in a Logic Environment Λ:

Λ ::= ε | p(r)
.
= ϕ, Λ

Here ε denotes the empty environment, and Λ is a sequence of definitions.
As the well-formedness, the body assertion ψ of any definition in Λ cannot use symbols

which is not defined in Λ. Further, we require that Λ is finite (of course) and any body assertion

DQ2

 enqueue()

 get_tail()

 dequeue()

Queue

 hd

 Queue();empty();peek()

 enqueue();dequeue()

DQueue

 tl

 DQueue();enqueue()

 empty();get_tail()

Node

 val,next

 Node()

DQ1

 get_tail()

Fig. 11. the class diagram of DQ1 ,DQ2 ,Queue,DQueue,Node

ψ in Λ is syntactically monotone3. Under these conditions, the least fix-point model for a given Λ
exists by Tarski’s theorem. We name the least fix-point model as J . We define the semantics of
assertions as a function MΛ : Ψ → P(State) based on this model by the rules listed in Fig. 10.

Having the semantic function, we define that an assertion ψ holds on a given state (σ, O),
written (σ, O) |= ϕ, as:

(σ, O) |= ϕ iff (σ, O) ∈M(ϕ).

B More Examples

In this appendix, we give some more examples to illustrate how our verification framework
can deal with some typical OO programming idioms with interfaces. The examples show also
how we give specifications for the methods in interfaces and classes, and how the specification
predicates connect the abstract specifications with the implementations.

The first example illustrates the case where a subclass implements two different interfaces,
where some implementing methods are inherited from its superclass. The second example is a
variant of the first one. The third example shows how to specify and verify two totally different
implementations of one common interface, where we have a set interface with a linked-list and a
binary-tree implementations. We also give some codes to show how our framework suppose the
verification of client code completely independent from the implementation details.

B.1 Specifying and Verifying a Queue Example
In this subsection, we illustrate the verification of an example related to queue by using the
specification and verification techniques supported by our framework.

In this example, we declare two interfaces DQ1 ,DQ2 and two classes Queue,DQueue
which are different implementations of FIFO queues. The structural relation of the interfaces and
classes in this example is visualized in a UML class diagram in Fig. 11.

We give part of the code in Fig. 12, where we define a class Node where each Node object
(node) holds an integer and a nxt reference. We pack its structure using a specification predicate
node(this, v, n), which asserts that a Node object holds v and n as its value and the next refer-
ence. Note that this predicate is pub, that means its definition is available everywhere. Node has
only a constructor with its specification.

3 For definition p(r)
.
= ϕ, every symbol occurred in ψ must lie under even number of negations.

class Node{
def pub node(this, v, n) :

this.val 7→ v ∗ this.nxt 7→ n;
Int val ; Node nxt ;
Node(Int c) 〈emp〉〈node(this, c, rnull)〉
{ this.val = c; this.nxt = null; }

}
inter DQ1{

def queue(this, α);
Int get tail() 〈queue(this, β :: [a])〉
〈res = a ∧ queue(this, β :: [a])〉;

}
inter DQ2{

def queue(this, α);
void enqueue(Int c)
〈queue(this, α)〉〈queue(this, α :: [c])〉;

Int dequeue() 〈queue(this, [c] :: β)〉
〈res = c ∧ queue(this, β) ∗ true〉;

Int get tail() 〈queue(this, β :: [a])〉
〈res = a ∧ queue(this, β :: [a])〉;

}

Fig. 12. Codes and specifications of class Node and interfaces DQ1 ,DQ2

Two interfaces DQ1 and DQ2 are declared in Fig. 12, where both declare a non-public
specification predicate queue which does not have a body. Interface DQ1 declares a method
get tail which returns the value of the last element in the queue. Interface DQ2 declares two
more methods dequeue, enqueue which are common for queue data structures. For specifying
these methods, we use some mathematical notations. Here [. . .] denotes the sequence, and ::
is the concatenation operation. We omit the return in enqueue and write its return type as
void for convenience. All the methods in two interfaces are specified formally using abstract
specifications, where queue is used to as the abstraction facilities.

Clearly, each implementing class of these interfaces must not only provide definitions for the
methods, but also a body for queue to connect the specifications here with the internal imple-
mentation of the class. A client of these interfaces can see only the abstract specifications.

Class Queue (in the left side of Fig. 13) defines a kind of simple queues, whose field hd
holds a linked list of Node objects with a head node, thus the node denoted by hd .nxt holds the
first value in the queue. We encapsulate the implementing detail in the body of predicate queue .
This predicate is also used in specifications of method definitions for empty , enqueue ,dequeue ,
peek in Queue . In detail, the body of queue(this, α) states that field hd of a Queue object
refers to a single linked list recording a value sequence [0] :: α (Here we assume that 0 is the
value of the head node.) Here we have another predicate listseg(this, r1, r2, α), which is given
in the common Separation Logic style. It specifies a single linked list segment between r1 and
r2, which holds a value sequence α. This predicate is used in queue . Note that in the definition
for listseg , this acts as a dumb parameter which connects also predicate listseg with the class.
For the more, method empty returns a boolean result of whether the queue is empty, and peek
returns the first value in the queue, while other methods are similar with the corresponding ones
in interface DQ2 . However, Queue has nothing to do with the two interfaces declared above.

Another class DQueue is defined in Fig. 13 too. It inherits Queue and implements both
the interfaces DQ1 and DQ2 . DQueue defines a kind of “faster queues”. In it a new field tl
is introduced which points to the last node of its list. The implementation details are hidden in
the local definition of queue . This predicate implements the same predicate declared in both
DQ1 and DQ2 , and overrides the predicate definition in class Queue . Here DQueue overrides
method empty and inherits the method peek from its superclass Queue . To implement the inter-
face, DQueue must implement all their declared methods. It defines get tail to implement the
declared method get tail in DQ1 and DQ2 ; and defines enqueue to implement the one in DQ2
that also overrides the one in Queue . Interestingly, DQueue inherits dequeue from its superclass
Queue with its specification to implement the one declared in DQ2 .

class Queue{
def queue(this, α) : ∃r · this.hd 7→ r∗

listseg(this, r, rnull, [0] :: α);
def listseg(this, r1, r2, α) :

(α = [] ∧ r1 = r2 ∧ emp) ∨
(∃r, b, β · (α = [b] :: β)∧
node(r1, b, r) ∗ listseg(this, r, r2, β));

Node hd ;
Queue() 〈emp〉〈queue(this, [])〉
{ this.hd = new Node(0); }
Bool empty() 〈queue(this, α)〉
〈res = (α = []) ∧ queue(this, α)〉
{ Node p; Bool b;

p = this.hd ; p = p.nxt ;
if (p==null) b = true;
else b = false;
return b;

}
void enqueue(Int c) 〈queue(this, α)〉
〈queue(this, α :: [c])〉
{ Node p, q, t; p = this.hd ; q = p.nxt ;

while (q!=null){ p = q; q = q.nxt ; }
t = new Node(c); p.nxt = t;

}
Int dequeue() 〈queue(this, [a] :: β)〉
〈res = a ∧ queue(this, β) ∗ true〉
{ Int c = 0; Node p, q;

p = this.hd ; q = p.nxt ;
if (q!=null)
{ c = q.val ; q = q.nxt ; p.nxt = q; }

return c;
}

Int peek() 〈queue(this, [c] :: β)〉
〈res = c ∧ queue(this, [c] :: β)〉
{ Int c = 0; Node p, q;

p = this.hd ; q = p.nxt ;
if (q!=null) c = q.val ;
return c;

}
}
class DQueue : Queue ¤ DQ1 , DQ2{

def queue(this, α) :
∃r, r′, b, β · ([0] :: α = β :: [b])∧

(this.hd 7→ r ∗ this.tl 7→ r′∗
listseg(this, r, r′, β) ∗ node(r′, b, rnull));

Node tl ;
DQueue() 〈emp〉〈queue(this, [])〉
{ Node t = new Node(0);

this.hd = this.tl = t;
}
Bool empty()
{ Node p, q; Bool b;

p = this.hd ; q = this.tl ;
if (p==q) b = true;
else b = false;
return b;

}
Int get tail()
{ Int c = tl .val ; return c; }
void enqueue(Int c)
{ Node p, t; p = this.tl ;

t = new Node(c); p.nxt = t; this.tl = t;
}

}

Fig. 13. Codes and specifications of class Queue,DQueue

Some methods in DQueue have no specifications. By our rules they inherit specifications
from all the supertypes of DQueue . Here empty and peek have their specifications from Queue
respectively. But enqueue will inherit two specifications from DQ2 and Queue similarly, and
get tail inherits two specifications from DQ1 .get tail and DQ2 .get tail , respectively.

Now we turn to verify the code according to the definition of “Correct Program” using related
inference rules in our verification framework before give them to clients. Firstly, we prove the
simple classes Node and Queue are correct by rule [H-MTHD1] directly in Fig. 14-16.

Then, we turn to verify methods in class DQueue . The constructor DQueue.DQueue is
easy to prove by rule [H-CONSTR] (in Fig. 17). We can easily find that rule [H-MTHD2] should
be used in verifying methods enqueue , get tail , and empty due to our classification of methods
with the inference rules for verification. For these methods, we should verify that their body sat-
isfy their inherited specification(s) respectively. Because the example is simple, some inherited
specifications for a method are the same, then we need to verify the body only one time. For ex-
ample, DQueue.enqueue inherits two specifications from DQ2 and Queue which are the same,

Proving Node.Node:
{raw(this,Node)}
this.val = c; this.nxt = null;
{this.val 7→ c ∗ this.nxt 7→ rnull}
{node(this, c, rnull)}

Proving Queue.Queue:
{raw(this,Queue)}
Node x; x = new Node(0);
{∃rh · x = rh ∧ raw(this,Queue) ∗ node(rh, 0, rnull)}
this.hd = x;
{∃rh · x = rh ∧ this.hd 7→ rh ∗ listseg(this, rh, rnull, [0])}
{queue(this, [])}

Fig. 14. Verifying Node.Node and Queue.Queue

{p = rnull ∧ b = rfalse ∧ queue(this, α)}
p = this.hd ;
{∃r1 · p = r1 ∧ b = rfalse ∧ this.hd 7→ r1 ∗ listseg(this, r1, rnull, [0] :: α)}
p = p.nxt ;
{∃r1, r2 · p = r2 ∧ b = rfalse∧
this.hd 7→ r1 ∗ node(r1, 0, r2) ∗ listseg(this, r2, rnull, α)}
if (p == null)
{∃r1 · p = rnull ∧ b = rfalse ∧ this.hd 7→ r1 ∗ node(r1, 0, rnull) ∗ listseg(this, rnull, rnull, [])}
b = true;
{∃r1 · p = rnull ∧ b = rtrue ∧ this.hd 7→ r1 ∗ node(r1, 0, rnull)}
{p = rnull ∧ b = rtrue ∧ queue(this, [])}
else
{∃r1, r2 · p = r2 ∧ r2 6= rnull ∧ b = rfalse∧
this.hd 7→ r1 ∗ node(r1, 0, r2) ∗ listseg(this, r2, rnull, α)}
b = false;
{∃r1, r2 · p = r2 ∧ r2 6= rnull ∧ b = rfalse∧
this.hd 7→ r1 ∗ node(r1, 0, r2) ∗ listseg(this, r2, rnull, α)}
{∃r2 · p = r2 ∧ r2 6= rnull ∧ b = rfalse ∧ queue(this, α)}
return b;
{queue(this, α) ∧ ((α = [] ∧ res = rtrue) ∨ (α 6= [] ∧ res = rfalse))}
{res = (α = []) ∧ queue(this, α)}

Fig. 15. Verifying Queue.empty with its specification

we verify that its body satisfies the specification, as shown in Fig. 17). DQueue.get tail inherits
also two equal specification, its body verification is given in Fig. 18). For DQueue.empty , we
only need to verify its body with the inherited specification from Queue.empty because it just
overrides the method in the superclass Queue (given in Fig. 18).

Different to the above, we should use rule [H-MINH] for methods dequeue and peek of
DQueue to avoid re-verifying inherited method bodies. On the other hand, to prove this kind of
methods, we need to prove the refinement relation for specifications, that required in the premise
of rule [H-MINH], to ensure the behavioral subtyping. We give the details as follows.

For DQueue.dequeue , we have to prove two refinement relations of specifications because
it inherits the specification of Queue.dequeue . One is the relation between specifications of
DQueue.dequeue and DQ2 .dequeue , that asks for proving Γ,DQueue ` 〈P 〉〈Q〉 v 〈P 〉〈Q〉.
This is trivially true because the two specifications are the same.

{p = rnull ∧ q = rnull ∧ t = rnull ∧ queue(this, α)}
p = this.hd ; q = p.nxt ;
{∃rp, rq · p = rp ∧ q = rq ∧ t = rnull ∧
this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, α)}
while (q != null) {
{∃rp, rq, a, β, γ · p = rp ∧ q = rq ∧ rq 6= rnull ∧ ([0] :: α = β :: [a] :: γ) ∧

listseg(this, this.hd , rp, β) ∗ node(rp, a, rq) ∗ listseg(this, rq, rnull, γ)}
p = q; q = p.nxt ;

}
{∃rp, β, a · p = rp ∧ q = rnull ∧ t = rnull ∧

([0] :: α = β :: [a]) ∧ listseg(this, this.hd , rp, β) ∗ node(rp, a, rnull)}
t = new Node(c); p.nxt = n;
{∃rp, rt, β, a · p = rp ∧ t = rt ∧ ([0] :: α = β :: [a])∧

listseg(this, this.hd , rp, β) ∗ node(rp, a, rt) ∗ node(rt, c, rnull)}
{listseg(this, this.hd , rnull, [0] :: α :: [c])}
{queue(this, α :: [c])}

{p = rnull ∧ q = rnull ∧ c = 0 ∧ queue(this, [a] :: β)}
p = this.hd ; q = p.nxt ;
{∃rp, rq · p = rp ∧ q = rq ∧ c = 0∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, [a] :: β)}
if q!=null
{∃rp, rq · p = rp ∧ q = rq ∧ rq 6= rnull ∧ c = 0∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, [a] :: β)}
{ c = q.val ;
{∃rp, rq, r · p = rp ∧ q = rq ∧ rq 6= rnull ∧ c = a∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ node(rq, c, r)listseg(this, r, rnull, β)}
q = q.nxt ; p.nxt = q;
{∃rp, rq, r · p = rp ∧ q = rq ∧ c = a∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ node(r, c, rnull) ∗ listseg(this, rq, rnull, β)}
}

{∃r · c = a ∧ queue(this, β) ∗ node(r, c, rnull)}
return c;
{res = a ∧ queue(this, β) ∗ true}

{p = rnull ∧ q = rnull ∧ c = 0 ∧ queue(this, [a] :: β)}
p = this.hd ; q = p.nxt ;
{∃rp, rq · p = rp ∧ q = rq ∧ c = 0∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, [a] :: β)}
if q!=null
{∃rp, rq · p = rp ∧ q = rq ∧ rq 6= rnull ∧ c = 0∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, [a] :: β)}
c = q.val ;
{∃rp, rq, r · p = rp ∧ q = rq ∧ rq 6= rnull ∧ c = a∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ node(rq, c, r)listseg(this, r, rnull, β)}
{∃r · c = a ∧ queue(this, [a] :: β)}
return c;
{res = a ∧ queue(this, [a] :: β)}

Fig. 16. Verifying Queue.enqueue , Queue.dequeue , Queue.peek

Proving DQueue.DQueue:
{raw(this,DQueue)}
Node t = new Node(0);
{∃rt · t = rt ∧ raw(this,DQueue) ∗

node(rt, 0, rnull)}
this.hd = this.tl = t;
{∃rt · t = rt ∧ this.hd 7→ rt ∗

this.tl 7→ rt ∗ node(rt, 0, rnull)}
{∃rt · t = rt ∧ this.hd 7→ rt ∗

this.tl 7→ rt ∗
listseg(this, rt, rt, []) ∗
node(rt, 0, rnull)}

{queue(this, [])}

Proving DQueue.enqueue:
{p = rnull ∧ t = rnull ∧ queue(this, α)}
p = this.tl ; t = new Node(c);
{∃r, rp, rt, β, a · p = rp ∧ t = rt ∧

([0] :: α = β :: [a]) ∧ node(rt, c, rnull) ∗
(this.hd 7→ r ∗ this.tl 7→ rp ∗
listseg(this, r, rp, β) ∗ node(rp, a, rnull))}

p.nxt = t; this.tl = t;
{∃r, rp, rt, β, a · p = rp ∧ t = rt ∧

([0] :: α = β :: [a]) ∧
(this.hd 7→ r ∗ this.tl 7→ rt ∗ list(r, rp, β) ∗
node(rp, a, rt) ∗ node(rt, c, rnull))}

{queue(this, α :: [c])}

Fig. 17. Verifying DQueue.DQueue and DQueue.enqueue

Proving DQueue.get tail :
{queue(this, β :: [a])}
{∃r, r′ · c = 0 ∧ this.hd 7→ r ∗ this.tl 7→ r′ ∗ listseg(this, r, r′, β) ∗ node(r′, a, rnull)}
c = tl .val ;
{∃r, r′ · c = a ∧ this.hd 7→ r ∗ this.tl 7→ r′ ∗ listseg(this, r, r′, β)node(r′, a, rnull)}
return c;
{res = a ∧ queue(this, β :: [a])}
Proving DQueue.empty:
{p = rnull ∧ q = rnull ∧ b = rfalse ∧ queue(this, α)}
p = this.hd ; q = this.tl ;
{∃rp, rq, b, β · p = rp ∧ q = rq ∧ b = rfalse ∧ ([0] :: α = β :: [b]) ∧

this.hd 7→ rp ∗ this.tl 7→ rq ∗ listseg(this, rp, rq, β) ∗ node(rq, b, rnull)}
if (p==q)
{∃rp, rq, b, β · p = rp ∧ q = rq ∧ rp = rq ∧ b = rfalse ∧ ([0] :: α = β :: [b]) ∧ β = [] ∧

this.hd 7→ rp ∗ this.tl 7→ rq ∗ listseg(this, rp, rq, β) ∗ node(rq, b, rnull)}
{∃rp · p = rp ∧ b = rfalse ∧ this.hd 7→ rp ∗ this.tl 7→ rp∗

listseg(this, rp, rp, []) ∗ node(rp, 0, rnull)}
b = true;
{b = rtrue ∧ queue(this, [])}

else
{∃rp, rq, b, β · p = rp ∧ q = rq ∧ rp 6= rq ∧ b = rfalse ∧ ([0] :: α = β :: [b]) ∧ β 6= [] ∧

this.hd 7→ rp ∗ this.tl 7→ rq ∗ listseg(this, rp, rq, β) ∗ node(rq, b, rnull)}
b = false;

{∃r1, r2 · p = r2 ∧ r2 6= rnull ∧ b = rfalse ∧ this.hd 7→ r1 ∗
node(r1, 0, r2) ∗ listseg(this, r2, rnull, α)}

{∃r2 · p = r2 ∧ r2 6= rnull ∧ b = rfalse ∧ queue(this, α)}
return b;
{queue(this, α) ∧ ((α = [] ∧ res = rtrue) ∨ (α 6= [] ∧ res = rfalse))}
{res = (α = []) ∧ queue(this, α)}

Fig. 18. Verifying DQueue.get tail and DQueue.empty

However, we need also to prove refinement relation between specifications of Queue.dequeue
and DQueue.dequeue . Here the situation is different, because it asks for the proof of:

Γ,DQueue ` 〈P 〉〈Q〉 v 〈fix(Queue, P)〉〈fix(Queue, Q)〉
By the Definition 1, we need to prove that there exists an assertion R that

Γ,DQueue, dequeue ` (P ⇒ fix(Queue, P) ∗R) ∧ (fix(Queue, Q) ∗R ⇒ Q)

where

P = queue(this, [a] :: β) and Q = (res = a ∧ queue(this, β) ∗ true)

By definition of fix, we have

Γ,DQueue, dequeue ` (P ⇒ fix(Queue, P) ∗R)
⇔ (queue(this, [a] : β) ⇒ Queue.queue(this, [a] :: β) ∗R)

and
Γ,DQueue, dequeue ` (fix(Queue, Q) ∗R ⇒ Q)

⇔ (Queue.queue(this, β) ∗R ⇒ queue(this, β))

So, the key point is to prove

Γ,DQueue, dequeue ` Queue.queue(r, β) ∗R ⇔ queue(r, β)

Let “R = ∃rt · r.tl 7→ rt”, we have

Γ, DQueue, dequeue `
Queue.queue(r, β) ∗R

⇔ ∃rh · r.hd 7→ rh ∗ listseg(this, rh, rnull, [0] :: β) ∗ (∃rt · r.tl 7→ rt)
⇔ ∃rh, rt · r.hd 7→ rh ∗ r.tl 7→ rt ∗ listseg(this, rh, rnull, [0] :: β)
⇔ queue(r, β)

Thus, we have proven that DQueue.dequeue meets its specifications.
For DQueue.peek , we only need to prove the refinement relation of specifications:

Γ,DQueue ` 〈P 〉〈Q〉 v 〈fix(Queue, P)〉〈fix(Queue, Q)〉
It is similar to the above proof for DQueue.dequeue . We omit its details.

Until now, we have proven that classes Node, Queue, DQueue with interfaces DQ1 , DQ2
are correct by using our modular verification framework. Now we can use these interfaces and
classes for some purpose. We show next how the client code of them can be specified and verified
without touch the implementation details of these classes. In Fig. 19 (left) we give a simple client
method with specification, and use the code to show how our modularity and information hiding
mechanisms work very well. The proof is give in the figure too.

In detail, here we define a method qtest which declares a variable q1 of class Queue but
actually initializes it by an queue object of class DQueue . Then a new variable q2 of interface
DQ2 is declared which is made to refer to the same object by casting. By judging that q1 is
constructed to be empty, we insert two integers 1, 2 into the queue via q1. After doing these, we
check whether the first element’s value of the queue q1 refers equals to the last element’s value
of the queue q2 refers. If they are not equal, we pop one element from the queue denoted by q1
and one element from the queue denoted by q2, sequentially. By comparing whether these two
popped values are equal, we get the final result of the method. The verification of the method is
totally on an abstract level where no implementation details is used.

Bool qtest()
〈true〉〈res = rtrue〉
{

Int i = 1; Int c1, c2;
Bool b = false;
Queue q1 =

newDQueue();
DQ2 q2 = (DQ2)q1;
b = q1.empty();
if (b==true){

while (i < 3){
q1.enqueue(i);
i = i + 1;

}
}
c1 = q1.peek();
c2 = q2.get tail();
if (c1!=c2){

c1 = q1.dequeue();
c2 = q2.dequeue();

}
if (c1==c2)

b = false;
return b;

}

{i = 1 ∧ c1 = 0 ∧ c2 = 0 ∧ b = rfalse ∧ q1 = rnull ∧ q2 = rnull}
i = 1; b = false; q1 = new DQueue(); q2 = (DQ2)q1;
{∃r1, r2 · i = 1 ∧ c1 = 0 ∧ c2 = 0 ∧ b = rfalse ∧ q1 = r1 ∧

q2 = r2 ∧ r2 = r1 ∧ queue(r1, [])}
b = q1.empty();
{∃r1, r2 · i = 1 ∧ c1 = 0 ∧ c2 = 0 ∧ b = rtrue ∧ q1 = r1 ∧

q2 = r2 ∧ r2 = r1 ∧ queue(r1, [])}
if (b==true)
{∃r1, r2 · i = 1 ∧ c1 = 0 ∧ c2 = 0 ∧ b = rtrue ∧ q1 = r1 ∧

q2 = r2 ∧ r2 = r1 ∧ queue(r1, [])}
{ while (i < 3){

{∃r1, r2, β · i < 3 ∧ q1 = r1 ∧ q2 = r2 ∧ r2 = r1 ∧
queue(r1, β)}

q1.enqueue(i); i = i + 1;
{∃r1, r2, β · i ≤ 3 ∧ q1 = r1 ∧ q2 = r2 ∧ r2 = r1 ∧

queue(r1, β :: [i− 1])} }
{∃r1, r2 · i = 3 ∧ q1 = r1 ∧ q2 = r2 ∧ r2 = r1 ∧

queue(r1, [1] :: [2])}
}
{∃r1, r2 · c1 = 0 ∧ c2 = 0 ∧ b = rtrue ∧ i = 3 ∧ q1 = r1 ∧

q2 = r2 ∧ r2 = r1 ∧ queue(r1, [1] :: [2])}
c1 = q1.peek(); c2 = q2.get tail();
{∃r1, r2 · c1 = 1 ∧ c2 = 2 ∧ b = rtrue ∧ i = 3 ∧ q1 = r1 ∧

q2 = r2 ∧ r2 = r1 ∧ queue(r1, [1] :: [2])}
if (c1!=c2)
{∃r1, r2 · c1 = 1 ∧ c2 = 2 ∧ c1 6= c2 ∧ b = rtrue ∧ i = 3 ∧

q1 = r1 ∧ q2 = r2 ∧ r2 = r1 ∧ queue(r1, [1] :: [2])}
{ c1 = q1.dequeue(); c2 = q2.dequeue(); }

{∃r1, r2 · c1 = 1 ∧ c2 = 2 ∧ b = rtrue ∧ i = 3 ∧ q1 = r1 ∧
q2 = r2 ∧ r2 = r1 ∧ queue(r1, [])}

if (c1==c2)
{∃r1, r2 · c1 = 1 ∧ c2 = 2 ∧ c1 = c2 ∧ b = rtrue ∧ i = 3 ∧

q1 = r1 ∧ q2 = r2 ∧ r2 = r1 ∧ queue(r1, [])}
{false}
b = false;

{∃r1, r2 · c1 = 1 ∧ c2 = 2 ∧ c1 6= c2 ∧ b = rtrue ∧ i = 3 ∧
q1 = r1 ∧ q2 = r2 ∧ r2 = r1 ∧ queue(r1, [])}

return b;
{res = rtrue}

Fig. 19. Client Method qtest with its Verification

B.2 Specifying and Verifying a Variant of the Queue Example

In above example, we use two interfaces in the interface/class hierarchy to show the application
of our verification framework fully. However, the two interfaces in the example are not really
necessary in practice, and they can be combined to one interface DQ2 which provides enough
behavioral interfaces for its implementing class DQueue . Now we develop and specify a variant
of the example in Fig. 20. Here we list only interface DQ2 the same as in Fig. 12, and class

DQ

 enqueue();dequeue()

 get_tail()

Queue

 hd

 enqueue();dequeue()

 empty();peek();Queue()

DQueue

 tl

 enqueue();empty()

 DQueue();get_tail()

Node

 val,next

 Node()

inter DQ2{
def queue(this, α);
void enqueue(Int c); 〈· · · 〉 〈· · · 〉
Int dequeue(); 〈· · · 〉 〈· · · 〉
Int get tail(); 〈· · · 〉 〈· · · 〉

}
class DQueue : Queue ¤ DQ2{

def queue(this, α) : · · · ;
Node tl ;
DQueue() 〈· · · 〉 〈· · · 〉{ · · · }
Bool empty() { · · · }
Int get tail() { · · · }
void enqueue(Int c) { · · · }

}

Fig. 20. Abbrev. of interface DQ2 and class DQueue with whole UML diagram

DQueue which is declared to implement DQ2 while remaining to inherit class Queue . Except
these, all the other codes, specifications of class Node, Queue are same as what in last example.
Moveover, their verifications remain unchanged.

For the modification in DQueue , we should take into account the specifications and verifi-
cations for methods in it again. However, we find that the interface DQ1 in last example just de-
clares one method get tail . Thus, except method DQueue.get tail , other methods in DQueue
can be proved with their specification(s) in completely the same ways as what we have done
before. For method DQueue.get tail , we should prove its body with the only inherited speci-
fication of DQ2 .get tail by rule [H-MTHD2]. Actually as the specifications of DQ1 .get tail
and DQ2 .get tail are the same, we need still verify DQueue.get tail ’s body once. All of these
analysis tell us that, the verification of class DQueue in this modified example is the same as the
verification of DQueue done above. Therefore, we can conclude that this modified code provides
the same functionality (except no interface DQ1 here any more), and the client code in Fig. 19
will still work correctly.

B.3 Specifying and Verifying a Set Example

As in Java and other OO languages, an interface can also accept multiple implementations in
our specification and verification framework. In this subsection, we design an example following
partially the design of interface Set with its implementing classes in Java standard library. We
declare an interface Set and then implement it by two classes with different internal structures,
where one takes the single linked list and another uses the binary tree.

The declaration of interface Set is given in Fig. 21, where a specification predicate set and
three methods with their specifications are given. Informally, set(p, α) states that p refers to an
object which holds elements of a set α. Here we use some standard set theory notations, e.g.,
∈, ⊆, ∪, ∩ in method specifications. It is easy to know that, method empty judges whether the
set (currently) is empty; add adds a value to the set when it is not already there; and contain
judges whether the set contains the given value. These methods should be implemented with
suitable techniques by the classes which implement Set . The meaning of suitable is that, in the
implementation, these methods must satisfy their specifications given in interface Set .

inter Set{
def set(this, α);
Bool empty()〈set(this, α)〉
〈set(this, α) ∧ res = (α = ∅)〉;

void add(Int c)〈set(this, α)〉
〈set(this, {c} ∪ α)〉;
Bool contain(Int c)〈set(this, α)〉
〈set(this, α) ∧ res = (c ∈ α)〉;

}

Fig. 21. Codes and specifications of Interface Set

class Node{
Int val ; Node nxt ;
def pub node(this, v, r) :

this.val 7→ v ∗ this.nxt 7→ r;
Node(Int v)〈emp〉〈node(this,old(v), rnull)〉
{this.val = v; this.nxt = null; }

}
class ListSet ¤ Set {

Node hd ;
def set(this, α) : ∃ s, rh · g(α, s)∧

this.hd 7→ rh ∗ listseg(this, rh, rnull, [0] :: s);
def listseg(this, r1, r2, s) :

(s = [] ∧ r1 = r2 ∧ emp)∨
(∃ r3, b, s

′ · (s = [b] :: s′)∧
node(r1, b, r3) ∗ listseg(this, r3, r2, s

′));
def f(s) : (f([]) = ∅)∨

((s = [b] :: s′) ∧ (f([b] :: s′) = {b} ∪ f(s′)));
ListSet()〈emp〉〈set(this, [])〉;
{ Node x; x = new Node(0);

this.hd = x;
}
Bool empty()

{ Node p, q; Bool b;
p = this.hd ; q = p.nxt ;
if (q == null) b = true;
else b = false;
return b;

}
Bool contain(Int c)
{ Node p, q; Bool b; b = false;

p = this.hd ; q = p.nxt ;
while (q!=null ∧ b!=true){

if (q.val == c) b = true;
q = q.nxt ; }

return b;
}
void add(Int c)
{ Node p, q, n; Bool b;

p = this.hd ; q = p.nxt ;
b = this.contain(c);
if (b == rfalse) {

n = new Node(c);
n.nxt = q; p.nxt = n; }

}
}

Fig. 22. Set Implemented as Linked List

B.4 Implementing Set by Single Linked List

Firstly, we implement interface Set by a class ListSet (Fig. 22), which uses internally a single
linked list to hold the elements. Objects of class Node are used to build the linked lists, while each
node holds an integer value with a nxt reference. The code, specification (and also verification)
of Node is the same as in the queue example in Subsection B.1. We omit its details here.

Before going into the detail specifications and implementation of ListSet , we explain some
noteworthy points. Firstly, element sequences of linked lists specified here are always ordered
but non-duplicated. Secondly, in notation, we suppose that a formula like s = s1 :: s2 means
sequence s can be divided into two sub-sequences s1, s2, each of which is non-duplicated. As
a simple situation, if s = [b] :: s1, then we know that element b is contained in sequence s
but not in its sub-sequence s1. In the following, we will simply call sequences for our special
non-duplicated sequences if no ambiguous.

In class ListSet , we implement all the predicates and methods declared in Set . The predicate
set is embodied based on predicate listseg which specifies a segment of single linked list built

from Node. Thus, we indeed hide the specifically realizing structure of ListSet under Set by the
definition body of set from the unexpected clients.

Actually, the mathematical concepts used for element storing structures in predicate set and
its auxiliary predicate listseg are different, i.e., ordinary (unordered and non-duplicated) set α
for set and our special (ordered and non-duplicated) sequence s for listseg . For reasoning, we
introduce an additional logical function f(s) to transform sequences to sets. Please note that,
because we only talk about non-duplicated sequences, a set transformed from a sequence s (i.e.,
f(s)) has the same size and elements with s. And we will use assertion g(α, s) to assert that there
exists a sequence s which is some permutation of elements in set α and has the same size and
elements with α. By using these two mathematical notations, we define predicate set in ListSet
naturally by integrating predicate listseg and asserting g(α, s) is true.

Moveover, now we can judge whether an element b is in a sequence s by equally judging
whether b ∈ f(s) is true. And as above suppose, notations like s = s1 :: s2, which mean
divisions of a sequence s into two disjoint and unrepeatable sub-sequences s1, s2, are agreed to
equally imply f(s1)∩ f(s2) = ∅ hold. However, we will just take these implicative properties in
this kind of notations as our common sense and do not write them down explicitly and repeatedly
in later specifications and verifications. Such as, when meet with notations as s = s1 :: [v] :: s2

in later verifications, we can directly get the following information, that is, v /∈ f(s1) ∧ v /∈
f(s2) ∧ f(s1) ∩ f(s2) = ∅.

There are also some properties of assertion g(α, s) specified in Lemma. 1 as below.

Lemma 1. We will have assertion g(α, s) holds, if it is one of the forms as below:

α = ∅ ∧ s = [] ⇒ g(∅, [])
α = {a} ∧ s = [a] ⇒ g({a}, [a])

α = {a} ∪ β ∧ s = [a] :: s′ ∧ g(β, s′) ⇒ g({a} ∪ β, [a] :: s′)

Class ListSet implements all the declared methods in Set with inheriting their specifications
from it. Here, specifications for these methods use the embodied predicates in ListSet to hide
actual structure and implementations of ListSet from clients. Because we use an unrepeatable
sequence for ListSet , the implementation algorithm of method add is that, a given element c
would be added into a ListSet object just when it is not already contained. That is, we should
maintain the unrepeatability during all operations on ListSet objects. Then if we have a delete
method, we only need to delete the first element (if it is contained) we search for through the list
and then return the result. The Other methods empty , contain in ListSet are trivial.

After designing implementations and specifying method specifications of class ListSet , we
need to verify that class ListSet meets its specifications, thus it is a correct implementation of
Set . That is, we should verify each method of ListSet by using some corresponding inference
rule in our modular verification framework correctly. Actually, for ListSet , we only need to
verify each method (except the constructor) body meeting its inherited specification from Set by
rule [H-MTHD2] directly.

Before verifying ListSet , we firstly prove that class Node is correct with respect to its spec-
ification. Because in class Node there is only a constructor, we need only to prove that the con-
structor is correct by rule [H-CONSTR] (in the left side of Fig. 23).

Now we turn to verification of the methods in ListSet . As analyzing above, we should prove
each of their bodies meeting its specification. Similar to Node.Node, we prove the constructor
ListSet .ListSet by rule [H-CONSTR] (in the right side of Fig. 23). As analyzing above, for
other methods in ListSet , we will use the reference rule [H-MTHD2] to verify them as below.

Proving Node.Node:
{raw(this,Node)}
this.val = v; this.nxt = null;
{this.val 7→ v ∗ this.nxt 7→ rnull}
{node(this, v, rnull)}

Proving ListSet .ListSet:
{x = rnull ∧ raw(this,Node)}
x = new Node(0);
{∃ rh · x = rh ∧ raw(this,Node) ∗ node(rh, 0, rnull)}
this.hd = x;
{∃ rh · x = rh ∧ g(∅, []) ∧ this.hd 7→ rh∗

listseg(this, rh, rnull, [0] :: [])}
{set(this, ∅)}

Fig. 23. Proofs for Node.Node and ListSet .ListSet

• ListSet .empty with its specification. We do its body verification here:

{p = rnull ∧ q = rnull ∧ b = rfalse ∧ set(this, α)}
p = this.hd ;
{∃ s, rp, rq · p = rp ∧ q = rnull ∧ b = rfalse ∧ g(α, s)∧

this.hd 7→ rp ∗ listseg(this, rp, rnull, [0] :: s)}
q = p.nxt ;
{∃ s, rp, rq · p = rp ∧ q = rq ∧ b = rfalse ∧ g(α, s)∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, s)}
if (q == null)
{∃ rp · p = rp ∧ q = rnull ∧ g(∅, []) ∧ b = rfalse∧

this.hd 7→ rp ∗ node(rp, 0, rnull) ∗ listseg(this, rnull, rnull, [])}
{q = rnull ∧ b = rfalse ∧ set(this, ∅))}
b = true;
{q = rnull ∧ b = rtrue ∧ set(this, ∅)}

else
{∃ s, rp, rq · p = rp ∧ q = rq ∧ g(α, s) ∧ rq 6= rnull ∧ b = rfalse∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, s)}
{∃rp, rq · p = rp ∧ q = rq ∧ rq 6= rnull ∧ b = rfalse ∧ set(this, α)}
b = false;
{b = rfalse ∧ set(this, α)}

return b;
{set(this, α) ∧ ((α = ∅ ∧ res = rtrue) ∨ (α 6= ∅ ∧ res = rfalse))}
{set(this, α) ∧ res = (α = ∅)}

Then we conclude that ListSet .empty meets its specification.

• ListSet .contain with its specification. We verify its body here:

{p = rnull ∧ q = rnull ∧ b = rfalse ∧ set(this, α)}
b = false; p = this.hd ; q = p.nxt ;
{∃s, rp, rq · p = rp ∧ g(α, s) ∧ q = rq ∧ b = rfalse ∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, s)}
while (q!=null ∧ b!=true){
{∃s, r1, rp, rq, v, s1, s2 · (s = s1 :: [v] :: s2) ∧ p = rp ∧ q = rq ∧ g(α, s)∧

((b = rfalse ∧ rp.nxt 7→ rq) ∨ (c /∈ f(s1)∧
((v 6= c ∧ b = rfalse) ∨ (v = c ∧ b = rtrue)) ∧ rq 6= rnull))∧

this.hd 7→ rp ∗ listseg(this, rp, rq, [0] :: s1) ∗ node(rq, v, r1) ∗ listseg(this, r1, rnull, s2)}
if (q.val == c)
{∃s, r1, rp, rq, v, s1, s2 · (s = s1 :: [v] :: s2) ∧ g(α, s) ∧ c /∈ f(s1) ∧ p = rp∧

q = rq ∧ rq 6= rnull ∧ (v = c ∧ b = rtrue) ∧ this.hd 7→ rp∗
listseg(this, rp, rq, [0] :: s1) ∗ node(rq, v, r1) ∗ listseg(this, r1, rnull, s2)}

b = true;
{∃s, rp, v · g(α, s) ∧ v ∈ f(s) ∧ p = rp ∧ (v = c ∧ b = rtrue)∧

this.hd 7→ rp ∗ listseg(this, rp, rnull, [0] :: s)}
{∃s, v, s1, s2 · g(α, s) ∧ v ∈ f(s) ∧ c = v ∧ b = rtrue ∧ set(this, α)}

{∃s, r1, rp, rq, v, s1, s2 · (s = s1 :: [v] :: s2) ∧ g(α, s) ∧ c /∈ f(s1) ∧ p = rp ∧ q = rq∧
((v 6= c ∧ b = rfalse) ∨ (v = c ∧ b = rtrue)) ∧ rq 6= rnull ∧ this.hd 7→ rp∗
listseg(this, rp, rq, [0] :: s1) ∗ node(rq, v, r1) ∗ listseg(this, r1, rnull, s2)}

q = q.nxt ;
{∃s, r1, rp, rq, v, v′, s1, s2, s

′
2 · (s = (s1 :: [v]) :: [v′] :: s′2) ∧ g(α, s) ∧ (s2 = [v′] :: s′2)∧

c /∈ f(s1) ∧ p = rp ∧ q = rq ∧ ((v 6= c ∧ b = rfalse) ∨ (v = c ∧ b = rtrue))∧
((rq 6= rnull ∧ node(rq, v

′, r1) ∗ listseg(this, r1, rnull, s′2)) ∨ (rq = rnull))∗
this.hd 7→ rp ∗ listseg(this, rp, rq, [0] :: s1 :: [v])}

}
{∃s, rq, rp, v, s1, s2 · ((c /∈ f(s) ∧ rq = rnull ∧ b = rfalse ∧ g(α, s) ∧ listseg(this, rp, rnull, [0] :: s))∨

(p = rp ∧ q = rq ∧ rq 6= rnull ∧ (s = s1 :: [v] :: s2) ∧ v = c ∧ b = rtrue∧
listseg(this, rp, rq, [0] :: s1) ∗ listseg(this, rq, rnull, [v] :: s2))) ∧ this.hd 7→ rp}

{((c /∈ α ∧ b = rfalse) ∨ (c ∈ α ∧ b = rtrue)) ∧ set(this, α)}
return b;
{set(this, α) ∧ ((c /∈ α ∧ res = rfalse) ∨ (c ∈ α ∧ res = rtrue))}
{set(this, α) ∧ res = (c ∈ α)}

Then we conclude that contain meets its specification.

• ListSet .add with its specification. Similarly for its body:

{p = rnull ∧ q = rnull ∧ n = rnull ∧ b = rfalse ∧ set(this, α)}
p = this.hd ;
{∃ s, rp · p = rp ∧ g(α, s) ∧ q = rnull ∧ n = rnull ∧ b = rfalse ∧ this.hd 7→ rp∗

listseg(this, rp, rnull, [0] :: s)}
q = p.nxt ;
{∃ s, rp, rq · p = rp ∧ g(α, s) ∧ q = rq ∧ n = rnull ∧ b = rfalse ∧ this.hd 7→ rp∗

node(rp, 0, rq) ∗ listseg(this, rq, rnull, s)}
b = this.contain(c);
{∃ s, rp, rq · p = rp ∧ g(α, s) ∧ q = rq ∧ n = rnull ∧ ((c /∈ α ∧ b = rfalse) ∨ (c ∈ α ∧ b = rtrue))∧

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, s)}
if (b == rfalse)
{∃ s, rp, rq · p = rp ∧ g(α, s) ∧ q = rq ∧ n = rnull ∧ b = rfalse ∧ c /∈ α ∧ this.hd 7→ rp∗

node(rp, 0, rq) ∗ listseg(this, rq, rnull, s)}
{

n = new Node(c);
{∃ s, rn, rp, rq · p = rp ∧ g(α, s) ∧ q = rq ∧ b = rfalse ∧ c /∈ α ∧ n = rn ∧ node(rn, c, rnull)∗

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, s)}
n.nxt = q;
{∃ s, rn, rp, rq · p = rp ∧ g(α, s) ∧ q = rq ∧ n = rn ∧ b = rfalse ∧ c /∈ α ∧ node(rn, c, rq)∗

this.hd 7→ rp ∗ node(rp, 0, rq) ∗ listseg(this, rq, rnull, s)}
p.nxt = n;
{∃ s, rn, rp, rq · p = rp ∧ g(α, s) ∧ q = rq ∧ n = rn ∧ b = rfalse ∧ c /∈ α ∧ this.hd 7→ rp∗

node(rp, 0, rn) ∗ node(rn, c, rq) ∗ listseg(this, rq, rnull, s)}
{∃ s, rp · c /∈ α ∧ g(α, s) ∧ this.hd 7→ rp ∗ listseg(this, rp, rnull, [0] :: [c] :: s)}

}
{c ∈ α ∧ set(this, α)) ∨ (c /∈ α ∧ set(this, {c} ∪ α))}
{c ∈ α ∧ set(this, {c} ∪ α)) ∨ (c /∈ α ∧ set(this, {c} ∪ α))}
{set(this, {c} ∪ α)}
Then we conclude that add meets its specification.

Until now, we have proven that the constructor of ListSet meets its specification and all
methods (empty , contain, add) meet their method specifications which are inherited respec-
tively from Set . Thus, we have verified the correctness of class ListSet and conclude that it is a
correct implementation of interface Set finally.

B.5 Implementing Set by Binary Search Tree

We all know that implementing sets by linked lists is not efficient enough for many applications,
especially because the contain method requires linear time to give the result. Now, we consider to
implement Set with the binary search tree, and define class TreeSet for this as shown in Fig. 24.

Nodes of the TreeSet are of the type BNode, which holds an integer value and two references
to its left and right children. We define a public specification predicate bnode to encapsulate this
internal information of BNode objects. In each TreeSet object, field rt refers to the root of the
binary tree, in which the set’s elements store.

Similar to listseg in class ListSet , here we use an auxiliary predicate subtree to define the
specification predicate set declared in Set . Recursively defined subtree hides the implementation
details of binary trees. However, due to the complexity of binary tree structure, we need some
additional specification predicates, i.e., upper , lower , tpath. In detail, upper(α, b) asserts that

class BNode{
Int val ; BNode left , right ;
def pub bnode(this, r1, v, r2) :

this.val 7→ v ∗ this.left 7→ r1∗
this.right 7→ r2;

BNode(Int v)〈emp〉
〈bnode(this, rnull, v, rnull)〉;
{this.val = v; this.left = null;

this.right = null; }
}
class TreeSet ¤ Set {

BNode rt ;
def set(this, α) :
∃r · this.rt 7→ r ∗ subtree(r, α);

def subtree(r, α) :
(α = ∅ ∧ r = rnull ∧ emp)∨
(∃ r1, r2, b, β1, β2 · (α = β1 ∪ {b} ∪ β2)∧
upper(β1, b) ∧ lower(β2, b)∧
bnode(r, r1, b, r2) ∗ subtree(r1, β1)
∗subtree(r2, β2));

def upper(α, b) : ∀ x · (x ∈ α) ∧ (x < b);
def lower(α, b) : ∀ x · (x ∈ α) ∧ (x > b);
def tpath(p, q, c, β, γ) : (c /∈ β ∪ γ)∧

((p = q ∧ β = ∅ ∧ emp) ∨ (∃l, r, v, β1, β2·
(β = β1 ∪ {v} ∪ β2) ∧ bnode(p, l, v, r)∗
((upper(β1 ∪ γ ∪ {c}, v) ∧ lower(β2, v)∧
tpath(l, q, c, β1, γ) ∗ subtree(r, β2))∨
(upper(β1, v) ∧ lower(β2 ∪ γ ∪ {c}, v)∧
tpath(r, q, c, β2, γ) ∗ subtree(l, β1)))));

TreeSet()〈emp〉〈set(this, ∅)〉
{this.rt = null; }

Bool empty(){
Bool b; BNode p;
p = this.rt ;
if (p == null) b = true;
else b = false; return b; }

pub void add(Int c){
BNode p, q, t; Int v; v = 0;
p = this.rt ; q = null;
while (p!=null){

q = p; v = q.val ;
if (v == c) p = null;
if (v < c) p = q.right ;
else p = q.left ;

}
if (v!=c) {

t = new BNode(c);
if (q == null) this.rt = t;
else if (v < c) q.right = t;
else if (v > c) q.left = t;

}
}
Bool contain(Int c){

BNode p, q; Bool b; Int v;
v = 0; p = this.rt ; q = null;
b = false;
while (p!=null ∧ b!=true){

q = p; v = q.val ;
if (v == c) b = true;
if (v < c) p = q.right ;
else p = q.left ; }

return b;
}

}

Fig. 24. Set Implemented as Binary Search Tree

integer value b is larger than all elements in integer set α, and lower(α, b) asserts that b is smaller
than all elements in α. On the other hand, tpath recombines several parts which are partitioned
from an original binary tree into a binary tree. More explanations about predicate tpath will be
talked later. Base on these predicates, predicate subtree states that, either the binary tree is empty,
or it contains a root r with integer value b, its left subtree with a value set β1 and right subtree
with β2 while b is an upper bound of β1 but a lower bound of β2.

However, in verification of methods in TreeSet , the situation we have to deal with are more
complicate. Exactly, we also need to reflect properties between already defined specification
predicates in TreeSet which are required in verifications. Thus, we specify these properties in
Lemma 2, 3. We will explain and prove these lemmas later in detail.

Firstly, Lemma 2 says if an element v is both an upper bound of a set β1 and a lower bound
of another set β2, then we can know that sets β1 and β2 are disjoint. And if an element v is either

q

pn

p

pj
pi

p1

subtree

gamma

beta

(p, p1, ..., pn, q):
the node trace in the search

Fig. 25. searching a value in a binary tree and recording the search trace

an upper bound or a lower bound of a set, then v is not contained in this set. These properties are
valid trivially in the normal set theory and we just omit their proofs here.

Lemma 2.
upper(β1, v) ∧ lower(β2, v) ⇒ β1 ∩ β2 = ∅

upper(β1, v) ⇒ v /∈ β1

lower(β2, v) ⇒ v /∈ β2

ut

Then, Lemma 3 is more complicate than Lemma 2, which indicates the importance of pred-
icate tpath and deals with the difficulty we would meet with during verifying program codes in
TreeSet .

Informally, as illustrated in Fig. 25, predicate tpath(p, q, c, β, γ) asserts that for searching
the value c from the current root p in the binary tree, we get a path from p to q and an already
searched part tpath(p, q, c, β, γ) while treeset(q, γ) is the rest part to search at some time. The
set β contains all values of searched nodes from the current searching root p to q’s parent node
pn in the searching trace and their sub-trees’ value sets. q is the node where searching of value
c arrives at currently, and γ is the value set of node q and its sub-trees’ value sets. Generally, we
abstract a searched part of a binary tree into a predicate tpath as specified in Fig. 24 by using
only arithmetics of set and sequence, and basic properties of binary tree, rather than any auxiliary
tricks.

As the above describing of predicate tpath, suppose we fail to search c at q in the original
binary tree, then we get two parts tpath(p, q, c, β, γ), subtree(q, γ) and add a new node with
value c as one of q’s children. Later, we should combine the new subtree subtree(q, γ ∪ {c})
with the other part tpath(p, q, c, β, γ) to form a binary tree which we specify as subtree(p, β ∪
γ∪{c}). However, it is indeed a difficult problem. Finally, we specify the right property between
treeset and tpath in Lemma 3 to help solving this difficulty and finishing our prove efficiently.

According to the definition of predicate tpath in Fig. 24 and the analyses above, we specify
and prove its property in Lemma 3 as following.

Lemma 3. Suppose add any value c into a binary tree whose root is p, and the search fails at
node q while the original tree is divided into two parts tpath(p, q, c, β, γ) and treeset(q, γ) as
illustrated in Fig. 25. Value sets β and γ are described as above. If c is not found, we add a new
node with value c as one of q’s children and get a new sub-tree treeset(q, γ ∪ {c}). Then we
have,

β ∩ γ = ∅ ⇒ (tpath(p, q, c, β, γ) ∗ treeset(q, γ ∪ {c}) ⇒ treeset(p, β ∪ γ ∪ {c}))

ut

Proof. For the cases when p = q, we have:

(β ∩ γ = ∅) ∧ tpath(p, q, c, β, γ) ∗ subtree(q, γ ∪ {c})
= (β ∩ γ = ∅) ∧ ((c /∈ β ∪ γ) ∧ p = q ∧ β = ∅ ∧ emp) ∗ subtree(q, γ ∪ {c})
= true ∧ p = q ∧ c /∈ γ ∧ β = ∅ ∧ subtree(q, γ ∪ {c})
= subtree(p, β ∪ γ ∪ {c})

Now we suppose that p 6= q, and do the induction on the length k of the path (p, p1, · · · , pn, q)
and let k = n + 1, which accesses from node p to q:

Base: The length of the path is k = 1. In this case the path is just (p, q), then

(β ∩ γ = ∅) ∧ tpath(p, q, c, β, γ) ∗ subtree(q, γ ∪ {c})
= ∃ l, r, v, β1, β2 · (β ∩ γ = ∅) ∧ (c /∈ β ∪ γ) ∧ (β = β1 ∪ {v} ∪ β2) ∧ bnode(p, l, v, r)∗

((upper(β1 ∪ γ ∪ {c}, v) ∧ lower(β2, v) ∧ l = q ∧ tpath(l, q, c, β1, γ) ∗ subtree(r, β2))∨
(upper(β1, v) ∧ lower(β2 ∪ γ ∪ {c}, v) ∧ r = q ∧ tpath(r, q, c, β2, γ) ∗ subtree(l, β1)))∗
subtree(q, γ ∪ {c})

Here we have two sub-cases:

case v > c :

= ∃r, v, β1, β2 · (β ∩ γ = ∅) ∧ (c /∈ β ∪ γ) ∧ (β = β1 ∪ {v} ∪ β2) ∧ (β1 = ∅)∧
upper(β1 ∪ γ ∪ {c}, v) ∧ lower(β2, v) ∧ bnode(p, q, v, r) ∗ subtree(r, β2)∗
tpath(q, q, c,−, γ) ∗ subtree(q, γ ∪ {c})

= ∃r, v, β2 · (β ∩ γ = ∅) ∧ (c /∈ β ∪ γ) ∧ (β = {v} ∪ β2) ∧ upper(γ ∪ {c}, v)∧
lower(β2, v) ∧ bnode(p, q, v, r) ∗ subtree(r, β2) ∗ subtree(q, γ ∪ {c}) ∗ emp

= subtree(p, β ∪ γ ∪ {c})

case v < c :

= ∃r, v, β1, β2 · (β ∩ γ = ∅) ∧ (c /∈ β ∪ γ) ∧ (β = β1 ∪ {v} ∪ β2) ∧ (β2 = ∅)∧
upper(β1, v) ∧ lower(β2 ∪ γ ∪ {c}, v) ∧ bnode(p, l, v, q) ∗ subtree(l, β1)∗
tpath(q, q, c,−, γ) ∗ subtree(q, γ ∪ {c})

= ∃r, v, β2 · (β ∩ γ = ∅) ∧ (c /∈ β ∪ γ) ∧ (β = {v} ∪ β1) ∧ upper(β1, v)∧
lower(γ ∪ {c}, v) ∧ bnode(p, l, v, q) ∗ subtree(l, β1) ∗ subtree(q, γ ∪ {c}) ∗ emp

= subtree(p, β ∪ γ ∪ {c})
Induction: Suppose we have proven that if the length of the path is k ≤ n: i.e., (p, p1, · · · , pk, q),
k = 1, 2, · · · , n−1, the conclusion holds. For the case when the length of the path is k = n+1,
i.e., (p, p1, · · · , pn−1, pn, q), we have,

(γ′ = γ ∪ βn) ∧ (β = β′ ∪ βn)
(β′ ∩ γ′ = ∅) ∧ tpath(p, pn, c, β′, γ′) ∗ subtree(pn, γ′ ∪ {c}) ⇒ subtree(p, β′ ∪ γ′ ∪ {c})
(β ∩ γ = ∅) ∧ (γ′ = γ ∪ βn) ∧ (β = β′ ∪ βn) ⇒ (β′ ∩ γ′ = ∅)
(β ∩ γ = ∅) ∧ (β = β′ ∪ βn) ⇒ (βn ∩ γ = ∅)

Thus,

(β ∩ γ = ∅) ∧ tpath(p, q, c, β, γ) ∗ subtree(q, γ ∪ {c})
⇒ (β ∩ γ = ∅) ∧ tpath(p, pn, c, β′, γ′) ∗ tpath(pn, q, c, βn, γ) ∗ subtree(q, γ ∪ {c})
= (β ∩ γ = ∅) ∧ ((βn = {vn} ∪ β1 ∪ β2) ∧ upper(β1, vn) ∧ lower(β2, vn)∧

tpath(p, qn, c, β′, γ′) ∗ bnode(qn, l, vn, r) ∗ ((vn < c ∧ tpath(r, q, c, β2, γ)∗
subtree(l, β1)) ∨ (vn > c ∧ tpath(l, q, c, β1, γ) ∗ subtree(r, β2)))) ∗ subtree(q, γ ∪ {c})

⇒ (βn ∩ γ = ∅) ∧ ((βn = {vn} ∪ β1 ∪ β2) ∧ tpath(p, qn, c, β′, γ′) ∗ (bnode(qn, l, vn, r)∗
((upper(β1, vn) ∧ lower(β2 ∪ γ ∪ {c}, vn) ∧ r = q ∧ β2 = ∅ ∧ tpath(q, q, c, β2, γ)∗
subtree(l, β1)) ∨ (upper(β1 ∪ γ ∪ {c}, vn) ∧ lower(β2, vn) ∧ l = q ∧ β1 = ∅∧
tpath(q, q, c, β1, γ) ∗ subtree(r, β2))) ∗ subtree(q, γ ∪ {c})))

⇒ (β′ ∩ γ′ = ∅) ∧ tpath(p, pn, c, β′, γ′) ∗ subtree(pn, βn ∪ γ ∪ {c})
= (β′ ∩ γ′ = ∅) ∧ tpath(p, pn, c, β′, γ′) ∗ subtree(pn, γ′ ∪ {c})
⇒ subtree(p, β′ ∪ βn ∪ γ ∪ {c})
= subtree(p, β ∪ γ ∪ {c})

By the induction on the length of the trace, we have the conclusion. ut

Based on already well specified method specifications, specification predicates and their
properties in lemmas above, we are ready to verify the correctness of class TreeSet using our
inference rules. For each method, we give the proof for its body command. Firstly, we prove
constructors BNode.BNode and TreeSet .TreeSet (in Fig. 26) as follows.

Proving BNode.BNode:
{raw(this,BNode)}
this.val = v; this.left = null;

this.right = null;
{this.val 7→ v ∗ this.left 7→ rnull∗

this.right 7→ rnull}
{bnode(this, rnull, v, rnull)}

Proving TreeSet .TreeSet:
{raw(this,TreeSet)}
this.rt = null;
{this.rt 7→ rnull ∗ emp}
{this.rt 7→ rnull ∗ subtree(rnull, ∅)}
{set(this, ∅)}

Fig. 26. Proofs for BNode.BNode and TreeSet .TreeSet

Then for methods empty , add , contain in class TreeSet , their specifications are also in-
herited from interface Set . Therefore, as we do for methods in ListSet similarly, we should do
method body verifications with their inherited specifications by rule [S-MTHD2]. As follows, we
give processes to verify these method bodies meeting their specifications in detail.

• TreeSet .empty with its specification.

{b = rfalse ∧ p = rnull ∧ set(this, α)}
p = this.rt ;
{∃rp · b = rfalse ∧ p = rp ∧ this.rt 7→ rp ∗ subtree(rp, α)}
if (p == null)
{b = rfalse ∧ p = rnull ∧ α = ∅ ∧ this.rt 7→ rnull ∗ emp}
{b = rfalse ∧ p = rnull ∧ α = ∅}
b = true;
{b = rtrue ∧ α = ∅}

else
{∃ rp, v, r1, r2, β1, β2 · (α = β1 ∪ {v} ∪ β2) ∧ upper(β1, v) ∧ lower(β2, v)∧

b = rfalse ∧ p = rp ∧ rp 6= rnull ∧ this.rt 7→ rp ∗ bnode(rp, r1, v, r2)∗
subtree(r1, β1) ∗ subtree(r2, β2)}

b = false;
{b = rfalse ∧ p 6= rnull ∧ α 6= ∅}
{b = rfalse ∧ α 6= ∅}

return b;
{set(this, α) ∧ ((α = ∅ ∧ res = rtrue) ∨ (α 6= ∅ ∧ res = rfalse))}
{set(this, α) ∧ res = (α = ∅)}

• TreeSet .add with its specification.

{p = rnull ∧ q = rnull ∧ t = rnull ∧ v = 0 ∧ set(this, α)}
v = 0;
{p = rnull ∧ q = rnull ∧ v = 0 ∧ set(this, α)}
p = this.rt ; q = null;
{∃rp, rq · p = rp ∧ q = rq ∧ rq = rnull ∧ v = 0 ∧ this.rt 7→ rp ∗ subtree(rp, α)}
while (p!=null){
{∃rp, rq · p = rp ∧ q = rq ∧ ((this.rt 7→ rp ∧ rq = rnull ∧ subtree(rp, α))∨

(∃β, γ, v, γ1, γ2 · rq 6= rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v})∧
upper(γ1, v) ∧ lower(γ2, v) ∧ (tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r)∗
subtree(l, γ1) ∗ subtree(r, γ2))∧
((c < v ∧ l = rp) ∨ (c > v ∧ r = rp) ∨ (c = v ∧ rp = rnull))))}

q = p;
{∃rp, rq, v, v′, β, β′, γ, γ′, γ1, γ

′
1, γ2, γ

′
2 · p = rp ∧ q = rq ∧ rq = rp ∧ rq 6= rnull∧

rp 6= rnull ∧ (α = β′ ∪ γ′) ∧ (β′ ∩ γ′ = ∅) ∧ (γ′ = γ′1 ∪ γ′2 ∪ {v′})∧
(((β′ = β ∪ {v} ∪ γ1) ∧ (γ′ = γ2) ∧ (v > c)) ∨ ((β′ = β ∪ {v} ∪ γ2) ∧ (γ′ = γ1) ∧ (v < c)))∧
upper(γ′1, v

′) ∧ lower(γ′2, v
′) ∧ tpath(this.rt , rq, c, β

′, γ′) ∗ bnode(rq, l
′, v′, r′)∗

subtree(l′, γ′1) ∗ subtree(r′, γ′2)}
v = q.val ;
{∃rp, rq, v, β′, γ′, γ′1, γ

′
2 · p = rp ∧ q = rq ∧ rq = rp ∧ rq 6= rnull ∧ rp 6= rnull∧

(α = β′ ∪ γ′) ∧ (β′ ∩ γ′ = ∅) ∧ (γ′ = γ′1 ∪ γ′2 ∪ {v}) ∧ upper(γ′1, v)∧
lower(γ′2, v) ∧ tpath(this.rt , rq, c, β

′, γ′) ∗ bnode(rq, l
′, v, r′)∗

subtree(l′, γ′1) ∗ subtree(r′, γ′2)}

if (v == c)
{∃rp, rq, β, γ, v, γ1, γ2 · p = rp ∧ q = rq ∧ rp = rq ∧ rq 6= rnull ∧ c = v∧

(α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v)∧
lower(γ2, v) ∧ tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r)∗
subtree(l, γ1) ∗ subtree(r, γ2)}

p = null;
{∃rq, β, γ, v, γ1, γ2 · q = rq ∧ rq 6= rnull ∧ p = rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅)∧

(γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v) ∧ lower(γ2, v) ∧ c = v ∧ tpath(this.rt , rq, c, β, γ)∗
bnode(rq, l, v, r) ∗ subtree(l, γ1) ∗ subtree(r, γ2)}

{∃rq, β, γ, v · q = rq ∧ rq 6= rnull ∧ p = rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ c = v∧
v ∈ α ∧ tpath(this.rt , rq, c, β, γ) ∗ subtree(rq, γ)}

{∃v · q 6= rnull ∧ p = rnull ∧ c = v ∧ v ∈ α ∧ subtree(this.rt , α)}
if (v < c)
{∃rp, rq, β, γ, v, γ1, γ2 · p = rp ∧ q = rq ∧ rq = rp ∧ rq 6= rnull ∧ rp 6= rnull ∧ c > v∧

(α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v) ∧ lower(γ2, v)∧
(tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1) ∗ subtree(r, γ2))}

p = q.right ;
{∃rp, rq, β, γ, v, γ1, γ2 · p = rp ∧ q = rq ∧ rq 6= rnull ∧ c > v ∧ (α = β ∪ γ)∧

(β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v) ∧ lower(γ2, v)∧
tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, rp) ∗ subtree(l, γ1) ∗ subtree(rp, γ2)}

else
{∃rp, rq, β, γ, v, γ1, γ2 · p = rp ∧ q = rq ∧ rq = rp ∧ rq 6= rnull ∧ rp 6= rnull ∧ c < v∧

(α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v) ∧ lower(γ2, v)∧
(tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1) ∗ subtree(r, γ2))}

p = q.left ;
{∃rp, rq, β, γ, v, γ1, γ2 · p = rp ∧ q = rq ∧ rq 6= rnull ∧ c < v ∧ (α = β ∪ γ)∧

(β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v) ∧ lower(γ2, v)∧
tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, rp, v, r) ∗ subtree(r, γ2) ∗ subtree(rp, γ1)}

}
{∃rq, v, β, γ, γ1, γ2 · q = rq ∧ ((rq = rnull ∧ α = ∅) ∨ (rq 6= rnull ∧ (α = β ∪ γ)∧

(β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v) ∧ lower(γ2, v)∧
(tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1) ∗ subtree(r, γ2))∧
((v = c) ∨ (c /∈ α ∧ ((v < c ∧ r = rnull ∧ γ2 = ∅) ∨ (v > c ∧ l = rnull ∧ γ1 = ∅))))))}

if (v!=c) {
{∃rq, v, β, γ, γ1, γ2 · q = rq ∧ ((rq = rnull ∧ α = ∅) ∨ (rq 6= rnull ∧ (α = β ∪ γ)∧

(β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v) ∧ lower(γ2, v)∧
(tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1) ∗ subtree(r, γ2))∧
c /∈ α ∧ ((v < c ∧ r = rnull ∧ γ2 = ∅) ∨ (v > c ∧ l = rnull ∧ γ1 = ∅))))}

t = new BNode(c);
{∃rt, rq, v, β, γ, γ1, γ2 · q = rq ∧ t = rt ∧ ((rq = rnull ∧ α = ∅) ∨ (rq 6= rnull ∧ (α = β ∪ γ)∧

(β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v) ∧ lower(γ2, v) ∧ c /∈ α∧
(tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1) ∗ subtree(r, γ2))∧
((v < c ∧ r = rnull ∧ γ2 = ∅) ∨ (v > c ∧ l = rnull ∧ γ1 = ∅)))) ∧ bnode(rt, rnull, c, rnull)}

if (q == null)
{∃rt, rq, ·q = rq ∧ t = rt ∧ rq = rnull ∧ α = ∅ ∧ bnode(rt, rnull, c, rnull)}
this.rt = t;
{∃rq, rt · t = rt ∧ q = rq ∧ rq = rnull ∧ this.rt 7→ rt ∗ bnode(rt, rnull, c, rnull)}
{set(this, {c})}

else if (v < c)
{∃rt, rq, v, β, γ, γ1, γ2 · q = rq ∧ t = rt ∧ rq 6= rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ c /∈ α∧

(γ = γ1 ∪ γ2 ∪ {v}) ∧ (γ2 = ∅) ∧ upper(γ1, v) ∧ v < c ∧ tpath(this.rt , rq, c, β, γ)∗
bnode(rq, l, v, rnull) ∗ subtree(l, γ1) ∗ bnode(rt, rnull, c, rnull)}

q.right = t;
{∃rt, rq, v, β, γ, γ1 · q = rq ∧ t = rt ∧ c /∈ α ∧ rq 6= rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅)∧

(γ = γ1 ∪ {v}) ∧ upper(γ1, v) ∧ lower({c}, v) ∧ tpath(this.rt , rq, c, β, γ)∗
bnode(rq, l, v, rt) ∗ subtree(l, γ1) ∗ subtree(rt, {c})}

{∃rt, rq, β, γ · q = rq ∧ t = rt ∧ c /∈ α ∧ rq 6= rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅)∧
tpath(this.rt , rq, c, β, γ) ∗ subtree(rq, γ ∪ {c})}

{c /∈ α ∧ subtree(this.rt , α ∪ {c})}
else if (v > c)
{∃rt, rq, v, β, γ, γ1, γ2 · q = rq ∧ t = rt ∧ rq 6= rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ c /∈ α∧

(γ = γ1 ∪ γ2 ∪ {v}) ∧ (γ1 = ∅) ∧ lower(γ2, v) ∧ v > c ∧ tpath(this.rt , rq, c, β, γ)∗
bnode(rq, rnull, v, r) ∗ subtree(r, γ2) ∗ bnode(rt, rnull, c, rnull)}

q.left = t;
{∃rt, rq, v, β, γ, γ2 · q = rq ∧ t = rt ∧ c /∈ α ∧ rq 6= rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅)∧

(γ = γ2 ∪ {v}) ∧ lower(γ2, v) ∧ upper({c}, v) ∧ tpath(this.rt , rq, c, β, γ)∗
bnode(rq, rt, v, r) ∗ subtree(r, γ2) ∗ subtree(rt, {c})}

{∃rt, rq, β, γ · q = rq ∧ t = rt ∧ c /∈ α ∧ rq 6= rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅)∧
tpath(this.rt , rq, c, β, γ) ∗ subtree(rq, γ ∪ {c})}

{c /∈ α ∧ subtree(this.rt , α ∪ {c})}
}
{set(this, α ∪ {c})}

• TreeSet .contain with its specification.

{p = rnull ∧ q = rnull ∧ b = rfalse ∧ v = 0 ∧ set(this, α)}
p = this.rt ; q = null; b = false; v = 0;
{∃rp, rq, rb · p = rp ∧ q = rq ∧ b = rb ∧ rq = rnull∧

rb = rfalse ∧ v = 0 ∧ this.rt 7→ rp ∗ subtree(rp, α)}
while (p!=null ∧ b!=true){
{∃rb, rp, rq · b = rb ∧ p = rp ∧ q = rq ∧ ((this.rt 7→ rp ∧ rq = rnull ∧ rb = rfalse∧

subtree(rp, α)) ∨ (∃β, γ, v, γ1, γ2 · rq 6= rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅)∧
(γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v) ∧ lower(γ2, v) ∧ rq 6= rnull∧
(tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1)∗
subtree(r, γ2)) ∧ (rb = rfalse ∧ ((c < v ∧ l = rp) ∨ (c > v ∧ r = rp)))∨
(c = v ∧ rp = rnull ∧ rb = rtrue)))}

q = p;
{∃rb, rp, rq, v, v′, β, β′, γ, γ′, γ1, γ

′
1, γ2, γ

′
2 · b = rb ∧ p = rp ∧ q = rq ∧ rq = rp∧

rq 6= rnull ∧ rp 6= rnull ∧ rb = rfalse ∧ (α = β′ ∪ γ′) ∧ (β′ ∩ γ′ = ∅)∧
(((β′ = β ∪ {v} ∪ γ1) ∧ (γ′ = γ2) ∧ (v > c)) ∨ ((β′ = β ∪ {v} ∪ γ2) ∧ (γ′ = γ1) ∧ (v < c)))∧
(γ′ = γ′1 ∪ γ′2 ∪ {v′}) ∧ upper(γ′1, v

′) ∧ lower(γ′2, v
′) ∧ tpath(this.rt , rq, c, β

′, γ′)∗
bnode(rq, l

′, v′, r′) ∗ subtree(l′, γ′1) ∗ subtree(r′, γ′2)}
v = q.val ;
{∃rb, rp, rq, v, β′, γ′, γ′1, γ

′
2 · b = rb ∧ p = rp ∧ q = rq ∧ rq = rp ∧ rq 6= rnull∧

rp 6= rnull ∧ rb = rfalse ∧ (α = β′ ∪ γ′) ∧ (β′ ∩ γ′ = ∅) ∧ (γ′ = γ′1 ∪ γ′2 ∪ {v})∧
upper(γ′1, v) ∧ lower(γ′2, v) ∧ tpath(this.rt , rq, c, β

′, γ′) ∗ bnode(rq, l
′, v, r′)∗

subtree(l′, γ′1) ∗ subtree(r′, γ′2)}

if (v == c)
{∃rb, rp, rq, β, γ, v, γ1, γ2 · b = rb ∧ p = rp ∧ q = rq ∧ rp = rq ∧ rq 6= rnull∧

rb = rfalse ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v)∧
lower(γ2, v) ∧ (tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1)∗
subtree(r, γ2)) ∧ c = v}

b = true;
{∃rb, rp, rq, β, γ, v, γ1, γ2 · b = rb ∧ p = rp ∧ q = rq ∧ c = v ∧ rq 6= rnull ∧ rp = rq∧

rb = rtrue ∧ subtree(this.rt , α))}
if (v < c)
{∃rb, rp, rq, β, γ, v, γ1, γ2 · b = rb ∧ p = rp ∧ q = rq ∧ rp = rq ∧ rq 6= rnull∧

rb = rfalse ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v)∧
lower(γ2, v) ∧ (tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1)∗
subtree(r, γ2)) ∧ c > v}

p = q.right ;
{∃rb, rp, rq, v, β, γ, γ1, γ2 · b = rb ∧ p = rp ∧ q = rq ∧ rq 6= rnull ∧ rb = rfalse∧

c > v ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v)∧
lower(γ2, v) ∧ tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, rp) ∗ subtree(l, γ1)∗
subtree(rp, γ2)}

else
{∃rb, rp, rq, β, γ, v, γ1, γ2 · b = rb ∧ p = rp ∧ q = rq ∧ rp = rq ∧ rq 6= rnull∧

rb = rfalse ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v)∧
lower(γ2, v) ∧ (tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1)∗
subtree(r, γ2)) ∧ c < v}

p = q.left ;
{∃rb, rp, rq, β, γ, v, γ1, γ2 · b = rb ∧ p = rp ∧ q = rq ∧ rq 6= rnull ∧ rb = rfalse∧

c < v ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v)∧
lower(γ2, v) ∧ tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, rp, v, r) ∗ subtree(rp, γ1)∗
subtree(r, γ2)}

}
{∃rq, rb, v, γ, γ1, γ2 · q = rq ∧ b = rb ∧ ((rq = rnull ∧ α = ∅ ∧ rb = rfalse)∨

(rq 6= rnull ∧ (α = β ∪ γ) ∧ (β ∩ γ = ∅) ∧ (γ = γ1 ∪ γ2 ∪ {v}) ∧ upper(γ1, v)∧
lower(γ2, v) ∧ (tpath(this.rt , rq, c, β, γ) ∗ bnode(rq, l, v, r) ∗ subtree(l, γ1)∗
subtree(r, γ2)) ∧ ((v = c ∧ rb = rtrue) ∨ (c /∈ α ∧ rb = rfalse∧
((v < c ∧ r = rnull ∧ γ2 = ∅) ∨ (v > c ∧ l = rnull ∧ γ1 = ∅))))))}

{∃rb · b = rb ∧ ((α = ∅ ∧ rb = rfalse) ∨ (α 6= ∅ ∧ ((c /∈ α ∧ rb = rfalse)∨
(c ∈ α ∧ rb = rtrue)) ∧ subtree(this.rt , α)))}

return b;
{((c /∈ α ∧ res = rfalse) ∨ (c ∈ α ∧ res = rtrue)) ∧ set(this, α)}
{set(this, α) ∧ res = (c ∈ α)}

Until now, we have finished the verification of the correctness of class TreeSet and can
conclude that it is also a correct implementation of interface Set .

To reveal how modularity and abstraction our verification framework can do, we illustrate a
client code test in Fig. 27 where interface Set and its declared methods are used, and also prove
it only by using method specifications of called methods without reverification of the method
bodies.

In the client code test, we firstly declare two local variables x, y of type Set , and then
instantiate them as two objects while x is of TreeSet and y is of ListSet separately. Later, we
make some calls for methods add , contain , empty and return the last value.

Bool test() / ∗ Client ∗ /
〈true〉〈res = rfalse〉
{ Set x, y; Bool b1, b2;

x = new TreeSet(); y = new ListSet(); x.add(3); y.add(2);
b1 = x.contain(2); b2 = y.empty(); return b2;

}

Fig. 27. Client Code for Set

Using method specifications recorded in interface Set , we intend to check whether calls
for methods on objects which are instantiated by implementation classes ListSet and TreeSet
separately, will affect each other, and whether should we need to reverify method bodies when
call them in the client code. In the following, we will concentrate on these points when do proving
step by step.
• Verification of the Client code

{x = rnull ∧ y = rnull ∧ b1 = rfalse ∧ b2 = rfalse}
x = new TreeSet(); y = new ListSet();
{∃ rx, ry · x = rx ∧ y = ry ∧ b1 = rfalse ∧ b2 = rfalse ∧ set(rx, ∅) ∗ set(ry, ∅)}
x.add(3); y.add(2);
{∃ rx, ry · x = rx ∧ y = ry ∧ b1 = rfalse ∧ b2 = rfalse ∧ set(rx, {3}) ∗ set(ry, {2})}
b1 = x.contain(2);
{∃ rx, ry · x = rx ∧ y = ry ∧ b1 = rfalse ∧ b2 = rfalse ∧ set(rx, {3}) ∗ set(ry, {2})}
b2 = y.empty();
{∃ rx, ry · x = rx ∧ y = ry ∧ b1 = rfalse ∧ b2 = rfalse ∧ set(rx, {3}) ∗ set(ry, {2})}
return b2;
{res = rfalse}
During the above verification of client code, we can see that just abstract method specifica-

tions recorded rather than specifications specified in implementation classes are needed. More-
over, calling for method add on object ListSet .y does not affect another object TreeSet .x, con-
versely does not yet. After adding an integer value 2 for y and 3 for x, we call method contain
on x to judge whether it contains a value 2 and get a result false which reveals that object x does
not contain 2 exactly. All of these method calls and their results tell us that objects instantiated
of ListSet and TreeSet behave independently, thus it truly says, each of these two classes is
designed as an independent module. For another interesting thing, we find modularity helps to
reduce the load of reverification called method’s bodies in the process of client code’s proof. We
did verify each method with its specification to be well-defined and specified before it is called
by client. Then, we constructed each class to be a correct program by recording all its methods.
When each class has no coupling with other classes, it is organized as a reusable module by other
programs easily. Eventually, we design a modular specification and verification framework with
many well specified properties.

