
A Separation Logic for OO programs?

Yijing Liu and Qiu Zongyan

LMAM and Department of Informatics, School of Mathematical Sciences, Peking University
Email: {liuyijing,qzy}@math.pku.edu.cn

Abstract. We present a general storage model that reflects features of object
oriented (OO) languages with pure reference semantics. Based on this model, we
develop an OO Separation Logic (OOSL) to specify and verify OO programs.
Many inference rules in the Separation Logic still hold in OOSL. Additionally,
OOSL has certain properties important to OO reasoning. We introduce Hoare-
Triple for a small OO language, and use the Schorr-Waite Marking Algorithm as
a verification example.

Keywords: Object Orientation, Separation Logic, Verification

1 Introduction

Object-orientation (OO) paradigm is and will remain important for software develop-
ment and programming languages design, because it supports many very useful abstrac-
tions. However, many new challenges in program specification and verification present
in the OO field. There are two key issues mutually depending on each other: (1) building
proper formal models for OO languages, and (2) developing useful methods to specify
and verify OO programs. Researchers have proposed many formal frameworks to de-
scribe core concepts of OO programs.

As the basis for formal studies, various state models are proposed to represent com-
plicated structures of state space of OO programs. Major models can be roughly classi-
fied as Object Graph Model, Access Trace Model, and Stack Heap Model.

The Object Graph Models treat objects state as some form of graphs. Examples in
this direction include the topological model [12], or object diagram [17]. In the graph,
vertexes denote objects, and edges denote variables and object attributes (i.e., instance
variables). Models of this kind are intuitive and always independent of languages. [6]
presents an operational semantics based on a graph model. However, a suitable reason-
ing framework for graph models still does not exist. The Access Trace Model (origi-
nally for pointer-programs) was introduced by [4], where each object was identified by
a set of traces to the object. Access Trace models have advantages in alias analysis [2],
but seem too abstract for general purpose. [3] attempted to define a general inference
framework for a trace model. Stack Heap Models are extensions of normal store model,
with an additional heap (a map from address to values) to represent objects. Stack Heap

? Supported by NNSFC Grant No. 60718002 and No. 60773161.

1

Models seem low-level, however, they are relatively easy to used for definitions of pro-
gram semantics. Some works have been done upon such models, e.g. [13]. However, a
full accounting of all important OO features is still missing.

On the other hand, many works have been done on the specification and verifica-
tion of OO programs. Although JML [7] and Spec# [1] catch increasing attentions,
many critical issues of OO programs, especially that related to the mutable object struc-
tures, have not been considered deeply there. Many semantic issues must be investigated
and understood for a big-leap in this field. [8] gives a comprehensive overview for the
achievements and challenges in this area.

Separation Logic [15] is a powerful tool to handle shared mutable data structures.
Many verification techniques based on it have been developed, mainly for C-like pro-
grams, and some targeting OO programs. However, it is not straightforward to use the
Separation Logic to specify and verify OO programs, because the underlying storage
model of the logic is not ready for many OO concepts. Especially, there is no correspon-
dents of object attributes in the model. Some researchers tried to revise the Separation
Logic targeting OO fields [9, 14]. The work presented here is also in this direction. We
will discuss and compare these works in Section 6.

In this article, we proposed a model for the object pool (heap), with a novel defini-
tion for the separation of object pools. The model provides a clear concept for objects.
Empty objects can be naturally represented and reasoned. We develop a revised Sepa-
ration Logic, named OO Separation Logic (OOSL), for expressing OO program states.
User-defined predicates and logic environment are clearly defined, and the semantics of
the logic is defined as a least fix-point which is guaranteed existing. The logic adopts
classical semantics, thus is more expressive than the logic with intuitionistic semantics
(referring to [5]) as used in [14]. Properties of OOSL are explored, especially a new
concept named separated assertions, which is useful in reasoning OO programs. Due
to the classical nature, properties of OO programs can be precisely specified and veri-
fied. We introduce a simple OO language, and develop Hoare-Triple like inference rules
based on OOSL. We use Schorr-Waite Marking Algorithm as an example to show how
to specify and verify OO programs with OOSL.

The rest of the paper is organized as follows: We introduce an OO storage model
in Section 2. OOSL is developed in Section 3. We introduce a simple OO language
and its inference rules in Section 4. In Section 5, we study the Schorr-Waite Marking
Algorithm. Finally, we discussed some related works and future research directions.

2 An OO Storage Model

Now we introduce a storage model for OO programs with pure reference nature.
The model is defined based on three basic sets Name, Type and Ref , these sets

model basic concepts, such as variables, fields, types and references, in OO program.

– Name: an infinite set of names, used for naming various entities, e.g., constants,
variables, attributes, etc. Three special names, true, false,null ∈ Name, denote
boolean and null constants.

– Type: an infinite set of types, including predefined types and user-defined types
(or called classes). Subtype relation is represented by symbol <:, where T1 <:

2

T2 states that T1 is a subtype of T2. We assume there are three predefined types
Object,Null and Bool. Object is the super type of all classes. Null is the
subtype of all classes. And Bool is the type of boolean objects. Given a type T ,
we can obtain its attributes by function attrs : Type → Name → Type; and we
define attrs(Object) = attrs(Null) = attrs(Bool) = ∅. Other predefined types,
such as Integer, can be added easily, but we consider only boolean type here.

– Ref: an infinite set of references which are the identities of objects. Corresponding
to the Name constants, Ref contains three basic references rtrue, rfalse and rnull,
where rtrue, rfalse refer two Bool objects, and rnull never refers to any object. We
assume two primitive functions on Ref:1
• eqref : Ref → Ref → bool, justifies whether two references are same, i.e.

given references r1, r2 ∈ Ref , eqref(r1, r2) = true iff r1 is same to r2.
• type : Ref → Type, decides the runtime type of object referred by reference.

We define type(rtrue) = type(rfalse) = Bool, type(rnull) = Null.

In fact, Name, Type and functions (relations) defined on them, such as dtype, <:
and attrs, make up the static information of an OO program.

Based on above concepts, we define an OO storage model. It is similar to the clas-
sical Stack-Heap model with two components:

Store =̂ Name ⇀fin Ref Opool =̂ Ref ⇀fin Name ⇀fin Ref
State =̂ Store×Opool

where notation ”⇀fin” denotes finite partial functions.
We will use σ and O, possibly with subscript, to denote elements of Store and

Opool respectively. A store σ ∈ Store maps variables and constants to references, and
an object pool O ∈ Opool maps references to field-reference pairs. A runtime state
s is a pair, s = (σ,O) ∈ State, consisting of a store and an object pool. For every
σ ∈ Store, we assume that σtrue = rtrue, σfalse = rfalse and σnull = rnull.

We will use r, r1, . . . to denote references, and a, a1, . . . to denote attributes of ob-
jects. An element of O is a pair (r, f), where r is a reference to some object o, f is a
function from attributes of o to their corresponding values (also references). When we
mention the domain of O, we sometimes want to mean a subset of Ref associated with
a set of objects as discussed above, or sometimes a subset of Ref × Name associated
with a set of values (references). We use dom O for the first case. For the second case,
we define notation dom2 O =̂ {(r, a) | r ∈ dom O, a ∈ dom O(r)}, that is, dom2 O
gets all the reference and attribute pairs of non-empty objects in O.

When considering the program states, we need to ask for some regularity, that is,
the well-typedness. Now we define the concept for states that are consistent with the
static information of the program, i.e., the well-typed states. We assume a function
dtype : Store → Name → Type, where dtype(σ)(v) gives the declaration type of
constant or variable v in store σ.

Definition 1 (Well-typed Store). A store σ is well-typed iff

∀v ∈ dom σ · type(σ(v)) <: dtype(σ)(v).
1 For example, we can define every reference as a pair (t, id) where t ∈ Type and id ∈ N,

define eqref as pair equivalence, and type(r) = r.first.

3

Clearly, this condition requires that all variables hold valid values.

Definition 2 (Well-typed Opool). An Opool O is well-typed iff

– ∀(r, a) ∈ dom2 O · a ∈ Att(r) ∧ type(O(r)(a)) <: attrs(r)(a), and
– ∀r ∈ dom O ·Att(r) = ∅ ∨ (Att(r) ∩ dom O(r) 6= ∅).

where Att(r) =̂ domattrs(type(r)).

Note that attrs(type(r)) is a function from an attribute set to Type. The first condition
requires that all attributes are valid according to types of all objects in O, and all at-
tributes hold values of correct types. The second condition requires that if a non-empty
object (according to its type) is in O, then O must contains at least one attribute of the
object. Thus we can identify empty objects in any Opool.

As an example, suppose we have statically domattrs(C) = {a1, a2, a3}, and have a
program state where type(r1) = Object, type(r2) = C. In this case, we easily know
that O1 = {r1 7→ ∅, r2 7→ {a1 7→ rnull, a2 7→ rnull}} is a well-typed Opool, but
O2 = {r1 7→ ∅, r2 7→ ∅} is not, because type(r2) = C has attributes. Further, we can
calculate that dom O1 = {r1, r2}, and dom2 O1 = {(r2, a1), (r2, a2)}.

Definition 3 (Well-typed State). A state s = (σ,O) is well-typed iff both σ and O are
well-typed.

We will only consider well-typed states from now on. This requirement makes
sense because a well-typed program always runs under well-typed states, and the well-
typedness can be checked statically based on the type system of the language.

For convenience, we will use notation (r, {(a,-)}) to denote an (or a part of an)
object, and use (r, a,-) to denote a cell (state of an attribute of an object) in the Opool.
Here “-” represents some value which we do not care about.

We define a special overriding operator ⊕ on Opool:

(O1 ⊕O2)(r) =̂
{

O1(r)⊕O2(r) if r ∈ dom O2

O1(r) otherwise

where the right ⊕ is the standard function overriding operator. Thus, for Opool O1,
O1 ⊕{(r, a, r′)} gives a new Opool, where only one attribute value (the value for a) of
the object pointed by r is modified (denoted by r′).

We borrow some concepts and notations from the Separation Logic. O1 ⊥ O2 indi-
cates that two Opools O1 and O2 are separated from each other. The formal definition
for ⊥ is new for separating object pools,

O1 ⊥ O2 =̂ ∀r ∈ dom O1 ∩ dom O2·
O1(r) 6= ∅ ∧O2(r) 6= ∅ ∧ dom (O1(r)) ∩ dom (O2(r)) = ∅.

That is, if a reference, referring to some object o, is in both dom O1 and dom O2, then
both O1 and O2 must contain non-empty subsets of o’s attributes, respectively (the well-
typedness also guarantees this); and these two subsets must be disjoint. This means that
we can separate attributes of an object in the Opool (providing that the object is not

4

empty). Additionally, an empty object cannot be in two separated Opools at the same
time, because it cannot be partitioned. We will use O1 ∗O2 to indicate the union of O1

and O2, O1 ⊕O2, when O1 ⊥ O2.
As an example, suppose,

O1 = {(r1, ∅), (r2, {(a1, rnull)})}, O2 = {(r2, {(a2, rnull)})},
O3 = {(r1, ∅), (r2, {(a2, rnull)})}.

We have O1 ⊥ O2, although each of them contains a part of object pointed by r2. But
O1 6⊥ O3 because r1 ∈ dom O1∩dom O3, while O1(r1) = {}. Additionally, O2 6⊥ O3,
because r2 ∈ dom O2 ∩ dom O3, while dom (O2(r2)) ∩ dom (O3(r2)) = {a2}.

Clearly, above definition of separation takes the basic cell (r, a, r′) as a unit, but
it also offers a careful treatment for empty objects. It is a revision of the separation
concept in Separation Logic, while also takes into account the characteristics of OO
programs. This definition plays an important role in our work.

3 An OO Separation Logic

To facilitate OO features, almost all OO languages adopt pure reference models, where
values of variables and object attributes are references to objects2. A special case is that
their values can be null to mean referring to no object. This model induces a great possi-
bility of sharing: besides different variables can share references, different attributes can
also share references, and can have sharing with variables. For modeling these features,
we define an OO Separation Logic(OOSL) for OO specialities.

3.1 Assertions Language

We use Ψ for the set of all assertions of OOSL, and ψ, ψ1, ψ2... as typical assertions.
The assertion language of OOSL is similar to what in Separation Logic, with some
revisions and extensions, to fit the special needs of OO programs.

Basic assertions are of two kinds in OOSL, namely primitive assertions and user-
defined assertions. All assertions are built on them.

Primitive assertions have the forms defined by the following rules:

α ::= true | false | v = r | r1 = r2

β ::= emp | r1.a 7→ r2 | obj(r, T)

where v is a variable or constant name, r denotes references. In fact, here r servers as
both “references” and “reference variables” (logic variables) at the same time.

As shown, primitive assertions fall into two categories, where

– α denotes a kind of assertions that are independent of Opools. References are
atomic values in our logic. For any two references r1, r2, r1 = r2 holds iff r1

and r2 are identical, i.e., eqref(r1, r2). We treat r = v the same as v = r.

2 One exception might be variables and attributes of primitive types, while many languages use
value model for them for efficiency.

5

– β denotes assertions involving Opools. Empty and singleton assertions take the
similar forms as in Separation Logic. As we said before, a cell in Opool is an
attribute-value binding of an object (denoted by a reference), thus the singleton
assertion takes the form r1.a 7→ r2. To make OOSL clear and simple, we do not
define v.a 7→ . . . as a primitive assertion, because it is not really primitive. Cer-
tainly, we can define v.a 7→ r as ∃r′ · v = r′ ∧ r.a 7→ r′.

– We add an assertion form obj(r, T) to indicate that r refers to a complete object of
type T , and the Opool only contains this object. In Separation Logic, people use
l 7→ - or l ↪→- to denote that location l is allocated in current heap. Because the
existence of empty object, we cannot use r.a 7→- or r.a ↪→- to express that object
which r refers to is allocated in current Opool. To solve this problem, we introduce
assertion form obj(r, T) in OOSL. We will use obj(r,-) when we do not care about
r’s type.

We allow users to define new predicates in OOSL. In fact, people always need to de-
fine some recursive predicates to support specification and verification of OO programs
involving recursive data structures, e.g., list, tree, etc.

These definitions are recorded in a Logic Environment Λ with the form defined by:

Λ ::= ε | Λ, p(r) .= ψ

where ε denotes the empty environment, p is a symbol (predicate name) selected from a
given set S, r are (a list of) formal parameters, and ψ is the body, which is an assertion
correlated with r. Recursive definitions are allowed.

As a well-formed logic environment, we ask for that Λ must be self-contained, that
is: The body ψ of a definition in Λ cannot use symbols not defined in Λ. Further, we
require that Λ must be finite and syntactically monotone3, then a fix-point semantics for
Λ exists.

For every symbol p defined in Λ, we use argcΛ(p) to denote its arguments number,
where subscript Λ may be omitted when there is no ambiguity.

Complex assertions are built upon basic assertions with classical FOL combinators
and separation combinators from Separation Logic:

ψ ::= α | β | p(r) | ¬ψ | ψ ∨ ψ | ψ ∗ ψ | ψ —∗ψ | ∃r · ψ
where p(r) is a user-defined assertion with real arguments r.

Please notice that only references, but not variables, can be quantified. The intension
is clear: variables are defined in the program text, thus are free variables in assertions.

We will use ψ[v/x] (or ψ[r/x]) to denote the assertion built from ψ by substituting
variable x with variable or constant v (reference r) in it. And ψ[r1/r2] denotes the
assertion build from ψ by substituting r2 with r1.

At last, we define some abbreviations, that are classical:

ψ1 ∧ ψ2 ≡ ¬(¬ψ1 ∨ ¬ψ2) ψ1 ⇒ ψ2 ≡ ¬ψ1 ∨ ψ2

∀r · ψ ≡ ¬∃r · ¬ψ
r.a 7→- ≡ ∃r′ · r.a 7→ r′ r.a ↪→ r′ ≡ r.a 7→ r′ ∗ true

3 For every definition p(r)
.
= ψ, every symbol occurs in ψ must lie under an even number of

negations.

6

MI(false) = ∅ (I-FALSE)

MI(true) = State (I-TRUE)

MI(v = r) = {(σ, O) | σ(v) = r} (I-LOOKUP)

MI(r1 = r2) = State iff eqref(r1, r2) (I-REF-EQ)

MI(r1 = r2) = ∅ iff ¬eqref(r1, r2) (I-REF-NEQ)

MI(emp) = {(σ, ∅)} (I-EMPTY)

MI(r1.a 7→ r2) = {(σ, {(r1, a, r2)})} (I-SINGLE)

MI(obj(r, T)) = {(σ, O) | type(r) = T ∧ dom O = {r}∧
dom (O(r)) = dom (attrs(T))}

(I-OBJ)

MI(p(r)) = I(p)(r) (I-APP)

MI(¬ψ) = State \MI(ψ) (I-NEG)

MI(ψ1 ∨ ψ2) =MI(ψ1) ∪MI(ψ2) (I-OR)

MI(ψ1 ∗ ψ2) = {(σ, O) | ∃O1, O2 · O1 ∗O2 = O ∧ (σ, O1) ∈MI(ψ1)
∧(σ, O2) ∈MI(ψ2)}

(I-S-CONJ)

MI(ψ1 —∗ψ2) = {(σ, O) | ∀O1 · O1⊥O ∧ (σ, O1) ∈MI(ψ1)
implies (σ, O1 ∗O) ∈MI(ψ2)

(I-S-IMPLY)

MI(∃r · ψ) = {(σ, O) | ∃r ∈ Ref · (σ, O) ∈MI(ψ)} (I-EX)

Fig. 1. Semantic function with interpretation I

The last two abbreviations are widely used in Separation Logic related papers.

3.2 Semantics

Now, we provide a Least Fix-point Semantics for OOSL. We will define a semantic
function which maps every assertion ψ ∈ Ψ to a subset of State. To achieve this goal,
we first define a formal semantics for Λ.

We introduce a family of Predicate Functions. For any n ≥ 0, we definePn =̂ Refn →
P(State), the set of functions from n references to subsets of State. Here n is the arity
of the functions in Pn. We define P =̂

⋃
n

Pn, which is the set of all possible predicate

functions. We introduce a function arity : P → N to extract the arity of given predicate
function: For any p ∈ P , arity(p) = n iff p ∈ Pn.

We will use p, q, possibly with subscripts, for the typical elements of P . Given
p(r), q(r′) ∈ Pn, we define p ≤ q iff ∀r1, ..., rn · p(r1, ..., rn) ⊆ q(r1, ..., rn). Clearly,
(P(State),⊆) forms a complete lattice, with ∅ and State as its bottom and top elements.
So for any n, (Pn,≤) is a complete lattice, with ⊥Pn

= {(r1, ...rn) 7→ ∅},>Pn
=

{(r1, ...rn) 7→ State} as its bottom and top elements.
With Predicate Functions, we define interpretations of Λ as follows.

Definition 4 (Interpretation of Logic Environment). Given a logic environment Λ,
we say a function I : S → P is an interpretation of Λ iff for every symbol p defined in
Λ, p ∈ dom I and arity(I(p)) = argcΛ(p).

7

We use IΛ to denote all interpretations of Λ. For any I1, I2 ∈ IΛ, we define:

I1 ≤ I2 iff ∀p ∈ dom Λ · I1(p) ≤ I2(p).

Obviously, (IΛ,≤) is a complete lattice. ⊥Λ = {(p,⊥PargcΛ(p))|p ∈ dom Λ} is the
bottom element, and >Λ = {(p,>PargcΛ(p))|p ∈ dom Λ} is the top element.

We define a semantic function M : I → Ψ → P(State) for OOSL, the definition
is presented in Fig.1. Note that MI means M(I) in the definition.

Clearly, a logic environment Λ can have many different interpretations, but not every
interpretation makes sense. This leads the following definition.

Definition 5 (Model of Logic Environment). Suppose I is an interpretation of Λ, we
say I is a model of Λ iff for every definition p(r) .= ψ in Λ, we have:

∀r′ · MI(p(r′)) = MI(ψ[r′/r]).

In fact, a model of Λ is a fix-point of function NΛ : (S → P) → (S → P), which is
defined as follows:

NΛ(I)(p) = {(r′,MI(ψ[r′/r])}, for any definition p(r) .= ψ in Λ

The fix-point of NΛ exists, because the self-containedness of Λ, and the syntactically
monotonic requirement for each definition of symbols in Λ.

A given Λ may have many models. We choose the least one as its standard model,
which is the least fix-point ofN . By Tarski’s fix-point theorem, this standard model can
be expressed as:

JΛ =
∞⋃

n=0

Nn
Λ (⊥Λ),

We give a simple example as an illustration. Suppose Λ contains only one definition

list(r) .= (r = null ∧ emp) ∨ ∃r′ · (r.a 7→ r′) ∗ list(r′)

which describes lists linked on a. In order to get the standard model of Λ, we have:

N 0
Λ = ⊥Λ

N 1
Λ = {(list, {(null, emp)})}

N 2
Λ = {(list, {(null, emp), (r, r.a 7→ null)})}

N 3
Λ = {(list, {(null, emp), (r, r.a 7→ null)}), (r, r.a 7→ r′ ∗ r′.a 7→ null)})}

. . .

Then we get a model that describes all possible lists of this type.
With the standard model JΛ, we can define the formal semantics for our assertion

language. We use σ,O |=Λ ψ to mean that ψ holds on state (σ,O) with respect to logic
environment Λ. We have the following definition:

Definition 6 (Semantics of Assertions).

σ,O |=Λ ψ iff (σ,O) ∈MJΛ
(ψ).

We often use σ,O |= ψ as a shorthand when Λ is not ambiguous.

8

3.3 Properties and Inference Rules

The semantics defined above have some good properties:

Lemma 1. New predicate functions can be safely appended to Λ, without changing the
meaning of existing symbols in Λ. Formally, if Λ′ = (Λ, p(r) .= ψ), where p is not
defined in Λ, we have for every symbol q defined in Λ:

JΛ(q) = JΛ′(q).

By this lemma, we can easily get:

Lemma 2. Given a logic environment Λ:
(1) we can safely append some new definitions to it, without changing semantics of
symbols defined in Λ;
(2) if symbols p defined in Λ are not mentioned in other definitions in Λ, then we can
safely remove them, without changing semantics of the other symbols defined in Λ. ut

And by OOSL’s semantics, it is straightforward to prove the following propositions:

Lemma 3. Suppose σ,O |= ψ, we have:
(1) if dom σ′ ∩ dom σ = ∅, then σ ∪ σ′, O |= ψ;
(2) if ψ does not contain variables in σ′, then σ − σ′, O |= ψ. Here σ − σ′ denotes
{(x, r) ∈ σ | x /∈ dom σ′}. ut

Lemma 4. σ,O |= ψ[e/x], if and only if σ ⊕ {x 7→ σe}, O |= ψ. ut

Lemma 5. Suppose a1, a2, ..., ak are all attributes of type T , then we have:

obj(r, T) ⇔ r.a1 7→- ∗ r.a2 7→- ∗ ... ∗ r.ak 7→-

ut

Lemma 6. obj(r1,-) ∗ obj(r2,-) ⇒ r1 6= r2. ut

Lemma 7.
emp ∗ ψ ⇔ ψ

ψ1 ∗ (ψ1 —∗ψ2) ⇔ ψ2

ψ1 —∗(ψ2 ∧ ψ3) ⇔ (ψ1 —∗ψ2) ∧ (ψ1 —∗ψ3)
ψ1 —∗ψ2 —∗ψ3 ⇔ (ψ1 ∗ ψ2)—∗ψ3

Proof. We prove the last statement. Note that ψ1 —∗ψ2 —∗ψ3 is ψ1 —∗(ψ2 —∗ψ3).

⇒: Assume σ,O |= ψ1 —∗(ψ2 —∗ψ3). Take any O′ such that O′ ⊥ O and σ,O′ |=
ψ1 ∗ ψ2, by the definition of ∗, there exist O1 and O2 such that O′ = O1 ∗O2, and
σ,O1 |= ψ1, and σ,O2 |= ψ2. Because O1 ⊥ O2 ∗O and the assumption, we know
that σ,O1 ∗O |= ψ2 —∗ψ3. From this fact, and σ,O2 |= ψ2 and O2 ⊥ O1 ∗O, we
have σ,O1 ∗O2 ∗O |= ψ3. This is exactly σ,O′ ∗O |= ψ3, thus we have the “⇒”
proved.

9

⇐: Suppose σ,O |= (ψ1 ∗ψ2)—∗ψ3. Take any O1 such that O1 ⊥ O and σ,O1 |= ψ1,
then take any O2 such that O2 ⊥ O1 ∗ O and σ,O2 |= ψ2, now we need to prove
that σ,O1 ∗ O2 ∗ O |= ψ3. Because O1 ∗ O2 ⊥ O and σ,O1 ∗ O2 |= ψ1 ∗ ψ2, we
have the result immediately. ut
Many propositions in Separation Logic also hold in OOSL. For example, rules (ax-

iom schemata) shown in the Section 3 of [15] are all valid here.
Intuitively, there are close connection between OOSL defined here and the Sepa-

ration Logic. If we treat every tuple (r, a) as an address of memory cell, and define
a suitable address transformation for the memory layout, then we may map the stor-
age model of our logic to the storage model of Separation Logic. So, we conjecture
that every proposition holding in Separation Logic, when it does not involve in address
arithmetic, will hold in OO Separation Logic. We will investigate the relation between
Separation Logic and OOSL in future.

Similar to Separation Logic, we can define the pure, intuitionistic, strictly-exact and
domain-exact assertions. We find another important concept as follows.

Definition 7 (Separated Assertions). Two assertions ψ and ψ′ are separated from
each other, iff for all stores σ and Opools O, O′, σ,O |= ψ and σ,O′ |= ψ′ implies
O ⊥ O′. ut
Lemma 8. r1.a 7→ - and r2.b 7→ - are separated, provided that r1 6= r2, or a and b
are different attribute names. ut

For example, suppose we have a Node class with fields value and next. For a refer-
ence r : Node, we know r.value 7→- and r.next 7→- are separated. No corresponding
concept is in original Separation Logic, due to the absence of attributes.

Lemma 9. Suppose ψ1 and ψ2 are separated. (1) If σ,O1 |= ψ1 and σ,O2 |= ψ2,
then σ,O1 ∗ O2 |= ψ1 ∗ ψ2. (2) If σ,O |= ψ1 ∗ ψ2, there exists an unique partition of
O = O1 ∗O2, that σ,O1 |= ψ1 and σ,O2 |= ψ2. ut
Lemma 10. ψ1 is separated from both ψ2 and ψ3, iff ψ1 is separated from ψ2 ∗ψ3. ut
Theorem 1. For any ψ1, ψ2, ψ3, if ψ1 and ψ2 are separated from each other, then ψ1 ∗
(ψ2 —∗ψ3) ⇔ ψ2 —∗(ψ1 ∗ ψ3).

Proof. The proof is as follows:

⇒: For any σ and O such that σ,O |= ψ1 ∗ (ψ2 —∗ψ3), there exist O1, O2, such that
O1 ∗O2 = O, σ,O1 |= ψ1, and σ,O2 |= ψ2 —∗ψ3. By the definition of—∗, for any
O3 satisfying O2 ⊥ O3,

σ,O3 |= ψ2 implies σ,O2 ∗O3 |= ψ3.

Because ψ1 and ψ2 are separated, then by Lemma 9,

σ,O3 |= ψ2 implies σ,O1 ∗O2 ∗O3 |= ψ1 ∗ ψ3.

This is σ,O |= ψ2 —∗(ψ1 ∗ ψ3).

10

⇐: For any σ and O that σ,O |= ψ2 —∗(ψ1 ∗ ψ3), for any O1 that O1 ⊥ O, if σ,O1 |=
ψ2, then σ,O1 ∗O |= ψ1 ∗ ψ3. Now we fix this O1. From σ,O1 ∗O |= ψ1 ∗ ψ3 we
know there exist O2 and O′3 such that O2 ⊥ O′3, O2 ∗ O′3 = O1 ∗ O, σ,O2 |= ψ1

and σ,O′
3 |= ψ3. Because ψ1, ψ2 are separated, then O2 ⊥ O1. Thus O′3 = O1∗O3

for some O3. Now we have

σ,O2 |= ψ1, σ,O1 |= ψ2, and σ,O1 ∗O3 |= ψ3.

Then we have σ,O3 |= ψ2 —∗ψ3, because the choice of O1 needs no extra restric-
tion. Thus σ,O |= ψ1 ∗ (ψ2 —∗ψ3), because O = O2 ∗O3. ut
The concept of separated assertions is very useful in reasoning OO programs. Tak-

ing the Node class above as an example, it allows us to combine relative attributes of a
Node object together:

r1.value 7→- ∗ (r2.value 7→-—∗ r1.next 7→-)
⇔ r2.value 7→-—∗(r1.value 7→- ∗ r1.next 7→-)

3.4 Discussion

In this section, we discuss some expressiveness and extension issues about OOSL.
As presented above, we define a power assertion language for OOSL, especially

the user-defined predicates, which notably enhance the expressiveness of OOSL. With
OOSL, We can describe and infer recursive data structures, and some important prop-
erties between objects, such as accessibility, dangling and so on. Since our logic adopts
classical semantics, it is more expressive than its intuitionistic cousin, e.g., what defined
in [14]. We can use OOSL to describe the program state precisely, especially the Opool,
i.e., what is in or is not in an Opool.

On the other hand, the primitive assertions of OOSL are very simple and specific,
so we cannot describe quantitative relation or more complicated mathematical concepts
with OOSL. But it is not difficult to extend OOSL to support these concepts. For exam-
ple, if we want to support integer arithmetic in OOSL, we should

– add primitive assertions about integer,
– expand user-defined predicates with integer arguments,
– expand quantifiers ∃ and ∀ to support integer,
– define semantics for new adding assertions.

After these modifications, we can describe and infer properties involving integers with
OOSL. In fact, we can combine OOSL and other mathematical theories freely, such as
theories about sequences and trees, if they are orthogonal.

4 A Simple OO Language and Its Inference Rules

In this section, we study a simple OO language. For simplicity, we only consider basic
commands here. High-level features, i.e., concepts related to method and class, involv-
ing more static structure and type information, will be studied in our further works. We
demand that our storage model and OOSL are ready to deal with them.

11

The syntax of the language is as follows:

e ::= true | false | null | x
b ::= true | false | e = e | ¬b | b ∧ b | b ∨ b
c ::= skip | x := e | x.a := e | x1 := x2.a |

x := new C() | c; c | if b c else c | while b c

where:

– x is a variable, C a class name or Object, a an attribute name. We adopt restricted
forms for expressions e, so their values depend only on the store. Complex expres-
sions can be encoded with the help of auxiliary variables and assignments.

– Assignments are restricted to a number of special forms. Beside the plain assign-
ment x := e, we have mutation assignment x.a := e, and lookup assignment
x1 := x2.a. Other general cases can be also encoded by these forms. For instance,
one can use x := y.a and then refer to x.a′ as a replacement of y.a.a′.

– x := new C() creates a new raw object, that is this command do not initialize the
new object.

We define Hoare-Triple like inference rules for the language. Specifications take
the form {P} c {Q}, where P is the precondition, Q is the postcondition, and c is a
command. By {P} c {Q}, we mean that whenever P holds before the execution of
command c, then predicate Q holds after the termination of c.

We list basic rules in Fig. 2. Here we treat boolean expressions as OOSL assertions,
because every boolean expression can be easily mapped to an assertion in OOSL.

Beside basic rules, we have Frame Rule that is essential for local reasoning [15].

{P} c {Q} FV (R) ∩md(c) = ∅
{P ∗R} c {Q ∗R} (FRAME)

where FV (R) is the set of all program variables in R, and md(c) denotes the variable
set modified by c with the following definition:

md(c) =





{x}, if c is x := . . .
md(c1) ∪md(c2), if c is c1; c2

md(c1) ∪md(c2), if c is if b c1 else c2

md(c), if c is while b c
∅, otherwise

In this paper, we only define the local rules. We can define global rules and back-
wards rules, as in [15]. For example, here is the backwards reasoning rule for mutation:

{(v = r1)∧ (e = r2)∧ (r1.a 7→-∗ (r1.a 7→ r2 —∗P)} v.a = e{P} (ASN-II BACK)

Based on Rule (CONS), (FRAME) and Lemma 7, it is easy to prove that this rule is
equivalent to Rule (ASN-II).

We use a little example to end this section. This example illustrates that two newly
created empty objects are different. As mentioned above, Object has no attributes, by

12

{P} skip {P} (SKIP)

{P [e/x]} x := e {P} (ASN-I)

{x = r1 ∧ e = r2 ∧ r1.a 7→-} x.a := e {x = r1 ∧ e = r2 ∧ r1.a 7→ r2} (ASN-II)

{x2 = r1 ∧ r1.a 7→ r2} x1 := x2.a {x1 = r2 ∧ x2 = r1 ∧ r1.a 7→ r2} (ASN-III)

{emp} x := new C() {∃r · x = r ∧ obj(r, C)} (NEW)

{P} c1 {Q}, {Q} c2 {R}
{P} c1; c2 {R} (SEQ)

{b ∧ P} c1 {Q}, {¬b ∧ P} c2 {Q}
{P} if b c1 else c2 {Q} (COND)

{b ∧ I} c {I}
{I}while b c {¬b ∧ I} (ITER)

P ⇒ P ′, {P ′} c {Q′}, Q′ ⇒ Q

{P} c {Q} (CONS)

{P} c {Q}
{∃r · P} c {∃r ·Q} r is free in P and Q (EX)

Fig. 2. Inference Rules for the OO language

Rule (NEW), (FRAME) and Lemma 6,7, we have the following deduction:

{true}
{emp ∗ true}
x := new Object();
{∃r · x = r ∧ obj(r,Object) ∗ true}
y := new Object();
{∃r1, r2 · x = r1 ∧ y = r2 ∧ obj(r1,Object) ∗ obj(r2,Object) ∗ true}
{x 6= y}

This example shows that OOSL’s accurate treatment for empty objects.

5 A Case Study

In this section, we take Schorr-Waite Marking (SWM) Algorithm as an example to show
how the specification and verification can be carried on with our logic and inference
rules. Fig. 3 gives an implementation of SWM algorithm in our language. Class Node
is the graph node class which has four attributes: left and right are links to the left and
right subnodes respectively, flag mark indicates if the node is marked, and flag check
is used internally to indicate if its left part has been visited.

To verify the program, we must specify that given any unmarked graph pointed by
root, after the execution schorr waite, all nodes in the graph are marked and the graph
structure is preserved. Complete verification for these two properties is complicated, es-
pecially for the second property, for which we must introduce some mathematical con-
cepts for graphs. Yang [16] presented the first work on verifying SWM with Separation

13

class Node {
Node left, right;
Bool mark, check; / ∗ whether left subtree has been visited ∗ /

}

void schorr waite(Node root) {
Node t, p, q, s;
t := root; p := null;
while (p 6= null ∨ (t 6= null ∧ ¬t.mark)) {

if (t = null ∨ t.mark) {
if (p.check) { / ∗ pop ∗ /

q := t; t := p; p := p.right; t.right := q;
}
else { / ∗ swing ∗ /

q := t; t := p.right; s := p.left; p.right := s; p.left := q; p.check := true;
}

}
else { / ∗ push ∗ /

q := p; p := t; t := t.left; p.left := q; p.mark := true; p.check := false;
}

}
}

Fig. 3. Implementation of Schorr-Waite Marking Algorithm

node(r, r1, r2, c, m)
.
= r.left 7→ r1 ∗ r.right 7→ r2 ∗ r.check 7→ c ∗ r.mark 7→ m

mtree(r)
.
= (r = rnull ∧ emp)∨

(∃r1, r2 · node(r, r1, r2,-, rtrue) ∗mtree(r1) ∗mtree(r2))
utree(r)

.
= (r = rnull ∧ emp)∨

(∃r1, r2 · node(r, r1, r2,-, rfalse) ∗ utree(r1) ∗ utree(r2))
sbot(r)

.
= ∃r1, r2, c · node(rb, r1, r2, c, rtrue) ∗

((c = rtrue ∧ r2 = rnull ∧mtree(r1)) ∨
(c = rfalse ∧ r1 = rnull ∧ utree(r2)))

sseg(rt, rb)
.
= (rt = rb ∧ sbot(rb)) ∨ (∃r1, r2, c · node(r, r1, r2, c, rtrue) ∗

((c = rtrue ∧mtree(r1) ∗ sseg(r2, rb)) ∨
(c = rfalse ∧ utree(r2) ∗ sseg(r1, rb)))))

Fig. 4. User-defined assertions for Schorr-Waite Algorithm

Logic, where he gave a complete verification of SWM on binary tree. For the verifica-
tion, he introduced some auxiliary mathematical concepts, including tree and list. As
an illustration possibly been included in the paper, here, we do not focus on a complete
verification. We simplify the specification in two aspects: We require the input is a tree,
and we do not care about the tree structure preservation. So we take a specification here
as: given any unmarked tree, after the execution of the program, all nodes in the tree are
marked. Though this specification is not complete, it is a good example to illustrate the
usefulness and power of OOSL.

14

At first, we introduce some user-defined assertions, as shown in Fig. 4. Assertion
node specifies a single tree node; mtree(r) and utree(r) specify that the whole tree from
r is marked or unmarked, respectively. Assertions sbot and sseg talk about the implicit
stack and the segment of nodes reachable through the stack. In details, sbot(r) specifies
that r is the only node in the stack and has been marked; and if the flag check of this
node is true, then its left subtree is marked and its right subtree is null, otherwise, its left
subtree is null and right subtree is unmarked. On the other hand, sseg(rt, rb) specifies
a stack with rt as its top element and rb its bottom element. Further, if rt = rb, then
the stack has only one node rb; otherwise, every node in the stack has been visited, and
if the check flag of a node is true, then its left subtree is marked and its right field
records the next node in the stack, otherwise its right subtree is unmarked and its left
field records the next node in the stack.

Now we give a specification for the SWM program:

{root = rroot ∧ utree(rroot)} SWM {root = rroot ∧mtree(rroot)} (1)

Here SWM represents the body of the function schorr waite shown in Fig. 3.
For proving the specification, the key-point is defining a suitable loop invariant. We

define the loop invariant I as follows (with auxiliaries Invp and Invr):

I
.= ∃rt, rp · t = rt ∧ p = rp ∧ (rp = rnull ⇒ rt = rroot) ∧ Ip(rp) ∗ It(rt)

Ip(rp)
.= (rp = rnull ∧ emp) ∨ (rp 6= rnull ∧ sseg(rp, rroot))

It(rt)
.= mtree(rt) ∨ utree(rt)

This loop invariant says:

– If p is null, which means the stack is empty, then the value of t must be root;
– The whole Opool consists of two separated parts. The first part, that is specified by

Ip(rp), is the part of nodes reachable from the implicit stack with p referring to its
top element. If p is null then this part is empty. The second part, that is specified by
Ip(rt), is a tree denoted by t. The nodes in the tree must be all marked or unmarked.

We can simply prove the following facts:

The precondition establishes the loop invariant:

{root = rroot ∧ utree(rroot)}
t := root; p := null;
{root = rroot ∧ t = rroot ∧ p = rnull ∧ utree(rroot)}
{I}

The postcondition holds when the loop ends:

(∃rp, rt · p = rp ∧ t = rt ∧ rp = rnull ∧ (rt = rnull ∨ rt.mark ↪→ rtrue)) ∧ I
⇒ t = rroot ∧mtree(rroot)

Now we prove that the loop invariant is preserved by the loop body. The whole
proof is split into three cases according to the conditional branches, and all necessary
lemmas and rules used in the deduction can be found in Section 3.3 and 4.

We put here only the case for the branch Pop. The other two cases are given in the
Appendix.

15

Case Pop : The condition is p 6= null ∧ (t = null ∨ t.mark) ∧ p.check. We have the
following deduction:

{(∃rt, rp · t = rt ∧ p = rp ∧ rp 6= rnull ∧
(rt = rnull ∨ rt.mark ↪→ rtrue) ∧ rp.check ↪→ rtrue) ∧ I}

{∃rt, rp, rpl, rpr · t = rt ∧ p = rp ∧
(mtree(rt)∗
((rp = rroot ∧ rpr = rnull ∧ node(rp, rpl, rpr, rtrue, rtrue) ∗mtree(rpl))∨
(node(rp, rpl, rpr, rtrue, rtrue) ∗mtree(rpl) ∗ sseg(rpr, rroot))))}

{∃rt, rp, rpl, rpr · t = rt ∧ p = rp ∧
(mtree(rt) ∗ node(rp, rpl, rpr, rtrue, rtrue)∗
mtree(rpl) ∗ ((rp = rroot ∧ rpr = rnull ∧ emp) ∨ sseg(rpr, rroot))))}

q := t; t := p; p := p.right;
{∃rt, rp, rpl, rpr · q = rt ∧ t = rp ∧ p = rpr ∧

(mtree(rt) ∗ node(rp, rpl, rpr, rtrue, rtrue) ∗mtree(rpl)∗
((rp = rroot ∧ rpr = rnull ∧ emp) ∨ sseg(rpr, rroot)))}

t.right := q;
{∃rt, rp, rpl, rpr · q = rt ∧ t = rp ∧ p = rpr ∧

(mtree(rt) ∗ node(rp, rpl, rt, rtrue, rtrue) ∗mtree(rpl)∗
((rp = rroot ∧ rpr = rnull ∧ emp) ∨ sseg(rpr, rroot)))}

{∃rp, rpr · t = rp ∧ p = rpr ∧ (rpr = rnull ⇒ rp = rroot) ∧
(mtree(rp) ∗ ((rpr = rnull ∧ emp) ∨ sseg(rpr, rroot)))}

{I}
With the proofs for the other two cases together, we conclude that the specifica-

tion (1) holds. The proof for the full functional specification of Schorr-Waite Marking
Algorithm will be one of our future works.

6 Related Work and Conclusion

To develop a full-armed logic framework for the specification and verification of
OO programs is a long standing research goal in the software area. The work presented
here is an attempt in this direction. As the last part of the paper, we overview some
closely related work, make some comparisons, and list some future works.

Middelkoop tried to extend Separation Logic to OO domain in [9], where only the
storage model is revised, and the assertion language remains. In their work, the separa-
tion conjunction operator ∗ is defined on the object level, but not on the attribute level;
hence an object cannot be split. In this case, the atomic unit is a whole object, that limits
the power of Frame Rule considerably.

Parkinson developed a revised Separation Logic for OO programs in his thesis [14]
and some other papers. Although the start points are similar to ours, the framework is
very different. In Parkinson’s work, the program states are defined as:

Heaps =̂ (OIDS× FieldNames ⇀fin Values)× (OIDS ⇀fin Class)
Stacks =̂ Vars → Values Interpretations =̂ AuxVars → Values
States =̂ Heaps× Stacks× Interpretations .

16

The first part of a heap h ∈ Heaps stores values of objects’ attributes, and the second
part stores their type information. An object is not explicit, but only a set of cells with
the same id from OIDS. The additional component “Interpretations” records values
of logical variables. Taking this Interpretations into program states looks not nice,
because it has no correspondent in practice. Clearly, logical variables are used only in
verification, but not in execution. It is not nature to take them as a specific and inde-
pendent part in program states. In this logic, operator ∗ separates only the first part of
Heaps in states, thus different empty objects can not be separated. As seen, our state
model is different, which records only information of program variables and objects.
We have a novel definition for the separation of heaps (Opools), that makes it possible
to separate the heaps efficiently even they contain empty objects.

Additionally, the logic in [14] adopts intuitionistic semantics, thus assertions pre-
serve true with heap extension. This makes it impossible to express precise specifica-
tions about heaps, e.g., the simplest statement “current heap is empty”. Consequently,
no precise property about OO programs can be proved in this framework. Our logic
takes the classical semantics, thus is more expressive [5]. The precise assertions are
default, and intuitionistic assertions can also be written (ref. to [15]).

Parkinson et al. [13] developed a framework and some techniques based on their
logic, for verifying OO programs modularly. We can also develop similar framework
within our OOSL, which is our current work.

From these analysis and precognition, we make our choices. We take the reference
model for OO languages, the assertion language based on Separation Logic, and the
logic with classical semantics. Of course, what reported here is only a preliminary work.

In this paper, we present a state model for OO programs, and a novel definition for
the separation of object heaps. Based on the storage model, we define an OO Separation
Logic with some new assertion forms. We give a full treatment on user-defined basic
assertions and introduce the concept of logic environment into our framework. We list
the necessary conditions which guarantee the existence of the fixed point for a logic
environment. We define semantics for the logic and prove some properties (reasoning
rules) for it. We introduce a simple OO language with a set of inference rules based on
the logic. The Schorr-Waite Marking algorithm is used as the example to illustrate how
the specification and verification can be done here.

As for the future work, first, it would be interesting to study properties of OO Sepa-
ration Logic, provide and prove more inference rules, in order to pave the way for more
effective reasoning for OO programs. We also take interests in the connection between
OOSL and the Separation Logic, as mentioned in Section 3.2.

Second, it is important to extend the language used here to support all higher level
OO features, e.g., class declaration, method definition and invocation, inheritance, etc.
Further, we should try to develop more powerful framework to do modular specification
and verification like techniques in [11, 13].

Third, accounting to the procedural paradigm, Weakest Precondition (WP) seman-
tics plays a central role in semantics studies, and the foundation stone for many the-
oretical work deeply related to the software engineering, including specification, ver-
ification, refinement, programming from specifications [10], specification-based code
generation, etc. A well-defined WP semantics might play similar role in OO paradigm.

17

We will try to develop a WP Semantics for an OO language with all important OO fea-
tures, which could enables us to define data refinement and program refinement. With
WP semantics as a base, we could study program transformation, and the refinement
relationship between programs/specifications at different abstract levels, therefore pro-
vide the possibility of programming from specifications or code generation.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS 2004, LNCS 3362, pages 49–69. Springer, 2005.

2. Marius Bozga, Radu Losif, and Yassine Lakhnech. On logics of aliasing. SAS 2004, LNCS
3148:pp.344–360, 2004.

3. Yifeng Chen and J W Sanders. A pointer logic for object diagrams. Technical report, Inter-
national Institute for Software Technology, The United Nations University, 2007.

4. C.A.R. Hoare and Jifeng He. A trace model for pointers and objects. ECOOP’99, Object
Oriented Programming, 1628/1999:pp.344–360, 1999.

5. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In
POPL’01. ACM, 2001.

6. Wei Ke, Zhiming Liu, Shuling Wang, and Liang Zhao. A graph-based operational semantics
of OO programs. In ICFEM 2009, volume 5885 of LNCS, pages 347–366. Springer, 2009.

7. G. T. Leavens, A. L.Baker, and C. Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. SIGSOFT Software Engineering Notes, 31(3):1–38, 2006.

8. Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verification chal-
lenges for sequential object-oriented programs. Formal Asp. Comput., 19(2):159–189, 2007.

9. Ronald Middelkoop, Kees Huizing, and Ruurd Kuiper. A separation logic proof system for
a class-based language. In Proceedings of the Workshop on Logics for Resources, Processes
and Programs (LRPP), 2004.

10. C. Morgan. Programming from Specifications. Prentice Hall, 1998.
11. P. Müller. Modular specification and verification of object-oriented programs. Springer-

Verlag, LNCS 2262, 2002.
12. James Noble, Robert Biddle, Ewan Tempero, Alex Potanin, and Dave Clarke. Towards a

model of encapsulation. Technical report, Elvis Software Design Research Group, 2003.
13. Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and inheritance.

In Principles of Programming Languages (POPL’08). ACM, 2008.
14. Matthew John Parkinson. Local reasoning for Java. PhD thesis, University of Cambridge,

2005.
15. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS’02.

IEEE Computer Society, 2002. Invited paper.
16. Hongseok Yang. Local Reasoning for Stateful Programs. PhD thesis, University of Illinois

at Urbana-Champaign, 2001. (Technical Report UIUCDCS-R-2001-2227).
17. Liang Zhao, Xiaojian Liu, Zhiming Liu, and Zongyan Qiu. Graph transformations for object-

oriented refinement. Formal Aspects in Computing, 21(1):103–131, 2009.

18

Appendix

We include here proofs for the other two cases for proving that the program implement-
ing Schorr-Waite Marking algorithm, given in Fig. 3, meets specification (1).

The first case, for Swing, is little complicated, as the case Pop. However, the deduc-
tion is also straightforward. The last case Push is much simpler.

Case Swing: p 6= null ∧ (t = null ∨ t.mark) ∧ ¬p.check

{(∃rt, rp · p = rp ∧ t = rt ∧ rp 6= rnull ∧
(rt = rnull ∨ rt.mark ↪→ rtrue) ∧ rp.check ↪→ rfalse) ∧ I}

{∃rt, rp, rpl, rpr · p = rp ∧ t = rt ∧
(mtree(rt)∗
((rp = rroot ∧ rpl = rnull ∧ node(rp, rpl, rpr, rfalse, rtrue) ∗ utree(rpr))∨
(node(rp, rpl, rpr, rfalse, rtrue) ∗ utree(rpr) ∗ sseg(rpl, rroot))))}

{∃rt, rp, rpl, rpr · p = rp ∧ t = rt ∧
(utree(rpr) ∗
((rp = rroot ∧ rpl = rnull ∧ node(rp, rpl, rpr, rfalse, rtrue) ∗mtree(rt))∨
(node(rp, rpl, rpr, rfalse, rtrue) ∗mtree(rt) ∗ sseg(rpl, rroot))))}

q := t; t := p.right; s := p.left;
{∃rt, rp, rpl, rpr · q = rt ∧ p = rp ∧ t = rpr ∧ s = rpl ∧

(utree(rpr) ∗
((rp = rroot ∧ rpl = rnull ∧ node(rp, rpl, rpr, rfalse, rtrue) ∗mtree(rt))∨
(node(rp, rpl, rpr, rfalse, rtrue) ∗mtree(rt) ∗ sseg(rpl, rroot))))}

p.right := s; p.left := q; p.check := true;
{∃rt, rp, rpl, rpr · q = rt ∧ p = rp ∧ t = rpr ∧ s = rpl ∧

(utree(rpr) ∗
((rp = rroot ∧ rpl = rnull ∧ node(rp, rt, rpl, rtrue, rtrue) ∗mtree(rt))∨
(node(rp, rt, rpl, rtrue, rtrue) ∗mtree(rt) ∗ sseg(rpl, rroot))))}

{∃rt, rp, rpl, rpr · p = rp ∧ t = rpr ∧ (utree(rpr) ∗ sseg(rp, rroot))}
{I}

Case Push: t 6= null ∧ ¬t.mark

{(∃rt · t = rt ∧ rt 6= rnull ∧ rt.mark ↪→ rfalse) ∧ I}
{∃rt, rp, rtl, rtr · t = rt ∧ p = rp ∧ (rp = rnull ⇒ rt = rroot) ∧

(Ip(rp) ∗ node(rt, rtl, rtr,-, rfalse) ∗ utree(rtl) ∗ utree(rtr))}
q := p; p := t; t := t.left;
{∃rt, rp, rtl, rtr · q = rp ∧ p = rt ∧ t = rtl ∧ (rp = rnull ⇒ rt = rroot) ∧

(Ip(rp) ∗ node(rt, rtl, rtr,-, rfalse) ∗ utree(rtl) ∗ utree(rtr))}
p.left := q; p.mark := true; p.check := false;
{∃rt, rp, rtl, rtr · q = rp ∧ p = rt ∧ t = rtl ∧ (rp = rnull ⇒ rt = rroot) ∧

(Ip(rp) ∗ node(rt, rp, rtr, rfalse, rtrue) ∗ utree(rtl) ∗ utree(rtr))}
{∃rt, rp, rtl, rtr · q = rp ∧ p = rt ∧ t = rtl ∧ utree(rtl)∗

((rp = rnull ∧ rt = rroot ∧ emp) ∨ sseg(rp, rroot)) ∗
node(rt, rp, rtr, rfalse, rtrue) ∗ utree(rtr)}

{∃rt, rp, rtl, rtr · p = rt ∧ t = rtl ∧ (utree(rtl) ∗ sseg(rt, rroot))}
{I}

19

