
裘宗燕：C/C++ 语言中的表达式求值 第 1 页

C/C++ 语言中表达式的求值

裘宗燕
北京大学数学学院信息科学系

本文基本内容发表于《编程高手》杂志 2004 年第 12 期

经常可以在一些讨论组里看到下面的提问：“谁知道下面 C 语句给 n 赋什么值？”

 m = 1; n = m+++m++;
最近有位不相识的朋友发 email 给我，问为什么在某个 C++系统里，下面表达式打印出两个

4，而不是 4 和 5：
 a = 4; cout << a++ << a;
C++ 不是规定 << 操作左结合吗？是 C++ 书上写错了，还是这个系统的实现有问题？

要弄清这些，需要理解的一个问题是：如果程序里某处修改了一个变量（通过赋值、增

量/减量操作等），什么时候从该变量能够取到新值？有人可能说，“这算什么问题！我修改

了变量，再从这个变量取值，取到的当然是修改后的值！”其实事情并不这么简单。

C/C++ 语言是“基于表达式的语言”，所有计算（包括赋值）都在表达式里完成。“x =
1;”就是表达式“x = 1”后加表示语句结束的分号。要弄清程序的意义，首先要理解表达式

的意义，也就是：1）表达式所确定的计算过程；2）它对环境（可以把环境看作当时可用的

所有变量）的影响。如果一个表达式（或子表达式）只计算出值而不改变环境，我们就说它

是引用透明的，这种表达式早算晚算对其他计算没有影响（不改变计算的环境。当然，它的

值可能受到其他计算的影响）。如果一个表达式不仅算出一个值，还修改了环境，就说这个

表达式有副作用（因为它多做了额外的事）。a++ 就是有副作用的表达式。这些说法也适用

于其他语言里的类似问题。

现在问题变成：如果 C/C++ 程序里的某个表达式（部分）有副作用，这种副作用何时

才能实际体现到使用中？为使问题更清楚，我们假定程序里有代码片段“...a[i]++ ... a[j] ...”，
假定当时 i 与 j 的值恰好相等（a[i] 和 a[j] 正好引用同一数组元素）；假定 a[i]++ 确实在 a[j]
之前计算；再假定其间没有其他修改 a[i] 的动作。在这些假定下，a[i]++ 对 a[i] 的修改能

反映到 a[j] 的求值中吗？注意：由于 i 与 j 相等的问题无法静态判定，在目标代码里，这

两个数组元素访问（对内存的访问）必然通过两段独立代码完成。现代计算机的计算都在寄

存器里做，问题现在变成：在取 a[j] 值的代码执行之前，a[i] 更新的值是否已经被（从寄

存器）保存到内存？如果了解语言在这方面的规定，这个问题的答案就清楚了。

程序语言通常都规定了执行中变量修改的最晚实现时刻（称为顺序点、序点或执行点）。

程序执行中存在一系列顺序点（时刻），语言保证一旦执行到达一个顺序点，在此之前发生

的所有修改（副作用）都必须实现（必须反应到随后对同一存储位置的访问中），在此之后

的所有修改都还没有发生。在顺序点之间则没有任何保证。对 C/C++ 语言这类允许表达式

有副作用的语言，顺序点的概念特别重要。

现在上面问题的回答已经很清楚了：如果在 a[i]++ 和 a[j] 之间存在一个顺序点，那么

就能保证 a[j] 将取得修改之后的值；否则就不能保证。

裘宗燕：C/C++ 语言中的表达式求值 第 2 页

C/C++语言定义（语言的参考手册）明确定义了顺序点的概念。顺序点位于：

1. 每个完整表达式结束时。完整表达式包括变量初始化表达式，表达式语句，return 语句

的表达式，以及条件、循环和 switch 语句的控制表达式（for 头部有三个控制表达式）；
2. 运算符 &&、||、?: 和逗号运算符的第一个运算对象计算之后；
3. 函数调用中对所有实际参数和函数名表达式（需要调用的函数也可能通过表达式描述）

的求值完成之后（进入函数体之前）。

假设时刻ti和ti+1是前后相继的两个顺序点，到了ti+1，任何C/C++ 系统（VC、BC等都是C/C++
系统）都必须实现ti之后发生的所有副作用。当然它们也可以不等到时刻ti+1，完全可以选择

在时段 [t, ti+1] 之间的任何时刻实现在此期间出现的副作用，因为C/C++ 语言允许这些选

择。

前面讨论中假定了 a[i]++ 在 a[i] 之前做。在一个程序片段里 a[i]++ 究竟是否先做，还

与它所在的表达式确定的计算过程有关。我们都熟悉 C/C++ 语言有关优先级、结合性和括

号的规定，而出现多个运算对象时的计算顺序却常常被人们忽略。看下面例子：

 (a + b) * (c + d) fun(a++, b, a+5)
这里“*”的两个运算对象中哪个先算？fun 及其三个参数按什么顺序计算？对第一个表达

式，采用任何计算顺序都没关系，因为其中的子表达式都是引用透明的。第二个例子里的实

参表达式出现了副作用，计算顺序就非常重要了。少数语言明确规定了运算对象的计算顺序

（Java 规定从左到右），C/C++ 则有意不予规定，既没有规定大多数二元运算的两个对象的

计算顺序（除了&&、|| 和 ，），也没有规定函数参数和被调函数的计算顺序。在计算第二个

表达式时，首先按照某种顺序算 fun、a++、b 和 a+5，之后是顺序点，而后进入函数执行。

不少书籍在这些问题上有错（包括一些很流行的书）。例如说 C/C++ 先算左边（或右边），

或者说某个 C/C++ 系统先计算某一边。这些说法都是错误的！一个 C/C++ 系统可以永远先

算左边或永远先算右边，也可以有时先算左边有时先算右边，或在同一表达式里有时先算左

边有时先算右边。不同系统可能采用不同的顺序（因为都符合语言标准）；同一系统的不同

版本完全可以采用不同方式；同一版本在不同优化方式下，在不同位置都可能采用不同顺序。

因为这些做法都符合语言规范。在这里还要注意顺序点的问题：即使某一边的表达式先算了，

其副作用也可能没有反映到内存，因此对另一边的计算没有影响。

回到前面的例子：“谁知道下面 C 语句给 n 赋什么值？”

 m = 1; n = m++ +m++;
正确回答是：不知道！语言没有规定它应该算出什么，结果完全依赖具体系统在具体上下文

中的具体处理。其中牵涉到运算对象的求值顺序和变量修改的实现时刻问题。对于：
 cout << a++ << a;
我们知道它是

(cout.operator <<(a++)).operator << (a);
的简写。先看外层函数调用，这里需要算出所用函数（由加下划线的一段得到），还需要计

算 a 的值。语言没有规定哪个先算。如果真的先算函数，这一计算中出现了另一次函数调用，

在被调函数体执行前有一个顺序点，那时 a++的副作用就会实现。如果是先算参数，求出 a
的值 4，而后计算函数时的副作用当然不会改变它（这种情况下输出两个 4）。当然，这些只

裘宗燕：C/C++ 语言中的表达式求值 第 3 页

是假设，实际应该说的是：这种东西根本不该写，讨论其效果没有意义。

有人可能说，为什么人们设计 C/C++时不把顺序规定清楚，免去这些麻烦？C/C++ 语
言的做法完全是有意而为，其目的就是允许编译器采用任何求值顺序，使编译器在优化中可

以根据需要调整实现表达式求值的指令序列，以得到效率更高的代码。像 Java 那样严格规

定表达式的求值顺序和效果，不仅限制了语言的实现方式，还要求更频繁的内存访问（以实

现副作用），这些可能带来可观的效率损失。应该说，在这个问题上，C/C++和 Java 的选择

都贯彻了它们各自的设计原则，各有所获（C/C++ 潜在的效率，Java 更清晰的程序行为），

当然也都有所失。还应该指出，大部分程序设计语言实际上都采用了类似 C/C++的规定。

讨论了这么多，应该得到什么结论呢？C/C++ 语言的规定告诉我们，任何依赖于特定

计算顺序、依赖于在顺序点之间实现修改效果的表达式，其结果都没有保证。程序设计中应

该贯彻的规则是：如果在任何“完整表达式”（形成一段由顺序点结束的计算）里存在对同

一“变量”的多个引用，那么表达式里就不应该出现对这一“变量”的副作用。否则就不能

保证得到预期结果。注意：这里的问题不是在某个系统里试一试的问题，因为我们不可能试

验所有可能的表达式组合形式以及所有可能的上下文。这里讨论的是语言，而不是某个实现。

总而言之，绝不要写这种表达式，否则我们或早或晚会某种环境中遇到麻烦。

后记：去年参加一个学术会议，看到有同行写文章讨论某个 C 系统里表达式究竟按什么顺

序求值，并总结出一些“规律”。从讨论中了解到某“程序员水平考试”出了这类题目。这

使我感到很不安。今年给一个教师学习班讲课，发现许多专业课教师也对这一基本问题也不

甚明了，更觉得问题确实严重。因此整理出这篇短文供大家参考。

后后记：4 年多过去了，许多新的和老的教科书仍然在不厌其烦地讨论在 C 语言里原本并无

意义的问题（如本文所指出的）。希望学习和使用 C 语言的人不要陷入其中。——2009.2

