Labor-Saving Architecture:
An Object-Oriented
Framework for Network
Software

William R. Otte and Douglas C. Schmidt

Modern Software Is Complex

“What Andy gives, Bill takes away.”

Programming Paradigms

= Concurrent
= Event-driven
= Declarative

= Functional
= [mperative

= Non-structured

= Structured
= Procedural

Principles in Object-Oriented
Software Design

= Single responsibility principle

= Open/closed principle

= Liskov substitution principle

= Interface segregation principle
= Dependency inversion principle

Single Responsibility Principle

Every object should have a single responsibility, and
that responsibility should be entirely encapsulated by
the class. (a.k.a. cohesion principle)

Open/closed Principle

“Software entities (classes, modules, functions, etc.)
should be open for extension, but closed for
modification.”

Liskov Substitution Principle

Derived types must be completely substitutable for
their base types.

Let g(x) be a property provable about objects x of
type T. Then g(y) should be true for objects y of type
S where S is a subtype of T.

Interface Segregation Principle

Clients should not be forced to depend upon
interfaces that they don't use.

Many client-specific interfaces are better than one
general purpose interface.

Dependency Inversion Principle

1. High-level modules should not depend on low-
level modules. Both should depend on

abstractions.

2. Abstractions should not depend on details.
Details should depend on abstractions.

Design Patterns

= Singleton

= Wrapper Facade
= Template Method
= Abstract Factory

= Adapter

® iR X
TEREANRR AN LR

(F3R)

Design Patterns
Elements of Reusable

Object-Orieptéd Software

Sample: A Logging Service

Oct 31 14:48:13
2006@tango:cli
ent:initiating
request

Oct 31 14:50:23
2006@balar:dr
who:unable to
fork

Dimensions of Variability

= Different inter-process communication mechanisms
= Sockets, SSL, shared memory, named pipes, ...
= Different concurrency models

= [terative, reactive, thread-per-connection, process-per-
connection, ...

= Different locking strategies

= Thread-level or process-level recursive mutex, non-recursive
mutex, r/w lock, ...

= Different log record formats
= Different transmission formats

An Extensible Solution

Logging Server ACEEFTOR
9ging_ MUTEX

- acceptor_: ACCEPTOR

+ run() : void

+ Logging_Server (listen : const char *)

open() : void

wait_for_multiple_events () : void

handle_connections () : void

handle_data () : void

count_request (number : size_t=1) : void

-

Iterative Reactive Process Per Thread Per
Logging Logging Connection Connection
Server Server Logging Server Logging Server

? J/_T
Logging

Handler

Frameworks vs. Class Libraries

= Frameworks are “semi-complete” applications.
= Class libraries are low-level components.

= Frameworks are active. “Don’t call us, we’ll call you.”
= Class libraries are passive.

Considerations in Framework Design

= Scope
= Commonalities
= Variabilities

Commonalities

|

Initialize IPC
endpoint

|

Wait for new
connection/data
events

Process any
pending
connections

Process any
pending data
events

Template Method Pattern

Abstract Class

template_method () -- |

hood_method_1 ()
hood_method_2 ()
hood_method_3 ()

e

hook_method_1()

hook_method_2()

Concrete Class 1

Concrete Class 2

hood_method_1 ()
hood_method_2 ()
hood_method_3 ()

hood_method_1 ()
hood_method_3 ()

Logging_Server

run() -

open () T
wait_for_multiple_ever
handle_connection ()
handle_data ()

T

open()

for (55) {
wait for _multiple events()
handle connections()
handle data()

}

Iterative_Logging_Server

TPC_Logging_Server

open ()

wait_for_multiple_events ()
handle_connections ()
handle_data ()

open ()
wait_for_multiple_events ()
handle_connections ()
handle_data ()

Accommodating Variabilities

= Different concurrency models
= Addressed with Template Method pattern

= Different inter-process communication mechanisms
= Same interface: open/accept

= Different locking strategies
= Same interface: acquire/release

= Different log record formats

= Different transmission formats
= Addressed in Logging Handler class.

Wrapper Facade Pattern

«interface»
Acceptor

open ()
accept ()
close ()

PEER_STREAM
PEER_ADDR

A

SOCK_Acceptor

SSL_Acceptor

SPIPE_Acceptor

ACE has already done this for us.

Tying 1t All Together

= Strategy pattern could do this.
= But we don’t need dynamic binding!

= C++ template mechanism will do the trick.

The Base Class

template <typename ACCEPTOR, typename MUTEX>
class Logging Server

{
public:

typedef Log Handler<typename ACCEPTOR::PEER_STREAM> HANDLER;

Logging Server(const char *1listen);

// Template method that runs each step in the main event loop.
virtual void run();

protected:

// Hook methods that enable each step to be varied.

virtual void
virtual void
virtual void
virtual void

// Increment
virtual void

open();

wait for multiple events() = 0;
handle connections() = 0;
handle data() = 0;

the request count, protected by the mutex.
count_request(size t number = 1);

protected:

// Instance of template parameter that accepts connections.
ACCEPTOR acceptor_;

// Keeps a count of the number of log records received.
size t request count_;

// Instance of template parameter that serializes access to
// the request count .
MUTEX mutex_;

// Address that the server will listen on for connections.

template <typename ACCEPTOR, typename MUTEX>
void Logging Server<ACCEPTOR, MUTEX>::run() {
try {
// Step 1: initialize an IPC factory endpoint to listen for
// new connections on the server address.
open();
// Step 2: Go into an event loop
for (55) {
// Step 2a: wait for new connections or log records
// to arrive.
wait for multiple events();
// Step 2b: accept a new connection (if available)
handle connections();
// Step 2c: process received log record (if available)
handle data();

}
} catch (...) { /* ... Handle the exception ... */ }

template <typename ACCEPTOR, typename MUTEX>

Logging Server<ACCEPTOR, MUTEX>::Logging Server(const char *listen) :
request _count_ (9),
server_address (listen, PF_INET) {

}

template <typename ACCEPTOR, typename MUTEX>
void Logging_Server<ACCEPTOR, MUTEX>::open() {
acceptor_.open(server_address_);

}

template <typename ACCEPTOR, typename MUTEX>

void Logging Server<ACCEPTOR, MUTEX>::count request(size t number) {
mutex_.acquire();
request count_ += number;
mutex_.release();

An lterative Logging Server |

template <typename ACCEPTOR>
class Iterative Logging Server :
public Logging Server<ACCEPTOR, ACE Null Mutex>
{
public:
typedef Logging Server<ACCEPTOR, ACE Null Mutex>::HANDLER HANDLER;
Iterative_Logging Server(const char *listen, HANDLER *handler) :
Logging Server<ACCEPTOR, ACE Null Mutex>(listen),
log handler_ (handler) {}

protected:
virtual void wait for multiple events() {}
virtual void handle connections();
virtual void handle_data();
HANDLER *1log handler_;

b

template <typename ACCEPTOR>
void Iterative Logging Server<ACCEPTOR>::handle connections() {
acceptor .accept(log handler_ ->peer());

}

template <typename ACCEPTOR>
void Iterative Logging Server<ACCEPTOR>::handle data() {
while (log _handler_->log record())
count_request();

Problem of Iterative Implementation

= Only one client could be served at a time.
= Stuck at handle data() most of the time.

= Should leverage select() or WaitForMultipleObjects() to
handle multiple clients.

A Reactive Logging Server

template <typename ACCEPTOR>
class Reactive Logging Server :
public Iterative Logging Server<ACCEPTOR>

{
public:
Reactive Logging Server(const char *listen, HANDLER *handler) :
Iterative Logging Server<ACCEPTOR>(listen, handler) {}
protected:
virtual void open();
virtual void wait_for_multiple events();
virtual void handle connections();
virtual void handle data();
private:

ACE_Handle_Set master_set_, active_handles_;

it

Acceptor |

template <typename ACCEPTOR>

void Reactive Logging Server<ACCEPTOR>::open() {
// Delegate to base class.
Iterative Logging Server<ACCEPTOR>: :open();
// Mark the handle associated with the acceptor as active.
master_set .set bit(acceptor_ .get handle());
// Set the acceptor's handle into non-blocking mode.
acceptor_ .enable(ACE_NONBLOCK);

Acceptor Peerl Peer2 |

template <typename ACCEPTOR>
void Reactive Logging Server<ACCEPTOR>::wait for multiple events() {

active handles = master_set ;

int width = (int)active_handles .max_set() + 1;

if (ACE::select(width, active handles) == -1)
throw 1;

Acceptor Peerl Peer2 |

template <typename ACCEPTOR>
void Reactive Logging Server<ACCEPTOR>::handle connections () {
if (active_handles .is set(acceptor_.get handle())) {
while (acceptor_.accept(log handler ->peer()) == 0)
master_set .set bit(log handler_ ->current peer().get handle());
active handles .clr bit(acceptor_.get handle());

Acceptor

Peerl

Peer2

template <typename ACCEPTOR>

void Reactive Logging Server<ACCEPTOR>::handle _data() {
ACE_Handle Set Iterator i(active handles);
for (ACE_HANDLE hdl; (hdl = i()) != ACE_INVALID HANDLE;) {

// Select active peer
log handler_->peer (hdl);

try {

log_handler_->log record();
this->count_request();

}

catch (...) {
// connection shutdown/comm fail
master_set .clr_bit(hdl);

Evaluation

= Enough for small number of clients.

= Cannot utilize multiple processors;
= Cannot overlap communication and computation.

Concurrent Solutions

= Thread per connection:
= Workflow is simple
= Locking is important

= Process per connection:
= ... Why do we need log servers at the first place?

= Other solutions?
= One thread per CPU + one handler thread

Conclusion

= Paradigms

= Concurrency, Object-Oriented, Event-driven
= Principles

= Single Responsibility Principle, Open/closed principle
= Patterns

= Template Method, Wrapper Facade, (Strategy)

Q&A

