
Programming
Languages: History
and Future
Jean E. Sammet
IBM Corporation

This paper discusses both the history and future of
programming languages (= higher level
languages). Some of the difficulties in writing such a
history are indicated. A key part of the paper is a tree
showing the chronological development of languages
and their interrelationships. Reasons for the prolifera-
tion of languages are given. The major languages are
listed with the reasons for their importance. A section
on chronology indicates the happenings of the significant
previous time periods and the major topics of 1972. Key
concepts other than specific languages are discussed.

Key Words and Phrases: programming languages,
higher level languages, languages, history, future
directions, language interrelationships, programming
language tree, programming language history,
programming language future

CR Categories: 1.2, 4.2

Copyright (~ 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of the text of this article is granted, provided that reference is
made to this publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association
for Computing Machinery. This paper, which includes the Language
History Chart, in substance will form part of the 2nd edition of
the book, Programming Languages: History and Fundamentals by
Jean E. Sammet, which is currently in preparation and is expected
to be published by Prentice-Hall, Inc.

Author's address: IBM Corporation, 545 Technology
Square, Cambridge, MA 02139. All comments and opinions in
this paper represent (only) the personal views of the author.

References have been kept to a minimum to save space. Any
language for which no reference is given in this paper has the cita-
tions in either Sammet [14] or [16]; almost all are in the former.

601

1. Introduction

1.1 Definition of Programming Languages
It is well known by now that there is no general

agreement on the meaning of the term "programming
languages." In this paper the term is used interchange-
ably with "higher level languages," but even that does
not solve the definition problem. Hence it is necessary
to specify that a programming language is considered
to be a set of characters and rules for combining them
which have the following characteristics: (l) machine
code knowledge is unnecessary; (2) there is good poten-
tial for conversion to other computers; (3) there is an
instruction explosion (from one to many) ; and (4)
there is a notation which is closer to the original prob-
lem than assembly language would be.

1.2 Purpose and Scope of Paper
Programming languages are almost as old as ACM,

since the latter started in 1947 while the former started
in 1952 with Short Code for UNIVAC. Since then, some
efforts--although relatively few--have been made to
record certain historical aspects of this field, e.g. Rosen
[12, 13], Bemer [6], Sammet [14]. 1 Every author, includ-
ing this one, takes a different point of view of what is
important, how to define and interpret dates, etc. In
this paper I hope to indicate some of the problems in
actually writing about the history of programming
languages, and then make my own attempt to provide
perspective. This latter seems extremely important be-
cause there are over 170 languages in use just in the
United States in 1972. While about half of these fall
into the category of "languages for specialized applica-
tion areas" and are discussed in more detail elsewhere
[18], another 85 still remain to be accounted for in some
way. What is it about this field that causes such pro-
liferation? Is there any sense to what has happened?

Communications July 1972
of Volume 15
the ACM Number 7

What--if any--are the interrelationships among the
hundreds of languages which have been developed
since 1952? Finally, and perhaps most important, what
does this portend? Answers to these questions must be
limited because of space and time constraints.

There are three facets of programming language
history which this paper does not discuss. One is the
development of any individual language; this has been
done in considerable detail by the author [14]. A second
is the set of specific concepts in individual languages.
The third omission is any discussion of implementation.

1.3 Problems in Discussing History of Programming
Languages

There are several problems in writing about the
history of programming languages. For example, in
considering programming languages there are a number
of phases, each of which is important in the overall
development, but which is almost impossible in retro-
spect to pinpoint to an exact time. We--as a profession
and an industry--tend to toss around dates without
being very specific about what they mean. Thus various
people would define "the earliest date" for COBOL as
1959, 1960, or 1961, and yet COBOL has one of the
clearest and best-documented histories. In order to de-
fine the problem of establishing dates, note that at least
the following phases exist for programming languages
(and in fact most of these apply to any program). Some
phases may occur in parallel.
1. Initial idea.
2. First documentation of initial idea.
3. Preliminary specifications.
4. "Final" specifications (i.e. those which will be
implemented).
5. "Prototype" running (i.e. as thoroughly debugged
as the state of the art will permit, but perhaps not all of
the features are included).
6. "Full language" compiler (or interpreter) is running.
7. Usage on real problems by the developers.
8. Users (on real problems) other than the developers.
9. Documentation, e. g. manuals and tutorials.
10. Paper in professional journal or conference. (Some-
times this appears as early as step 3.)
11. Extension, modification, or new version.
Note that a formal definition might appear at steps 3, 4,
and 9. Also note that some of these steps may occur
simultaneously or be so combined that they are in-
distinguishable. Furthermore, step I 1 allows recycling
to any lower number and repeating the cycle for a new
version. In only a few instances are dates easily available
for each of these phases.

Another aspect of the problem in writing a history
of programming languages pertains to the definition of
a language and variations of it. This makes establishing
accurate counts impossible. Even if we assume that we
can recognize a higher level language when we see one,
we don't have a rigorous (or even weak) way of know-
ing whether we merely have a dialect or whether we

really have a new language. This point is discussed by
the author in much greater length in [17]. As one ex-
ample among many languages with similar situations,
note the existence of SIMSCRn'T I, 1.5, II, 11.5, and II
Plus. It is clear that these languages are related and yet
different. Are they five separate languages, or only one?

2. Historical Development of Languages

This section shows the historical development and
interrelationship of languages by means of a chart.
Reasons for the proliferation of languages and for the
importance of languages are given. Finally, there is a
listing--with justification--of the most important lan-
guages.

2.1 Development by Dates and Interrelationships
There are three major ways to describe the historical

development of programming languages: first, events
for each language, second, events within a given year,
and third, the relationships and descendants of lan-
guages. As previously stated, the first has already been
done by this author, so only the second and third are
needed here to provide a (hopefully) solid foundation
of facts. The chart covers the second and third ways
by providing a tree depicting yearly information at a
glance, but it also shows the influence and the descend-
ants of the languages. Such a chart is of course subject
to space and graphic constraints; an enlargement of
almost any portion would provide useful information.

Only separate version numbers for fairly significant
languages (e.g. FORTRAN) have been shown. The legend
on the chart indicates that the reader can determine the
earliest date known to the author pertaining to a given
language or, alternatively, the particular phase of de-
velopment (see Section 1.3) for which information is
clearly identified. Languages for specialized application
areas (e.g. simulation, machine tool control, civil
engineering) are not included on the chart because the
number of them would have doubled the complexity.

The lists of languages shown on the back of the
chart represent snapshots at three points in time. Only
ten languages, namely ALGOL 60, APT, COBOL, COMIT,
FORTRAN, IPL-V, LISP 1.5, MAD, MADCAP, and NELIAC
appear on all three lists and thus indicate continuous
usage.

2.2 Reasons for Language Proliferation
The incredible proliferation of higher level languages

appears to be caused by one or more of the following:
1. A really new language concept has been developed
and/or a new application area is deemed worthy of
having its own language.
2. After experience with a particular language, its
deficiencies are clear enough that a complete new lan-
guage is needed--and justifiably created--to correct
them.
3. Facilities of several languages are best combined into
a single new language.

602 Communications July 1972
of Volume 15
the ACM Number 7

4. It is felt to be easier to get additional capability or
changes in style with a new language rather than to
extend or modify an existing one.
5. It is fun to design and implement a new language,
and someone wants to do it and can obtain the funds.
6. There are personal preferences and prejudices
against the existing languages even though one of these
languages might serve the purpose for which the new
language is intended.
7. The developer is unaware of the existence of a lan-
guage that meets his needs, so he creates his own while
believing he is meeting the conditions of (1) or (2).

There are only a few illustrations of (1) and (2).
Examples of (1) include--but are not limited tO--
FORTRAN, APT, FLOWMATIC, IPL, GPSS, COGO. Major
examples of (2) are COBOL (tO replace FLOWMATIC)and
SNOaOL (to replace COMIT).

2.3 Reasons for Importance of a Language
What are the reasons that one language becomes

widely used or considered significant or both, while
others remain for all practical purposes the property of
a small group? The generally obvious answer is prac-
ticality; i.e. the language is suitable for a significant
(although not necessarily large) class of problems and
good compilers can be written for it. However, those
are only the most obvious attributes, and underneath
them lie a number of other factors, not all of them
based on facts. For example, the psychological issue of
snob appeal is more important than many people might
think. Thus, the personal prestige and leadership (or
lack thereof) of those individuals who are involved in
the development of a language play an enormous role.

Some languages clearly create a spark, which causes
the languages to become popular--sometimes to a level
of fanaticism--regardless of the difficulties. This is
equivalent to the "political charisma" which often af-
fects election results. The best example of languages
which inspire some people are ALGOL and APE\360; on
the other hand neither BASIC (at the small end) nor
PL/I (at the large end) generates as much personal
enthusiasm by the users. It is hard to pinpoint the rea-
sons for lack of charisma in a language, and it has very
little to do with the actual use. For example, BASIC and
COBOL are very widely used languages, but I doubt
whether many people are personally enthusiastic about
either of them.

In summary, there are really two major reasons for a
language to be considered significant: one is that it is
economically practical and hence very useful, and the
other is that it is technically new. In the next section, I
have used both criteria. There doesn't seem to be any
language which met both at its inception; this is not
surprising.

2.4 Major Languages
In one sense, the items on a list of the major pro-

gramming languages are obvious to almost everyone;

603

however, in reality it is unlikely that any two people
would agree on what the list should contain! Speaking
purely as an individual, and with due concern for my
prejudices, I wish to indicate the languages which I con-
sider of major significance, along with the reasons for
their importance.

Note that importance and wide use are not the same;
several of the languages on the list have been used only
by a relatively small number of people, or they have
been implemented on only one computer.

In approximate chronological order the languages
of major significance are:

APT. The first language for a specialized application
area.

FORTRAN. The first higher level language to be widely
used. It opened the door to practical usage of computers
by large numbers of scientific and engineering personnel.

FLOWMATIC. The first language suitable for business
data processing and the first to have heavy emphasis
on an "English-like" syntax.

IPL-V. The first--and also a major--language for
doing list processing.

COMIT. The first realistic string handling and pattern
matching language; most of its features appear (al-
though with different syntax) in any other language
attempting to do any string manipulation.

COBOL. One of the most widely used languages on an
absolute basis, and the most widely used for business
applications. Technical attributes include real attempts
at an English-like syntax and at machine independence.

ALGOL 60. Introduced many specific features in an
elegant fashion, and combined with its formal syntactic
definition, inspired most of the theoretical work in pro-
gramming languages and much of the work on imple-
mentation techniques. More widely used in Europe than
in the United States.

LISP. Introduced concepts of functional programming
combined with facility for doing list processing. Used
by many of the people working in the field of artificial
intelligence.

JOVIAL. The first language to include adequate capa-
bility for handling scientific computations, input/out-
put, logical manipulation of information, and data
storage and handling. Most JOVIAL compilers were
written in JOVIAL.

GPSS. The first language which made simulation a
practical tool for most people.

JOSS. The first interactive language; it spawned a
number of dialects which collectively helped to make
time-sharing practical for computational problems.

FORMAC. The first language to be used fairly widely
on a practical basis for mathematical problems needing
formula manipulation.

APE\360. Provided many higher level operators,
which permitted extremely short algorithms and caused
new ways of looking at some problems.

The prime characteristic of this list of major lan-
guages is that each language is unique in some way; put

Communications July 1972
of Volume 15
the ACM Number 7

another way, each language is independent of any other
on the list (except COBOL which drew heavily on FLOW-
~ATIC experience). Furthermore, each was apparently
developed independently of any other, although each
developing group was (presumably) aware of the other
languages existing at the time of the development. Some
other languages are now more widely used or more
comprehensive than those on the list, specifically BASIC,
PL//I, SIMSCRIPT, and SNOBOL. In many cases, they have
almost completely replaced some of the languages on
the list (e.g. BASIC for JOSS and its derivatives, SNOBOL
for COMIT). The four "obvious candidates" cited above
are omitted for the following reasons: BASIC, although
simple and economical, added no new concepts, was
not the first on-line language, and was not the first to be
of major practical importance. PL/I has capabilities
derived from FORTRAN, COBOL, and ALGOL but has not
(yet ?) succeeded in one of its implicit objectives which
was to replace these languages; it was preceded by
JOVIAL in the attempt to combine capabilities for several
application areas. SIMSCRIPT built on all the previous
discrete simulation languages. SNOBOL was a good but
fairly obvious improvement to the concepts introduced
in COMiT.

3. Chronological Development

In the first part of this section the major earlier
periods of time are delineated and their language high-
lights indicated. This spotlights and supplements in-
formation appearing in the chart. The second part of
this section recognizes that in the field of programming
languages there are key concepts which are different
from the mere development of languages. The third part
of this section discusses the languages and topics which
are of current interest and activity.

3.1 Major Periods of Earlier Time
3.1.1 Earliest Years: 1952-1956. This period was a

time of preliminary groping and of attempting to under-
stand the concepts and limitations of programming
languages. The terms pseudo-code, automatic coding,
automatic programming, compiler, and interpreter were
common. In today's terminology, pseudo-code merely
means a language other than the normal machine code,
automatic coding was the general process of writing in a
higher level language, and automatic programming was
intuitively felt to be something higher than automatic
coding. It is interesting to note that the term automatic
programming is coming back into vogue after many
years of dormancy, but with a somewhat wider meaning.

Of all the languages developed in this time period,
only FORTRAN (intended for numerical computation)
and APT (for machine tool control) have lasted till
today, and both have undergone numerous revisions.

3.1.2 Milestone Meeting: 1956. The first major meet-
ing held solely to discuss higher level languages--or

604

automatic coding as the subject was referred to then--
was at the Franklin Institute in 1956. At the time of this
meeting, the battle for the use of higher level languages
was by no means won. No systems were in wide use;
FORTRAN had not been released (in fact it was not dis-
cussed at the meeting, althoug]h it was presented at the
1957 Western Joint Computer Conference). FLOWMAT1C
was in use in essentially its prototype form by (only)
one company. The other systems were essentially being
used only by their developers.

At this meeting at the Franklin Institute, the follow-
ing languages were described and presented:

B-0 (FLOWMATIC). The first English-like language
for business data processing problems. Planned and
implemented (only) on the UNIVAC I.

PRINT I. Really a powerful three address pseudo-
code, but of significance because it provided capabili-
ties for mathematical problems on a machine which was
basically designed for business data processing, namely
the IBM 705.

Ot, INICODE. Really a type of assembly language in
spirit and format but with powerful operations for
scientific and commercial computation. Designed for
the IBM 650 and 702 with a strong concern for conver-
sion potential.

IT. A language for mathematical problems which was
awkward in notation because of the limited character
set of its intended machine, the IBM 650. Significant be-
cause it was intended for use on a small machine.

Matrix Compiler. A higher level language contain-
ing operations for doing matrix computations. De-
signed for the UNIVAC I. Significant because it is one of
the first languages for specialized application areas
(considering matrix manipulation as a specialized area).

NCR 304. This is obviously a machine and not a
language. It is significant because it was apparently
the first attempt to develop a computer which would
make "automatic coding" unnecessary because the
order code was at high enough level. (Although the
machine was apparently a success, it did not eliminate
higher level languages.)

3.1.3 Most Prolific Years: 1958-1959. It seems clear
that the two most significant years in the history of
programming languages are 1958 and 1959. The follow-
ing events all occurred during that period:
1. The development and publishing of the IgL (Inter-
national Algebraic Language) report, which became
known as ALGOL 58.
2. The development of three languages based on the
IgL specifications, namely NELIAC, MAD, and CLIP (which
eventually was the foundation for JOVIAL). NELIAC,
MAD, and JOVIAL were in use at least as late as 1971,
with the latter primarily used in military applications.
3. The presentation to the 1959 UNESCO meeting of
J. Backus' formalism for describing ALGOL [5]. This was
the foundation for much of the theoretical work done
in programming languages since then.
4. The formation in May 1959 of the CODASYL Short

Communications July 1972
of Volume 15
the ACM Number 7

Languages from 1960 Tower of Babel
Cover of Communications ol the
ACM, Vol. 4, No. 1, January 1961.t

Languages from 1967 Tower of Babel
End paper in Programming Lan-
guages: History and Fundamentals,
J.E. Sammet, Prentice-Hall, Inc.,
1969.tf

ABC
ACT
ADES II
AIMACO
A L G O

*ALGOL
ALTAC
ALTRAN
API
APS
APS III

*APT
APX III
ARGUS
BACAIC
B A L G O L
BIOR
CAGE
CL-I
CLIP

*COBOL
COLASL

*COMIT
COMMERCIAL TRANSLATOR
FACT
FLEXIMATIC
FLIP
FLOWMATIC
FORAST

*FORTRAN
FORTRAN II
F O R T R A N III
FORTRANSIT
GAT
GOOFUS
GP
IPL

*IPL V
IT
IVY

*LISP
*MAD
*MADCAP
MAGIC
MATHMATIC
MCP
MISHAP
MYSTIC

*NELIAC
NUIT
9 PAC
PACT I
PRINT
SALE
SAP
S H A D O W III
SLANG
SMAC
SOAP
SOS
STRAP I
STRAP II
SURGE
TAC
T H R E A D E D LISTS
TRIE
UNCOL
UNICODE
USE
VIPP
X1
X2
XTRAN

A-2 & A-3
ADAM
AED
AESOP
A I M A C O

*ALGOL
ALGY
A L T R A N
AMBIT
AMTRAN
Animated Movie
APL
APL\360

* APT
BACAIC
BASEBALL
BASIC
BUGSYS
C-10
CLIP
CLP

*COBOL
COGENT
C O G O
COLASL
COLINGO

*COMIT
Commercial Translator
Computer Compiler
Computer Design
CORAL
CORC
CPS
Culler-Fried
DAS
DATA-TEXT
D E A C O N
D I A L O G
D I A M A G
DIMATE
DOCUS
DSL/90
DYANA
D Y N A M O
DYSAC
English
Extended A L G O L
FACT
FLAP
FLOW-MATIC
F O R M A C
Formula A L G O L

*FORTRAN
FORTRANSIT
FSL
GAT
GECOM
GPL
GPSS
GRAF
Graphic
ICES
IDS
Information Algebra

* IPL-V
IT •
JOSS
JOVIAL
Klerer-May
L e
Laning and Zierler
LDT
Lincoln Reckoner

*LISP 1.5
LISP 2
LOLITA
LOTIS

*MAD
*MADCAP
Magic Paper
MAP
MATHLAB
MATH-MATIC
Matrix Compiler
META 5
MILITRAN
MIRFAC

*NELIAC
OCAL
OMNITAB
OPS
PAT
PENCIL
P L / I
PRINT
Proposal Writing
Protosynthex
473L Query
Q U I K T R A N
SFD-ALGOL
Short Code
SIMSCRIPT
SIMULA
Simul. Dig. Syst.
SNOBOL
SOL
Speedcoding
SPRINT
STRESS
STROBES
Symbolic Math. Lab.
T M G
TRAC
T R A N D I R
TREET
UNCOL
UNICODE

* T h e s e I 0 l a n g u a g e s a r e t h e o n l y o n e s
a p p e a r i n g in a l l t h r e e l is ts . I n t h e c a s e o f
A L G O L , C O M I T , F O R T R A N , a n d L I S P ,
t h e s a m e v e r s i o n n u m b e r d o e s n o t s h o w
a n d / o r a p p l y o n a l l t h r e e l is ts , b u t t h e r e is
e n o u g h s i m i l a r i t y t o j u s t i f y c o n s i d e r i n g
t h e m as c o m m o n t o a l l t h r e e l is ts .

t S o m e i t e m s in t h i s t o w e r a r e n o t
r e a l l y l a n g u a g e s b u t h a v e b e e n i n c l u d e d to
p r o v i d e a c o m p l e t e l is t o f t h e t o w e r c o n -
t en t s .

t t S o m e o f t h e s e l a n g u a g e s w e r e o n l y
c o n s i d e r e d o f h i s t o r i c a l i n t e r e s t in 1 9 6 7
a n d w e r e n o t in u s e a t t h a t t i m e .

Languages in 1971 Roster
?rom "Roster of Programming Lan-
,mages," J.E. Sammet, Computers
~nd Automation, Vol. 20, No. 6B,
Iune 1971.

ACTIVE L A N G U A G E I
AED
AESOP
AIDS
ALADIN

*ALGOL 60
ALGOL 68
ALTRAN
AMBIT
AMTRAN
A n i m a t o r
APAREL
APDL
APL\360

~APT
Ariel
ATLAS
ATOLL
B-LINE
BALM
BASIC
BCPL
BLISS
BRUIN
BUGSYS
CAMAL
CATO
CCL
CESSL
CHAMP

*COBOL
COGENT
COGO
COIF

*COMIT I I
Computer Animation Language
Computer Design Language
COMSL
COMTRAN
CORAL
CSS/II
Coursewrlter
Coursewriter I I I
CPS
CSMP
CSSL
CTL
CUPL
Cypher Text
DARE
dataBASIC
D a t a Structures Language
DATA-TEXT
DCDL
DG L
DIALOG
DIMATE
DML
DSL
DYNAMO I I
ECAP II
ELP
EOL-3
ETC
EULER
Extended ALGOL
FLAP
FOIL
FORMAC
FORMAL

*FORTRAN
FSL
GAN
GASP
GEA
G E D A N K E N
General Purpose Graphic Language

GPSS
GRAF
GRAIL
Graphic Language
GRIND
H I N T
IAM
ICES
IDS
I ITRAN
IMP

* IPL-V
JOSS
JOVIAL
Klerer-May
L e
LEAF
LEAP
Lincoln Reckoner

*LISP 1.5
LISP A
Logic Design Language
Logo
LPL
LRLTRAN
LSYD
MAC-360
MACSYMA

*MAD
*MADCAP
MARSYAS
MATHLAB 68
McG360
MENTOR
META 5
MOBSSL-UAF
NAPSS

*NELIAC
NPPL
NUCLEOL
OLDAS
OMNITAB II
OSCAR
PAL
PDEL
PIRL
PL/ I
PL/I-FORMAC
PLACE
PLANIT
PLANNER
PPL
PREP
PROTEUS
REDUCE
REF-ARF
REL English
RTL
RUSH
SALEM
SCRATCHPAD/1
SCROLL
SIMSCRIPT 1.5
SIMSCRIPT I I
SIMULA
SLANG
SNAP
SNOBOI.A
SPEAKEASY
SPRINT
STIL
STRESS
STROBES
STRUDL
SYMBAL
TCL
TERMAC

TMG
TPS
TRAC Language
T R A N Q U I L
TRANS
TREET
TROLL
VULCAN
WRITEACOURSE
XPL

Range Committee (later renamed the COBOL commit-
tee) and the completion of the specifications by Decem-
ber 1959 (although they were not published until
1960).
5. The development and availability of language speci-
fications for AIMACO, Commercial Translator, and
FACT.
6. The start of work on the development of LISP in
1959.
7. The first implementation of COMIT; (a brief de-
scription of the language appeared as early as Decem-
ber 1957).
8. The start of work on JOVIAL in 1959.
9. The availability of a running version of IPL-V in
early 1958 on the IBM 650; a new version was opera-
tional on the IBM 704 at the end of the summer in 1959.
10. The development of a second version of APT, namely
APT IX for the IBM 704. (See also item 11.)
11. The development of several (other) languages for
specialized areas, e.g. DYANA (1958); DYNAMO (1959);
work started on A~.D (1959).

3.1.4 1960-1970. This decade saw a maturation of the
programming language field. During this time the
battle over the use of higher level languages was clearly
won in the sense that machine coding had become the
exception rather than the rule. Even the development
of systems programs using higher level languages is
fairly well accepted [3]. The use of powerful macro
systems, e.g. ~.TC [7] and "half way" languages such
as rL/360 [22] provided some of the advantages of
higher level languages but without any attempt to be
machine-independent.

The major new languages were ALGOL, COBOL, and
PL/I, of which only the last two were significantly used
in the United States. While ALGOL 68 was defined, its
implementation was just starting around 1970.

The advent of time-sharing brought a host of on-
line languages, starting with joss and later followed by
BASIC, which became very widely used. Each had many
imitators and extenders. APL\360, made available late
in the 1960s, became popular among certain specific
groups.

The development of higher level languages for use
in formula manipulation was triggered by FORraAC and
Formula ALGOL, although only the first has been widely
used. String processing and pattern matching became
popular with the advent of SNOBOL.

The simulation languages GPSS and SIMSCRIPT made
this tool available to most users and also encouraged
the development of other simulation languages.

A number of languages for specialized application
areas continued to be developed. See [14, 18] for more
information on this.

Perhaps one of the most important practical devel-
opments, although scorned by many theoreticians, was
the development of official standards for FORTRAN and
COBOL, and the start of standardization for PL/I.

3.2 Key Concepts Related to Programming Languages
To review the work of 20 years in programming

languages requires the separation of the historical
development of specific languages from the develop-
ment of certain concepts which can affect all program-
ming languages. In this context, these concepts are
entirely different from concepts in the language. In
approximately chronological order, I consider the
major conceptual developments to be: (1) formal syn-
tactic notation, (2) formal semantic definitional tech-
niques, (3) attempts at designing machines whose in-
struction code is a higher level language, and (4) user
defined languages. The reasons for their importance
are indicated below. I have not listed either the con-
cept of a higher level language or the concept of a com-
piler because they are so basic they can be taken for
granted .2

The idea of a formal syntactic notation for a pro-
gramming language was introduced in 1959 by Backus
[5]. It is important to note that BNF is merely one mani-
estation of a formal syntactic notation and not the
only one; e.g. the definition of COBOL uses a different
but equally valid metalanguage, although this fact is
often not realized or it is ignored. The significance of
a formal syntactic notation is threefold:
1. It provides a rigorous way of defining the syntax
of a language and eliminating the annoying ambigui-
ties of sentences such as "a name contains six charac-
ters and both the first and last character cannot be a
hyphen."
2. It provides the link between the practical concerns
in the programming language field and the theoretical
work done by linguists, most notably N. Chomsky.
This permits application of linguistic concepts and tech-
niques to programming languages. Although BNF was
developed independently by Backus, it is really one of
Chomsky's grammars with a different notation.
3. It led to the development of syntax directed com-
pilers, which in turn gave rise to a more theoretical
study of compilation techniques and the possibility of
a "production line approach" to developing new com-
pilers.

Formal semantic definitional techniques represent
considerably more than just the next step beyond the
formal syntactic definition. While much of the original
concept was based on work of McCarthy [I0], the first
actual development of the formal semantic definition
of a major language was done by the IBM Vienna Lab-
oratory [9]. The monumental size of the formal defi-
nition of PL/I precludes it from .being of current prac-
tical use. However, it is a major conceptual part of a
currently unsolved problem in all of programming
which is how to determine whether a program does
what we want it to do. Enormous progress is being

2 The concept of list processing does not appear here because it
is fundamentally a programming technique which has been repre-
sented or included in languages. Also there is no discussion of the
major concepts in implementation.

607 Communications July 1972
of Volume 15
the ACM Number 7

made in this area (see for example [1]), and there are
two facets of concern to programming languages: to
make sure the compilers translate correctly and to
see what must be done to guarantee the correctness of
a source program. Formal semantic techniques give a
handle on solutions to both these problems.

The attempt at designing computers whose instruction
code is a higher level language is a significant concept--
although not yet achieved--because the whole field of
programming languages is a clear manifestation that
all the computers designed to date are unsatisfactory
verbal communication devices. In other words, we have
not solved the problem of how to bridge the gap be-
tween what the person wants to say about solving his
problem and the physical circuits in the machine.

User defined languages have been an area of interest
for many years. Only a few primitive attempts have
been made; they are described briefly in [18]. Allow-
ing people to define their own languages is a significant
concept because it takes the control of "what is good
for the user" out of the hands of language developers
and puts it in the hands of the users.

3.3 Current Status and Topics
To sensibly look forward after looking backward

we must first see where we are today. This section at-
tempts to pinpoint what seems to be the current status
and major topics in programming languages in 1972
(exclusive of implementation). The potential effect of
these on the future will be discussed in Section 4.

Debates on specific current languages continue,
with the most frequent arguments occurring about
PL/I, ALGOL 68, and APL\360. The fact that the bulk
of programming is done in languages other than these
does not inhibit the debate about them. The argu-
men t s -a t least in public--tend to come more from
language developers and theoreticians than from the
users. The latter continue to be (rightly) concerned
about issues of cost effectiveness and compatibility
and hence tend to stay with FORTRAN and COBOL.

The most astounding fact is that the proliferation
of languages continues. There is no evidence that
fewer languages are being created. The new languages
that have been developed and/or used in the United
States during the last few years are shown in Sammet
[15, 16, 19].

Extensible languages--at least among researchers--
continue to be of interest, but without anything of
major significance to show for the years of work which
have been involved. Contrast the contents of [4] with
those of [2].

Proving correctness of programs is a topic receiving
increased attention as evidenced by [l]. This concept
is directly related to programming languages because
most of the techniques being suggested involve changes
or additions to programming languages, or the inser-

608

tion of completely different kinds of statements in
source programs to enable correctness proofs to
operate.

The use of higher level languages for systems pro-
gramming has finally been recognized as being both
legitimate and practical. After almost 15 years of debate
and negative views, an increasing number of systems
programs are actually being written using higher level
languages; they are described in [3]. The arguments
now tend to be centered around which language should
be used rather than whether one should be used.

4. Future Developments

Programming languages---using any definition--
are the primary means by which a person communi-
cates with a computer. Viewed from that perspective,
all future developments should be aimed at making
this communication easier and more cost effective.
Each person doing research and development feels he
has the answer. The real truth seems to be that there
is no single best way for people to communicate with a
computer, and hence no single solution. Thus there will
be no single language useful to everyone.

This section is divided into three areas--broad
concepts, specific techniques, and a brief discussion
about the effect of current education about compu-
ters. Comments on the future of the current topics
discussed in Section 3.3 are included in this section.

4.1 Broad Concepts
The major broad concepts that we should expect to

see in the future are: (1) use of natural language (e.g.
English), (2) user defined languages, (3) nonproce-
dural and problem defining languages, (4) an improve-
ment in the user's computing environment, and (5)
new theoretical developments.

The ultimate ease of communication with the com-
puter allows the user to specify his instructions--or
wishes--in a natural language such as English. That is
a shorthand way of saying that the user could use his
native language, including notation (e.g. algebra,
molecular diagrams) appropriate to his particular field.
This concept does not envision one single computer
system understanding all of English. It does envision
many systems, each of which is capable of dealing with
a particular field, specifically including its specialized
jargon. This is identical in concept to the communica-
tion between people which works fairly well providing
both are in the same field and understand the same
terms. The recognition of the importance of jargon
serves as the main counterargument to the ambiguity
problem which exists primarily across specialized
vocabularies. By envisioning a series of semispecialized
systems, we can eliminate the need for a single giant
computer system which understands all of Webster's
dictionary plus a large encyclopedia.

Communications July 1972
of Volume 15
the ACM Number 7

The arguments for and against this concept have
been presented many times in print. References can
be found in [14, Ch. XI].

Until we reach the ultimate situation described just
above, the next best thing will be user defined languages.
By this we mean (software) systems which permit
users, first, to define languages that fit their own needs
with respect to functional capability, jargon, and per-
sonal tastes in style, and then to easily implement them.
The key part of the problem is to provide a system
which permits easy implementation with an acceptable
level of efficiency. In spite of numerous attempts going
back many years, this development is still in a primitive
stage. References and a further discussion of this can
be found in Sammet [18] and in Thompson and Dostert
[21].

This author has often stated that the term non-
procedural language is a relative term which changes
as the state of the art changes. Thus, as we develop
languages (and compilers for them) which specify
less detailed information, we increase the level of non-
proceduralness. Such a major potential development
can be accomplished either separately or combined
with the user defined languages and/or problem de-
fining languages. Ideally, the user would state only the
definition of his problem and the computer system
would develop the solution. While the day of asking
the computer to "COMPUTE THE PAYROLL FOR MY COM-

PANY" is at least one or two decades in the future, I
believe we will see a large decrease in the amount of
detail a user must provide. More specifically, I expect
more statements about what is to be done and fewer
details on how to do it. There will be compilers which
can effectively determine which of many alternative
algorithms should be used in a given situation. Exam-
ples of this kind of research include ISDOS (Teichroew
and Sayani [20]), NAPSS (Rice [11]), and the goal
oriented PLANNER (Hewitt [8]).

With today's powerful computers, the user's com-
puting environment is large, complex, and needs im-
provement. When the user writes his program he has
just started on the communication problem. He must
now interface with command languages to the oper-
ating system, debug by pouring over cryptic diagnostic
messages received about his errors, and try to deter-
mine his costs in an installation when he doesn't know
who else is using the computer at the same time he is.
In the future when we have practical networks of com-
puters, he may not even know which computer he will
be using! All of these difficulties tend to negate the
advances made in easing the direct statement of the
user's problem, which is represented by the program
in some higher level language. In the present environ-
ment the latter represents only the tip of the iceberg,
and we must certainly make the rest of the iceberg
easier to use.

Virtually everyone agrees that today programming
is an art, not a science. Many--although somewhat

fewer--people would contend that programming can
(and should) be made into a science. I think that this
is feasible, but it requires many theoretical developments.
These range from better methods of defining program-
ming languages, to techniques enabling us to know
whether any program does what we really want, to the
advances in understanding English, which are required
to reach the first stated goal.

4.2 Specific Future Developments
There are a number of specific items on which

comments should be made pertaining to their role in
the future. To a large extent, these parallel the major
topics of interest today.

The use of current languages is not likely to change
drastically for many years. It seems likely that VORTRAN
and COBOL will be with us for at least five and probably
ten more years. The potential standardization of PL/I
will probably wean away some VORTRAN and COBOL
adherents, but by now the investment in the earlier
languages is so large that the advantages of using only
one language for most practical problems cannot
counteract the past history. ALOOL 68 will probably
play the same role that ALGOL 60 did--namely inspire
another round of development of implementation
techniques and devotion to elegance in language with
less concern for the practical world. It seems virtually
certain that ALGOL 68 will not become widely used in
the United States, and probably not elsewhere. APE\360
has fanatic adherents, but in spite of their hopes and
claims it does not seem likely that this language (or
system) will replace all other languages.

For the foreseeable future languages for specialized
application areas will continue to proliferate for reasons
well described in [21]. In essence they indicate that
there will be large economic advantages accruing to a
user from (1) a language which is efficient because it
deals only with matters of direct concern in a particu-
lar application and (2) algorithms which are inherently
known and available within a specific problem domain;
these specialized languages will also continue to in-
crease in number and usefulness as the technology im-
proves in the broad concept of providing techniques
which allow the user to easily define and implement his
own language. As one subclass, the application area
of systems programming will see the continued devel-
opment of improved languages which simultaneously
provide most advantages of a higher level language
with minimum machine dependence.

The development of extensible languages has retro-
gressed, or at best stood still, in the past few years.
For the future I hope--but think it unlikely--that this
area will do another turnaround and become a useful
tool. It should be recognized however that extensible
languages are primarily a means to an end rather than
a goal in themselves. The end which they help achieve
is the ability for people to easily define their own
languages.

6O9 Communications July 1972
of Volume 15
the ACM Number 7

4.3 Effect of Increased Education
Computers are now becoming common- - i f not yet

commonplace-- in high schools, and have become fre-
quent even in elementary schools. To determine the
real effect--both direct and subliminal--of this edu-
cation on the next generation requires a better crystal
ball than this author possesses. However, it would
seem that at the very minimum the following things
will happen: (1) people will grow up recognizing the
computer as a tool for everyone, just as the automobile,
the telephone, and the stove are; (2) more people will
learn to use the computer-- they probably will be
taught languages like BASIC, FORTRAN, and COBOL, even
though these do not represent the best technology we
have for programming; and (3) the use of computers
will increase as the result of more understanding of
what they can be used for.

5. S u mm ary

There have been over 200 higher level languages
developed in the 20 years between 1952 and 1972. Of
these languages, only 13 are deemed of major signifi-
cance from either a conceptual and/or a usage view-
point. The two years 1958 and 1959 were by far the
most significant in the past 20 years, and most of the
programming language activities of 1972 result directly
or indirectly from work done in those two years. Cur-
rent discussions tend to involve PL/I, ALGOL 68, and
APL\360 while most of the productive work is done in
FORTRAN and COBOL. The major topics of 1972 are
extensible languages, proving correctness of programs,
the use of higher level languages for systems program-
ming and the continued proliferation of languages for
specialized application areas. For the future, broad
conceptual developments to be expected include the
use of English for programming, user defined lan-
guages, more nonprocedural and problem defining
languages, improvement of the user's computing en-
vironment, and new theoretical developments. Specific
future developments will most likely include major
continued use of FORTRAN and COBOL, and continued
proliferation of languages for specialized application
areas. The effect of the education about computers
being supplied to high school and elementary school
students will be so profound that a reasonable predic-
tion seems impossible.

References

1o
ACM. Proceedings of an ACM Conference on Proving Assertions

About Programs. SIGPLAN Notices 7, 1 and SIGACT News
14 (Jan 1972).
2.

ACM SIGPLAN. Proceedings of the Extensible Languages
Symposium. SIGPLAN Notices 4, 8 (Aug. 1969).

3.
ACM SIGPLAN. Proceedings of a SIGPLAN Symposium on

Languages for Systems lmplemenJ!ation. SIGPLAN Notices 6,
9 (Oct. 1971).
4.

ACM SIGPLAN. Proc. ACM SIGPLAN Conf. on Extensible
Languages. SIGPLAN Notices 6, 12 (Dec. 1971).
5.

Backus, J.W. The syntax and semantics of the proposed
international algebraic language of the Zurich-ACM-GAMM
Conference. Proc. International Conf. Information Processing,
UNESCO, Paris, 1959, R. Oldenbourg, Munich; Butterworth,
London, 1960, pp. 125-32.
6.

Bemer, R.W. A politico-social histoq~ of ALGOL. In Annual
Review in Automatic Programming, Vol. 5. M. Halpern and
C. Shaw (Eds.), Pergamon Press, New York, 1969, pp.
151-237.
7.

Dickman, B.N. ETC -An extendible macro-based compiler.
Proc. AFIPS 1971 SJCC, Vol. 38, AFIPS Press, Montvale,
N.J. pp. 529-538.
8.

Hewitt, C. Procedural embedding of knowledge in Planner.
Proceedings of Second International Joint Conference on
Artificial Intelligence, British Computer Society, London,
1971, pp. 167-184.
9.

Lucas, P., and Walk, K. On the formal description of PL/I. In
Annual Review in Automatic Programming, Vol. 6, 3.
Pergamon Press, New York, 1969, pp. 105-182.
10.

McCarthy, J. A formal description of a subset of ALGOL. In
Formal Language Description Languages, T.B. Steel Jr. (Ed.),
North-Holland Pub. Co., Amsterdam, 1965, pp. 1-7.
11.

Rice, J.R. On the construction of polyalgorithms for automatic
numerical analysis. In Interactive Systems for Experimental
Applied Mathematics. M. Klerer and J. Reinfelds (Eds.).
Academic Press, New York, 1968, pp. 301-313.
12.

Rosen, S. Programming systems and languages--a historical
survey. In Programming Systems and Languages, S. Rosen
(Ed.), McGraw-Hill, New York, 1967, pp. 3-22.
13.

Rosen, S. Programming systems and languages--some recent
developmens. In Programming Systems and Languages, S.
Rosen (Ed.), McGraw-Hill, New York, 1967, pp. 23-26.
14.

Sammet, J.E. Programming Languages: History and Fundamentals.
Prentice-Hall, Englewood Cliffs, N.J. 1969.
15.

Sammet, J.E. Roster of programming languages, 1970. Computers
and Automation 19, 6B (Nov. 1970), 6-11, 21.
16.

Sammet, J.E. Roster of programming languages, 1971. Computers
and Automation 20, 6B (June 1971), 6-13.
17.

Sammet, J.E. Problems in, and a pragmatic approach to,
programming language measurement. Proc. AFIPS 1971
FJCC, Vol. 39, AFIPS Press, Montvale, N.J., pp. 243-251.
18.

Sammet, J.E. An overview of programming languages for special
application areas. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS
Press, Montvale, N.J., 299-311.
19.

Sammet, J.E. Roster of programming languages--1972. (In
preparation.)
20.

Teichroew, D., and Sayani, H. Automation of system building.
Datamation 17, 16 (Aug. 1971), 25-30.
21.

Thompson, F.B., and Dostert, B.H. The future of specialized
languages. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press,
Montvale, N.J., pp. 313-319.
22.

Wirth, N. PL360, A programming language for the 360 computers.
J. ACM 15, 1 (Jan. 1968), 37-74.

610 Communications July 1972
of Volume 15
the ACM Number 7

