69

THE EARLY HISTORY OF SMALLTALK

Alan C. Kay
Apple Computer
kay2 @apple.com.Intemet#

Abstract

Most ideas come from previous ideas. The sixties, particularly in the ARPA
community, gave rise to a host of notions about “human-computer symbiosis”
through interactive time-shared computers, graphics screens and pointing
devices. Advanced computer languages were invented to simulate complex sys-
tems such as oil refineries and semi-intelligent behavior. The soon to follow para-
digm shift of modern personal computing, overlapping window interfaces, and
object-oriented design came from seeing the work of the sixties as something
more than a “better old thing”. That is, more than a better way: to do mainframe
computing; for end-users to invoke functionality; to make data structures more
abstract. Instead the promise of exponential growth in computing/$/volume
demanded that the sixties be regarded as “almost a new thing” and to find out
what the actual “new things” might be. For example, one would compute with a
handheld “Dynabook” in a way that would not be possible on a shared main-
frame; millions of potential users meant that the user interface would have to
become a learning environment along the lines of Montessori and Bruner; and
needs for large scope, reduction in complexity, and end-user literacy would
require that data and control structures be done away with in favor of a more
biological scheme of protected universal cells interacting only through messages
that could mimic any desired behavior.

Early Smalltalk was the first complete realization of these new points of view
as parented by its many predecessors in hardware, language and user interface
design. It became the exemplar of the new computing, in part, because we were
actually trying for a qualitative shift in belief structures—a new Kuhnian para-
digm in the same spirit as the invention of the printing press—and thus took
highly extreme positions which almost forced these new styles to be invented.

Table Of Contents

Introduction L 2
i. 1960-66—Early oor and other formative ideas of the sixties 4

B220 File System
SketchPad & Simula
I, 1967-69—The FLEX Machine, an oop-based personal computer . . . 6
Doug Englebart and NLS
Plasma Panel, GRAIL, LOGO, Dynabook
M. 1970-72—XeroXPARC i 12
KiddiKomp
miniCOM
Smalltalk-71
Overlapping Windows
Font Editing, Painting, Animation, Music
Byte Codes
{conic Programming
IV. 1972-76—Xerox parc: The first real Smatltalk (-72) 17
The two bets: birth of Smalltatk and Interim Dynabook
Smalltalk-72 Principles
The Smalltalk User Interface
Development of the Smalitalk Applications & System

VSN'YW/€6/b/11-1dOH
‘uoisshusad o14100ds Jo/pue

06} B salinbai ‘Ysygndos o1 10 ‘0SIMIOYI0 Adod 0] -Aloulyoey

0G"1$°"6900/P000/E6/T-L LS-LBLEB-0 WOV €661 o
Bunndwoy 10j uoneRossy ayy Jo uoissiwiad Aq s1 BuiAdoes eyl
uanib s1 son0U pue ‘igadde alep 531 pue uoheoygnd syl jo opn

10} paINquISIp J0 ApPAW Jou 918 $21d0d BY) 18Y) papiAoid pojuriB
S1 Jguajew syl jo ued 1o jje 93) 1noyhm Adod 01 uoissiuayg

oy pue aonou 1YyBuAdod NDY 2yl ‘aBejurApe |81210WWI0D 12011P

Alan C. Kay, The Early History Of Smailtalk

Evolution of Smalltalk: ST-74, ooze storage management
Smalltalk and Children

V. 1976-80—The first modern Smalltalk (-76) 29

“Let's burn our disk packs”

The Notetaker

Smalltalk-76

Inheritance

More Troubles With Xerox

ThingLab

Apple Demo
VI. 1980-83—The release version of Smalitalk (-80)38

Transformations

Coda
ReferencesCltedinText 41
Appendix I: KiddiKompMemo 45
Appendix ll: Smalltalk-72 InterpreterDesign 47
Appendix lll: Acknowledgements 50
Appendix IV: Event Driven LoopExample 53
Appendix V: Smalitaik-76 Internal Structures 54

~—To Dan Ingalls, Adele Goldberg
and the rest of the Xerox PARC LRG
gang

—To Dave Evans, Bob Barton,
Marvin Minsky, and Seymour
Papert

—To SKETCHPAD, JOSS, LISP, and
SIMULA, the 4 great programming
conceptions of the sixties

Introduction

I'm writing this introduction in an airplane at 35,000 feet. On my lap is a five pound note-
book computer—1992's "Interim Dynabook"—by the end of the year it sold for under $700. It
has a flat, crisp, high-resolution bitmap screen, overlapping windows, icons, a pointing device,
considerable storage and computing capacity, and its best software is object-oriented. It has
advanced networking built-in and there are already options for wireless networking.
Smalltalk runs on this system, and is one of the main systems I use for my current work with
children. In some ways this is more than a Dynabook (quantitatively), and some ways not
quite there yet (qualitatively). All in all, pretty much what was in mind during the late sixties.

Smalltalk was part of this larger pursuit of ARPA, and later of Xerox PARC, that I called person-
al computing. There were so many people involved in each stage from the research communi-
ties that the accurate allocation of credit for ideas is intractably difficult. Instead, as Bob Barton
liked to quote Goethe, we should “share in the excitement of discovery without vain attempts
to claim priority”.

I will try to show where most of the influences came from and how they were transformed
in the magnetic field formed by the new personal computing metaphor. It was the attitudes as
well as the great ideas of the pioneers that helped Smalltalk get invented. Many of the people I
admired most at this ime—such as Ivan Sutherland, Marvin Minsky, Seymour Papert, Gordon
Moore, Bob Barton, Dave Evans, Butler Lampson, Jerome Bruner, and others—seemed to have
a splendid sense that their creations, though wonderful by relative standards, were not near to
the absolute thresholds that had to be crossed. Small minds try to form religons, the great ones
just want better routes up the mountain. Where Newton said he saw further by standing on
the shoulders of giants, computer scientists all too often stand on each other’s toes. Myopia is
still a problem when there are giants’ shoulders to stand on—"outsight” is better than
insight—but it can be minimized by using glasses whose lenses are highly sensitive to esthet-
ics and criticism.

Programming languages can be categorized in a number of ways: imperative, applicative,
logic-based, problem-oriented, etc. But they all seem to be either an “agglutination of features”
or a “crystalization of style”. COBOL, PL/1, Ada, etc., belong to the first kind; Lisp, ApL—and
Smalltalk—are the second kind. It is probably not an accident that the agglutinative languages

£661 YR € "ON ‘8T SWNIOA ‘SIODON NVIdDIS WOV

0L

Aldil . Ady, 1Ne carly rislory Ui Smaitalk 3
all'seem to have been instigated by committees, and the crystalization languages by a single person.

Smalltalk’s design—and existence—is due to the insight that everything we can describe can be
represented by the recursive composition of a single kind of behavioral building block that hides its
combination of state and process inside itself and can be dealt with only through the exchange of
messages. Philosophically, Smalltalk’s objects have much in common with the monads of Leibniz and
the notions of 20th century physics and biology. Its way of making objects is quite Platonic in that
some of them act as idealisations of concepts—Ideas—from which manifestations can be created. That
the Ideas are themselves manifestations (of the Idea-Idea) and that the Idea-Idea is a-kind-of
Manifestation-Idea—which is a-kind-of itself, so that the system is completely self-describing—
would have been appreciated by Plato as an extremely practical joke [Plato].

In computer terms, Smalltalk is a recursion on the notion of computer itself. Instead of dividing
“computer stuff” into things each less strong than the whole~like data structures, procedures, and
functions which are the usual paraphenalia of programming languages—each Smalltalk object is a
recursion of the entire possibilities of the computer. Thus its semantics are a bit like having thousands
and thousands of computers all hooked together by a very fast network. Questions of concrete repre-
sentation can thus be postponed almiost indefinitely because we are mainly concerned that the com-
puters behave appropriately, and are interested in particular strategies only if the results are off or
come back too slowly.

Though it has noble ancestors indeed, Smalltalk’s contribution is a new design paradigm—which I
called object-oriented~—for attacking large problems of the professional programmer, and making
small ones possible for the novice user. Object-oriented design is a successful attempt to qualitatively
improve the efficiency of modeling the ever more complex dynamic systems and user relationships
made possible by the silicon explosion.

“We would know what they thought
when they did it”
—Richard Hamming

“Memory and imagination are but two
words for the same thing”
—Thomas Hobbes

In this history I will try to be true to Hamming’s request as moderated by Hobbes’ observation. [
have had difficulty in previous attempts to write about Smalltalk because my emotional involvement
has always been centered on personal computing as an amplifier for human reach—rather than pro-
gramming system design—and we haven't got there yet. Though I was the instigator and original
designer of Smalltalk, it has always belonged more to the people who made it work and got it out the
door, especially Dan Ingalls and Adele Goldberg. Each of the LRGers contributed in deep and remark-
able ways to the project, and T wish there was enough space to do them all justice. But I think all of
us would agree that for most of the development of Smalltalk, Dan was the central figure.
Programming is at heart a practical art in which real things are built, and a real implementation thus
has to exist. In fact many if not most languages are in use today not because they have any real merits
but because of their existence on one or more machines, their ability to be bootstrapped, etc. But Dan
was far more than a great implementer, he also became more and more of the designer, not just of the
language but also of the user interface as Smalltalk moved into the Ppractical world.

Here, I will try to center focus on the events leading up to Smalltalk-72 and its transition to its
modern form as Smalltalk-76. Most of the ideas occured here, and many of the earliest stages of oop
are poorly documented in references almost impossible to find.

This history is too long, but I was amazed at how many people and systems that had an influence
appear only as shadows or not at all. I am sorry not to be able to say more about Bob Balzer, Bob
Barton, Danny Bobrow, Steve Carr, Wes Clark, Barbara Deutsch, Peter Deutsch, Bill Duvall, Bob
Flegal, Laura Gould, Bruce Horn, Butler Lampson, Dave Liddle, William Newman, Bill Paxton,
Trygve Reenskaug, Dave Robson, Doug Ross, Paul Rovner, Bob Sproull, Dan Swinehart, Bert
Sutherland, Bob Taylor, Warren Teitelman, Bonnie Tennenbaum, Chuck Thacker, and John Warnock.
Worse, I have omitted to mention many systems whose design I detested, but that generated consid-
erable useful ideas and attitudes in reaction. In other words “histories” should not be believed very
seriously but considered as “FEEBLE GESTURES OFF” done long after the actors have departed the stage.

Thanks to the numerous reviewers for enduring the many drafts they had to comment on. Special
thanks to Mike Mahoney for helping so gently that I heeded his suggestions and so well that they

A v Ay, GG CSally Olsny vt Dilianiain 4
greatly improved this essay—and to Jean Sammet, an old old friend, who quite Titerally Frightened
me into finishing it—I did not want to find out what would happen if I were late. Sherri McLoughlin
and Kim Rose were of great help in getting all the materials together.

l. 1960-66—Early oop and other formative ideas of the sixties

Though 0OP came from many motivations, two were central. The large scale one was to find a bet-
ter module scheme for complex systems involving hiding of details, and the small scale one was to
find a more flexible version of assignment, and then to try to eliminate it altogether. As with most
new ideas, it originally happened in isolated fits and starts.

New ideas go through stages of acceptance, both from within and without. From within, the
sequence moves from “barely seeing” a pattern several times, then noting it but not perceiving its
“cosmic” significance, then using it operationally in several areas, then comes a “grand rotation” in
which the pattern becomes the center of a new way of thinking, and finally, it turns into the same
kind of inflexible religon that it originally broke away from. From without, as Schopenhauer noted,
the new idea is first denounced as the work of the insane, in a few years it is considered obvious and
mundare, and finally the original denouncers will claim to have invented it.

True to the stages, I “barely saw” the idea several times ca. 1961 while a programmer in the Air
Force. The first was on the Burroughs 220 in the form of a style for [USAFATE Randopn A
transporting files from one Air Training Command installation to | B220 File Format ca. 1961
another. There were no standard operating systems or file formats
back then, so some (to this day unknown) designer decided to
finesse the problem by taking each file and dividing it into three
parts. The third part was all of the actual data records of arbitrary
size and format. The second part contained the B220 procedures
that knew how to get at records and fields to copy and update the
third part. And the first part was an array of relative pointers into
entry points of the procedures in the second part (the initial point-
ers were in a standard order representing standard meanings).
Needless to say, this was a great idea, and was used in many subsequent systems until the enforced
use of COBOL drove it out of existence.

The second barely-seeing of the idea came just a little later when ATC decided to replace the 220
with a BS000. I didn't have the perspective to really appreciate it at the time, but I did take note of its
segmented storage system, its efficency of HLL compilation and byte-coded execution, its automatic
mechanisms for subrountine calling and multiprocess switching, its pure code for sharing, its protec-
tion mechanisms, etc. And, I saw that the access to its Program Reference Table corresponded to the
220 file system scheme of providing a procedural interface to a module. However, my big hit from
this machine at this time was not the 0oP idea, but some insights into HLL translation and evaluation,
[Barton,1961] [Burroughs,1961]

After the Air Force, I worked my way through the rest of college by programming mostly retrieval
systems for large collections of weather data for the National
Center for Atmospheric Research. I got interested in simulation

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

in general—particularly of one machine by another—but aside L LECLET T X pXvy
from doing a one-dimensional version of a bit-field block trans- e

fer (bitblt) on a CDC 6600 to simulate word sizes of various 1)

machines, most of my attention was distracted by school, or I 434

should say the theatre at school. While in Chippewa Falls help- 383f "

ing to debug the 6600, I read an article by Gordon Moore which 3 EEE \\
predicted that integrated silicon on chips was going to exponen- i7of N

tially improve in density and cost over many years [Moore 65]. 812 AN

At that time in 1965, standing next to the room-sized freon- 1974}

cooled 10 M 6600, his astounding predictions had little projec-
tion into my horizons.

Gordon Moorse's “Law"

Sketchpad and Simula

Through a series of flukes, I wound up in graduate school at the University of Utah in the Fall of
1966, "knowing nothing”. That is to say, I had never heard of ARPa or its projects, or that Utah's main
goal in this community was to solve the “hidden line” problem in 3D graphics, until 1 actually

1L

walked into Dave Evans’ office looking for a job and a desk. On Dave’s desk was a foot-high stack of
brown covered documents, one of which he handed to me: “Take this and read it”. _

Every newcomer got one. The title was “Sketchpad: A man-machine giaphical communication sys-
tem“{Sutherland, 1963]. What it could do was quite remarkable, and completely foreign to any use of
a computer I had ever encountered. The three big ideas that were easiest to grapple with were: it was
the invention of modern interactive computer graphics; things were described by making a “master
drawing” that could produce “instance drawings”; control and dynamics were s?pplied by “con-
straints”, also in graphical form, that could be applied to the masters to shape and inter-relate parts.
Its data structures were hard to understand—the only vaguely familiar construct was the embedding
of pointers to procedures and using a process called reverse indexing to jump thougﬁ the{n to rou-
tines, like the 220 file system[Ross,1961). It was the first to have clipping and zooming windows—
one “sketched” on a virtual sheet about 1/3 mile square!

D DO

Constraints
é w0 s 4w oo s e representad
o O ==
v e '’ owcmu
o O :
€t s - ¢ et cwng merged
th with pictura]
o §
When thers was only one personal compuler] &t b, i [Prcgramming With cons(raimsl
Ivan at the TX-2 ca. 1962 { Drawing in Skeichpad i
GE:! . PN KT TR
E;.:j.- 21 WHO__| e .
[rart x|
| N— < TYPEWRITER (000

e
SBROLT g ERTT DI
(Hi o 7| Keie

[CET TR oRaTior | vt

NS sn

WOwN, P [me
FOR (PONRIS e
-

PUT YN LASY

. *generic block™ showing
l Sketchpad Structures I procedural attachment

ketchpad's “inheritance”
hiararchy

Head whirling, I found my desk. On it was a pile of tapes and listings, and a note: “This is the
Algol for the 1108. It doesn’t work. Please make it work.” The latest graduate student gets the latest
dirty task.

'It‘{\e documentation was incomprehensible. Supposedly, this was the Case-Western Beserve 1107
Algol—but it had been doctored to make a language called Simula; the documenténon read like
Norwegian transliterated into English, which in fact it was. There were uses of words like activity and
process that didn’t seem to coincide with normal English usage.)

Finally, another graduate student and I unrolled the program listing 80 feet down the hall apd
crawled over it yelling discoveries to each other. The weirdest part was the storage allocator, which
did not obey a stack discipline as was usual for Algol. A few days later, that provided the clue. lelat
Simula was allocating were structures very much like the instances of Sketchpad. There were descn;?-
tions that acted like masters and they could create instances, each of which was an independent enti-
ty. What Sketchpad called masters and instances, Simula called activities and procgsses. Mpreover,
Simula was a procedural language for controlling Sketchpad-like objects, thus having considerably
more flexibility than constraints (though at some cost in elegance) [Nygaard,1966, l’_\Iygaard, 19§3].

This was the big hit, and I've not been the same since. I think the reason the hit had s.u.ch impact
was that I had seen the idea enough times in enough different forms that the final recognition was in
such general terms to have the quality of an epiphany. My math major had centered on abstract alge-

s e ey e iy 4 oaeny =t e °
bras with their few operations generally applying to many structures. My biology major had focused
on both cell metabolism and larger scale morphogenesis with its notions of simple mechanisms con-
trolling complex processes and one kind of building block able to differentiate into all needed build-
ing blocks. The 220 file system, the BS000, Sketchpad, and finally Simula, all used the same idea for
different purposes. Bob Barton, the main designer of the BS000 and a professor at Utah had said in
one of his talks a few days earlier: “The basic principle of recursive design is to make the parts have
the same power as the whole”. For the first time I thought of the whole as the entire computer and
wondered why anyone would want to divide it up into weaker things called data structures and pro-
cedures. Why not divide it up into little computers, as time-sharing was starting to? But not in
dozens. Why not thousands of them, each simulating a useful structure?

I recalled the monads of Leibniz, the “dividing nature at its joints” discourse of Plato, and other
attempts to parse complexity. Of course, philosophy is about opinion and engineering is about deeds,
with science the happy medium somewhere in between. It is not too much of an exageration to say
that most of my ideas from then on took their roots from Simula—but not as an attempt to improve
it. It was the promise of an entirely new way to structure computations that took my fancy. As it
turned out, it would take quite a few years to understand how to use the insights and to devise effi-
cient mechanisms to execute them.

I. 1967-69—The FLEx Machine, a first attempt at an oop-based personal computer

Dave Evans was not a great believer in graduate school
as an institution. As with many of the ARPA “contractors”
he wanted his students to be doing “real things”; they
should move through graduate school as quickly as possi- .
ble; and their theses should advance the state of the art. :
Dave would often get consulting jobs for his students, and
in early 1967, he introduced me to Ed Cheadle, a friendly
hardware genius at a local aerospace company who was
working on a “little machine”. It was not the first personal
computer—that was the LINC of Wes Clark—but Ed want-
ed it for noncomputer professionals, in particular, he want-
ed to. program it in a higher level language, like Basic. I
said: “What about Joss? It’s nicer.” He said: “Sure, whatev-
er you think”, and that was the start of a very pleasant col-
laboration we called the FLEX machine. As we got deeper into the design, we realized that we wanted
to dynamically simulate and extend, neither of which Joss (or any existing language that I knew of)
was particularly good at. The machine was too small for Simula, so that was out. The beauty of joss
was the extreme attention of its design to the end-user—in this respect, it has not been
surpassed(Joss, 1964, Joss,1978]. Joss was too slow for serious computing (but ¢f. Lampson 65), did not
have real procedures, variable scope, and so forth, A language that looked a little like joss but had
considerably more potential power was Wirth’s EULER[Wirth 1966). This was a generalization of Algol
along lines first set forth by van Wijngaarden [van Wijngaarden 1963] in which types were discarded,
different features consolidated, procedures were made into first class objects, and so forth. Actually
kind of Lislike, but without the deeper insights of Lisp.

But EULER was enough of “an almost new thing” to suggest that the same techniques be applied to
simplify Simula. The EULER compiler was a part of its formal definition and made a simple conversion
into B5000-like byte-codes. This was appealing because it suggested that Ed’s little machine could
run byte-codes emulated in the longish slow microcode that was then possible. The EULER compiler
however, was torturously rendered in an “extended precedence” grammar that actually required
concessions in the language syntax (e.g. “,” could only be used in one role because the precedence
scheme had no state space). I initially adopted a bottom-up Floyd-Evans parser (adapted from Jerry
Feldman'’s original compiler-compiler [Feldman 1977)) and later went to various top-down schemes,
several of them related to Shorre’s META n[Shorre 1963] that eventually put the translater in the name
space of the language.

The semantics of what was now called the FLEX language needed to be influenced more by Simula
than by Algol or EULER. But it was not completely clear how. Nor was it clear how the user should
interact with the system. Ed had a display (for graphing, etc.) even on his first machine, and the LINC

/1

"The LINCwas early and small*
Wes Clark and the LINC, ca 1962

A

Alan C. Kay, The Early History Of SmaiRtalk 7
had a “glass teletype”, but a Sketchpad-like system seemed far béyond the scope that we could
accomplish with the maximum of 16k 16-bit words that our cost budget allowed.

Doug Engelbart and NLS

Thus was in early 1967, and while we were pondering
the FLEX machine, Utah was visited by Doug Engelbart. A
prophet of Biblical dimensions, he was very much one of
the fathers of what on the FLEX machine I had started to F*
call “personal computing”. He actually traveled with his .-
own 16mm projector with a remote control for starting
and stopping it to show what was going on (people were
not used to seeing and following cursors back then). His
notion of the ARPA dream was that the destiny of oNLine
Systems (NLS) was the “augmentation of human intel-
lect” via an interactive vehicle navigating through
“thought vectors in concept space”. What his system
could do then—even by today’s standards—was incredi-
ble. Not just hypertext, but graphies, multiple panes, effi-
cient navigation and command input, interactive collabo-
rative work, etc. An entire conceptual world and worid
view(Engelbart 68]. The impact of this vision was to pro-
duce in the minds of those who were "eager to be aug-
mented” a compelling metaphor of what interactive
computing should be like, and I immediately adopted
many of the ideas for the FLEX machine.

In the midst of the ARPA context of human-~computer
symbiosis and in the presence of Ed’s “little machine”,
Gordon Moore’s “Law” again came to mind, this time s e i
with great impact. For the first time I made the leap of J * am oz -
putting the room-sized interactive TX-2 or even a 10 MIP
6600 on a desk. I was almost frightened by the implica-
tions; computing as we knew it couldn’t survive—the
actual meaning of the word changed—it must have been
the same kind of disorientation people had after reading
Copernicus and first looked up from a different Earth to a
different Heaven.

Instead of at most a few thousand institutional main-
frames in the world—even today in 1992 it is estimated
that there are only 4000 IBM mainframes in the entire
world—and at most a few thousand users trained for
each application, there would be millions of personal
machines and users, mostly outside of direct institutional
control. Where would the applications and training come
from? Why should we expect an applications program-
mer to anticipate the specific needs of a particular one of
the millions of potential users? An extensional system
seemned to be called for in which the end-users would do
most of the taloring (and even some of the direct con-
struction) of their tools. ARPA had already figured this out
in the context of their early successes in time-sharing.
Their larger metaphor of human-computer symbiosis
helped the community avoid makmg a religon of their subgoals and kept them focused on the
abstract holy grail of “augmentation”.

One of the interesting features of NLS was that its user interface was parametric and could be sup-
plied by the end user in the form of a “grammar of interaction” given in their compiler-compiler
TreeMeta. This was similar to William Newman's early “Reaction Handler” [Newman 66} work in

Alan C. Kay, The Early History Ot Smaitalk 8
spedfying interfaces by having the end-user or developer construct through tablet and stylus an
iconic regular expresston grammar with acton procedures at the states (NLS allowed embeddings via
its context free rules). This was attractive in many ways, particularly William’s scheme, but to me
there was a monstrous bug in this approach. Namely, these grammars forced the user to be in a sys-
tem state which required getting out of before any new kind of interaction could be done. In hierar-
chical menus or “screens” one would have to backtrack to a master state in order to go somewhere
else. What seemed to be required were states in which there was a transition arrow to every other
state—not a fruitful concept in formai grammar theory. In other words, a much “flatter” interface
seemed called for—but could such a thing be made interesting and rich enough to be useful?

Again, the scope of the FLEX machine was too small for a miniNLS, and we were forced to find
alternate designs that would incorporate some of the power of the new ideas, and in some cases to
improve them. I decided that Sketchpad’s notion of a general window that viewed a larger virtual
world was a better idea than restricted horizontal panes and with Ed came up with a clipping algo-
rithm very similar to that under development at the same time by Sutherland and his students at
Harvard for the 3D “virtual reality” hetmet project {Sutherland 1968).

Object references were handled on the FLEX machine as a generalization of B5000 descriptors.
Instead of a few formats for referencing numbers, arrays, and procedures, a FLEX descriptor con-
tained two pointers: the first to the “master” of the object, and the second to the object instance (fater
we realized that we should put the master pointer in the instance to save space). A different method
was taken for handling generalized assignment. The B5000 used l-values and r-values[Strachey*]
which worked for some cases but couldn’t handle more complex objects. For example: (53] := 0, ifa
was a sparse array whose default element was 0 would still generate an element in the arrav because
= is an “operator” and a{55] is dereferenced into an i-value before anyone gets to see that the r-value
is the default element, regardless of whether a is an array or a procedure fronting for an array. What
is needed is something like: a(55, =", 0), which can look at all relevant operands before any store 15
made. In other words, := is not an operator, but a kind of a index that can select a behavior from a
complex object. It took me a remarkably long time to see this, partly I think because one has to invert
the traditional notion of operators and functions, etc., to see that objects need to privately own all of
their behaviors: that objects are a kind of mapping whose values are its behaviors. A book on logic by

4
-

FLEX User intertace
“Files" a3 suspended processes (Ka &9y

The FLEX Machine Self Portrait, ca 1968 (ka e3]

on_samn 1 bucs

Virtuol Screen
stmmmmndowclwmq[nuﬂ Tablet . ?

€L

. C L ey —e e s
Carnap[Ca] helped by showing that "intensional” definitions covered the same territory as the
more traditional extensional technique and were often more intuitive and convenient.

As in Simula, a coroutining control structure[Conway, 1963] was used as a way to suspend and
resume objects. Persistant objects like files and documents were treated as suspended processes and
were organized according to their Algol-like static variable scopes. These were shown on the screen
and could be opened by pointing at them. Coroutining was also used as a control structure for loop-
ing. A single operator while was used to test the generators which returned false when unable to
furnish a new value. Booleans were used to link multiple generators. So a “for-type” loop would be
written as:

whilei<=11t030by2+j<=2tokby3doj<-j*i;
where the ... to ... by... was a kind of coroutine object. Many of these ideas were reimplemented in a
stronger style in Smalltalk later on.

Another control structure of interest in FLEX was a kind of when a(bA(X)+10£95) do
event-driven “soft interupt” called when. Its boolean 1
expression was compiled into a “tournement sort” tree that [Compied Tree A
cached all possible intermediate results. The relevant vari- /. N
ables were threaded through all of the sorting trees in all of Shlse & e

the whens so that any change only had to compute through a/ \b +/._’ m-\,_f
the necessary parts of the booleans. The efficiency was very

high and was similar to the techniques now used for X 10
spreadsheets. This was an embarrassment of riches with [~ o when satement Tae]

difficulties often encountered in event-driven systems.
Namely, it was a complex task to control the context of just when the whens should be sensitive. Part
of the boolean expression had to be used to check the contexts, where I felt that somehow the struc-
ture of the program should be able to set and unset the event drivers. This turned out to beyond the
scope of the FLEX system and needed to wait for a better architecture.

Still, quite a few of the original FLEx ideas in their proto-object form did turn out to be small
enough to be feasible on the machine. I was writing the first compiler when something unusual hap-
pened: the Utah graduate students got invited to the ARPa contractors meeting held that year at Alta,
Utah. Towards the end of the three days, Bob Taylor, who had succeeded Ivan Sutherland as head of
ARPA-IPTO, asked the graduate students (sitting in a ring around the outside of the 20 or so contrac-
tors) if they had any comments. John Warnock raised his hand and pointed out that since the ARPA
grad students would all soon be colleagues (and since we did all the real work anyway), ArPA should
have a contractors-type meeting each year for the grad students. Taylor thought this was a great idea
and set it up for the next summer.

Another ski-lodge meeting happened in Park City later that spring. The general topic was educa-
tion and it was the first ime [heard Marvin Minsky speak. He put forth a terrific diatribe against tra-
ditional educational methods, and from him I heard the ideas of Piaget and Papert for the first time.
Marvin's talk was about how we think about complex situations and why schools are really bad
places to learn these skills. He didn’t have to make any claims about computers+kids to make his
point. It was clear that education and learning had to be rethought in the light of 20th century cogni-
tive psychology and how good thinkers really think. Computing enters as a new representation sys-
tem with new and useful metaphors for dealing with complexity, especially of systems [Minsky 70).

For the summer 1968 ARPA grad students meeting at
Allerton House in Lllinois, I boiled all the mechanisms in
the FLEX machine down into one 2'x3' chart. This includ-
ed all of the “object structures”, the compiler, the byte-
code interpreter, i/0 handlers, and a simple display edi-
tor for text and graphics. The grad students were a dis-
tinguished group that did indeed become colleagues in
subsequent years. My FLEX machine talk was a success,
but the big whammy for me came during a tour to U of
Tilinois where [saw a 1” square fump of glass and neon
gas in which individual spots would light up on com-
mand—it was the first flat-panel display. I spent the rest 5
of the conference calculating just when the silicon of the

The First Plasma Panel

Al . Ady, 1118 BNy Fusiory Ui dmamak 1Q

FLEX machine could be put on the back of the display. According to Gordon Moore’s "Law”, the
answer seemed to be sometime in the late seventies or early eighties. A long time off—it seemed too
long to worry much about it then. .

But later that year at RAND [saw a truly beautiful sys-
tem. This was GRAIL, the graphical followon to joss. The
first tablet (the famous RAND tablet) was invented by
Tom Ellis [Davis 1964] in order to capture human ges-
tures, and Gabe Groner wrote a program to efficiently
recognize and respond to them[Groner 1966}. Though
everything was fastened with bubble gum and the sys-
tem crashed often, I have never forgotton my first inter-
actions with this system. It was direct manipulation, it
was analogical, it was modeless, it was beautiful. I real- g
ized that the FLEX interface was all wrong, but how could
something like CRAIL be stuffed into such a tiny machine
since it required all of a stand-alone 360/44 to run in?

A month later, I finally visited Seymour Papert, Wally
Feurzig, Cynthia Solomon and some of the other origi-
nal researchers who had built LocO and were using it
with children in the Lexington schools. Here were chil-
dren doing real programming with a specially designed
language and environment. As with Simula leading to
ooP, this encounter finally hit me with what the destiny
of personal computing reaily was going to be. Not a per-
sonal dynamic vehicle, as in Engelbart’s n_'tetaphor
opposed to the IBM “railroads”, but some.thmg n.\uch
more profound: a personal dynamic medium. With a
vehicle one could wait until high school and give “dri-
vers ed”, but if it was a medium, it had to extend into
the world of childhood.

Now the collision of the FLEX machine, the flat-screen
display, GRAIL, Barton’s “communications” talk,
McLuhan, and Papert’s work with children all came
together to form an image of what a personal computer
really should be. I remembered Aldus Manutius who 40
year; after the printing press put the book into its mod- A
ern dimensions by making it fit into saddlebags. 1t ?ad o
to be no larger than a notebook, and needed an interface T
as friendlygas joss’, GRAIL’s, and LOGQ's, but with the I T]
reach of Simula and FLEX. A clear romantic vision has a marvelous ability to focus thmfght and will.
Now it was easy to know what to do next. I built a cardboard model of it to see what it would look
and feel like, and poured in lead pellets to see how light. it would .ha‘ve to be (les.s. than two pound.s). 1
put a keyboard on it as well as a stylus because, even if htmdpnnhng anfi writing were recognized
perfectly (and there was no reason to expect that it would be), there still needed.lo‘ be a balance
between the lowspeed tactile degrees of freedom offered by the stylus and the more limited but faster
keyboard. Since ARPA was starting to experiment with packet radio, I expected that the Dynabook
when it arrived a decade or so hence, would have a wireless networking system.

Early next vear (1969) there was a conference on Extensible Languages in which .al_most every
famous name in the field attended. The debate was great and weighty—it was a religious war of
unimplemented poorly thought out ideas. As Alan Perlis, one of the great men in Computer Science,
put it with characteristic wit: o

It has been such a long time since I have zeen 3¢ many familiar faces
shouting among so many familiar ideas. covery Of sometiing new in
programming languages, like any disce has somewhat the same
sequence of emotions as falling in lo- elation followed by
euphoria, a feeling of unigueness, ans the wander:ng eye
(the urge to generalize) [aCM 89} .

] ‘Removable
} storage

174

Alan . Kay, Ihe Early History Ot Smasitaik 11

But it was all talk—no one had done anything yet. In the midst of all this, Ned Irons got up and
presented 1P, a system that had already been working for several years that was more elegant than
most of the nonworking proposals. The basic idea of IMP was that you could use any phrase in the
grammar as a procedure heading and write a semantic definition in terms of the language as extend-
ed so far {Irons, 1970].

I had already made the first version of the FLEX machine syntax driven, but where the meaning of a
phrase was defined in the more usual way as the kind of code that was emitted. This separated the
compiler-extensor part of the system from the end-user. In Irons’ approach, every procedure in the
system defined its own syntax in a natural and useful manner. I incorporated these ideas into the sec-
ond version of the FLEX machine and started to experiment with the idea of a direct interpreter rather
than a syntax directed compiler. Somewhere in all of this, I realized that the bridge to an object-based
system could be in terms of each object as a syntax directed interpreter of messages sent to it. In one
fell swoop this would unify object-oriented semantics with the ideal of a completely extensible [an-
guage. The mental image was one of separate computers sending requests to other computers that
had to be accepted and understood by the receivers before anything could happen. In today’s terms
evéry object would be a server offering services whose deployment and discrétion depended entirely
on the server’s notion of relationship with the servee. As Liebniz said: “To get everything out of
nothing, you only need to find one principle”. This was not well thought out enough to do the FLEX
machine any good, but formed 2 good point of departure for my thesis [Kay 69], which as Ivan
Sutherland liked to say was “anything you can get three people to sign”.

After three people signed it (Ivan was one of them), [went to the Stanford Al project and spent
much more time thinking about notebook KiddyKomputers than AL But there were two Al designs
that were very intriguing. The first was Carl Hewitt's PLANNER, a programmable logic system that
formed the deductive basis of Winograd’s SHRDLU {Sussman 69, Hewitt 69]. I designed several lan-
guages based on a combination of the pattern matching schemes of FLEX and PLANNER [Kay 70]. The
second design was Pat Winston’s concept formation system, a scheme for building semantic net-
works and comparing them to form analogies and learning processes [Winston 70]. It was kind of
“object-oriented”. One of its many good ideas was that the arcs of each net which served as attributes
in AQV triples should themselves be modeled as nets. Thus, for example a first order arc called LEFT-
OF could be asked a higher order question such as “What is your converse?” and its net could answer:
RIGHT-CF. This point of view later formed the basis for Minsky’s frame systems [Minsky 75]. A few
years later I wished I had paid more attention to this idea.

That fall, I heard a wonderful talk by Butler Lampson about CAL-Tss, a capability-based operating
system that seemed very “object-oriented”[Lampson 1969]. Unforgable pointers (ala 85000) were
extended by bit-masks that restricted access to the object’s internal operations. This confirmed my
“objects as server” metaphor. There was also a very nice approach to exception handling which
reminded me of the way failure was often handled in pattern matching systems. The only problem—
which the CAL designers did not see as a problem at all—was that only certain (usually large and
slow) things were “objects”. Fast things and small things, etc., weren't. This needed to be fixed.

The biggest hit for me while at SAIL in late ‘69 was to really understand Lisp. Of course, every stu-
dent knew about car, cdr, and cons, but Utah was impoverished in that no one there used LsP and
hence, no one had penetrated the mysteries of eval and apply. I could hardly believe how beautiful
and wonderful the idea of UsP was [McCarthy,1960]. I say it this way because UsP had not only been
around enough to get some honest barnacles, but worse, there were deep flaws in its logical founda-
tions. By this, I mean that the pure language was supposed to be based on functions, but its most
important components—such as lambda expressions, quotes, and conds—were not functions at all,
and instead were called special forms. Landin and others had been able to get quotes and conds in
terms of lambda by tricks that were variously clever and useful, but the flaw remained in the jewel.
In the practical language things were better. There were not just EXPRs (which evaluated their argu-
ments), but FEXPRs (which did not). My next question was, why on earth call it a functional language?
Why not just base everything on FEXPRs and force evaluation on the receiving side when needed? I
could never get a good answer', but the question was very helpful when it came time to invent
Smalltalk, because this started a line of thought that said “take the hardest and most profound thing
you need to do, make it great, and then build every easier thing out of it”. That was the promise of
List and the lure of lambda—needed was a better “hardest and most profound” thing. Objects should
be it.

Alan C. Kay, The Early History Of Smalltalk 12
111, 1970-72—Xerox panc: The KiddiKomp, miniCOM, and Smallialk-71
In July 1970, Xerox, at the urging of its chief scientist Jack Goldman, decided to set up 2 long range
research center in Palo Alto, California. In September, George Pake, the former chancellor at
Washington University where Wes Clark’s aRPa project was sited, hired Bob Taylor {(who had left the
ARPA office and was taking a sabbatical year at Utah) to start a “Computer Science Laboratory”. Bob
visited Palo Alto and we stayed up all night talking about it. The Mansfield Amendment was threat-
ening to blindly muzzle the most enlightened ARPA funding in favor of directly military research, and
this new opportunity looked like a promising alternative. But work for a company? He wanted me to
consult and I asked for a direction. He said: follow your instincts. 1 immediately started working up a
new version of the KiddiKomp that could be made in enough quantity to do experiments leading to
the user interface design for the eventual notebook. Bob Barton liked to say that “good ideas don't
often scale”. He was certainly right when applied to the FLEX machine. The B5000 just didn’t directly
scale down into a tiny machine. Only the byte-codes did, and even these needed modification. I
decided to take another look at Wes Clark’s LINC, and was ready to appreciate it much more this time
[Clark,1965].

. (#1210 y/a’)
Pule N s s et & pemad

~ Barty o Y dosact
op .
e
W dhy Loaus Dok,
.Cl"dtur‘ [P ' l‘f"\ L]

AL T
'.‘m-.,l,”w”;
225448

LI
p -

I'still liked pattern-directed approaches and 0OP so I came up with a language design called
“Simulation LoGO" or SLOGO for short (I had a feeling the first versions might run nice and slow). This
was to be built into a SONY “tummy trinitron” and would use a coarse bit-map display and the FLEX
machine rubber tablet as a pointing device.

Another beautiful system that I had come across was Peter Deutsch’s PDP-1 LIsP (implemented
when he was only 15) [Deutsch,1966]. It used only 2K (18-bit words) of code and could run quite well
in a 4K machine (it was its own operating system and interface). It seemed that even more could be
done if the system were byte-coded, run by an architecture that was hospitable to dynamic systems,
and stuck into the ever larger ROMs that were becoming available. One of the basic insights I had got-
ten from Seymour was that you didn’t have to do a lot to make a computer an “object for thought”
for children, but what you did had to be done well and be able to apply deeply.

Right after New Years 1971, Bob Taylor scored an enormous coup by attracting most of the strug-
gling Berkeley Computer Corp to PARC. This group included Butler Lampson, Chuck Thacker, Peter
Deutsch, Jim Mitchell, Dick Shoup, Willie Sue Haugeland, and Ed Fiala. Jim Mitchell urged the group
to hire Ed McCreight from CMU and he arrived soon after. Gary Starkweather was there already,
having been thrown out of the Xerox Rochester Labs for wanting to build a laser printer (which was
against the local religon). Not long after, many of Doug Englebart’s people joined up—part of the rea-
son was that they want to reimplement NLS as a distributed network system, and Doug wanted to
stay with time-sharing. The group included Bill English (the co-inventor of the mouse), Jeff Rulifson,
and Bill Paxton.

Almost immediately we got into trouble with Xerox when the group decided that the new lab
needed a rpp-10 for continuity with the ARPA community. Xerox (which had bought SDS essentially
sight unseen a few years before} was horrified at the idea of their main competitor's computer being
used in the lab. They balked. The newly formed raRc group had a meeting in which it was decided

G/

AN L. AAY, DY carly Fuslory Ol Dilldindin 13
that it would take about three years to do a good operating system for the XDs sicMa-7 but that we
could build "our own'PDP-10" in a year. My reaction was "Holy cow!". In fact, they pulled it off with
considerable panache. MAXC was actually a microcoded emulation of tie PDP-10 that used for the first
time the new integrated chip memories (1K bits!) instead of core memory. Having practical in house
experience with both of these new technologies was critical for the more radical systems to come.

One little incident of LisP beauty happened when Allen Newell visited PARC with his theory of hier-
achical thinking and was challenged to prove it. He was given a programming problem to solve
while the protocol was collected. The problem was: given a list of items, produce a list consisting of
all of the odd indexed items followed by all of the even indexed items. Newell’s internal program-
ming language resembled iPL-v in which pointers are manipulated explicitly, and he got into quite a
struggle to do the program. In 2 seconds I wrote down:

oddsEvens(x) = append(odds(x), evens(x))
the statement of the problem in Landin’s LIsP syntax—and also the first part of the solution. Then a
few seconds later:
where odds(x)= if null(x) v null(tl(x)) then x
else hd(x) & odds(tti(x))
evens(x) = if null(x) v null(ti(x)) then nil
else odds(ti(x))

This characteristic of writing down many solutions in declarative form and have them also be the
programs is part of the appeal and beauty of this kind of language. Watching a famous guy much
smarter than I struggle for more than 30 minutes to not quite solve the problem his way (there was a
bug) made quite an impression. It brought home to me once again that “point of view is worth 80 1Q
points”. [wasn’t smarter but I had a much better internal thinking tool to amplify my abilities. This
incident and others like it made paramount that any tool for children should have great thinking pat-
terns and deep beauty “built-in”.

Right around this time we were involved in another conflict with Xerox management, in particular
with Don Pendery the head “planner”. He really didn’t understand what we were talking about and
instead was interested in “trends” and
“what was the future going to be like”
and how could Xerox “defend against
it”. I got so upset I said to him, “Look.
The best way to predict the future is to
invent it. Don’t worry about what all
those other people might do, this is
the century in which almost any clear
vision can be made!” He remained
unconvinced, and that led to the
famous "Pendery Papers for PARC Dimeuszons: 44*i2-45°
Planning Purposes”, a collection of gﬁ?‘.’:.’.l:':..
essays on various aspects of the @, _. .= prim for sares
future. Mine proposed a version of the @ TV eras Meiverina sud wiee) @ Styius Lor paurtiig cariting wd drsnny
notebook as a “Display Transducer”, @ e Iuet v {45 s rmessiia) O Rmurbruiald (st} Yoy sl
and Jim Mitchell’s was entitled “NLS *Pendery Paper Display Transducer" Design
on a Minicomputer”.

Bill English took me under his wing and helped me start my group as I had always been a lone
wolf and had no idea how to do it. One of his suggestions was that I should make a budget. I'm
afraid that I really did ask Bill, “What’s a budget?”. I remembered at Utah, in pre-Mansfield
Amendment days, Dave Evans saying to me as he went off on a trip to ARPA, “We're almost out of
money. Got to go get some more.” That seemed about right to me. They give you some money. You
spend it to find out what to do next. You run out. They give you some more. And s0 on. PARC never
quite made it to that idyllic standard, but for the first half decade it came close. I needed a group
because I had finally realized that I did not have all of the temperaments required to completely fin-
ish an idea. I called it the Learning Research Group (LRC) to be as vague as possible about our charter.
[only hired people that got stars in their eyes when they heard about the notebook computer idea. I
didn't like meetings: didn’t believe brainstorming could substitute for cool sustained thought. When
anyone asked me what to do, and I didn’t have a strong idea, I would point at the notebook model

Wreesron 2

Alan C. Kay, The Early History Of Smalltalk 14
and say, “Advance that”. LRG members developed a very close relationship with each other—as Dan
Ingalls was to say later: “...the rest has enfolded through the love and energy of the whole Learning
Research Group”. A lot of daytime was spent outside of PARC, playing tennis, bikeriding, drinking
beer, eating chinese food, and constantly talking about the Dynabook and its potential to amplify
human reach and bring new ways of thinking to a faltering civilization that desperately needed it
(that kind of goal was common in California in the aftermath of the sixties).

In the summer of ‘71 I refined the KiddiKomp idea into a tighter design called minicom. It used a
bit-slice approach like the Nova 1200, had a bit-map display, a pointing device, a choice of “sec-
ondary” (really tertiary) storages, and a language I now called “Smalltalk”—as in “programming
should be a matter of ..."” and “children should program in ...”.The name was also a reaction against
the “IndoEuropean god theory” where systems were named Zeus, Odin, and Thor, and hardly did
anything,. I figured that “Smalitalk” was so innocuous a label that if it ever did anything nice people
would be pleasantly surprised.

nopn

160 Cumip
80ar D

1 110
&

Vit
wIan i;

(3

™

NN

%{J"/ %/// 2,

. This Smalltalk language (today labeled -71) was very ge—r—rsy Progams
influenced by FLEX, PLANNER, LOGO, META 1, and my own to T'and" v do v
derivatives from them. It was a kind of parser with IoF'and'::;l'doFy
object-attachment that executed tokens directly. (I think
the awkward quoting conventions came from META). [{to factorial' 0is 1

was less interested in programs as algebraic patterns to factorial' :n do ‘n*factorial n-1'
than I was in a clear scheme that could handle a variety
of styles of programming. The patterned front-end
allowed simple extension, patterns as “data” to be lio : "is-member-of { do F
retrieved, a simple way to attach behaviors to objects, |to :e 'is-member-of :group

and a rudimentary but clear expression of its eval in do 'if e = first of group then T

to ‘fact’ :n do 'to 'fact’ n do factorial n. A fact n'

terms that I thought children could understand after a
few years experience with simpler programming.
Program storage was sorted into a discrimination net and
evaluation was straightforward pattern-matching.

As 1 mentioned previously, it was annoying that the
surface beauty of LISP was marred by some of its key
parts having to be introduced as “special forms” rather
than as its supposed universal building block of func-
tions. The actual beauty of LISP came more from the
promise of its metastructures than its actual model. I spent
a fair amount of time thinking about how objects could

else e is-member-of rest of group’

to ‘cons’ :x zy is self

to ‘hd’ (‘cons’ :a :b) do ‘a’

to 'hd' (‘cons’ :a :b) "<~ :cdo’a<- ¢
to'tl' (‘cons’ :a:b)do'b’

to ‘tl' (‘cons’ :a :b) ‘< :cdo'b <-¢'

to :robot ‘pickup’ :block
do ‘robot clear-top-of block.
robot hand move-to block.
robot hand lift block 50.
to 'height-of block do 50

94

Alan C. Kay, The Earfy History Of Smailtaik 15
be characterized as universal computers without having to have any exceptions in the central
metaphor. What seemed to be needed was complete control over what was passed in a message send;
in particular when and in what environment did expressions get evaluated?

An elegant approach was suggested in a cMU thesis of Dave Fisher [Fisher 70] on the synthesis of
control structures. ALGOL6D required a separate link for dynamic subroutine linking and for access to
static global state. Fisher showed how a generalization of these links could be used to simulate a
wide variety of control environments. One of the ways to solve the “funarg problem” of LIsP is to
associate the proper global state link with expressions and functions that are to be evaluated later so
that the free variables referenced are the ones that were actually implied by the static form of the lan-
guage. The notion of “lazy evaluation” is anticipated here as well.

Nowadays this approach would be called reflective design. Putting it together with the FLEX models
suggested that all that should be required for “doing LsP right” or “doing ooP right” would be to
handle the mechanics of invocations between modules without having to worry about the details of
the modules themselves. The difference between Lisp and ocop {or any other system) would then be
what the modules could contain. A universal module (object) reference—ala B5000 and LIsP—and a
message holding structure—which could be virtual if the senders and receivers were sympatico~—
that could be used by all would do the job.

If all of the fields of a messenger structure were enumerated according to this view, we would
have:

CLOBAL: the environment of the parameter values
SENDER: the sender of the message

RECEIVER: the receiver of the message

REPLY-STYLE: wait, fork, ...?

STATUS: progress of the message

REPLY: eventual result (if any)

OPERATION SELECTOR: relative to the receiver

OF PARAMETERS:

|

PN

This is a generalization of a stack frame, such as used by the B5000, and very similar to what a good
intermodule scheme would require in an operating system such as cAL-Tss—a lot of state for every
transaction, but useful to think about.

Much of the pondering during this state of grace (before any workable implementation) had to do
with trying to understand what “beautiful” might mean with reference to object-oriented design. A
subjective definition of a beautiful thing is fairly easy but is not of much help: we think a thing beau-
tiful because it evokes certain emotions. The cliche has it lie “in the eye of the beholder” so that it is
difficult to think of beauty as other than a relation between subject and object in which the predispo-
sitions of the subject are all important.

If there are such a thing as universally appealing forms then we can perhaps look to our shared
biological heritage for the predispositions. But, for an object like LISP, it is almost certain that most of
the basis of our judgement is learned and has much to do with pther related areas that we think are
beautiful, such as much of mathematics.

One part of the perceived beauty of mathematics has to do with a wondrous synergy between par-
simony, generality, enlightenment, and finesse. For example, the Pythagorean Theorem is expressable
in a single line, is true for all of the infinite number of right triangles, is incredibly useful in under-
standing many other relationships, and can be shown by a few simple but profound steps.

When we turn to the various languages for specifying computations we find many to be general
and a few to be parsimonious. For example, we can define universal machine languages in just a few
instructions that can specify anything that can be computed. But most of these we would not call
beautiful, in part because the amount and kind of code that has to be written to do anything interest-
ing is so contrived and turgid. A simple and smail system that can do interesting things also needs a
“high slope”—that is a good match between the degree of interestingness and the level of complexity
needed to express it.

A fertilized egg that can transform itself into the myriad of specializations needed to make a com-
plex organism has parsimony, generality, enlightenment, and finesse—in short, beauty, and a beauty

o Alan C. Kay, The Early History Of Smalftalk 16
much more in fine with my own esthetics. { mean by this that Nature s wonderful both at elegance
and practicality—the cell membrane is partly there to allow useful evolutionary kludges to do their
necessary work and still be able act as component by presenting a uniform interface to the world,

One of my continual worries at this time was about the size of the bit-map display. Even if a mixed
mode was used (between fine-grained generated characters and coarse-grained general bit-map for
graphics) it would be hard to get enough information on the screen. It occured to me (in a shower,
my favorite place to think) that FLEXtype windows on a bit-map display could be made to appear as
overlapping documents on a desktop. When an overlapped one was refreshed it would appear to
come to the top of the stack. At the time, this did not appear as the wonderful solution to the problem
but it did have the effect of magnifying the effective area of the display enormously, so I decided to
go with it.

To investigate the use of video as a display medium, Bill English and Butler Lampson specified an
experimental character generator (built by Roger Bates) for the PoLOs (PARC OnLine Office System)
terminals. Gary Starkweather had justgotten the first laser printer to work and we ran a coax over to
his fab to feed him some text to print. The “SLOT machine” (Scanning Laser Output Terminal) was
incredible. The only Xerox copier Gary could get to work on went at 1 page a second and could not
be slowed down. So Gary just made the laser run at that rate with a resolution of 500 pixels to the
inch!

The character generator's font memory turned out to be large enough to simulate a bit-map dis-
play if one displayed a fixed “strike” and wrote into the font memory. Ben Laws built a beautiful font
editor and he and T spent several months learning about the peculiarities of the human visual system
(it is decidedly non-linear). I was very interested in high-quality text and graphical presentations
because I thought it would be easier to get the Dynabook into schools as a “trojan horse” by simply
replacing school books rather than to try to explain to teachers and school boards what was really
great about personal computing.

g i . 3 2y

1hr}e
Uil
i

K]
5

=

oy 241311 L

{1f3ea9ebilis
Gl

Rt

\

The "Old Character éeneralor’—early 1972 \-ﬂ

Use a Special Font

Things were generally going well all over the lab until May of 72 when I tried to get resources to
build a few minicoms. A relatively new executive (“X”) did not want to give them to me. I wrote a
memo explaining why the system was a good idea {see Appendix If), and then had a meeting to dis-
cuss it. “X” shot it down completely saying among other things that we had used too many green
stamps getting Xerox to fund the time-shared MAXC and this use of resources for personal machines
would confuse them. I was shocked. I crawled away back to the experimental character generator
and made a plan to get 4 more made and hooked to NOVas for the injtial kid experiments.

I got Steve Purcell, a summer student from Stanford, to build my design for bit-map painting so
the kids could sketch as well as display computer graphics. John Shoch built a line drawing and ges-
ture recognition system (based on Ledeen’s [Newman and Sproull 72]) that was integrated with the
painting. Bill Duvall of roLos built a miniNLs that was quite remarkable in its speed and power. The
first overlapping windows started to appear. Bob Shur (with Steve Purcell’s help) built a 21/2 D ani-
mation system. Along with Ben Laws’ font editor, we could give quite a smashing demo of what we
intended to build for real over the next few years. I remember giving one of these to a Xerox execu-

LL

{ The First Painting System—Summer 72]

tive, including doing a portrait of him in the new painting system, and Do~

wound it up gwith agﬂoE:ish declaring: “And what’s really great about Portrait of the Xerox
this is that it only has a 20% chance of success. We're taking risk just like RISK" executive
you asked us to!” He looked me straight in the eye and said, “Boy, that's great, but just make sure it
works”. This was a typical executive notion about risk. He wanted us to be in the “20%” one hundred
percent of the time.

That summer while licking my wounds and getting the demo simulations built and going, Butler
Lampson, Peter Deutsch and I worked out a general scheme for emulated HLL machine languages. I
liked the B5000 scheme, but Butler did not want to have to decode bytes, and pointed out that since
an 8-bit byte had 256 total possibilities, what we should do is map different meanings onto different
parts of the “instruction space”. This would give us a “poor man’s Huffman code” that would be
both flexible and simple. All subseqent emulators at PARC used this general scheme.

1 also took another pass at the language for the kids. Jeff Rulifson was a big fan of Piaget (and
semiotics) and we had many discussions about the “stages” and what iconic thinking might be
about. After reading Piaget and especially Jerome Bruner, I was worried that the directly symbolic
approach taken by FLEX, LOGO (and the current Smalltalk) would be difficuit for the kids to process
since evidence existed that the symbolic stage (or mentality) was just starting to switch on. In fact, all
of the educators that I admired (including Montessori, Holt, and Suzuki) all seemed to call for a more
figurative, more iconic approach. Rudolph Arnheim [Arnheim 69] had written a classic book about
visual thinking, and so had the eminent art critic Gombrich [Gombrich **). It really seemed that
something better needed to be done here. GRAIL wasn't it, because its use of imagery was to portray
and edit flowcharts, which seemed like a great step backwards. But Rovner’s AMBIT-G held consider-
ably more promise [Rovner 68]. It was kind of a visual SNOBOL [Farber 63] and the pattern matching
ideas looked like they would work for the more PLANNERlike scheme I was using.

Bill English was still encouraging me to do more reasonable appearing things to get higher credi-
bility, like making budgets, writing plans and milestone notes, so I wrote a plan that proposed over
the next few years that we would build a real system on the character generators cum NOVAS that
would involve coP, windows, painting, music, animation, and “iconic programming”. The latter was
deemed to be hard and would be handled by the usual method for hard problems, namely, give them

to grad students.

~— = p 2
<o
\%\“_ s » ¥ 'na;!';

Children with Dynabooks trom “A Personal Computer
For Children Ot All Ages® (xa72

I iconic Bubble Sort trom
1972 LRG Plan (ke 720}

“Simple things should be simple, complex
things should be possible”
IV. 1972-76—The first real Smailtalk (-72), its birth, applications, and improvements
In Sept, within a few weeks of each other, two bets happened that changed most of my plans. First,
Butler and Chuck came over and asked: “Do you have any money?” I said, “Yes, about $230K for
novas and CGs. Why?” They said, “How would you like us to build your little machine for you?” 1

Aldn U. Ady, N8 Eafly rustofy U dmautaik 18
said, "T'd like it fine. What is 1t?” Butler said: "1 want a '$500 PDP-10", Chuck wants a '10 times faster
NOVA’, and you want a ‘kiddicomp’. What do-you need on it?” I told them most of the results we had
gotten from the fonts, painting, resolution, animation, and music studies. I asked where this had
come from all of a sudden and Butler told me that they wanted to do it anyway, that Executive “X"
was away for a few months on a “task force” so maybe they could “Sneak it in”, and that Chuck had
a bet with Bill Vitic that he could do a whole machine in just 3 months. “Oh”, I said.

The second bet had even more surprising results. I had expected that the new Smalltalk would be
an iconic language and would take at least two years to invent, but fate intervened. One day, in a typ-
ical PARC hallway bullsession, Ted Kaehler, Dan Ingalls, and I were standing around talking about
programming languages. The subject of power came up and the two of them wondered how large a
language one would have to make to get great power. With as much panache as I could muster, 1
asserted that you could define the “most powerful language in the world” in “a page of code”. They
said. “Put up or shut up”.

Ted went back to cMU but Dan was still around egging me on. For the next two weeks I got to
PARC every morning at four o'clock and worked on the problem until eight, when Dan, joined by
Henry Fuchs, John Shach, and Steve Purcell showed up to kibbitz the morning’s work.

1 had originally made the boast because McCarthy’s self-describing LisP interpreter was written in
itself. It was about “a page”, and as far as power goes, LISP was the whole nine-yards for functional
languages. I was quite sure I could do the same for object-oriented languages plus be able to do a rea-
sonable syntax for the code a la some of the FLEX machine techniques.

It turned out to be more difficult than I had first thought for three reasons. First, I wanted the pro-
gram to be more like McCarthy's second non-recursive interpreter—the one implemented as a loop
that tried to resemble the original 709 implementation of Steve Russell as much as possible. It was
more “real”. Second, the intertwining of the “parsing” with message receipt-—the evaluation of para-
meters which was handled separately in LISP—required that my object-oriented interpreter re-enter
itself “sooner” (in fact, much sooner) than LISP required. And, finally, I was still not clear how send
and receive should work with each other.

The first few versions had flaws that were soundly criticized by the group. But by morning 8 or so,
a version appeared that seemed to work (see Appendix Il for a sketch of how the interpreter was
designed). The major differences from the official Smalltalk-72 of a little bit later were that in the first
version symbols were byte-coded and the receiving of return-values from a send was symmetric—i.e.
receipt could be like parameter binding—this was particularly useful for the return of multiple val-
ues. For various reasons, this was abandoned in favor of a more expression-oriented functional
return style.

Of course, I had gone to considerable pains to avoid doing any “real work” for the bet, but I felt I
had proved my point. This had been an interesting holiday from our official “iconic programming”
pursuits, and I thought that would be the end of it. Much to my surprise, only a few days later, Dan
Ingalls showed me the scheme working on the Nova. He had coded it up (in Basic!), added a lot of
details, such as a token scanner, a list maker, etc., and there it was—running. As he like to say: "You

just do it and it's done™.

It evaluated 3+4 y ery slo w]y (it was “glacial”, as Butler liked to say) but the answer always
came out 7. Well, there was nothing to do but keep going. Dan loved to bootstrap on a system that
“always ran”, and over the next ten years he made at least 80 major releases of various flavors of
Smalltalk.

In November, I presented these ideas and a demonstration of the interpretation scheme to the MIT
Al lab. This eventually led to Carl Hewitt's more formal “Actor” approach[Hewitt 73]. In the first
Actor paper the resemblence to Smalltalk is at its closest. The paths later diverged, partly because we
were much more interested in making things than theorizing, and partly because we had something
no one else had: Chuck Thacker’s Interim Dynabook {later known as the “ALTO"),

Just before Chuck started work on the machine I gave a paper to the National Council of Teachers
of English [Kay 72c] on the Dynabook and its potential as a learning and thinking amplifier—the
paper was an extensive rotogravure of “20 things to do with a Dynabook” [Kay 72¢}. By the time I got
back from Minnesota, Stewart Brand’s Rolling Stone article about PARC {Brand,1972] and the suround-
ing hacker community had hit the stands. To our enormous surprise it caused a major furor at Xerox
headquarters in Stamford, Connecticut. Though it was a wonderful article that really caught the spir-
it of the whole culture, Xerox went berserk, forced us to wear badges (over the years many were

8L

printed on t-shirts), and severely restricted the kinds of publications that could be madé. This was
particularly disastrous for LRG, since we were the “lunatic fringe” (so-called by the other computer
scientists), were planning to go out to the schools, and needed to share our ideas (and programs)
with our colleagues such as Seymour Papert and Don Norman.

Executive “X” apparently heard some harsh words at Stamford about us, because when he
returned around Christmas and found out about the interim Dynabook, he got even more angry and
tried to kill it. Butler wound up writing a masterful defence of the machine to hold him off, and he
went back to his “task force”.

Chuck had started his “bet” on November 22, 1972. He and two technicians did all of the machine
except for the disk interface which was done by Ed McCreight. It had a ~500,000 pixel (606x808)
bitmap display, its microcode instruction rate was about 6MIPs, it had a grand total of 128k, and the
entire machine (exclusive of the memory) was rendered in 160 MSI chips distributed on two cards. It
was beautiful [Thacker,1972, 1986]. One of the wonderful features of the machine was “zero-over-
head” tasking. It had 16 program counters, one for each task. Condition flags were tied to interesting
events (such as “horizontal retrace pulse”, and “disk sector pulse”, etc.). Lookaside logic scanned the
flags while the current instruction was executing and picked the highest priority program counter to
fetch from next. The machine never had to wait, and the result was that most hardware functions
(particularly those that involved i/o (like feeding the display and handling the disk) could be
replaced by microcode. Even the refresh of the MOS dynamic RAM was done by a task. In other
words, this was a coroutine architecture. Chuck claimed that he got the idea from a lecture I had
given on corountines a few months before, but I remembered that Wes Clark’s TX-2 (the Sketchpad
machine) had used the idea first, and 1 : ;
probably mentioned that in the talk.

In early April, just a little over three
months from the start, the first Interim
Dynabook, known as ‘Bilbo,’ greeted the
world and we had the first bit-map pic-
ture on the screen within minutes: the
Muppets’ Cookie Monster that I had
sketched on our painting system.

Soon Dan had bootstrapped Smalltalk
across, and for many months it was the
sole software system to run on the
Interim Dynabook. Appendix | has an
“acknowledgements” document I wrote
from this time that is interesting in its
allocation of credits and the various pri-
orities associated with them. My $230K
was enough to get 15 of the original pro-
jected 30 machines (over the years some 2000 Interim Dynabooks were actually built). True to
Schopenhauer’s observation, Executive “X” now decided that the Interim Dynabook was a good idea
and he wanted all but two for his lab (I was in the other lab). I had to go to considerable lengths to
get our machines back, but finally succeeded. [T Everything 1s an ofject

By this time most of Smalltalk’s schemes had been sorted l
out into six main ideas that were in accord with the initial
premises in desig.ning the interprfter. The first three princi- 3. Objects have their own memory (in terms of
ples are what objects “are about”"—how they are seen and objects)
used from “the outside”. These did not require any modifi- o | bect 15 an i -

. . . Every object is an instance of a class (which
cation over th.e years. T.he last three—o.bjects from the " 5'be an object)
msnde_—were tinkered with in every version of Smalitalk 5. The class holds the shared behaior for its
(and in subsequent ooP designs). In this scheme (1 & 4)
imply that classes are objects and that they must be
instances of themself. (6) implies a LisPlike universal syntax, ko 1. wear program list, control is passed to,
but with the receiving object as the first item followed by the | e first object and the remainder is treated
message. Thus ¢; <- de (with subscripting rendered as "o” } as its message

BILBO, the ftirst
“Interim Dynabook®,
and Cookie
Monster”, the first
graphics it dis-
played.
April, 1973

2. Objects communicate by sending and|
receiving messages (in terms of objects)

instances (in the form of objects in a pro-
gram list)

and multiplication as “*") means:

Alan C. Kay, The Early History Ot Smaittaik 20

receiver | message
c loi<-d%
The ¢ is bound to the receiving object, and all ofo i <- d* is the message to it. The message is mad
up of a literal token “.”, an expression to be evaluated in the sender’s context (in this case?) anoth .
literal token <-, followed by an expression to be evaluated in the sender’s context (d*) Sin'ce "Lls::
pa’ilrs.are m"ade from. 2 element objects they can be indexed more simply: ¢ hd, c t!, and ¢ hd <- foo, ete
o t;inkp;efz th?tgr::flons like a+b and 3+4 seemed more troublesome at first, Did it really make sense
mﬂm’ J-mgss-agg
a l+b
3 I+ 4
It seemed silly if only integers were considered, but there are many other metaphoric readings of

"

+”, such as:
“kitby” 1+ “kat” => “kittykat”

Bas] 144 [P 89
678 101112

This Ied.to a sty!e of finding generic behaviors for message symbols. “Polymorphism” is the official
;ermt a bel::ve de?c;'ed from Strachey), but it is not really apt as its original meaning applied only to
unctions that could take more than one type of argument. An example class of objects i -
72, such as a model of cons pairs, would look like: P epjects In Smallalk

to likeLoGo, except makes a tem variab i
l chass e e l l porary varia Iel !Lnstance variables l

ISNEW is true 1f a new instance
has been created to Pair b1 k't “b is temp. h, t are internal instance vars”
(ISNEW » (:h. 1) “cons—if no explicit return is gi; 1
ltme any object not false acts asl Ohd » (0<- » (M:h)AN) "replncaind :'ID greem Seus s rewmed
true otl » (0<- 3 (:0)A) “replacd and cdr”
QisPair » (Mrug)
Sprint s (‘(print. SELF mprint)
Bmprint » (h print. ¢ sNil » (') print) ¢ isPair » (¢ mprint} » ‘e print. ¢ print. *) print)
Olength » (t isPair » (714t length) 1))

true¢ » mn will evaluate m and
escape from sur-
rounding (}

l@“ »m n will evaluate n1

evals the next part of Mmessaged o eyebail looks to see if its | [~ l N I
" ! send-back returns § |- Statement separator”
and binds result to the vari- message is a literal token i] i i

i o l v
able in ity message in the message stream e D sender 2lue s following message

Since'control is passed to the class before any of the rest of the message is considered—the class
can decide not to receive at its discretion—complete protection is retained. Smalltalk-72 objects are
“shiny” and impervious to attack. Part of the envirorment is the binding of the SENDER in the “mes-
senger object” (a generalized activation record) which allows the receiver to determine differential
privileges (see Appendix if for more details). This looked ahead to the eventual use of Smalitaik as a
;zetwork OS (see [Goldstein & Bobrow 1980]), and I don't recall it being used very much in Smailtalk-

One of the styles retained from Smalltalk-71 was the comingling of function and class ideas. In
other works, Smalltalk-72 classes looked like and could be used as functions, but it was easy to pro-
guce 1aln"instance (a kind of closure) by using the object 1sNEw. Thus factorial could be written “exten-
ionally” as:

to fact n (Nif :n=0 then 1 else n*fact n-1)
or “intensionally”, as part of class integer:
(0l (Mn=) » (1) (n-1)))

Of course, the whole idea of Smalltalk (and 0OP in general) is to define everything intensionally.
And thx.s was the direction of movement as we learned how to program in the new style. I never
liked this syntax (too many parentheses and nestings) and wanted something flatter and more gram-

6/

Alan C. Kay, The Early History Of Smalltalk

mar-like as in Smalltalk-71. To the right is an exam- [“pairnt

ple syntax from the notes of a talk I gave around
then. We will see something more like this a few
years later in Dan’s design for Smalltalk-76. I think
something similar happened with Lisp—that the
“reality” of the straightforward and practical syntax
you could program in prevailed against the flights
of faney that never quite got built.

hd <-:h
hd
H<-:t
t
isPair
print
myprint

length

Proposed
Smalltalk-72 Syntax

h

t

true

“(print. SELF mprint.

hprint. if t isNil then ‘) print
else if t isPair then t mprint
else “» print. t print. °) print.

1+ if tislist then t length else 0

Development Of The Smailtalk-72 System And Applications

The advent of a real Smalltalk on a real machine start-
ed off an explosion of parallel paths that are too difficult
to intertwine in strict historical order. Let me first present
the general development of the Smalltalk-72 system up to
the transistion to Smalltalk-76, and then follow that with
the several years of work with children that were the pri-
mary motivation for the project. The Smalltalk-72 inter-
preter on the Interim Dynabook was not exactly zippy
(“majestic” was Butler’s pronouncement), but was easy

to change and quite fast enough for many real-time inter-

active systems to be built in it.

Overlapping windows were the first project tackled
(with Diana Merry) after writing the code to read the
keyboard and create a string of text. Diana built an early
version of a bit field block transfer (bitblt) for displaying
variable pitch fonts and generally writing on the display.
The first window versions were done as real 21/2D drag-
gable objects that were just a little too slow to be useful.
We decided to wait until Steve Purcell got his animation
system going to do it right, and opted for the style that is
still in use today, which is more like “21/4D”. Windows
were perhaps the most redesigned and reimplemented
class in Smalltalk because we didn’t quite have enough
compute power to just do the continual viewing to
“world coordinates” and refreshing that my former Utah
colleagues were starting to experiment with on the flight
simulator projects at Evans & Sutherland. This is a sim-
ple, powerful model but it is difficult to do in real-time
even in 2172D. The first practical windows in Smalltalk
used the GRAIL conventions of sensitive corners for mov-
ing, resizing, cloning, and closing. Window scheduling
used a simple “loopless” control scheme that threaded all
of the windows together.

One of the next classes to be implemented on the
Interim Dynabook (after the basics of numbers, strings,
etc.,) was an object-oriented version of the LOGCO turtle
implemented by Ted. This could make many turtle
instances that were used both for drawing and as a kind
of value for graphics transformations. Dan created a class
of “commander” turtles that could control a troop of tur-
tles. Soon the turtles were made so they could be clipped
by the windows.

John Shoch built a mouse-driven structured editor for
Smalltalk code.

ane o? the “first

build* ALTOs

TR K winke ol
ice

yror

SETTHE uTriy ol
ur service

A

| Early Smalralk Windows on interim Dynabook |
- T ycar wivics)
t Turtles i

Alan C. Kay, The Early History Of Smaiftaik 22

" "Larry Tesler (then working for POLOS) did not like the
modiness and general approach of NLS, and he wanted
both show the former NLsers an alternative and to con-
duct some user studies (almost unheard of in those
days) about editing. This led to his programming mini-
MOUSE in Smalltalk, the first real wysIwYG galley editor
at PARC. It was modeless (almost) and fun to use, not
just for us but for the many people he tested it on (I ran
the camera for the movies we took and remember their
delight and enjoyment). miniMouse quickly became an
alternate editor for Smalltalk code and some of the best
demos we ever gave used it.

One of the “small program” projects [tried on an
adult class in the Spring of ‘74 was a one-page para-
graph editor. It turned out to be too complicated, but
the example I did to show them was completely mode-
less (it was in the air) and became the basis for much of
the Smalltalk text work over the next few years. Most of
the improvements were made by Dan and Diana Merry.
Of course, objects mean muiti-media documents, you
almost get them for free. Early on we realised that in
such a document, each component object should handle
its own editing chores. Steve Weyer built some of the
earliest multi-media documents, whose range was
greatly and variously expanded over the years by Bob
Flegal, Diana Merry, Larry Tesler,Tim Mott, and Trygve
Reenskaug.

Steve Weyer and I devised Findit, a “retrieval by
example” interface that used the analogy of classes to
their instances to form retrieval requests. This was used
for many years by the PARC library to control circula-
tion.

The sampling synthesis music I had developed on
the NOVA could generate 3 high-quality real-time voices.
Bob Shur and Chuck Thacker transfered the scheme to
the Interim Dynabook and achieved 12 voices in real-
time. The 256 bit generalized input that we had speci-
fied for low speed devices (used for the mouse and key-
board) made it easy to connect 154 more to wire up two
organ keyboards and a pedal. Effects such as portamen-
to and decay were programmed. Ted Kaehler wrote
TWANG, a music capture and editing system, using a tab-
ulature notation that we devised to make music clear to
children [Kay,1977a]. One of the things that was hard to
do with sampling was the voltage controlled operator
(veo) effects that were popular on the “Well Tempered
Synthesizer”. A summer later, Steve Saunders, another
of our bright summer students, was challenged to find
a way to accomplish John Chowning’s very non-real-
time FM synthesis in real-time on the ID. He had to find
a completely different way to think of it than “FM”, and
succeeded brilliantly with 8 real-time voices that were
integrated into TWANG [Saunders *].

Chris Jeffers (who was a musician and educator, not
a computer scientist) knocked us out with orus, the first
real-time score capturing system. Unlike most systems

o
Crevw Delrte Arc hiwe JITOCS

e Debrey Dellar \
£

Koy, Al CaMixry, Adcte
joct !
Debeee dae (Jua 21 i

|
Leme

Findit Retrigval By Example

T s K10, vrm

[

Cablberg, aeeie

date I3 Mar 15
m_hﬁuhq-ﬁll&\‘nJ

many wewre bearkol @erens siary
% be vl aand, o et B el

O yoFIA, @ iseeid. & . STLN
o

provy 41tu 1 y pradn turs i, & ¢ 1@
(R l-A-4d

e ewr
1 @ W do S0P dnr,
pndy s
1 @ whike SILY duw.
b
1 SALY amdvew. @ slaresises 1, SUS brew.
we

Frlo

ST wudraw, grishoriiot, SPLF drowr.

Retrieved HyperDocument

Ma g2
OIS TR HEesy - E Y
TWANG Music
System - — ok

==3>) Bk C!

g e
duliba Freqmmy Rok Ad-Rek Medraw (el

FM Timbre Editor

OPUS Score Capture

08

today it did not require metronomic playing but
instead took a first pass looking for strong and weak
beats (the phrasing) to establish a local model of the

likely tempo fluctuations and then used curve fitting
and extrapolation to make judgements about just

where in the measure, and for what time value, a
given note had been struck.

The animations on the NOVA ran 3-5 objects at about |

2-3 frames per second. Fast enough for the phi phe-
nomenon to work (if double buffering was used), but
we wanted “Disney rates” of 10-15 frames a second
for 10 or more large objects and many more smaller
ones. This task was put into the ingenious hands of
Steve Purcell. By the Fall of 73 he could demo 80
ping-pong balls and 10 flying horses running at 10
frames per second in 21/2 D. his next task was to make
the demo into a general systems facility from which
we could construct animation systems. His CHAOS sys-
temn started working in May ‘74, just in time for sum-
mer visitors Ron Baecker, Tom Horseley, and profes-
sional animator Eric Martin to visit and build sHazaM
a marvelously capable and simple animation system
based on Ron’s GENESYS thesis project on the TX-2 in
the late sixties [Baecker 69).

The main thesis project during this time was Dave
Smith’s PYCMALION [Smith 75], an essay into iconic
programming (no, we hadn’t quite forgotton). One
programmed by showing the system how changes
should be made, much as one would illustrate on a
blackboard with another programmer. This program-
became the starting place from which many subse-
quent programming by example” systems took off.

I should say something about the size of these pro-
grams. PYCMALION was the largest program ever writ-
ten in Smalltalk-72. It was about 20 pages of code—all
that would fit in the interim dynabook ALTO—and is
given in full in Smith's thesis. All of the other applica-
tions were smaller. For example, the SHAZAM anima-
tion system was written and revised several times in
the summer of 1974, and finally wound up as a 5-6
page application which included its icon-controiled
multiwindowed user interface.

Given its roots in simulation languages, it was easy
to write in a few pages, Simpula, a simple version of
the SIMULA sequencing set approach to scheduling. By
this time we had decided that coroutines could be
more cleanly be rendered by scheduling individual
methods as separate simulation phases. The generic
SIMULA example was a job shop. This could be general-
ized into many useful forms such as a hospital with
departments of resources serving patients (see to the
right). The children did not care for hospitals but saw
they could model amusement parks, like Disneyland,
their schools, the stores they and their parents
shopped in, and so forth. Later this model formed the

Alan . nay, Ihe tary rustory Ut smalitalk

i, 3 TN

rerartered

iy F——_—J"*

walitali

23

L

PYGMALION Iconic Programming

Tty {Latwratary Orshler
aafts fair swry
Exxx EEEE T xx
Quamt Quowmt Quumant
ol [s
e iz

h = bt ta)
ity S T e,
e 1 to !-w-«cv
Aeunid lnr.nn Crihier, ard
8 ' o

L

*Simpula® Hospital Simulation

Alan L. nay, ihe karly History Ot Smaiftaik 24

basis of the smalltalk Sim-kit, a high-level end-user programming environment (described ahead).

Many nice “computer sciency” constructs were easy to make in Smalltalk-72. For example, one of
the controversies of the day was whether to have gotos or not (we didn’t), and if not, how could cer-
tain very useful control structures—such as multiple exits from a loop—be specified? Chuck Zahn at
SLAC proposed an event-driven case structure in which a set of
events could be defined so that when an event is encountered,
the loop will be exited and the event will select a statement in character = ret » (Return)
a case block{Zahn, 1974, Knuth, 1974]. Suppose we want to character = del » (Delete)
write a simple loop that reads characters from the keyboard)
and outputs them to a display. We want it to exit normally themase L .,
when the <return> key is struck and with an error if the g‘;’;’:_}fm’:’m:’;;’;’:}“‘aﬁ;))
<delete> key is hit. Appendix IV shows how John Shoch .
defined this control structure.

(until Return or Delete do
(‘character <- display <- keyboard.

The Evolution Of Smalltalk-72

Smalltalk-74 (sometimes known as FastTalk) was a version of Smalltalk-72 incorporating major
improvements which included providing a real “messenger” object, message dictionaries for classes
(a step towards real class objects), Diana Merry's bitbit (the now famous 2D graphics operator for
bitmap graphics) redesigned by Dan and implemented in microcode, and a better, more general win-
dow interface. Dave Robson while a student at UCIrvine had heard of our project and made a pretty
good stab at implementing an 0OPL. We invited him for a summer and never let him go back—he was
a great help in formulating an official semantics for Smalltalk.

The crowning addition was the 002E (Object Oriented Zoned Environment) virtual memory sys-
temn that served Smalltalk-74, and more importantly, Smalltalk-76 [Ing 78, Kae *]. The ALTO was not
very large (128-256K), especially with its page-sized display (64k), and even with small programs, we
soon ran out of storage. The 2.4 megabyte model 30 disk drive was faster and larger than a floppy
and slower and smaller than today’s hard drives. It was quite similar to the HP direct contact disk of
the FLEX machine on which I had tried a fine-grain version of the B5000 segment swapper. It had not
worked as well as I wanted, despite a few good ideas as to how to choose objects when purging.
When the gang wanted to adapt this basic scheme, [said: “But I never got it to work well.” I remem-
ber Ted Kaehler saying, “Don’t worry, we’ll make it work!”

The basic idea in all of these systems is to be able to gather the most comprehensive possible work-
ing set of objects. This is most easily accomplished by swapping individual objects. Now the problem
becomes the overhead of purging non-working set objects to make room for the ones that are needed.
(Paging sometimes works better for this part because you can get more than one object (OOZE) in
each disk touch.) Two ideas help a lot. First, Butler’s insight in the GENIE 0s that it was worthwhile to
expend a small percentage of time purging dirty objects to make core as clean as possible
[Lampson,1966]. Thus crashes tend not to hurt as much and there is always clean storage to fetch
pages or objects from the disk into. The other is one from the FLEX system in which I set up a stochas-
tic decision mechanism (based on the class of an object) that determined during & purge whether or
not to throw an object out. This had two benefits: important objects tended not to go out, and a mis-
take would just bring it back in again with the distribution insuring a low probablity that the object
would be purged again soon.

The other problem that had to be taken care of was object-pointer integity (and this is where I had
failed in the FLEX machine to come up with a good enough solution). What was needed really was a
complete transaction, a brand new technique (thought up by Butler?) that ensured recovery regardless
of when the system crashed. This was called “cosmic ray protection” as the early ALTOs had a way of
just crashing once or twice a day for no discernable good reason. This, by the way did not particular-
ly bother anyone as it was fairly easy to come up with undo and replay mechanisms to get around the
cosmic rays. For pointer-based systems that had automatic storage management, this was a bit more
tricky.

Teﬁ and Dan decided to control storage using a Resident Object Table that was the only place
machine addresses for objects would be found. Other useful information was stashed there as well to
help LRU aging. Purging was done in background by picking a class, positioning the disk to its
instances (all of a particular class were stored together), then running through the ROT to find the
dirty ones in storage and stream them out. This was pretty efficient and, true to Butler’s insight, fur-

18

nished 2 good sized pool of clean ‘storage that could be overwritten. The key to the design though
(and the implementation of the transaction mechanism) was the checkpointing scheme they came up
with. This insured that there was a recoverable image no more than a few seconds old, regardless of
when a crash might occur. 0OZE swapped objects in just 80kb of working storage and could handle
about 65K objects (up to several megabytes worth, more than encugh for the entire system, its inter-
face, and its applications).

“QObject-oriented” Style

This is probably a good place to comment on the difference between what we thought of as cop-
style and the superficial encapsulation called “abstract data types” that was just starting to be investi-
gated in academic circles . Qur early “LisP-pair” definition is an example of an abstract data type
because it preserves the “field access” and “field rebinding” that is the hallmark of a data structure.
Considerable work in the 60s was concerned with generalizing such structures{DSP *}. The “official”
computer science world started to regard Simula as a possible vehicle for defining abstract data types
(even by one of its inventors[Dahl 1970)), and it formed much of the later backbone of ADA. This led
to the ubiquitous stack data-type example in hundreds of papers. To put it mildly, we were quite
amazed at this, since to us, what Simula had whispered was something much stronger than simply
reimplementing a weak and ad hoc idea. What I got from Simula was that you could now replace
bindings and assignment with goals. The last thing you wanted any programmer to do is mess with
internal state even if presented figuratively. Instead, the objects should be presented as sites of higher
level behaviors more appropriate for use as dynamic components.

Even the way we taught children (cf. ahead) reflected this way of looking at objects. Not too sur-
prisingly this approach has considerable bearing on the ease of programming, the size of the code
needed, the integrity of the design, etc. It is unfortunate that much of what is called “object-oriented
programuming” today is simply old style programming with fancier constructs. Many programs are
loaded with “assignment-style” operations now done by more expensive attached procedures.

Where does the special efficiency of object-oriented design come from? This is a good question
given that it can be viewed as a slightly different way to apply procedures to data-structures. Part of
the effect comes from a much clearer way to represent a complex system. Here, the constraints are as
useful as the generalities. Four techniques used together—persistant state, polymorphism, instantia-
tion, and methods-as-goals for the object—account for much of the power. None of these require an
“pbject-oriented language” to be employed—ALGOL 68 can almost be turned to this style—an OOPL
merely focuses the designer’s mind in a particular fruitful direction. However, doing encapsulation
right is 2 commitment not just to abstraction of state, but to eliminate state oriented metaphors from
programming.

Perhaps the most important principle—again derived from operating system architectures—is that
when you give someone a structure, rarely do you want them to have unlimited priviedges with it.
Just doing type-matching isn’t even close to what's needed. Nor is it terribly useful to have some
objects protected and others not. Make them all first class citizens and protect all.

1 believe that the much smaller size of a good OOP system comes not just by being gently forced to
come up with a more thought out design. I think it also has to do with the “bang per line of code”
you can get with 00P. The object carries with it a lot of significance and intention, its methods suggest
the strongest kinds of goals it can carry out, its superclasses can add up to much more code-function-
ality being invoked than most procedures-on-data-structures. Assignment statements—even abstract
ones—express very low-level goals, and more of them will be needed to get anything done.
Generally, we don’t want the programmer to be messing around with state, whether simulated or
not. The ability to instantiate an object has a considerable effect on code size as well. Another way to
think of all this is: though the late-binding of automatic storage allocation doesn’t do anything a pro-
grammer can’t do, its presence leads both to simpler and more powerful code. 0OP is a late binding
strategy for many things and all of them together hold off fragility and size explosion much longer
than the older methodologies. In other words, human programmers aren’t Turing machines—and the
less their programming systems require Turing machine techniques the better.

Smalltalk And Children
Now that I have summarized the “adult” activities (we were actually only semiadults} in Smalltalk
up ta 1976, let me return to the summer of ‘73, when we were ready to start experiments with chil-

Alan C. Kay, The Earny ristory Ot Smaiftaik 26

dren. None of us knew anything about working with chul-
dren, but we knew that Adele Goldberg and Steve Weyer
who were then with Pat Suppes at Stanford had done
quite a bit and we were able to entice them to join us.
Since we had no idea how to teach object-oriented pro-
gramming to children (or anyone else), the first experi-
ments Adele did mimicked LOCO turtle graphics, and she
got what appeared to be very similar results. That is to
say, the children could get the turtle to draw pictures on P
the screen, but there seemed to be little happening [REEEE." -
beyond surface effects. At that time I felt that since the [Adale holding forth at Jordan Middle Sch.
content of personal computing was interactive tools, that

the content of this new kind of authoring literacy should bOX new named *joe’l
be the creation of interactive tools by the children. box: joe
Procedural turtle graphics just wasn't it.

Then Adele came up with a brilliant approach to teach-
ing Smalltalk as an object-oriented language: the “Joe |
Book”. 1 believe this was partly influenced by Minsky’s 19° “‘";:0‘

idea that you should teach a programming language
holistically from working examples of serious programs.

Several instances of the class box are created and sent
messages, culminating with a simple multiprocess ani-
mation. After getting kids to guess what a box might be
like—they could come surprisingly close—they would be joe erasel
shown: ok

to box | x y size tilt

(odraw = (@ place x y turn tilt. square size.)

Cundraw » (@ white. SELF draw. @ black) joe showl

Qturn » (SELF undraw. ‘tilt <- tilt + ;. SELF draw) ok

ogrow » (SELFundraw. 'size <- size + . SELF draw)

ISNEW = (SELFundraw. ‘size <- size + i SELF draw)

What was so wonderful about this idea were the myri-
ad of children’s projects that could spring off the humble
boxes. And some of the earliest were tools! This was
when we got really ex.c'xlked. For example, Marion jill turn -20!
Goldeen’s (12 yrs old) painting system was a full-fledged ok
tool. A few years later, so was Susan Hamet's (12 yrs old)
oop illustration system (with a design that was like the
MacDraw to come). Two more were Bruce Horn's (15 y1s 4 14 10
old) music score capture system and Steve Putz’s (15 yrs interval: 12345678910
old) circuit design system. Looking back, this could be
called another example in computer science of the “early orgyer!
success syndrome”. The successes were real, but they interval: 12345678910 11 ...
weren’t as general as we thought. They wouldn’t extend
into the future as strongly as we hoped. The children 1 15 10 do (joe turn 20)!
were chosen from the Palo Alto schools (hardly an aver- ok
age background) and we tended to be much more excited
about the successes than the difficulties. In part, what we
were seeing was the “hacker phenomenon”, that, for any
given pursuit, a particular 5% of the population will
jump into it naturaily, while the 80% or so who can learn forever do (joe turn 11, jill turn -13)!

it in time do not find it at all natural. - ok 2

joe grow -15!
ok

box new named %jili*l
box: jill

=g

We had a dim sense of this, but we kept on having rel-
ative successes. We could definitely see that learning the
mechanics of the system was not a major problem. The
children could get most of it themselves by swarming
over the ALTOs with Adele’s JOE book. The problem

28

seemed more to be that of design.
It started to hit home in the Spring of ‘74 after I taught |
Smalltalk to 20 PARC nonprogrammer adults. They were
able to get through the initial material faster than the chil-
dren, but just as it looked like an overwhelming success
was at hand, they started to crash on problems that didn’t
look to me to be much harder than the ones they had just J&
been doing well on. One of them was a project thought Ja&
up by one of the adults, which was to make a little data- Jil
base system that could act like a card file or rolodex. They %
couldn’t even come close to programming it. I was very
surprised because 1 “knew” that such a project was well

The author in the Interim Dynabook playroom.
Working with the kids was my favorite part of this

below the mythical “two pages” for end-users we were Romance
working within. That night I wrote it out, and the next ~ e Eoph fmtycn of e s
"day I showed all of them how to do it. Still, none of them =
- h crmns & mew 504 (hat hamdt (M SeR e “pal®

were able to do it by themselves. Later, I sat in the room

pondering the board from my talk. Finally, I counted the T e e o S

number of nonobvious ideas in this little program. They .. :.,......,_.,........ “e

came to 17. And some of them were like the concept of e T S
the arch in building design: very hard to discover, if you ___ e .
don’t already know them. by ooty
The connection to literacy was painfully clear. It isn’t »— Ay oruing el e bou fmtner SELF s
enough to just learn to read and write. There is also a lit- E‘ﬁ:'m:":"“ e

erature that renders idens. Language is used to read and N v ot e v e
write about them, but at some point the organization of il) A ahich 8 I .
ideas starts to dominate mere language abilities. And it el giefitvnigodler ™
helps greatly to have some powerful ideas under one’s

» wil he pon 0 tarn,
belt to better acquire more powerful ideas [Papert 70s]. [Tdele's planning tempiate for Smalitalk (abovﬂ
So, we decided we should teach design. And Adele came

ITLF anw.

New behavior added by child (balow)

up with another brilliant stroke to deal with this. She jurcia min e it s
decided that what was needed was an intermediary = Al ereumy ioef o Yot amance AEL7 smtee.
(nterpramed 23 O ew coordinate pal plose 2t &

between the vague ideas about the problem and the very
detailed writing and debugging that had to be done to
get it to run in Smalltalk. She called the intermediary
forms design templates.

Using these the children could look at a situation they

wanted to simulate, and decompose it into classes and

BE!EDIBE]DDIEIDEI
messages without having to worry just how a method

would work. The method planning could then be done -
informally in English, and these notes would later serve
as commentaries and guides to the writing of the actual
code. This was a terrific idea, and it worked very well.

But not enough to satisfy us. As Adele liked to point ——
out, it is hard to claim success if only some of the children Maé'ﬂ"sa?m:spémﬂsmfﬂﬂwq
are successful—and if a maximum effort of both children
and teachers was required to get the successes to happen. L«
Real pedagogy has to work in much less idealistic set-
tings and be considerably more robust. Still, some suc-
cesses are qualitatively different from no successes. We
wanted more, and started to push on the inheritance idea
as a way to let novices build on frameworks that could
only be designed by experts. We had good reason to
believe that this could work because we had been
impressed by Lisa van Stone’s ability to make significant
changes to SHAZAM (the five or six page Smalltalk anima-
tion tool done by relatively expert adults). Unfortunately,

of e bor Nete uace i pen. Fiiher
1han (v Dok Temembery Uha location,
mnnhuunm—-u—
ol At the mew

AT gaw.

++{

tnheritance—though an incredibly powerful technique—

has turned out to be very difficult for novices (and even

professionals) to deal with.

At this point, let me do a look back from the vantage

point of today. I'm now pretty much convinced that our
design template approach was a good one after all. We
just didn’t apply it longitudinally enough. I mean by this
that there is now a large accumulation of results from
many attempts to teach novices programming [Soloway,
1989]. They all have similar stories that seem to have little
to do with the various features of the programming lan-
guages used, and everything to do with the difficulties
novices have thinking the special way that good pro-
grammers think. Even with a much better interface than
we had then (and have today), it is likely that this area is
actually more like writing than we wanted it to be.
Narmely, for the “80%", it really has to be learned gradual-
ly over a period of years in order to build up the struc-
tures that need to be there for design and solution look-
ahead. 41

The problem is not to get the kids to do stuff—they
love to do, even when they are not sure exactly what they
are doing. This correlates well with studies of early learn-
ing of language, when much rehearsal is done regardless
of whether content is involved. Just doing seems to help.
What is difficult is to determine what ideas to put forth
and how deeply they should penetrate at a given child’s
developmental level. This is a confusion still persists for
reading and writing of natural language—and for mathe-
matics—despite centuries of experience. And it is the
main hurdle for teaching children programming. When,
in what order and depth, and how should the powerful
ideas be taught?

Should we even try to teach programming? I have met
hundreds of programmers in the last 30 years and can see
no discernable influence of programming on their general
ability to think well or to take an enlightened stance on
human knowledge. If anything, the opposite is true.
Expert knowledge often remains rooted in the environ-
ments in which it was first learned—and most metaphori-
cal extensions result in misleading analogies. A remark-
able number of artists, scientists, philosophers are quite
dull outside of their specialty (and one suspects within it
as well). The first siren’s song we need to be wary of is
the one that promises a connection between an interest-
ing pursuit and interesting thoughts. The music is not in
the piano, and it is possible to graduate Julliard without
finding or feeling it.

I have also met a few people for whom computing pro-
vides an important new metaphor for thinking about
human knowledge and reach. But something else was
needed besides computing for enlightenment to happen.

Tools provide a path, a context, and almost an excuse
for developing enlightenment, but no tool ever contained
itor can dispense it. Cesare Pavese observed: to know the

-

am. -\.\. 1% :’

{ Circuit design system by Steve Putz (age 15) i

Tangram designs are created by select-
ing shapes from a *menu"” displayed at
the top of the screen. This system was
implemented in Smalltalk by a fourteen-
year old girl [Kay 77]

r

SpaceWar by Dennis (age 12))

]

SHAZAM modified to *group® multiple

images by Lisa van Stone (age 12)

€8

e s, e e —_—

world we must construct it. In other words, we make not just to have, but fo know. But the having can
happen without most of the knowing taking place.

Another way to look at this is that knowledge is in its least interesting state when it is first being
learned. The representations—whether markings, allusions, or physical controls—get in the way
(almost take over as goals) and must be laboriously and painfully interpreted. From here there are
several useful paths, two of which are important and intertwined.

The first is fluency, which in part is the process of building mental structures that disappear the
interpretations of the representations. The letters and words of a sentence are experienced as mean-
ing rather than markings, the tennis racquet or keyboard becomes an extension of one’s body, and so
forth. If carried further one eventually becomes a kind of expert—but without deep knowledge in
other areas, attempts to generalize are usually too crisp and ill formed.

The second path is towards taking the knowledge as a metaphor than can illuminate other areas.
But without fluency it is more likely that prior knowledge will hold sway and the metaphors from
this side will be fuzzy and misleading.

The “trick”, and I think that this is what liberal arts eduation is supposed to be about, is to get flu-
ent and deep while building relationships with other fluent deep knowledge. Qur society has low-
ered its aims so far that it is happy with “increases in scores” without daring to inquire whether any
important threshold has been crossed. Being able to read a warning on a pill bottle or write about a
summer vacation is not literacy and our society should not treat it so. Literacy, for example, is being
able to fluently read and follow the 50 page argument in Paine’s Common Sense and being able (and
happy) to fluently write a critique or defence of it. Another kind of 20th century literacy is being able
to hear about a new fatal contagious incurable disease and instantly know that a disastrous exponen-
tial relationship holds and early action is of the highest priority. Another kind of literacy would take
citizens to their personal computers where they can fluently and without pain build a systems simu-
lation of the disease to use as a comparison against further information.

At the liberal arts level we would expect that connections between each of the fluencies would
form truly powerful metaphors for considering ideas in the light of others.

The reason, therefore, that many of us want children to understand computing deeply and fluently
is that like literature, mathematics, science, music, and art, it carries special ways of thinking about
situations that in contrast with other knowledge and other ways of thinking critically boost our abili-
ty to understand our world.

We did not know then, and I'm sorry to say from 15 years later, that these critical questions stil! do
not yet have really useful answers. But there are some indications. Even very young children can
understand and use interactive transformational tools. The first ones are their hands! They can readily
extend these experiences to computer objects and making changes to them. They can often imagine
what a proposed change will do and not be surprised at the result. Two and three year olds can use
the Smalltalk-style interface and manipulate object-oriented graphics. 3rd graders can (in a few days)
learn more than 50 features—most of these are transformational tools—of a new system including its
user interface. They can answer any question whose answer requires the application of just one of
these tools. But it is extremely difficult for them to answer any question that requires two or more
transformations. Yet they have no problem applying sequences of transformations, exploring “for-
ward”. It is for conceiving and achieving even modest goals requiring several changes that they
almost completely lack navigation abilities.

It seems that what needs to be learned and taught is how to package up transformations in twos
and threes in a manner similar to learning a strategic game like checkers. The vague sense of a “three-
some” pointing towards one’s goal can be a set up for the more detailed work that is needed to
accomplish it. This art is possible for a large percentage of the population, but for most, it will need to
be learned gradually over several years.

V. 1976-80—The first modern Smalltalk (-76), its birth, applications, and improvements
By the end of 1975 I felt that we were losing our balance—that the “Dynabook for children” idea
was slowly dimming out—or perhaps starting to be overwhelmed by professional needs. In January
1976, 1 took the whole group to Pajaro Dunes for a three day offsite to bring up the issues and try to
reset the compass. It was called “Let’s Burn Our Disk Packs”. There were no shouting matches, the
group liked (1 would go so far to say: loved) each other too much for that. But we were troubled.
used the old aphorism that “no biological organism can live in its own waste products” to plead for a

PV Ay, NG L@y L HBWIY NI Diantain

really fresh start: a hw-sw system very different from the aLT0 and Smalltalk. One thing we all dT:
agree on was that the current Smalltalk’s power did not match our various levels of aspiration. I
thought we needed something different, as I did not see how oop by itself was going to solve our
end-user problems. Others, particularly some of the grad students, really wanted a better Smalltalk
that was faster and could be used for bigger problems. I think Dan felt that a better Smalltalk could
be the vehicle for the different system I wanted, but could not describe clearly. The meeting was not a
disaster, and we went back to PARC still friends and colleagues, but the absolute cohesiveness of the
first four years never rejelled. I started designing a new small machine and language I called the
NoteTaker and Dan started to design Smalltalk-76.

The reason I wanted to “burn the disk packs” is that I had a very McLuhanish feeling about media
and environments: that once we’ve shaped tools, in his words, they turn around and “reshape us”.
Of course this is a great idea if the tools are really good and aimed squarely at the issues in question.
But the other edge of the sword cuts as deep—that inadequate tools and environments still reshape
our thinking in spite of their problems, in part, because we want paradigms to guide our goals.
Strong paradigms like LisP and Smalltalk are so compelling that they eat their young: when you look
at an application in either of these two systems, they resemble the systems themselves, not a new
idea. When I looked at Smalltalk in 1975, I was looking at something great, but I did not see an
enduser language, I did not see a solution to the original goal of a “reading” and “writing” computer
medium for children. I wanted to stop, dynamite everything and start from scratch again.

The NoteTaker was to be a “laptop” that could be built in a few years using the (almost) available
16K RaMS (a vast improvement over the 1K RaMs that the aLTO employed). A laptop couldn't use a
mouse (which I hated anyway) and a tablet seemed awkward (not a lot of room and the stylus could
flop out of reach when let go), so [came up with an embedded pointing device I called a “tabmouse”.
It was a relative pointer and had an up sensor so it could be stroked like a mouse and would also stay
where you left it, but it felt like a stylus and used a pantograph mechanism that eliminated the
annoying hysteresis bias in the x and y directions that made it hard to use a mouse as a pen. I
planned to use a multiprocessor architecture of slow but highly integrated chips as originally speci-
fied for the Dynabook and wanted a new bytecoded interpreter for a friendlier and simpler system
than Smalltalk-72.

ot ranchor 44

t
foeket b pen
] "““‘L‘-‘ 'l‘u_ fonate
%‘:' "ﬁ: -a‘——-, y(

Meanwhile Dan was proceeding with his total revamp of Smalltalk and along somewhat similar
lines [In 78]. The first major thing that needed to be done was to get rid of the function/class dualism
in favor of a completely intensional definition with every piece of code as an intrinsic method. We
had wanted that from the beginning, (and most of the code was already written that way). There
were a variety of strong desires for a real inheritance mechanism from Adele and me, from Larry
Tesler, who was working on desktop publishing, and from the grad students. Dan had to find a better
way than Simula’s very rigid compile-time conception. It was time to make good on the idea that
“everything was an object”, which included all of the internal “systems” objects like “activation
records”, etc. We were all agreed that the flexible syntax of the earlier Smalltalks was tog flexible, and
this level of extensibility was not desirable. All of the extensions we liked used various keyword
schemes, so Dan came up with a combination keyword/operator syntax that was very flexible, but
allowed the language to be read unambiguously by both humans and the machine. This allow’ed a
FLEX machine-like byte-code compiler and efficient interpreter to be defined that ran up to 180 times

Alan C. Kay, Ihe earny risiory Ui Smaiitain 31
3s fast as the previous direct interpreter. The 0OZE VM system could be modified to handle the new
objects and its capacity was well matched to the ALTO's RAM and disk.

Inheritance

A word about inheritance. Simula-I had neither classes as objects nor inheritance. Simula-67 added
the latter as a generalization to the ALCOL-60 <block> structure. This was a great idea. But it did have
some drawbacks: minor ones like name clashes in multiple threaded lists (no one uses threaded lists
anymore), and major ones like a rigidity in the extended type structures, need to qualify types, only a
single path of inheritance, and difficulty in adapting to an interactive development system with
incremental compiling and other needs for instant changes. Then there were a host of problems that
were really outside the scope of Simula’s goals: having to do with various kinds of modeling and
inferencing that were of interest in the world of artificial intelligence. For example, not all useful
questions could be answered by following a static chain. Some of them required a kind of “inheri-
tance” or “inferencing” through dynamicaily bound “parts” (i.e. instance variables). Multiple inheri-
tance also looked important but the corresponding possible clashes between methods of the same
name in different superclasses looked difficult to handle, and so forth.

On the other hand, since things can be done with a dynamic language that are difficult with a stati-
cally compiled one, I just decided to leave inheritance out as a feature in Smalltalk-72, knowing that
we could simulate it back using Smalltalk’s uisplike flexibility. The biggest contributer to these Al
ideas was Larry Tesler who used what is now called “slot inheritance” extensively in his various ver-
sions of early desktop publishing systems. Nowadays, this would be called a "delegation-style”
inheritance scheme [Lieberman 84]. Danny Bobrow and Terry Winograd during this period were
designing a “frame-based” Al language called KRL which was “object-oriented” and I believe was
influenced by early Smalltalk. It had a kind of multiple inheritance—called perspectives—which per-
mitted an object to play multiple roles in a very clean way. Many of these ideas a few years later went
into PIE, an interesting extension of Smalltalk to networks and higher level descriptions by Ira
Goldstein and Bobrow [Goldstein & Bobrow 1980].

By the time Smalltalk-76 came along, Dan Ingalls had come up with a scheme that was Simula-like
in its semantics but could be incrementally changed on the fly to be in accord with our goals of close
interaction. I was not completely thrilled with it because it seemed that we needed a better theory
about inheritance entirely (and still do). For example, inheritance and instancing (which is a kind of
inheritance) muddles both pragmatics (such as factoring code to save space) and semantics (used for
way too many tasks such as: specialization, generalization, speciation, etc.) Alan Borning employed a
multiple inheritance scheme in Thinglab {Borning 77] which was implemented in Smalltalk-76. But
no comprehensive and clean multiple inheritance scheme appeared that was compelling enough to
surmount Dan’s original Simula-like design.

Meanwhile, the running battle with Xerox continued. There were now about 500 ALTOs linked with
Ethernets to each other and to Laserprinter and file servers, that used ALTOs as controllers. I wrote
many memos to the Xerox planners trying to get them to make plans that included personal comput-
ing as one of their main directions. Here is an example:

A Simple Vision of the Future
A Brief Update Of My 1971 Pendery Paper

In the 1990’s there will be millions of personal computers. They will be the size of notebooks of
today. have high-resolution flat-screen reflective displays, weigh less than ten pounds, have ten to
twenty limes the computing and storage capaclty of an Alto. Let's cail them Dynabooks.

The purchase price will be about that of a color television set of the era, although most of the
machines will be given away by manufacturers who will be marketing the content rather than the con-
tainer of personal computing.

Though the Dynabook will have considerable local storage and will do most computing locally, it
will spend a large percentage of its time hooked to various large, global information utilities which
will permit communication with others of ideas. data. working models. as well as the daily chit-chat
that organizations need in order to function. The communications link will be by private and public
wires and by packet radio. Dynabooks will also be uscd as servers in the information utilities. They
will have enough power to be cntirely shaped by software.

Alan C. Kay, The Early History Ot Smalltalk 32

The Main Points Of This Vision

« There need only be a few hardware types to handle almost all of the processing activity of a system.

» Personal Computers, Communications Links, and Information Utilities are the three critical compo-
nents of a Xerox future.

In other words. the material of a computer system is the computer itself, all of the content and
Sunction is fashioned in software.

There are two important guidelines to be drawn from this:

» Material: If the design and development of the hardware computer material is done as carefully
and completely as Xerox's development of special light-sensitive alloys, then only one or two comput-
er designs need to be built... Extra investment in development here will be vastly repaid by simplify-
ing the manufacturing process and providing lower costs through increased volume.

» Content: Aside from the wonderful generality of being able to continously shape new coantent
from the same malerial, software has three important characteristics:

« the replication time and cost of a content-function is Zero
« the development time and cost fo a content-function is Digh
« the change time and cost of a content-function can be low

Xerox must take these several points seriously if it is 10 survive and prosper in its new business are
of information media. If it does, the company has an excellent chance for several reasons:

+ Xerox has the financial base 10 cover the large development costs of a small number of very
powerful computer-types and a large number of sofiware functions.

«» Xcrox has the marketing base to sell these functions on a wide enough scale to gamer back to
itself an incredible profit.

« Xerox has working for it an impressively large percentage of the best software designers in the
world.

In 1976, Chuck Thacker designed the ALTO Il that would use the new 16k chips and be able to fit on
a desktop. It could be marketed for about what the large cumbersome special purpose "word-proces-
sors" cost, yet could do so much more. Nevertheless, in August of 1976, Xerox made a fateful deci-
sion: not to bring the ALTO 10 to market. This was a huge blow to many of us—even I, who had never
really. really thought of the ALTO as anything but a stepping stone to the “real thing”. In 1992, the
world market for personal computers and workstations was $90 million—twice as much as the main-
frame and mini market, and many times Xerox's 1992 gross. The most successful company of this
era—Microsoft—is not a hardware company, but a software company.

The Smalltalk User Interface

1 have been asked by several of the reviewers to say more about the development of the "Smalltalk-
style” overlapping window user interface since there are now more than 20 million computers in the
world that use its descendents. A decent history would be as long as this chapter, and none has been
written so far. There is a summary of some of the ideas in (Kay 89]—let me add a few more points.

All of the elements eventually used in the Smalltalk user interface were already to be found in the
sixties—as different ways to access and invoke the functionality provided by an interactive system.
The two major centers of ideas were Lincoln Labs and RAND corp—both ARPa funded. The big shift
that consolidated these ideas into a powerful theory and long-lived examples came because the LRG
focus was on children. Hence we were thinking about learning as being one of the main effects we
wanted to have happen. Early on, this led to a 90 degree rotation of the purpose of the user interface
from “access to functionality” to “environment in which users learn by doing”. This new stance
could now respond to the echos of Montessori and Dewey, particularly the former, and got me, on
rereading Jerome Bruner, to think beyond the children’s curriculum to a “curriculum of the user
interface”.

The particular aim of LRG was to find the equivalent of writing—that is learning and thinking by
doing in a medium—our new “"pocket universe". For various reasons I had settled on “iconic pro-
gramming” as the way to achieve this, drawing on the iconic representations used by many ARPA pro-
jects in the sixties. My friend Nicholas Negroponte, an architect, was extremely interested in how
environments affected peoples’ work and creativity. He was interested in embedding the new com-
puter magic in familar surroundings. [had quite a bit of theatrical experience in a past life, and
remembered Coleridge’s adage that “people attend ‘bad theatre’ hoping to forget, people attend

G8

aul Rovner swmg the |c6ni
"Lincoln Wand"® ca. 1968

o) i N
2

- : i 3 o
‘good theatre’ aching to remember”. In other words, it is
the ability to evoke the audience’s own intelligence
and experiences that makes theatre work.

Putting all this together, we want an apparently free
environment in which exploration causes desired
sequences to happen (Montessori); one that allows | by
kinesthetic, iconic, and symbolic learning—"doing with
images makes symbols” (Piaget & Bruner); the user is
never trapped in a mode (GRALL); the magic is embed-
ded in the familiar (Negroponte); and which acts as a
magnifying mirror for the user’s own intelligence
(Coleridge). It would be a great finish to this story to
say that having articulated this we were able to move
straightforwardly to the design as we know it today.
In fact, the Ul design work happened in fits and starts
in between feeding Smalltalk itself, designing chil-
dren’s experiments, trying to understand iconic con-
struction, and just playing around. In spite of this
meandering, the context almost forced a good design
to turn out anyway. Just about everyone at PARC at this
time had opinions about the Ul, ours and theirs. It is
impossible to give detailed credit for the hundreds of
ideas and discussions. However, the consolidation can ~s=... :
certainly be attributed to Dan Ingalls, for listening to [The last Smalitalk-72 Interface I
everyone, contributing original ideas, and constantly
building a design for user testing. I had a fair amount
to do with setting the context, inventing overlapping
windows, etc., and Adele and I designed most of the
experiments. Beyond that, Ted Kaehler, and visitor
Ron Baecker made highly valuable contributions.
Dave Smith designed, SmaliStar, the prototype iconic
interface for the Xerox Star product [Smith 83}.

Meanwhile, I had gotton Doug Fairbairn interested
in the Notetaker. He designed a wonderful “smart bus”] oy
that could efficiently handle slow multiple processors S pE
and the system looked very promising, even though ; / RW.a g
most of the rest of PARC thought I was nuts to abandon l Ted Kaehler's iconic painting interface
the fast bipolar hw of the ALTO. But I couldn’t see that l
bipolar was ever going to make it into a laptop or Dynabook. On the other hand I hated the 8-bit
micros that were just starting to appear, because of the silliness and naivete of their designs—there
was no hint that anyone who had ever designed software was involved.

L MMALL A A Inbwman

P R

AW vl Ay, Tag Cany 2wy i Dljainain 34

Smalltaik-76

Dan finished the Smalltalk-76 design in November, and :

he, Dave Robson, Ted Kaehler, and Diana Merry, success-
fully implemented the system from scratch (which includ-

ed rewriting all of the existing class definitions) in just .-

seven months. This was such a wonderful achievement
that I was bowled over in spite of my wanting to start

over. It was fast, lively, could handle “big” problems, and v fanli

was great fun. The system consisted of about 50 classes

described in about 180 pages of source code. This included i

all of the os functions, files, printing and other Ethernet

services, the window interface, editors, graphics and - |

painting systems, and two new contributions by Larry

Teslet, the famous browsers for static methods in the .

inheritance hierarchy and dynamic contexts for debugging
in the runtime environment. In every way it was the con-
solidation of all of our ideas and yearnings about
Smalltalk in one integrated package. All Smalltalks since
have resembled this conception very closely. In many
ways, as Tony Hoare once remarked about Algol, Dan’s
Smalitalk-76 was a great improvement on its successors!
Here are two stylish ST-76 classes written by Dan.

)Y .,

e,

'y i’

mailtalk-76 User [nterface with a variety of appiica-
tions, including a clock, font editor, painting and illus-

tration editor with iconic menus and programmable
radio buttons, a word processor document editor, and

a class aditor showing window interface code.

A

Class new ttle: ‘Window';
flelds: 'frame’;
asFollowsl

Class new title: 'DocWindow’;
subclassof: Window;
flelds: 'document scrollbar editMenu’;

This is a superclass for presenting windows on the display. I§ roiows!

holds control until the stylus is depressed outside. While it hold
control, it distributes messages to ilself based on user actions.
Schedulin : means keyword whose following
startu ® / expression will be sent "by value®

[frame contains: stylus =>

self enter. t means key-
repeat word whose
rferame contains: stylus loc => foltowing] toutside

{keyboard active => {self keyboard]
stylus down => [self pendown]]
self outside => {]

will ba sent
“by name

Afalse]

tylus d = f I pendown [document pendown]
Aral:e'] us cown >[\eave]]] e keyboard [document E:;board
- | |Image

Detault Event Resp

leave

outside {* false]

pendown

keyboard [keyboard next. frame flash]

image

show
[frame outline: 2.
titleframe put: self title at: frame origin + title loc.
titleframe complement]

... etc.

Notice, particularly in class Window, how the code is
expressed as goals for other objects (or itself) to achieve.
The superclass Window's main job is to notice events and
distribute them as messages to its subclasses. In the
example, a document window (a subclass of
DocWindow) is going to deal with the effects of user
interactions. The Window class will notice that the key-
board is active and send a message to itself which will be
intercepted by the subclass method. If there is no method
the character will be thrown away and the window will

User events are passed on to the document while the window is
active. If the stylus goes out of the window, scrollbar and the
editMenu are each given a chance to gain control.

Event Responses

enter [self show. editMenu show. scrollbar show]
leave [document hideselection. editMenu hide. scrollbar hide]

[editMenu startup => {]
scrollbar startup => (self showDoc]

super means deie-
gate measage to next
higher superclass

enter [self show] => means show [super show. self showDoc}
“then" showDoc [document showin: frame at: scrollbar position]
title [*document title]

Smalak-76 Metaphysics]

98

Ry

g, O iy GOl y ol DA K3

flash. In this case, it finds DocWindow method: keyboard,
which tells the held document to check it out.

In January of 1978 Smalltalk-76 had its first real test. CSL
had invited the top ten executives of Xerox to PARC for a
two day seminar on software, with a special emphasis on
complexity and what could be done about it. LRG got asked
to give them a hands-on experience in end-useér program-
ming 50 “they could do ‘something real’ over two 11/2 hour
sessions”. We immediately decided not to teach them
Smalltalk-76 (my “burn our disk packs” point in spades),
but to create in two months in Smalltaik-76 a rich system
especially tailored for adult nonexpert users (Dan’s point in
trumps). We took our “Simpula” job shop simulation model
as a starting point and decided to build a user interface for
a generalized job shop simulation tool that the executives
could make into specific dynamic simulations that would
act out their changing states by animating graphics on the
screen. We called it the Smalltalk SimKit. This was a maxi-
mum effort and everyone pitched in. Adele became the
design leader in spite of the very recent appearence of a
new baby. I have a priceless memory of her debugging
away on the SimKit while simultaneously nursing Rachell

There were many interesting problems to be solved. The
system itself was straightforward but it had to be complete-
ly sealed off from Smalltaik proper, particularly with regard
to error messages. Dave Robson came up with a nice
scheme (almost an expert system) to capture complaints
from the bowels of Smalltalk and translated them into
meaningful SimKit terms. There were many user interface
details—some workaday, like making new browsers that
could only look at the four SimKit classes (Station, Worker,
Job, Report), and some more surprising as when we tried it
on ten PARC nontechnical adults of about the same age and
found that they couldn’t read the screen very well. The
small fonts our thirtysomething year-old eyes were used to
didn't work for those in their 50s. This led to a nice intro-
duction to the system in which the executives were encour-
aged to customize the screen by choosing among different
fonts and sizes with the side effect that they learned how to
use the mouse unselfconsciously.

On the morning of the “big day” Ted Kaehler decided to
make a change in the virtual memory system OOZE to speed
it up a little. We all held our breaths, but such was the clari-
ty of the design and the confidence of the implementers
that it did work, and the executive hands-on was a howling
success. About an hour into the first session one of the vps
(who had written a few programs in FORTRAN 15 years
before) finally realized he was programming and mused
“so it’s finally come to this”. Nine out of the ten executives
were able to finish a simulation problem that related to
their specific interests. One of the most interesting and
sophisticated was a rC board production line done by the
head of a Xerox owned company using actual figures (that
he carried around in his head) to prime a model that could
not be solved easily by closed form mathematics—it
revealed a serious flaw in the disposition of workers given

Dan Ingalls, the main implementer of
Smalitalk, creator of Smalltalk-76, and
his impiementation plan (below)

PROTECT 1ISTORY

Aot T [
x(4 o T iy i

Jack Goldman finaily uses the system he paid
for all those years (with Alan Borning helping)

e
3 e =
LX) L X 2. X:1-] Lowatatiom’
Arang, =
[=LiiTe] | NouUopma
[Fow
Fon"cymers
[t
e
i v
e = e =
YY) a8 & —
-)
=
e
eaic

An end-user simulation by a Xerox executive,
in SimKit.Total time including training: 3 hours

AR S Ly 0 ey L3y 1 GUHIA, 40

the line’s average probability of manufacturing defects.

Another important system done at this time was Alan
Borning’s Thinglab {Borning,1979]—the first serious
attempt to go beyond Ivan Sutherland’s Sketchpad. Alan
devised a very nice approach for dealing with constraints
that did not require the solver to be omnicient (or able to
solve Fermat’s last theorem).

We could see that the “pushing” style of Smalltalk
could eventually be relaced by a “pulling” style that was
driven by changes to values that different methods were
based on. This was an old idea but Thinglab showed how
the object-oriented definition could be used to automati-
cally limit the contexts for event-driven processing. And
we soon discovered that “prototypes” were more hos-
pitable than classes and that multiple inheritance would
be well served if there were classes for methods that knew
generally what they were supposed to be about (inspired
by Pat Winston’s 2nd order models).

Meanwhile, the NoteTaker was getting realler, bigger,
and slower. By this time the Western Digital emulation-
style chips I hoped to use showed signs of being “diffu-
sion-ware”, and did not look like they would really show
up. We started looking around for something that we
could count on, even if it didn’t have a good architecture.

In 1978, the best candidate was the Intel 8086, a 16-bit chip .
(with many unfortunate remnants of the 8008 and 8080), i

but with (barely) enough capacity to do the job—we
would need three of them to make up for the ALTO, one for
the interpreter, one for bitmapped graphics, and one for
i/0 (networking, etc).

Dan had been interested in the Notetaker all along and
wanted to see if he could make a version of Smalltalk-76
that could be the NoteTaker system. In order for this to
happen it would have to run in 256K (the maximum
amount of RAM that we had planned for the machine.
None of the NOVA-like emulated “machine-code” from the
ALTO could be brought over, and it had to fit in memory as
well—there would only be floppies, no swapping memory
existed. This challenge led to some excellent improve-
ments in the system design. Ted Kaehler’s system tracer
(which could write out new virtual memories from old
ones) was used to clone Smalltalk-76 into the NoteTaker.
The indexed object table (as was used in early Smalltaik-
80) first appeared here to simplify object access. An exper-
iment in stacking contexts contiguously was tried: to save
space and gain speed. Most of the old machine code was
rewitten in Smalltalk and the total machine kernal was
reduced to 6K bytes of (the not very strong) 8086 code.

All of the re-engineering had an interesting effect.
Through the 8086 was not as good at bitblt as the atto
(and much of the former machine code to assist graphics
was now in Smalltalk), the overall interpreter was about
twice as fast as the ALTO version (because not all the
Smalltalk byte-code interpreter would fit into the 4k
microcode memory on the ALTO). With various kinds of
tricks and tuning, graphics display was “largely compen-

=
Alan Boming's Thinglab, a constraint-
based iconic problem solver

Smalitaik-76 hierarchicai class browsar
designed and built by Larry Tesler

The “eut” sign s given ta sat sut e sxira word
frera the tent.

The author's pen-based interface for
ST-76

Doug Fairbairn using his Note Taker

L8

Al v Aay, 1NG Caiy CUBWY Wi Dilidnian KY]
sated” (in Dan’s words). This was mainly because the aLTO -~
did not have enough microcode memory to take in all of
the Smalltalk emulation code—some of it had to be ren- i
dered in emulated “NovA” code which forced two layers of
interpretation. In fact, the Notetaker worked extremely well,
though it would have crushed any lap. It had hopped back
on the desk, and looked suspiciously like minicoM (and
several computers that would appear a few years later). It
really did run on batteries and several of us had the plea-
sure of taking NoteTaker on a plane and running an object-
oriented system with a windowed interface at 35,000 feet.

We eventually built about 10 of the machines, and
though in many senses an engineering success, what had to
be done to make them had once again squeezed out the real ::z:
end-users for whom it was originally aimed. If Xerox (and e
PARC) as a whole had believed in these smaller scale ideas, =
we could have put much more silicon muscle behind the
dreams and successfully built them in the 70’s when they
were first possible. It was a bitter disappointment to have
to get the wrong kind of CPU from Intel and the wrong <
kind of display from HP because there was not enough cor- ¥
porate will to take advantage of internal technological !
expertise. 2 —

By now it was already 1979, and we found ourselves Wh:ﬁz";:g‘y’%”“-g“;:x::’: °("‘! I‘::"/‘;‘;'“"
doing one of our many demos, but this time for a very | 4 simedia doczng:ms by Bobglagal and
interested audience: Steve Jobs, Jeff Raskin, and other tech- Diana Mery (bslow)
nical people from Apple. They had started a project called ¥ o ooy
Lisa but weren’t quite sure what it should be like, until Jeff o
said to Steve, “You should really come over to PARC and see
what they are doing”. Thus, more than eight years after
overlapping windows had been invented and more than -
six years after the ALTO started running, the people who
could really do something about the ideas, finally got to see
them. The machine used was the Dorado, a very fast “big
brother” of the ALTO, whose Smalltalk microcode had been
largely written by Bruce Horn, one of our original
“Smalltalk kids” who was still only a teen-ager. Larry
Tesler gave the main part of the demo with Dan sitting in
the copilot’s chair and Adele and I watched from the rear. §
One of the best parts of the demo was when Steve Jobs said ;
he didn't like the blt-style scrolling we were using and
asked if we could do it in a smooth continuous style. In less
than a minute Dan found the methods involved, made the
(relatively major) changes and scrolling was now continu-
ous! This shocked the visitors, especially the programmers ¢
among them, as they had never seen a really powerful
incremental system before.

Steve tried to get and/or buy the technology from Xerox
(which was one of Apple’s minority venture capitalists),
but Xerox would neither part with it nor would come up
with the resources to continue to develop it in house by
funding a better NoteTaker cum Smalltalk.

]

pofodudufe

T E]

3oF

[Design tor NoteTakar interface [Ka 79) "I
- W, s :

2 Ny e mas

Diana Merry at her trusty ALTO

Alan C. Kay, The Early History Of Smailtalk 38

"The greatest sin in Art is not Boredom,
as is commonly supposed, but lack of
Proportion™—Paul Hindemith

VL. 1980-83—The release version of Smailtalk (-80)

As Dan said “the decision not to continue the NoteTaker project added motivation to release
Smalltalk widely”. But not for me. By this time I was both happy about the cleanliness and ele-
gance of the Smalltalk conception as realized by Dan and the others, and sad that it was farther
away than ever from the children—it came to me as a shock that no child had programmed in any
Smalltalk since Smalltalk-76 made its debut. Xerox (and PARC) were now into “workstations” as
things in themselves—but I still wanted “playstations”. The romance of the Dynabook seemed less
within grasp, paradoxically just when the various needed technologies were starting to be commer-
dally feasible—some of them, unfortunately, like the flat-screen display, abandoned to the Japanese
by the US companies who had invented them. This was a major case of “snatching defeat from the
jaws of victory”. Larry Tesler decided that Xerox was never going to “get it” and was hired by
Steve Jobs in May 1980 to be a principal designer of the Lisa. I agreed, had a sabbatical coming, and
took it.

Adele decided to drive the documentation and release process for a new Smalltalk that could be
distributed widely almost regardless of the target hardware. Only a few changes had to be made to
the NoteTaker Smalltalk-78 to make a releasable system. Perhaps the change that was most ironic
was to turn the custom fonts that made Smalltalk more readable (and were a hallmark of the entire
PARC culture) back into standard pedestrian asch characters. According to Peter Deutsch this “met
with heated opposition within the group at the time, but has turned out to be essential for the
acceptance of the system in the world”. Another change was to make blocks more like lambda
expressions which, as Peter Deutsch was to observe nine years later: “In retrospect, this prolifera-
tion of different kinds of instantiation and scoping was probably a bad idea”. The most puzzling
strange idea—at least to me as a new outsider—was the introduction of metaclasses (really just to
make instance initialization a little easier—a very minor improvement over what Smalltalk-76 did
quite reasonably already). Peter’s 1989 comment is typical and true: “metaclasses have proven con-
fusing' to many users, and perhaps in the balance more confusing than valuable”. In fact, in their
PIE system, Goldstein and Bobrow had already implemented in Smalltalk an “observer language”,
somewhat following the view-oriented approach I had been advocating and in some ways like the
“perspectives” proposed in XRL [Goldstein,*}]. Once one can view an instance via multiple perspec-
tives even “semi-metaclasses” like Class Class and Class Object are not really necessary since the
object-role and instance-of-a-class-role are just different views and it is easy to deal with life-history
issues including instantiation. This was there for the taking (along with quite a few other good
ideas), but it wasn’t adopted. My guess is that Smalltalk had moved into the final phase I men-
tioned at the beginning of this story, in which a way of doing things finally gets canonized into an
inflexible belief structure.

Coda

One final comment. Hardware is really just software crystallized early. It is there to make pro-
gram schemes run as efficiently as possible. But far too often the hardware has been presented as a
given and it is up to software designers to make it appear reasonable. This has caused low-level
techniques and excessive optimization to hold back progress in program design. As Bob Barton
used to say: “Systems programmers are high priests of a low cult”.

One way to think about progress in software is that a lot of it has been about finding ways to
late-bind, then waging campaigns to convince manufacturers to build the ideas into hardware. Early
hardware had wired programs and parameters; random access memory was a scheme to late-bind
them. Looping and indexing used to be done by address modification in storage; index registers
were a way to late-bind. Over the years software designers have found ways to late-bind the loca-
tions of computations—this led to base/bounds registers, segment relocation, paging MMus, migra-
tory processes, and so forth. Time-sharing was held back for years because it was “inefficient”—
but the manufacturers wouldn’t put MMU’s on the machines, universities had to do it themselves!
Recursion late-binds parameters to procedures, but it took years to get even rudimentary stack
mechanisms into crus. Most machines still have no support for dynamic allocation and garbage

88

Simare ey ceim ey b imreig e weeees

Zollection, and so forth. In short, most hardware designs today are just re-optimizations of moribund
architectures.

From the late-binding perspective, 00r can be viewed as a comprehensive technique for late-bind-
ing as many things as possible: the mix of state and process in a set of behaviors, where they are locat-
ed, what they are called, when and why they are invoked, which HW is used, etc., and more subtle, the
strategies used in the OOP scheme itself. The art of the wrap is the art of the trap.

Consider the two cases that must be handled efficiently in order to completely wrap objects. It
would be terrible if a+b incurred any overhead if 2 and b were bound, say, to “3” and “4” in a form
that could be handled by the ALU. The operation should occur full speed using look-aside logic (in
the simplest scheme a single and gate) to trap if the operands aren’t compatible with the ALU. Now ail
elementary operations that have to happen fast have been wrapped without slowing down the
machine.

The second case happens if the trap has determined the objects in questions are too complicated
for the ALU. Now the HW has to dynamically find a method that can handle the objects. This is very
similar to indexing—the class of one of the objects is “indexed” by the the desired method-selector in
a slightly more general way. In other words the virtual-address of a method is <class><selector>. Since
most HW today does a virtual address translation of some kind to find the real address—a trap—it is
quite possible to hide the overhead of the oop dispatch in the MMU overhead that has already been
rationalized.

Again, the whole point of 0OP is not to have to worry about what is inside an object. Objects made
on different machines and with different languages should be able to talk to each other—and will
have to in the future. Late-binding here involves trapping incompatibilities into recompatibility
methods——a good discussion of some of the issues is found in [Popek,1984].

Staying with the metaphor of late-binding, what further late-binding schemes might we expect to
see? One of the nicest late-binding schemes that is being experimented with is the metaobject protocol
work at Xerox PARC [Kiczales,1991). The notion is that the language designer’s choice for the internal
representation of instances, variables, etc., may not cover what the implementer needs. So within a
fixed semantics they allow the implementer to give the system strategies—for example, using a
hashed lookup for slots in an instance instead of direct indexing. These are then efficiently compiled
and extend the base implementation of the system. This is a direct descendant of similar directions
from the past of Simula, FLEX, DL, Smalltalk, and Actors.

Another late-binding scheme that is already necessary is to get away from direct protocol match-
ing when a new object shows up in a system of objects. In other words, if someone sends you an
object from halfway around the world it will be unusual if it conforms to your local protocols. At
some point it will be easier to have it carry even more information about itself—enough so its specifi-
cations can be “understood” and its configuration into your mix done by the more subtle matching of
inference.

A look beyond 0oP as we know it today can also be done by thinking about late-binding. Prolog’s
great idea is that it doesn’t need bindings to values in order to carry out computations [Col **]. The
variable is an object and a web of partial results can be built to be filled in when a binding is finally
found. Eurisko [Lenat **] constructs its methods—and modifies its basic strategies—as it tries to solve
a problem. Instead of a problem looking for methods, the methods look for problems—and Eurisko
looks for the methods of the methods. This has been called “opportunistic programming”~—I think of
it as a drive for more enlightenment, in which problems get resolved as part of the process.

This higher computational finesse will be needed as the next paradigm shift—that of pervasive
networking—takes place over the next five years. Objects will gradually become active agents and
will travel the networks in search of useful information and tools for their managers. Objects brought
back into a computational environment from halfway around the world will not be able to confugure
themselves by direct protocol matching as do objects today. Instead, the objects will carry much more
information about themselves in a form that permits inferential docking. Some of the ongoing work in
specification can be turned to this task [Guttag **] [Goguen **].

Tongue in cheek, I once characterized progress in programming languages as a kind of “sunspot”
theory, in which major advances took place about every 11 years. We started with machine code in
1950, then in 1956 FORTRAN came along as a "better old thing" which if looked at as "almost a new
thing” became the precursor of ALCOL-60 in 1961. In 1966, SIMULA was the "better old thing”, which if

AMidil s, INay, 11T Sauy ity w1 Siliciilain “u
looked at as "almost a new thing" became the precursor of Smalltalk in 1972.

Everything seemed set up to confirm the “theory” once more: In 1978, Eurisko was in place as the
“better old thing” that was “almost a new thing”. But 1983—and the whole decade—came and went
without the “new thing”. Of course, such a theory is silly anyway—and yet, I think the enormous
commercialization of personal computing has smothered much of the kind of work that used to go
on in universities and research labs, by sucking the talented kids towards practical applications. With
companies so risk-adverse towards doing their own HW, and the HwW companies betraying no real
understanding of sw, the result has been a great step backwards in most repects.

A twentieth century problem is that technology has become too “easy”. When it was hard to do
anything whether good or bad, enough time was taken so that the result was usually good. Now we
can make things almost trivially, especially in software, but most of the designs are trivial as well.
This is inverse vandalism: the making of things because you can. Couple this to even less sophisticat-
ed buyers and you have generated an exploitation marketplace similar to that set up for teenagers. A
counter to this is to generate enormous disatisfaction with one’s designs using the entire history of
human art as a standard and goad. Then the trick is to decouple the disatisfaction from self worth—
otherwise it is either too depressing or one stops too soon with trivial results.

I will leave the story of early Smalltalk in 1981 when an extensive
series of articles on Smalltalk-80 was published in Byte magazine,
[Byte,1981] followed by Adele's and Dave Robson’s books
[Goldberg,1983] and the official release of the system in 1983. Now
programmers could easily implement the virtual machine without
having to reinvent it, and, in several cases, groups were able to roll
their own image of basic classes. In spite of having to run almost
everywhere on moribund HW architectures, Smalltalk has proliferated
amazingly well (in part because of tremendous optimization efforts
on these machines) [Deutsch 83]. As far as I can tell, it still seems to
be the most widely used system that claims to be object-oriented. It is
incredible to me that no one since has come up with a qualitatively
better idea that is as simple, elegant, easy to program, practical, and comprehensive. (It’s a pity that
we didn’t know about PROLOG then or vice versa, the combinations of the two languages done subse-
quently are quite intriging.)

While justly applauding Dan, Adele and the others that made Smalltalk possible, we must wonder
at the same time: where are the Dans and Adeles of the ‘80s and ‘90s) that will take us to the next
stage?

Dave Robson

68

. g ey, ..

References Cited In The Text

{ACM, 1969)
[Arnheim,1969)
[Baizer, 1967}
[Barton, 1961]

{Baecker, 1969]
{Bitzer, 1966]

[Bobrow, 1977}
[Borning, 1979)

[Bruner, 1960]
[Bruner 1966]
[Brand, 1972]

[Burroughs, 1961}
[Bush,1945)

[Byte, 1981)
[Carnap, 1947}

{Colmerauer,1978)]

{Col ,1981)

ACM SIGPLAN, Conference on Extensible Languages, May 1969.

Amheim, Rudolf, Visual Thinking, Berkeley: University of California Press, 1969, ISBN 0520013786.
Balzer, R.M., Dataless programming. Proceedings of the FJCC, July 1967.

Barton, R.S., A new approach to the functional design of a digital computer, in Proceedings of the
WICC, May 1961,

Baecker, Ronald M., Interactive computer-mediated animation, Dept. of Electrical Engineering, Phd
thesis, MIT, 1969, Supervisor:Edward L. Glaser.

Bitzer, D.L, and Slottow, H.G., The plasma display panel — a digitaily addressable display with
inherent memory, inProceedings of the F/CC, November 1966.

Bobrow, D.G., and Winograd, T., An overview of KRL, a knowledge representation language, in
Cognitive Science, Vol. 1, (1) (pp. 3-46), 1977.

Borning, Alan, Thinglab —A Constraint-oriented simulation laboratory, Xerox Palo Alto Research
Center, #55L-79-3, July 1979.

Bruner, Jerome S., The Process of Education, Harvard /Belknap Press, 1960.

___ Towards a Theory of Instruction, Harvard /Belknap Press, 1966, ISBN 0-674-89700-5.

Brand, Stewart, 1972, Fanatic life & symbolic death among the computer bums, Rolling Stone
Magazine , December 1972,

Burroughs Corp., The Descriptor —a definition of the B5000 information processing systemn,
Detroit:Michigan, Bulletin No. 5000-20002-P, February 1961.

Bush, Vannevar., 1945, A scientist looks at tomorrow as we may think, Atlantic Monthly, Vol 176, No.
1, (p. 101), July 1945.

Byte Magazine, 1ssue on Smalitalk , Christopher Morgan, ed., Volume 6, number 8, August, 1981.
Camap, Rudolf, Mening and Necessity, A Study in Semantics and Modal Logic, Chicago:University of
Chicago Press, 1947.

Colmerauer, Alain., Metamorphosis grammars, in Natural Language Communication with Computers,
Bolc, L., ed., (pp- 133-189), West Germany: Springer-Verlag, 1978, ISBN: 3 540 08911 X.

et. al, Last steps towards an ultimate PROLOG, in Proceedings of the 7th International Joint

[Colmerauer,1983[

{Clark, 1957]
[Clark, 1962)
{Clark ,1965)

[Clark, 1966]

[Clark, 1988}
{Conway, 1963]
[Davis, 1964}
[Dahi, 1972)
[Deutsch, 1966]
[Deutsch,1973}

[Deutsch, 1983}

Conference on Artificial ntelligence, Vol. 2, (pp. 947-948), August 1981. Available from the American
Association for Artificial Inteiligence, Menlo Park, CA.

PROLOG in 10 figures, in Proceedings of the 8th Inter 1 Joint Conf e on Artificial
Inteiligence, Vol. 1, Distributed by William Kaufmann Inc, Los Altos, CA. (pp. 487-499), August
1983.

Clark, Wesley .A., The lincoln tx-2 computer development, inProceedings of the WJCC, (pp. 143-145),
February 1957.

____, TheGeneral Purpose Computer in the Life Sciences Laboratory, inEngineering and the Life
Sciences, NAS-NRC Report, Washington DC, April 1962,

and Molnar, C.E., A Description of the LINC, inComputers in Biomedical Research, Vol. 1,
Chapter 2, R.W. Stacy and B.D. Waxman, ed., Academic Press, New York, 1965.

Programming the LINC, Computer Systems Lab, Washington University, St. Louis,
Technical Report, 1966.

—_ The LINC was early and small, in A History of Personal Workstations, Adele Goldberg, ed.,
New York: New York, ACM Press, (pp. 347-391), 1988, ISBN 020 111 2590.

Conway, Melvin E., Design of a separable transition-diagram compiler, inCommunications of the ACM,
Vol. 6, No. 7, (pp- 396-408), July 1963.

Davis, MR., and Ellis, T.O., The RAND tablet: A man-machine graphical communication device,
report .#RM-4122-ARPA, CA: RAND, 1964.

Daht, O.-]., and Hoare, C.A.R,, Hierarchial Program Structure. In Dah

Deutsch, L.P., Lisp for the PDP-1, inThe Progmamming Language LISP; its Opemtion and Applications,
Editors: Edmund C. Berkeley and Daniel G. Bobrow, Cambridge, Mass., M.LT. Press, ix, 382p, 1966.

gs of the 3rd International foint

, Alisp machine with very compact programes, in Proc
Conference on Artificial Intelligence, Stanford, CA, 1973,
The dorado Smalltalk-80 implementation: hardware architecture’s impact on software
architecture, in Sinalltalk-80 Bits of History, Words of Advice., Krasner, G., ed., Addison-Wesley, (pp.
113-126), 1983.

[Deutsch, 1989]
[Engelbart, 1968}
[Farber,1964
[Feldman, 1977)
{Fisher, 1970]

[Goldberg, 1977]

[Coldberg, 1978]
[Goldberg, 1983]
[Gombrich,1960]
[Groner, 1966}
[Hewitt, 1969]

[Hewitt, 1973}

[Hewitt, 1977]

[Ingalls, 1978]

[Ingalls,1981]
[Ingails,1983]

[frons, 1970)
[oss,1964]
{Joss, 1978}
[Kaehler, 1981]
[Kay, 1968]
[Kay, 1969]

[Kay, 1970)
[Kay ,1971]

{Kay, 1971a)
[Kay, 1971b)

[Kay, 1972]
[Kay, 1972a)
[Kay, 1972b}

[Kay, 1972c]

[Kay, 1972d]
{Kay, 1976]

______ The past, present, and future of smalltalk, in Proceedings of the I Eum.pean Conference on
Object Oriented Programming, Cambridge University Press, 1989.

Engelbart, Douglas, C. and English, William, K., A research center for augmenting human intellect,
in Proceedings of the FICC, Vol. 33, Part one, (pp. 395410), December 1968.

Farber, D.J., Griswald, R.E., Polensky, F.P., "SNOBOL, a String Manipulation Language” JACM 11, 1964,
21-30

Feldman, Jerome A., A formal semantics for computer languages and itsapplication in a compiler-
compiler, in C ications of the ACM, (pp. 3-9) January 1977.

Fisher, David Allen, Control structures for programming languages, PhD thesis, Department of
Computer Science, Camegie Mellon University, 1970.

Goldberg, Adele and Kay, Alan C., Teaching Smalltalk (2 papers): Methods for teaching the pro-
gramming language Smalltalk and Smalltalk in the classroom, Xerox Palo Alto Research Center,
June 1977.

Srmalltalk simuiation kit documentation, Xerox Palo Alto Research Center, LRG Internal
Note, Feb 1978.

and Robson, D., Smalltalk-30: The Language and its Impl, tati
-Reading, Mass., 1983.

Gombrich, E.H., Art & llusion: A Study in the Psychology of Pictorial Representation, NY: Pantheon
Books, 1960.

Groner, Gabriel, Real-tme recognition of hand printed text, CA: RAND, Report #RM-5016-ARPA,
October 1966.

Hewitt, Carl E., Planner: A language for manipulating models and proving theorems in a robot, 1969,
MIT, Cambridge: MA, Project MAC., Al memo #168

——; Bishop, P.; Greif, 1.; Smith, B.; Matson, T.; Steiger, R., ACTOR induction and meta-evalua-

tion, inConference Record of ACM Symposium on Principles of Programming Languages, 1-3 Oct. 1973,

(pp-153-168), ACM, New York, NY, 1973, '

and Baker, Henry jr., Actors in continuous functionals , Cambridge: MA, MIT,
Laboratory for Computer Sciences, 1977, MIT/LCS/TR-194, MTT, Laboratory for Computer
Sclences, Technical Report #194.

Ingalls, Daniel H., The Smalltalk-76 Programming System, Design and Implementation, in 5th ACM
Symposium on Principles of Programming Languages, Tucson, Ariz, Jan., 1978

The smalltalk graphics kemal, Byte, Vol. 6, Number 8, (p. 168), August, 1981,

The evolution of the smalltalk virtual machine, in Smalltalk-80 Bits of History, Words of
Advice., Krasner, G., ed., Addison-Wesley, (pp 9-28), 1983.

Irons, E.T., 1970, Experience with an extensible language, in Communications of the ACM, vol.13, no.1,
(pp-31-40), January 1970.

Shaw, J.C., JOSS: A Designer’s View of an Experimental Online Computer System, CA: RAND, #P-
2922, 1964.

JOSS Session, in History of Programming Languages, ed. Richard L. Wexelblat, New York:
Academic Press, xxiii, Chapter X, 1981. ISBN: 0127450408. Conference: History of Programming
Languages Conference (1978: Los Angeles, Calif.)

Kaehler, Edwin B., 1981, Virtual memory for an object-oriented langauge, Byte, August 1981.
Kay, Alan C., Flex: a flexible extensible language, M.S. thesis, University of Utah, May 1968.
The reactive engine, PhD thesis, University of Utah, September 1969.
Ramblings towards a KiddiKomp, in Stanford Al Project Lab Notebook, November 1970.
Display transducers, in Pendery Papers for Parc Planning Purposes, Xerox Palo Alto Research
Center, June 1971.
Draft design for miniCOM, inPARC Lab Book, Xerox Palo Alto Research Center, August 1971.
,Computer Structures-Past Present and Future, Panel paper, in Proceedings of the FJCC, Vol. 39
November 1971
MiniCOM proposal, in PARC Lab Book, Xerox Palo Alto Research Center, May 1972.
Learning research group 3 year plan, Xerox Palo Alto Research Center, july 1972.
A personal computer for children of all ages, in Proceedings of the ACM National Conference,
Boston, August 1972.
A dynamic medium for creative thought, in Proceedings of the National Council of Teachers of
English Conference, Minneapolis, November 1972.
. Smalitalk Blue Book, Fall 1972,
, Goldberg, Adele., ed., Smalitalk Instruction Manual, SSL-76-6, May 1976.

, Addison Wesley,

06

(Kay,1977]
[Kay, 1977a]
{Kay, 1979]

[Kay, 1984]
{Kay,1990]

[Kay, 1991}
[Kiczales, 1991]
[Knuth, 1971]
(Knuth, 1974)
[Krasner,1983}
{Lampson,1966]
[Lampson,1966a]
[Lampson, 1969]

[Lampson 1972]
[Lampson,1988)

[Landin, 1965]
(Landin, 1966]
[Licklider,1960}
[LRG, 1976]
[McCarthy, 1960]

{McCarthy, 1962]
[Minsky, 1970]

[Minsky, 1974]

{Newman,1973]
{Nygaard, 1966]

{Nygaard, 1978)

{Papert, 1971)

[Papert, 1971a]

[Papert, 1973]

1977, Microelectronics and the personal computer, Scientific American, (pp. 125-136)
September 1977,

——— and Goldberg, Adele., Personal dynamic media, IEEE Computer, Vol. 10, (pp. 31-41), March
1977. Reprinted in A History of PersonalWorkstations , Academic Press, 1988.

Programming your own computer, Science Year 1979, World Book Encyclopedia, 1979.

s 1984, Computer software,Scientific American, September 1984.

—— User interface: a personal view, in The Art of Human-Computer Interface Design, ed., Brenda
Laurel, Addison-Wesley Publishing Co.,1990, (pp. 191-207) ISBN 0 201 51797 3.

., 1991, Computers, networks, and learning, Scientific American , Vol. 265, No. 3, (pp. 138-148)
September 1991.

Kiczales, Gregor, Des Rivieres, Jim; Bobrow, Daniel G., The Art of the Metaobject Protocol ,
Cambridge, Mass. : MIT Press, viil, 335 p.; 1991, ISBN 0262111586 .

Knuth, Donald E and Floyd, Robert W., Notes on avoiding ‘go to’statements, in Information Processing
Letters, volume, 1, number 1, February 1971.

Structured programming with ‘go to’ statements, in ACM Computing Surveys, vol. 6, no. 4,
{pp- 261-301), December 1974.

Krasner, Glenn,, ed., Smalitalk-80 Bits of History, Words of Advice.., Addison-Wesley, 1983, ISBN 0 201
116 69 3.

Lampson, , CAL reference manual, Project GENIE documentation, Computer Center, UC Berkeley,
1966.

A user machine in a time sharing system, in Proceedings of the IEEE, 54(12): (pp-1744-1766),
December 1966.

, An overview of the CAL time-sharing system, Computer Center, U.C. Berkeley, September
1969. Originally entitled On reliable and extendable operating systems, September 5, 1969.
Why Alto?, In PARC Lab Book, Xerox Palo Alto Research Center.
Personal distributed computing: alto and ethemet software, in A History of Personal
Workstations, Adele Goldberg, ed., New York:New York, ACM Press, 1988, ISBN 020 2550.
Landin, P.J., A correspondence between ALGOL 60 and Church’s lambda notation: Part 1, in
Communications of the ACM, Vol. 8, No. 2, February 1965.
- The next 700 programming languages, inCommunications of the ACM , Vol. 9, No. 3, March
1966. (pp. 157-164).
Licklider, J.C.R., Man-computer symbiosis, in IRE Transactions onHuman Factors in Electronics, HFE-1:
4-11,1960.
Learning Research Group, Dynamic Personal Media, Xerox Palo Alto Research Center, Report #5SL-
76-7, June 1976.
McCarthy, john P,, Part 1, Recursive functions of symbolic expressons and their computation by
machine, in Communications of the ACM, Vol. 3, Number 4, (pp. 184-195) April 1960.
— etal,, LISP 1.5 Programmer’s Manual , Cambridge: MIT Press, 1962.
Minsky, Marvin., Form and content in computer science, inThe Jourmal of the Association for
Computing Machinery, Vol 17, Number 2, (pp. 197-215), April 1970.
A framework for representing knowledge, MA: Massachusetts Institute of Technology,
Artificial Intelligence Laboratory Memo No. 306, june 1974. Reprinted in The Psychclogy of Computer
Vision, McGraw-Hill, 1975.
Newman W.M.and Sproull, R.F,, Principles of interactive computer graphics, New York: McGraw-Hill,
1973.
Nygaard, Kristen, and Dahl, Ole-Johan, Simula — an ALGOL-based simulation language, in
Communicatons of the ACM, 1X, 9, (pp. 671-678), September 1966,
— Early history of simula, in History of Programming Laguages, ed. Richard L. Wexelblat, New
York: Academic Press, 1981, ISBN 012 745040 8. This is the proceedings of the ACM Sigplan History
of Programming Languages Conference held in Los Angeles, June 1-3, 1978.
Papert, S., Teaching children thinking, MA: Massachusetts Institute of Technology, Artifical
Intelligence Laboratory Memo 247, LOGO Memo 2, 1971.
Teaching children to be mathematicians vs. teaching about mathematics, MA:
Massachusetts Institute of Technology, Artifical Intelligence Laboratory Memo 249, LOGO Memo 4,
1971.

Uses of technology to enhance education, MA: Massachusetts Institute of Technology,
Acrtifical Intelligence Laboratory Memo 298, LOGO Memo 8, 1973,

{Papert, 1976] Abelson, H., Bamberger.], and Goldstein, [, LOGO Progress Report 1973-1975, MA:
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Memo 356, LOGO Memo

22, 1976.

[Papert, 1976] Proposal to the National Science Foundation: An Evaluative Study of Modern
Technology in Education, Appendix One: LOGO memo 8, Appendix Two: LOGO memo 27, MA:
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, memo 371, LOGO memo

26, 1976.

{Papert, 1976a} —— /i Solomon, CJ., A Case Study of a Young Child doing Turtle Graphics in LOGO, MA:
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Memo 375, LOGO Memo

28, 1976.

[Papert, 1979] ; Watt, D., DiSessa, A., Weir, S.,. Final Report of the Brookline LOGO Project. Part II:
Project Summary and Data Analysis, MA: Massachusetts Institute of Technology, Artificial
Intelligence Laboratory Memo 545, LOGO Memo 53, 1979.

[Perry,1985] Perry, Tekla,"Inside the PARC: the "Information Architects'” IEEE Spectrum, October 1985,

{Plato] Plato, Timaeus & Phaedrus:The Dialogues of Plato, translated by Benjamin Jowett, Great Books of the

Western World, Robert Maynard Hutchins, ed., Encyclopedia Britannica, Inc., 1952,

Popek, G., et. al., The Locus Distributed Operating System, Cambridge: MIT Press, 1984.

Ross, D.T., and Ward, |.E., Picture and pushbutton languages, chapter 8 of Investigations in Computer-

Aided Design, interim engineering report 8436-IR-1, Electrical Systems Lab, MIT, May 1960.

[Popek, 1984}
[Ross, 1960}
{Ross, 1961) A generalized technique for symbol manipulation and numerical calculation, in
Communications of the ACM, Vol. 4, no. 3, (pp. 147-150) March 1961.

Rovner, P.D, An AMBIT/G programming language implementation, MIT Lincoln Laboratory,
Lexington, Mass., June 1968.

[Rovner, 1968]

[Saunders, 1977] Saunders, Steven E., Improved FM audio synthesis methods for real-time digital music generation,
in Computer Music Journal, Vol. 1, No. 1, February, 1977. Reprinted in Computer Music, Roads, C. and
Strawn, J. editors, Cambridge: MIT Press, 1985.

[Schorre, 1963) Shorre, D.V., META Il— A syntax-oriented compiler writing language, UCLA computing facility,

[Shoch, 1979] Shoch, J.F., 1979, An overview of the programming language Smalitaik-72, In SIGPLAN Notices, vol.
14, no. 9, (pp. 64-73), September 1979,

[Soloway, 1989] Soloway, Elliot and Spohrer, James C., ed.,Studying the Novice Programmer, New Jersey: Lawrence
Erlbaum Associates, Inc., 1989, ISBN 0-8058-002.

[Smith,1975] Smith, David Canfield, Pygmailion, PhD thesis, Stanford Univ., 1975

[Strachey] Strachey, Christopher, Toward a formal semantics, United Kingdom.

[Sutherland, 1963} Sutherland, Ivan C., Sketchpad: A man-machine graphical communication system, MIT Lincoln
Laboratory, Technical Report 296, January 1963.

ibid, in Proceedings of the SJCC, Vol. 23, (pp. 329-346), 1963,
A head-mounted three dimensional display, inProceedings of the FJCC, (p.757), 1968.

Tesler, Lawrence,, etal., The lisp-70 pattern matcher, in Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, Stanford, CA, 1973

[Sutherland, 1963a}
[Sutherland, 1968]
[Tesler, 1973]

[Tesler, 1977} Smalltalk-76 documentation, Xerox Palo Alto Research Center, Learning Research Group
Internal Note, 1977.
[Tesler,1981] ——_ 1981, The smalltalk environment, Byte , Vol. 6, Number 8, (p. 90), August, 1981.

[Thacker, 1972] Thacker, C.P., A personal computer with microparallel processing, Xerox Palo Alto Research Center,

December 1972.

[Thacker 1982] et. al., Alto:a personal computer, inComputer Structures: Principles and Examples, Siewiorek, D.
et.al, editors, Chapter 33, McGraw-Hill, 1982.
[Thacker, 1986] —_ Personal distributed computing: the alto and ethernet hardware, in A History of Personal

Workstations, Adele Goldberg, ed., New York: New York, ACM Press, (pp.267-290), 1988, ISBN 020
111 25%.
[Van Wijngaarden, 1968] Van Wijngaarden, A., ed., Draft report on ALGOL 68, Mathematisch Centrum, MR 93,
Amsterdam, The Netherlands, 1968.
Generalized ALGOL, Mathematisch Centrum, Amsterdam, Netherlands. .
Wirth, N.K. and Weber, H., EULER: A generalization of ALGOL, and its formal definition: Part [,
inCormmunications of the ACM, Vol 9, No. 1, (pp. 13-25), Jan. 1966
Winston, Patrick H., Learning structural descriptions from examples, PhD thesis, MIT, January 1970.
Zahn, C.T, Jr., A control statement for natural top-down structured programming, inProceedings of the
Collogue sur la Programmation, April 1974, Paris. A revised version of this paper appears, under the
same title, in Programming Symposium, vol. 19 of the lecture notes in Computer Science, Robinet, B.,
ed., Berlin: Springer Verlag, 1974, (pp. 170-180).

[Van Wijngaarden]
[Wirth, 1966)

[Winston, 1970]
(Zahn, 1974]

16

Alan C, nay, Ine Early nisiory Ul Dibauiain

42

Appendix I: Personal Computer Memo

Smalltalk Program Evolution

From a memo on the “KiddiKomputer”

To: Butler Lampson, Chuck Thacker, Bill English, Jerry, Elkind, George Pake
Subject: *KiddiKomputer*
Date: May 15, 1972

terw

4. January 1972

The Reading Machinel. Another attempt to work on the actual problem of a per-
sonal computer. Every part of this gadget (except display) is buildable now
but requires some custom chip design and fabrication. This is discussed more
completely later on. A meeting was held with all three labs to try to stimu-
late invention of the display.

B. Utility

1. I cthink the uses for a personal gadget as an editor, reader, take-home-con-
text, intelligent terminal, etc. are fairly obvious and greatly needed by
adults. The idea of having kids use it implies (possibly) a few more con-
straints having to do with size, weight, cost and capacity. I have been beg-
ging this question under the assumptions that a size and weight that are good
for kids will be super acceptable to adults, and that the gadget will almost
inescapably have CPU power to burn (more than PDP-10): implies larger scale
use by adults can be gotton by buying more memory and maybe a cache.

2. Although there are many “educational” things that can be done once the
device is built, I have had four basic projects in mind from the start.

a. Teaching “thinking” (a la Papert) through giving the kids a franchise for
the strategies, tactics, and model visualization that are the fun (and impor-
tant) part of the design and debugging of programs. Fringe benefits include
usage as a medium for symbols allowing editing of text and pictures.

b. Teaching “models” through “simulation” of systems with similar semantics
and different syntax. This could be grouped with (a) although the emphasis is
a bit different. The initial two systems would be music and programming and
would be an extension of some stuff I did at Utah in 1969-70 with the
organ/computer there.

c. Teaching “interface” skills such as “seeing” and “hearing®. The initial
*seeing”’ project would be an investigation into how reading might be taught
via combining iconic and audible representation of works in a manner reminis-
cent of Bloomfield and Moore. This would require a corollary ingiry into why
good readers do so much better than average readers. A farther off project in
the domain of sight would be an investigation into the nature and topology of
kids’ internal models for objects and an effort to perserve iconic imagery
from being totally replaced by a relational model.

d. Finding out what children would do (if anything) “unofficially’ during non-
school hours with such a gadget through invisible ‘demons”, which are little
processes that watch surrepticiously.

3. Second Level Projects

a. The notion of evaluation (partly an extension of 2.a.) represents an impor-
tant plateau in “algorithmic thinking”.

b. Iconic programming. If we believe Piaget and Bruner, kids deal mostly with

Aian C. ray, [he Early History Ot Smailtaik

46

icons before the age of 8 rather than symbolic references. Most people who
teach programming say there is a remarkable difference between 3rd and 4th
grades. Whatever an iconic pProgramming language is, it had better be consider-
ably more stylish and viable than GRAIL and AMBIT/G. I feel that this is a way
to reach very young kids and is tremendously important.

2T TY

C. The Viability Of miniCOM

It was noted earlier that miniCoM is only barely portable for a child. Does it
?ave a future for adults and/or as a functional test bed for kids? If only one
is needed, the answer seems to be no since ~$15k will simulate its tunétion in
a non-portable fashion. If more than one is necessary (say 10 or more), then
the cheapest way to get functions of this kind is to design and build ;t.

Rationalizations for building a bunch of them:

1. It will allow u 1 ings 1 34
low us to find out some things not redictable or discove able by
ol

A perfect case in point.is our character generator through which we have found
some absolutely astounding and unsuspected things about human perception and
raster scan television which will greatly further di i

x 1 isply design.

its way already. P s It has paid

2. The learning.experiments not involving portability can be doe for a reason-
able cost and wil allow us to get into the real world which is absolutely nec-
essary for the future of learning research at PARC.

3. It will foster some new thoughts in small computer system design.

it ?as already sparked the original “jaggies” investigation. The minimal nice
serifed character fonts were done because of cost and space limitations. There
are some details which have been handwaved into the woodwork which realiy neeed
to bg solved seriously: philosophy of instruction set, compile or interpret
mapping, and I/O control. ’

4. It will b? a usefu} “take home’ editor and terminal for PARC people. It is
agsurd to think of using a multidimensional medium during the day (NLS, etc.)
then at night going home to a 1D AJ or worse: dumpin X o
; : str

tdons on pone ping uctured structured

5: It is not unreascnable to think of the gadget as an attempt at a cost-effec-
tive Fode for a future office system. As such, it should be developed in paral-
lel with the more exotic and greatly more expensive luxury system.

6. ;t is not clear that the more ideal device (A.4.), requiring custom chip
design, can be done well without us knowing quite a bit more about this kind of
system.

6

Auall w. NAY, e Edfly FISIOTY UT SInaniaik 47

Appendix li: Smalitalk Interpreter Design

When I set out to win the bet, [realized that many of the details that have to be stated explicitly in
McCarthy’s elegant scheme can be finessed. For example, if there were objects that could handle vari-
ous kinds of partial message receipt, such as evaluated, unevaluated, literal, etc., then there would be no
need to put any of those details in the eval. This is analogous to not have COND as a “special form”,
but instead to find a basic building block in which COND can be defined like any other subpart.

One way to do this was to use the approach of Dave Fisher, in which the no-man’s land of control
structures is made accessable by providing a protected way to access and change the relationships of
the static and dynamic environment{Fisher 70). In an object-based scheme, the protection can be pro-
vided by the objects themselves and many of Fisher’s techniques are even easier to use. The effect of
all this is to extend the eval by distributing it: both to the individual objects that participate in it and
dynamically as the language is extended.

Falso decided to ignore the metaphysics of objects even though it was clear that, unlike Simula, in
a full blown oort classes had to exist at run-time as “first-class” objects—indeed, there should be
nothing but first-class objects. So there had to be a “class-class” whose instances were classes, class-
class had to be an instance of itself, there had to be a “class-object” that would terminate any sub-
classing that might be done, and so forth. All of this could be part of the argument concerning what I

didn’t have to show to win the bet.

The biggest problem remaining was that I wanted to have a much nicer
didn’t want to use any of my precious “half-page” to write even a simple translator2!. Somehow the
eval had to be designed so that syntax got specified as part of the use of the system, not in its basic

definition,22

I wanted the interpretation to go from left to right. In an 0op, we can choose to interpret the syntax
rule for expressions as meaning: the first element will be evaluated into the instance that will receive
the message, and everything that follows will be the message. What should expressions like a+b and
¢; <-de mean? From past experience with FLEX, the second of these had a clear re
ented terms. The ¢ should be bound to an object, and all of i <- de would be thought of as the mes-
sage to it. Subscripting and multiplication are implicit in standard mathematical orthography—we

need explicit symbols, say “o” and “*”. This gives us:
receiver ! message
c lof<-d%

The message is made up of a literal token “°”, an expression to be evaluated in the sender’s context
(in this case i), another literal token <-, followed by an expression to be evaluated in the sender’s con-
text {d%). “LISP” pairs are made from 2 element objects and can be indexed more simply: ¢ hd, ¢ tl, and

¢ hd <- foo, etc.

The expression 3+4 seemed more troublesome at first. Did it really make sense to think of it as:

receiver
3 |+4

! message

We are so used to thinking of “+” and “*” as operators, function machines. On the other hand,

there are many senses of “+” and “*” that go beyond sim-
ple APLish generalizations of scalar operators to arrays—
for example in matrix and string algebras. From this
standpoint it makes great sense to let the objects in ques-
tion decide what the token “+” means in a particular con-
text. This means that 3+4*5... should be thought of as
31+4%5..., and that the way class number chooses to
receive messages should be arranged so that the next
subexpression is handled properly. E.g. 3 could check to
see if a token (like +, or *) follows and then ask to have the
rest of the message evaluated to get its next input. This
would force 4%5... to be the new sending , as 415, and so
on. Not only are fewer parentheses needed but PRoGlike
sequential evaluation is a byproduct.

By this point I had been able to finesse and argue away
most of the programming that seemed to be required of
the eval. To summarize:

This also means that useful elements like lists, atoms,
controf structures, quote, receivers (such as “receive evalu-

syntax than Lisp and I

ndering in object-ori-

* message receipt would be done by objects in the
midst of normal code

¢ control structures would be handled by objects
that could access the context objects

* the context objects (that acted like stack frames,)
schedulers, etc.) could be simulated by stan-
dard objects and thus wouldn't have to be
specified in the eval

¢ variable dereferencing and storage would be
done by having variables be objects and send-
ing them the messages tafue and <-.

* the evaluation of a code body would be done by
starting evaluation of its first item

¢ methods would be realized by the control struc-
ture in the class code body. This would imple-
ment protection, would make the externals of
an object entirely virtual and permit very flexi-
ble messaging schemes

* Smallalk’'s metaphysics would be covered by
making everything an object, and didn't have
to be specified now

* and so forth

Al v, Nay, 1108 Cally MiIswly Wi ditlanain 48
ated”, “is the next token this?”, etc.), and the like do not have to be defined in the kernal interpreter,
as they can be realized quite simply as instances of normal classes with escapes to metacode.

What seemed to remain for the eval was simply to show what a message send actually consisted of.
For this system a send is the equivalent not of a postman delivering a letter, but simply delivering a
notice of where the letter was to be found. It is up to the receiving object to do something about it. In
fact, it could ignore the request, complain about it, invoke inferential processes elsewhere, or simply
handle it with one of its own messages.

The final thing I had to do was to extend the uniform syntax idea of receiver message to cover all
cases, including message receipt and simple control structures. So, we need some objects to pattern
match and evaluate, to return and define, etc.

The “LisP” code body would not need any escapes to lower-level code and could look something
like:

I hope this is clear enough. For exam-
ple, if ¢ is bound to a cons pair, cisPair » (Mrue)

Chd <-3+4 Olength » (tisPair » (Mt length) 1)
would be dealt with as follows: Control " ~ete”
is passed to that object and the first test . .
is to see if the symbol hd appears in the message (ohd »). It does. The next check is for an “assign-
ment” token (O<- »). It's there. Last, we want to evaluate the rest of the message (we get 7), bind the
value to the internal instance variable ¢ and, finally return this value to the sender (*:t). So this is like:
(REPLACA C (PLUS 3 4)). o

This is getting a little ahead of the story in that not all of these ideas were thought out in this
detail, but I want to show the context in which I was thinking, and it seemed quite clear at the time
that things would come out all right if I pushed in this
direction. This stuff is similar to mathematical or musical [o eyeball looks to see if its message is a lit-
thinking where many things can be done “ahead of time” evalibin o token r‘:‘g;’:‘;::‘:fﬁ;“e‘::;‘!
if one’s intuition whispers that “you're on the right track”. and binds result 1o its message
The compass setting felt right; I could “see” that ail these §: unval-bindpicks up next part of message
things would eventually work out just because of “what ::eevaled and binds to its mes-
objeCts were”. . A send-back mgu.ms its vaiue to the sender

To motivate the next part, let us examine the classic {- quote overides any metainterpretation
evaluation of 3+4 using a nonrecursive evaluator. For code, of its message
we use arrays of pointers and expect that some of the
pointers will be encoded for literal objects (an old USP trick). The above were used in the first interpreter
We need good old program counters “PC” that we can bump gefinition. The following were defined when
along over the code. The wrinkle of delayed receipt of mes- the first *real” implemantation was done.
sage (not evaling and passing arguments at send time) will : -
require us to manipulate both the program counter of the fw define %’.ﬁ"ﬁiﬁ?’l can make a class
sender and the receiver as the message is reeled in. One SNEW testinst is true if nafimm“ has been

way [worked it out was as a before-after diagram for created
“3+4” = equals true only if its receiver and pa-

We start in the middle of a method of some class of rameter are the same object

(ohd » {0<- » (A:h}A)
o] » {0<- 3 ()

“repiaca and car where h is an instance variable”
“replacd and cdr where t is an instance variable”

” ” . » then rceiver=true: evals next part of
objects and we need to evaluate “3+4”. The essentials of message and exits
the eval are those that successfully take us into the method receiversfalse: skips over the
of “3” in class integer. Since all methods are only in terms . n::: 5:;‘; ;f message and contin-

- S o u

of sends and all send§ are dgne ina sxfmlar manner, this is fence "statement” separator. Quits
enough. It is like an induction proof in which we assume applying its receiver; starts eval-
“n” and show how to get to “n+1”. ingits arg

Note that the various auxiliary objects (such as ‘peek,’)
have to responsibly move the sender’s program counter when receiving part of the message.

[have hand-evaluated this nonrecursive version in a number of cases and it seems to work pretty
well, but there are probably some bugs. If a reader feels prompted to come up with an even nicer,
tidier, and smaller scheme, I would be glad to look at it.

£6

The "One Pager”

"Before"

Alan C. Kay, |he Early History O1 Smaiitaik 49

e (the environment) will be bound to the current Messenger object
result holds the result of a send, usually to be applied to next part of message

eval: if null(esmsc) then ‘result <- nil; goto apply;
if escape(eemsg) then goto escapes;

R =~

\\./

/ -D /

PC =
MSG
APPLY

2 [»]
]

"During*”

0| ‘I-j,)%/.

if atom(eemsc)
{f notlist(eemsG) then ‘result <- eemsG; goto apply:
evlist: ‘e <- Table(CLASS, MEWENCER,

SENDER, €,

GLOBAL, @*GLOBAL,

SELF, @OSELF,

rc, y

MSG, @*MSGePC)

RIN, APRLY);
goto eval;

apply: ‘e <- evSENDER;
espC <c-eopc+ 1;
if @epc > length(Msc) then goto dispatchrin;
feomsCorc = °, then e*PC <- eoPC + 1; goto evlist;
ifeemsGePc = ‘» then if result = ‘false

then eerc <- eePC + 2; goto evlist;

else esPc<-esPC+];

‘e <- Table{cLass
SENDER,
GLOBAL,
SELR
C,
MSG,
KN,
goto eval;
‘e <-Table{ class, MESSENGER,
SENDER, e,
GLOBAL, GLOBAL,
SELF, result,
PC, 1,
MSG, resulte CLASS*CODE,
RIN, APPLY);

goto eval;
frOMTRUE: ‘@ <- e#SENDER*SENDER; goto dispatchrin;
fromEYE: putvalue(esGLOBAL, eep, result); goto apply;

dispatchrin: select eeRTN

case APPLY: goto apply;

case FROMTRUE: goto fromTRUE;

case FROMEYE: goto fromeYs;
p select eemsGepC+]

efc....

then ‘result <- lookupvalue(e, esMsc); goto apply;

MESSENGER,
e,

GLOBAL,
result,

1,

@OMSG *PC,
FROMTRUE);

to© (metacodefor(if @4 SNDR*MSG(PC)=e*SNDR e SNDR *MSG{PC)

then bump(e*SNDR e SNDR®FC); result <- TRUE

else result <- PALSE;
goto apply))
1o ¢ p (: p. metacodefor(set up a new context and eval sender))
to 2 p v (metacodefor(’v <- a6 SNDROSNDROMSG e PC;
if nil(e*’p <- esSNDROMSGPC)
then “result <-v
else eep <-result <-v;
goto applys))
to A b (: b. metacodefor(’return <- eeb; goto apply))

Alan C. Kay, The Early History Of Smalftalk 50
Appendix lll: Acknowledgements

1971

Chris Jeffers, + 7

1972

Chris Jeffers, John Shoch, Steve Purcell, Bob Shur, Bonny Tennenbaum, Barbara Deutsch

1973

A document written by me shortly after Smalltalk-72 started working
ACKNOWLEDGEMENTS
Latest revision: March 23, 1973

Much of the philosophy on which our work is based was inspired by the ideas of
Seymour Papert and his group at MIT.

The Dynabook (ka 71) is a godchild of Wes Clark’s LINC (cl 1962) and a lineal
descendent of the FLEX machine (ka 67, 68, 69).

The “interim Dynabook® (known as the ALTO (Th 71, Mc 71) is the beautiful cre-
ation of Chuck Thacker and Ed McCreight of the Computer Science Lab. at PARC.

SMALLTALK is basically a synthesis of wellknown ideas for programming languages
and machines which have appeared in the last 15 years.

The Burroughs B5000 (ba 61) (B60) had many design ideas well in advance of its
time (and still not generally appreciated): compact -addressless code; a uniform
semantics for names (the PRT), automatic coprocesses, *capability” protection
(also by the PRT and Descriptors_, virtual segmentced memory, the ability to call
a subroutine from ”either side” of the assignment arrow, etc.

The notions of code as a data structure; intensional properties of names (proper-
ty lists of attribute-value pairs on atoms); evaluation with respect to arbitrary
environments; etc., are found in LISP, probably the greatest single design for a
programming language yet to appear. SMALLTALK is definitely “LISPlike*.

The SIMULAS (’'65 and '67) combined Conway’s notions of software coroutines (1963
— hardware version had appeared in the B5000 3 years earlier), ALGOL-60, and
Hoare’'s ideas about record classes (ca.l964) into an epistemology that allowed a
class to have any number of parallel instantiations (or activation records) con-
taining local state including a separate program counter. Most of the operations
for a SIMULA '67 class are held intrinsically as procedures local to the class
definition.

The FLEX machine and its language (‘67-69) took the SIMULA ideas {discarding most
of the AGOLishness), moved “type from a variable onto the objects (ala BS000 and
EULER), formed a total identification between “coprocesses® and ‘data“”; consoli~
dating notions such as arrays, files, lists, “subroutine” files (ala SDS-940)
etc., into one idea. The ‘user as a process” also appeared here. A start was made
to allow proccesses to determine their own input syntax—an idea held by many
{notably Irons, Leavenworth, etc.)

The Control Definition Language of Dave Fisher (1970} provided many ideas, solu-
tions and approaches to the notion of control. It, with FLEX, is the major source
for the semantics of SMALLTALK. It is a “soulmate” to FLEX; independently worry-
ing about many of the same problems and very frequently arriving at cleaner,
neater ways to do things. Many of Dave:s ideas are used including the provision
for many orthogonal paths to external environments, and that control is basically
a matter of organizing these environments. SMALLTALK removes Fisher's need for a
compiler to provide a mapping between nice syntax and semantics and offers other
improvements over his schemes such as total local control of the format of an
instance, etc.

An extemporaneous talk by R.S. Barton at Alta ski lodge (1968) about cemputers as
communications devices and how everything one does can easily be portrayed as
sending messages to and fro, was the real genesis of the current version of

v6

Alan . Kay, ihe Early History Of Smaittaik 51

SMALLTALK.

The fact that kids were to be the users, and the simplicity and ease of use of
the already existing LOGO, whose own parents were LISP and JOSS (which set a
standard for the esthetics for interaction that has not yet been surpassed), pro-
vided lots of motivation to have programs and transactions appear as simple as
possible—i.e. moving from left to right, procedures gather their own messages,
etc. It is no accident that simple SMALLTALK programs look a bit like LOGO!

problems discovered years ago in “lefthand calls’ prompted SMALLTALK to make
“srore” intensional —i.e, a <- b, means “call ‘a’ with a message consisting of
the token’<-' and symbol ‘b‘. If anyone can make the right decision for what this
means, it must be the object bound to ‘a’. The early fall of 1972 saw an evalua-
tor for SMALLTALK, and the idea that ’‘+‘, ‘-’, etc., should also be intensional.
This led to an entire philosophy of use (unlike SIMULA ‘67) to put EVERYTHING in
class definitions including the so-called *infix operators®. This message idea
allows messages to have a wide range of form since all messages can be received
incrementally.

«Control of control”’ allows control structures to be defined, The language
SMALLTALK itself thus avoids “primitives”® such as “loop...pool”, synchronous and
asynchronous “ports”, interrupts, backtracking, parallel evel and return, etc.
All of these can be easily simulated when needed.

AR TREA RN IN RN RN AR

These are the main influences on our language. There were many other minor and
negative influences from other existing languages and ideas too numerous to men-
tion except briefly in the references,

R AT RN NI RN ERNT RN

This particular version of SMALLTALK was designed through the summer and early
fall of 1972 and was aided by discussions with Steve Purcell, Dan Ingalls, Henry
Fuchs, Ted Kaehler, and John Schoch. From the proceeding acknowledgements it can
be seen as a consolidation of good ideas into one simple ides:

Make the PARTS (object, subroutines, I/0, etc.) have the same properties and
power as the WHOLE (such as a computer).

This is the basic principle of recursive design, SMALLTALK recurs on the notioen
of “computer” rather than of “subroutine.”

A talk on SMALLTALK was given at the AI lab at MIT (Nov 1972) which discussed the
process structure and the new, intentional, way to look at properties, messages,

and *infix operators”. This led to the just published formal cactors model of
computation” of Hewitt, et. al. (1973)

L R R R R R

Dan Ingalls of our group at PARC, the implementor of SMALLTALK, has revealed many
design flaws through his several, excellent quick ‘throw away~” implementation of
the language. SMALLTALK could not have existed with his help, virtuosity, and
good cheer.

The original design of the *painting editor” was by Alan Kay. It was implented
and tremendously improved by Steve Purcell.

The “Animator” was designed and implemented by Bob Shur and Steve Purcell.
Line graphics and the hand-character recognizer were done by John Shoch.
“Music:* was designed and implemented by Alan Kay.

The design and implementation of the font editor was by Ben Laws (POLOS).

vie would like to thank CSL and POLOS in general for a great deal of all kinds of
nelp.

Aln L. Aay, 106 carly nistory U Smaiilaik

52

1976

Learning Research Group
Alan Kay, Head

Dan Ingalls

Ted Kaehler

Dave Robson

Dick Shoup

Students

Tom Horsley
Steve Saunders
David C. Smith

Child Interns

Marian Goldeen (age 13)
Bruce Horn (age 15)
Kathy Mansfield (age 12)
Visitors

Eric Martin

Help From Other Groups At PARC
Dave Boggs

Larry Clark

Peter Deutsch

Bob Flegal

Butler Lampson

Mike Overton

Bob Sproull

Chuck Thacker

Adele Goldberg
Chris Jeffers
Diana Merry
John Shoch
Steve Weyer

Barbara Deutsch
Steve Purcell
Bob Shur

Radia Periman

Dennis Burke (age 12)
Susan Hammet (age 12)
Lisa Jack (age 12)

Steve Putz (age 15)
Ron Baecker

Bonnie Tenenbaum

Patrick Baudelaire
Bill Bowman

Jim Cucinitt

Bill English

Ralph Kimball
Bob Metcalfe
Alvy Ray Smith
Larry Tesler
Truett Thach

56

A - Srre mee heer g s e -

Appendix IV: Event Driven Loop Exar;iple

First we make a class for events:

to event | mycode
(sNew = (‘mycode <-array 3.
mycode(2] <- ‘done.)
Onewcode » (mycode(1] <-..)
ais » (isIT eval)
mycode eval)

Each event stores away code to be executed later (the done will eventu-
ally cause an exit from the driving loop in the until structure, defined

next:

to until tempatom statement
(repeat . Ctempatom <- ;.
tempatom <- event.
Cor » (again) done)

“this loop picks up all the event identifiers tunealed)”
“an indirect store o whatever was in the message”

(edo » (‘statement <- 1)) “the loop body to be evaled”
(ocase » (repeat (‘tempatom <-: “pick up an event-case label”
(tempatom eval is event »
(0:. tempatom eoal newcode 1) “pick up the corresponding code”
donej))
repeat (statement eval)) “execute body until an event is encountered and run”

“the event will then force exit from the until loop”

This kind of playing around was part of the general euphoria that came with having a really extensi-
ble language. Its like the festooning of type faces that happens when many fonts are suddenly avail-
able. We had both, and our early experimentation sometimes got pretty baroque. Eventually we
calmed down and started to focus on fewer, simpler structures of higher power.

ST Uy, HE Ky THBWIEY Wi D1 iaitain 54

Appendix V: Smalltalk-76 Internal Structures

This shows how Smalltalk-76 was implemented. In the center, between "static" and "dynamic"” lies a
byte compiled method of Class Rectangle. Slightly above it is the source text string written by the
programmer. The method tests to see whether a point is contained in the rectangle. In the dynamic
part, the program counter is just starting to execute the first less-than. This general scheme goes all
the way back to the B5000 and the FLEX machine, but is considerably more refined.

Strin
‘Rectangle’
Class String

art n
L ames MassageDiction

Superglass

message dict
inst size a2
free iist

mathod, source,

String
‘contsins: pt
[torigin¢pt ang: ptlcorner]’

Mathod

Static Structures <setup info (no. args, etc)>

Cliterais (if any))>

corner] pt <] pt Ioriginl < -
Dynamic Structures and: T *
’
— o= <
-
) Vector
Contoxt pt _J\corner[pt [l
sender , o s(—— -
method , g. and stack
temps (if any) .7
c -
P PR Point
temptrame .- - x310| woument
slack ptr | = — — y 120
mciass
selt = -
Point | receiver
Rectangla x5] !

’ origin y =12
1
!
|

corner ———\’ Point ||
x 2120]‘
{ y =50 —!

