
Bio 231 cd 1994 111

8 Likelihood Ratio, Score, and Wald Tests

A good reference for this material is Section 9.3 of Cox and Hinkley. Chapter 7 of
Silvey is also devoted to this topic, and some related material is in Section 6.6 of
Bickel and Doksum and Section 8.4 of C&B.

Throughout this section assume that at the true parameter value both the full
model and the restricted model given by the null hypothesis satisfy the conditions
for consistency and asymptotic normality of the maximum likelihood estimates, see
Section 6.

Suppose first that µ is 1-dimensional, and consider testing the simple null
hypothesis H0 : µ = µ0. One way to proceed would be to calculate the MLE µ̂n and
compare it to µ0. Under the assumptions of Section 6, when the null hypothesis is
true we have the large sample approximation

µ̂n º n(µ0, 1/In(µ0)),

where again “º” denotes “is approximately distributed”, so we could use the
statistic

(µ̂n ° µ0)[In(µ0)]
1/2 º n(0, 1)

to get an approximate test for the hypothesis. If we are only interested in testing for
2-sided alternatives, we could also use the statistic

Wn = (µ̂n ° µ0)
2In(µ0) º ¬2

1.

The test which rejects for large values of Wn is often referred to as the Wald test.
Other consistent estimators of the asymptotic variance could also be used, and both
In(µ̂n) or the observed information °@2l(µ̂n|Xn)/@µ2 can be used in place of In(µ0).
Both of these are consistent, as discussed in Section 6.3.

From Section 8.3.4 of C&B we know the locally most powerful test of µ = µ0 is
based on the score

@l(µ0|Xn)/@µ,

where l(µ|Xn) is the log likelihood. Under the regularity conditions of Section 6 (of
these notes), we know that when the true µ = µ0, a large sample approximation to
the distribution of the score is

@l(µ0|Xn)/@µ º n(0, In(µ0)).

Thus we could base a test on the statistic

[In(µ0)]
°1/2@l(µ0|Xn)/@µ º n(0, 1),



112 Bio 231 cd 1994

or the statistic
Sn = [In(µ0)]

°1[@l(µ0|Xn)/@µ]2 º ¬2
1,

where the distributions are under the null hypothesis. The test which rejects for
large values of Sn is usually referred to as the score test. Again other consistent
estimators of the asymptotic information could be used, such as the observed
information (see Section 6.3).

From the development in Section 6.3, and in particular (6.8) and Theorem 6.4,
we know that

p
n(µ̂n ° µ0)[n

°1In(µ0)]° n°1/2@l(µ0|Xn)/@µ
P! 0

so
(µ̂n ° µ0)[In(µ0)]

1/2 ° [In(µ0)]
°1/2@l(µ0|Xn)/@µ

P! 0,

at least under the null hypothesis. Because of this we might guess that the behavior
of the tests should be similar in large samples. As discussed in Section 9, the

diÆerence in the two tests
P! 0 under sequences of “local alternatives” as well,

which means that the two tests are asymptotically equivalent, in the sense that
asymptotically with probability 1, for a given outcome the two tests either both
reject or both accept the null hypothesis.

A third test which could be used here is the large sample approximation to the
likelihood ratio test. The test statistic is

Qn = 2[l(µ̂n|Xn)° l(µ0|Xn)].

To investigate the asymptotic distribution of this statistic, expand l(µ0|Xn) in a
Taylor series about µ0 = µ̂n. From Theorem 4.2, there is a value µ̃(µ0, µ̂n) between µ0

and µ̂n such that

l(µ0|Xn) = l(µ̂n|Xn) +
@l(µ̂n|Xn)

@µ
(µ0 ° µ̂n) +

1

2

@2l(µ̃(µ0, µ̂n)|Xn)

@µ2
(µ0 ° µ̂n)2.

Noting that
@l(µ̂n|Xn)

@µ
= 0

(since the MLE satisfies the score equation) gives that

Qn = °@2l(µ̃(µ0, µ̂n)|Xn)

@µ2
(µ̂n ° µ0)

2. (8.1)

From Theorem 6.4, we know that

°n°1 @2l(µ̃(µ0, µ̂n)|Xn)

@µ2

P! I(µ0) (8.2)
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when the null hypothesis is true, where I(µ0) is the limiting average information.
Since

I(µ0)[
p

n(µ̂n ° µ0)]
2 D! ¬2

1,

it follows from Slutsky’s theorem that under the null

Qn
D! ¬2

1.

It also follows from (8.1) and (8.2) that

Qn °Wn
P! 0

when the null hypothesis is true. As with the score test this also holds under
sequences of local alternatives, so that all 3 tests, Qn, Wn, and Sn are
asymptotically equivalent.

Example 8.1 Suppose X1, . . . , Xn are a random sample from the exponential
distribution with density exp(°x/Ø)/Ø, and consider testing H0 : Ø = 1 versus
H1 : Ø 6= 1. The log-likelihood is

l(Ø) = °n log(Ø)°X

i

Xi/Ø (8.3)

and the score is
@l(Ø)

@Ø
= °n

Ø
+

P

i Xi

Ø2
.

Setting this equal to 0 gives that the MLE is

Ø̂ = X.

The observed information is

°@2l(Ø)

@Ø2
= ° n

Ø2
+

2
P

i Xi

Ø3
.

Evaluating this at Ø̂ gives

°@2l(Ø̂)

@Ø2
= ° n

X
2 +

2n

X
2 =

n

X
2 .

The inverse of this (inverse of the observed information) is then a consistent
estimator of the variance of Ø̂. Noting that E(Xi) = Ø, it follows that the expected
information in the sample is

In(Ø) = E

√

°@2l(Ø)

@Ø2

!

= ° n

Ø2
+

2nØ

Ø3
=

n

Ø2
.



114 Bio 231 cd 1994

(As an aside, note that by direct calculation, In(Ø) is also equal to Var[@l(Ø)/@Ø],
since Var(Xi) = Ø2.) Thus

In(Ø̂) = n/X
2
,

and [In(Ø̂)]°1 also provides a consistent estimator of the asymptotic variance of the
MLE. Although the observed and expected information are not the same, in this
example when we evaluate them at the MLE they give the same estimator for the
variance of the MLE. This will not always be true, but as noted in Example 6.1 it
appears to be a general property of exponential families. Since the observed and
expected information give the same variance estimator, it does not matter which we
use in the Wald statistic. In either case we get the statistic

(Ø̂ ° Ø0)
2In(Ø̂) = (X ° 1)2(n/X

2
) = n

√

X ° 1

X

!2

º ¬2
1

under the null hypothesis.

For the score test it is conventional to evaluate the information at the null
value Ø = 1. The reason for this is that you usually do a score test in part to avoid
fitting the full model. From above,

In(1) = n/12 = n

and the observed information

°@2l(1)

@Ø2
= 2

X

i

Xi ° n.

Note that these are not the same. Also note that it is possible to get data such that
the observed information is negative (that is because it is evaluated at a fixed value
of the parameter, which in general is not equal to the MLE—it will be positive
when evaluated at the MLE). Because of this °@2l(1)/@Ø2 may not be suitable as a
variance estimator. The score itself is

@l(1)

@Ø
= °n +

X

i

Xi,

so using In(1) to estimate the variance, the score statistic is

@l(1)

@Ø

,

In(1) = n°1

√

X

i

Xi ° n

!2

= n(X ° 1)2 º ¬2
1

The only diÆerence between this and the Wald test is that the Wald test also has an

X in the denominator. Since X
P! Ø = 1 under the null hypothesis, it follows that

this diÆerence is asymptotically negligible (under H0).
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For the likelihood ratio test, from (8.3),

2[l(Ø̂)° l(1)] = 2[°n log(X)° n + nX] = 2n[X ° 1° log(X)].

Again this should be approximately ¬2
1 under the null hypothesis. To check the

asymptotic equivalence of this and the other two tests, expand log(x) in a second
order Taylor series about x = 1 to get

log(X) .= (X ° 1)° (X ° 1)2/2,

so
2[l(Ø̂)° l(1)] .= n(X ° 1)2,

which is the formula for the score test given earlier. Note that although the 3
statistics will all give the same results asymptotically, they generally give diÆerent
values in finite samples. 3

Exercise 8.1 Suppose X1, . . . , Xn are iid n(0, exp(2∞)); that is, the density of Xi is

(2º)°1/2e°∞ exp(°x2e°2∞/2).

Consider testing H0 : ∞ = 1 versus H1 : ∞ 6= 1.

(a). Find the MLE ∞̂.

(b). Give the 4 versions of the information: In(∞̂), In(∞0), °@2l(∞̂)/@∞2, and
°@2l(∞0)/@∞2, where l is the log likelihood and ∞0 = 1 (the null value).

(c). Give the large sample Wald statistic using In(∞̂), and specify the critical
region for a test of approximate size Æ.

(d). Give the large sample score statistic using In(∞0), and specify the critical
region for a test of approximate size Æ.

(e). Give the (large sample) likelihood ratio test statistic Qn.

3

The 1-dimensional case discussed above generalizes immediately to simple
hypotheses with vector parameters. Assume µ is k-dimensional, and treat all vectors
as column vectors. All statements regarding distributions refer to the distribution
under the null hypothesis H0 : µ = µ0. From Section 6.3 we know that subject to
appropriate regularity conditions,

µ̂n º Nk(µ0, [In(µ0)]
°1),
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so
Wn = (µ̂n ° µ0)

0In(µ0)(µ̂n ° µ0) º ¬2
k,

see Theorem C.2. (The approximation in the distribution is that the distribution of
the statistic converges to a ¬2

k. This can be shown formally using Theorem A.12,
since Wn is a continuous function of

p
n(µ̂n ° µ0), which is asymptotically normal.)

Again In(µ0) in Wn could be replaced by In(µ̂n) or by the observed information
matrix.

Similarly, if we set

[Un(µ)]0 =

√

@l(µ|Xn)

@µ1
, . . . ,

@l(µ|Xn)

@µk

!

,

then we also know that
Un(µ0) º Nk(0, In(µ0)),

so
Sn = [Un(µ0)]

0[In(µ0)]
°1[Un(µ0)] º ¬2

k.

Also, from the expansion (6.9), we again have that

Sn °Wn
P! 0.

The likelihood ratio statistic is again defined by

Qn = 2[l(µ̂n|Xn)° l(µ0|Xn)].

Using the multi-dimensional version of Taylor’s theorem (Theorem 4.4), there exists
a µ̃(µ0, µ̂n) on the line segment joining µ0 and µ̂n such that

l(µ0|Xn) = l(µ̂n|Xn) + [Un(µ̂n)]0(µ0 ° µ̂n) +
1

2
(µ0 ° µ̂n)0Hn(µ̃(µ0, µ̂n))(µ0 ° µ̂n),

where Hn(µ) is the matrix of second partial derivatives with components

@2l(µ|Xn)

@µi@µj

,

so
Qn = (µ̂n ° µ0)

0[°Hn(µ̃(µ0, µ̂n))](µ̂n ° µ0)

(note that again Un(µ̂n) = 0). Using a generalization of the arguments in Theorem
6.4, it could then be shown that

Qn °Wn
P! 0,
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and that
Qn º ¬2

k.

If we have a composite null hypothesis, the situation becomes more complex.
Suppose we can partition µ0 = (Æ0,Ø0), and the null hypothesis is H0 : Æ = Æ0, with
the components of Ø being nuisance parameters. Suppose that Æ has p components.
Again only distributions under the null hypothesis will be considered, with Ø0 the
true value of Ø. It is convenient (almost essential) here to use vector and matrix
notation, see Appendix B. All vectors are interpreted as column vectors. Since the
asymptotic approximation

√

Æ̂n

Ø̂n

!

º Nk

"√

Æ0

Ø0

!

, [In(Æ0,Ø0)]
°1

#

, (8.4)

is still valid, we can again develop a test based on the distribution of
p

n(Æ̂n °Æ0).
To do this we need to extract the portion of [In(Æ0,Ø0)]

°1 corresponding to Æ.
Partition In(Æ,Ø) into blocks

In(Æ,Ø) =

√

In,ÆÆ(Æ,Ø) In,ÆØ(Æ,Ø)
In,ØÆ(Æ,Ø) In,ØØ(Æ,Ø)

!

,

so that In,ÆÆ(Æ,Ø) is the covariance matrix of the Æ components of the score, and
so on. Note that In,ÆØ(Æ,Ø) = [In,ØÆ(Æ,Ø)]0. Using a formula for the inverse of a
partitioned matrix (see Rao, Linear Statistical Inference and Its Applications,
Second Edition, 1973, page 33), we can write the ÆÆ block of [In(Æ,Ø)]°1 as

{In,ÆÆ(Æ,Ø)° In,ÆØ(Æ,Ø)[In,ØØ(Æ,Ø)]°1In,ØÆ(Æ,Ø)}°1.

Define

In,ÆÆ|Ø(Æ,Ø) = In,ÆÆ(Æ,Ø)° In,ÆØ(Æ,Ø)[In,ØØ(Æ,Ø)]°1In,ØÆ(Æ,Ø).

This is sometimes called the adjusted information (that is, the information for Æ
adjusted for having estimated Ø). Then from (8.4), the marginal distribution of Æ̂n

is
Æ̂n º Np(Æ0, [In,ÆÆ|Ø(Æ0,Ø0)]

°1). (8.5)

Since Ø0 is unknown, it will need to be estimated to get an estimate of the
covariance matrix. Often both Æ and Ø would be estimated by their MLEs, and the
covariance matrix estimated by [In,ÆÆ|Ø(Æ̂n, Ø̂n)]°1. The Wald test statistic then is

Wn = (Æ̂n °Æ0)
0In,ÆÆ|Ø(Æ̂n, Ø̂n)(Æ̂n °Æ0) º ¬2

p.

Again any other consistent estimator of the asymptotic information could be used
instead.
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For the score statistic with nuisance parameters, partition the score vector
Un(Æ,Ø) into Un,Æ(Æ,Ø) containing the derivatives with respect to Æ and
Un,Ø(Æ,Ø) containing the derivatives with respect to Ø. Since in general Un,Æ(Æ,Ø)
depends on the unknown nuisance parameters Ø, it needs to be modified to be
useful in hypothesis testing. One approach is to estimate Ø with Ø̂0, the MLE for Ø
when Æ is fixed at the null value Æ0. That is, Ø̂0 is found by maximizing

l(Æ0,Ø|Xn)

over Ø, or equivalently by solving

Un,Ø(Æ0,Ø) = 0

for Ø. Then we can try to use
Un,Æ(Æ0, Ø̂0) (8.6)

as the basis of a test statistic. To find the asymptotic approximation to the
distribution of (8.6) we use informal methods. This can be made more rigorous
using Taylor’s formula and extensions of Lemma 6.1 and Theorem 6.4. First, taking
a first order expansion and approximating the derivatives of the scores by their
expected values we have

0 =

√

Un,Æ(Æ̂n, Ø̂n)
Un,Ø(Æ̂n, Ø̂n)

!

.=

√

Un,Æ(Æ0, Ø̂0)
Un,Ø(Æ0, Ø̂0)

!

°
√

In,ÆÆ(Æ0, Ø̂0) In,ÆØ(Æ0, Ø̂0)
In,ØÆ(Æ0, Ø̂0) In,ØØ(Æ0, Ø̂0)

! √

Æ̂n °Æ0

Ø̂n ° Ø̂0

!

. (8.7)

In the lower (Ø) components of this expression, Un,Ø(Æ0, Ø̂0) = 0, so all that is left is

In,ØØ(Æ0, Ø̂0)(Ø̂n ° Ø̂0)
.= °In,ØÆ(Æ0, Ø̂0)(Æ̂n °Æ0),

or
(Ø̂n ° Ø̂0)

.= °[In,ØØ(Æ0, Ø̂0)]
°1In,ØÆ(Æ0, Ø̂0)(Æ̂n °Æ0) (8.8)

In the upper (Æ) components of (8.7) we have

Un,Æ(Æ0, Ø̂0)
.= In,ÆÆ(Æ0, Ø̂0)(Æ̂n °Æ0) + In,ÆØ(Æ0, Ø̂0)(Ø̂n ° Ø̂0).

Substituting for (Ø̂n ° Ø̂0) from (8.8) then gives

Un,Æ(Æ0, Ø̂0)
.= In,ÆÆ(Æ0, Ø̂0)(Æ̂n °Æ0)

°In,ÆØ(Æ0, Ø̂0)[In,ØØ(Æ0, Ø̂0)]
°1In,ØÆ(Æ0, Ø̂0)(Æ̂n °Æ0)

= In,ÆÆ|Ø(Æ0, Ø̂0)(Æ̂n °Æ0)
.= In,ÆÆ|Ø(Æ0,Ø0)(Æ̂n °Æ0) (8.9)
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since Ø̂0
P! Ø0. Using the asymptotic distribution of

p
n(Æ̂n °Æ0) from (8.5) then

gives
Un,Æ(Æ0, Ø̂0) º Np(0, In,ÆÆ|Ø(Æ0,Ø0)).

Then we have

Sn = [Un,Æ(Æ0, Ø̂0)]
0[In,ÆÆ|Ø(Æ0, Ø̂0)]

°1[Un,Æ(Æ0, Ø̂0)] º ¬2
p.

From (8.9), it also follows that

Sn °Wn
P! 0.

Note that in Sn, the unknown parameters Ø0 in the information were estimated
using the restricted estimate Ø̂0. This is standard. The idea is that to perform the
score test you would just fit the null model with Æ fixed at Æ0, while for the Wald
test you would just fit the full model to compute the joint MLEs for both Æ and Ø.

The likelihood ratio statistic for the composite null hypothesis is defined by

Qn = 2[l(Æ̂n, Ø̂n)° l(Æ0, Ø̂0)].

Note that this requires fitting both the null and alternative models. To approximate
the distribution of Qn in this setting, again expand in a Taylor series and
approximate the second derivatives by their expected values to get

l(Æ0, Ø̂0)
.= l(Æ̂n, Ø̂n) + [Un(Æ̂n, Ø̂n)]0

√

Æ0 ° Æ̂n

Ø̂0 ° Ø̂n

!

°

1

2

√

Æ̂n °Æ0

Ø̂n ° Ø̂0

!0 √
In,ÆÆ(Æ̂n, Ø̂n) In,ÆØ(Æ̂n, Ø̂n)
In,ØÆ(Æ̂n, Ø̂n) In,ØØ(Æ̂n, Ø̂n)

! √

Æ̂n °Æ0

Ø̂n ° Ø̂0

!

,

so

Qn
.=

√

Æ̂n °Æ0

Ø̂n ° Ø̂0

!0 √
In,ÆÆ(Æ̂n, Ø̂n) In,ÆØ(Æ̂n, Ø̂n)
In,ØÆ(Æ̂n, Ø̂n) In,ØØ(Æ̂n, Ø̂n)

! √

Æ̂n °Æ0

Ø̂n ° Ø̂0

!

,

(since again Un(Æ̂n, Ø̂n) = 0). Substituting (8.8) for Ø̂n ° Ø̂0, and multiplying out
this expression (and simplifying), then gives

Qn
.= (Æ̂n °Æ0)

0In,ÆÆ|Ø(Æ̂n, Ø̂n)(Æ̂n °Æ0) = Wn.

Thus if we fill in the details, keep track of the remainder terms, and so on, we could
show that

Qn °Wn
P! 0

and
Qn º ¬2

p.
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Example 8.2 As an example of the composite hypothesis situation, consider the
following exponential regression model. Suppose Y1, . . . , Yn are independent with
densities

fY
i

(y|Æ, Ø) = exp(Æ + Øzi) exp[°y exp(Æ + Øzi)],

where Æ, Ø 2 R1 and the zi are the known covariate values. Suppose we are
interested in testing H0 : Ø = 0 versus H1 : Ø 6= 0 (that is, whether the covariate is
associated with outcome).

The log-likelihood is

l = nÆ + Ø
X

zi °
X

yi exp(Æ + Øzi),

the scores are
UÆ(Æ, Ø) = @l/@Æ = n°X

yi exp(Æ + Øzi)

and
UØ(Æ, Ø) = @l/@Ø =

X

zi[1° yi exp(Æ + Øzi)],

and the observed information terms are

°@2l/@Æ2 =
X

yi exp(Æ + Øzi),

°@2l/@Æ@Ø =
X

yizi exp(Æ + Øzi),

and
°@2l/@Ø2 =

X

yiz
2
i exp(Æ + Øzi).

Since E(Yi) = 1/ exp(Æ + Øzi), the expected information terms are particularly
simple here:

IÆÆ = n, IÆØ =
X

zi, IØØ =
X

z2
i .

The information for Ø adjusted for Æ is

IØØ|Æ = IØØ ° IØÆI°1
ÆÆIÆØ

=
X

z2
i ° (

X

zi)
2/n

=
X

(zi ° z)2.

The MLEs would be found by setting the scores equal to 0 and solving for Æ and Ø.
In general there will not be an explicit solution for the joint parameter vector (Æ, Ø),
and iterative numerical methods would be needed to find the solution. If the joint
MLEs are (Æ̂, Ø̂), then the Wald statistic is just

Ø̂0IØØ|ÆØ̂ = Ø̂2
X

(zi ° z)2

(recall Ø is a scalar).
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We could avoid the need for iterative fitting by using the score test. When
Ø = 0 the score equation for Æ is

n = exp(Æ)
X

yi,

so
Æ̂0 = log[n/

X

yi].

Then
UØ(Æ̂0, 0) =

X

zi[1° yi/y],

and the variance of this score is approximately

IØØ|Æ =
X

(zi ° z)2.

The statistic

UØ(Æ̂0, 0)/
q

IØØ|Æ =
≥

X

zi[1° yi/y]
¥ ≥

X

(zi ° z)2
¥°1/2

is then º n(0, 1) under the null hypothesis (or we could use the square of this, which
would be º ¬2

1).

The likelihood ratio statistic is

Qn = 2[nÆ̂ + Ø̂
X

zi °
X

yi exp(Æ̂ + Ø̂zi)° n log(n/
X

Yi)° n].

Although they are all asymptotically equivalent, as in Example 8.1 the Wald,
score and likelihood ratio tests would not give the same values for a given sample
size. Also, again a slightly diÆerent test results depending on whether expected or
observed information is used, and how the parameters are estimated (in the
observed information).

Another hypothesis that might be of interest is whether the eÆect of the
covariate is linear. To test this we might use the model

fY
i

(y|Æ, Ø) = exp(Æ + Ø1zi + Ø2z
2
i ) exp[°y exp(Æ + Ø1zi + Ø2z

2
i )],

or

fY
i

(y|Æ, Ø) = exp(Æ + Ø1zi + Ø2z
2
i + Ø3z

3
i )

exp[°y exp(Æ + Ø1zi + Ø2z
2
i + Ø3z

3
i )].

In the first model we would then test the hypothesis Ø2 = 0, while in the second
model we would then test the hypothesis that Ø2 = Ø3 = 0. In both cases fitting
either the null or alternative model would involve iterative methods. Note that in
the second model the Wald, score, and likelihood ratio tests would be
asymptotically ¬2

2 under the null hypothesis. 3
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Exercise 8.2 Suppose X1, . . . , Xn are iid with the density of Xi given by

f(x|Ø, ∞) =
∞

Ø

√

x

Ø

!∞°1

exp[°(x/Ø)∞ ].

(This is a Weibull density, but the parameters are slightly diÆerent than in C&B, p.
629.) Give the large sample score test for testing H0 : ∞ = 1 versus H1 : ∞ 6= 1. For
the variance use the expected information evaluated at ∞ = 1 and Ø = Ø̂0, the MLE
for Ø when ∞ is fixed at 1.

Note: If I did this correctly the adjusted information is n(1 + r2 ° r2
1), where

rk =
Z 1

0
[log(u)]kue°u du.

Do not worry about evaluating these integrals, which do not have closed form
antiderivatives. 3

Exercise 8.3 Suppose Yi = Æ + Øzi + ≤i, i = 1, . . . , n, where the ≤i
iidª n(0, 1), Æ and

Ø are unknown parameters, and the zi are fixed constants. Assume that
P

i zi = 0.
Consider testing H0 : Ø = 0 versus H1 : Ø 6= 0.

(a). Show that the score and Wald statistics (¬2
1 versions) are both equal to

(
P

i Yizi)2/
P

i z
2
i .

(b). Show that the likelihood ratio statistic (the large sample version Qn) is also
equal to the statistic in (a).

(c). Suppose now the hypothesis is H0 : Ø = Æ = 0. Give the Wald statistic for this
hypothesis.

3

Exercise 8.4 Suppose X1, . . . , Xn are iid Poisson(∏) and Y1, . . . , Ym are iid
Poisson(µ), with the Xi independent of the Yj. Give the large sample score test for
H0 : ∏ = µ versus H1 : ∏ 6= µ. (It may help to express the parameters in a diÆerent
form.) 3


