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This supplement includes

• proof of theorems and propositions, useful lemmas,

• discussion and examples on the completeness condition,

• consistency of the least median of squares estimator,

• discussion on identification of a parametric model for a binary outcome,

• details for examples, and

• additional results for simulations and the application.

1. PROOF OF PROPOSITIONS AND THEOREMS

1.1 Proof of Proposition 1

Note that η can be identified by regression ofX onZ, then applying lemma 5.1 and theorem 5.1 of Anderson

and Rubin (1956) to the factor model for the residuals,

X − ηZ = αU + ε,

we obtain (i) of Proposition 1. The third result of Proposition 1 can be obtained from the well-known

completeness property of exponential families, see Theorem 2.2 of Newey and Powell (2003). Here we

prove (ii), which rests on the following lemma described by Kotlarski (1967, lemma 1 and remark 5).
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Lemma 1 (Kotlarski, 1967). Let U , ε1, and ε2 be three independent q-dimensional real random vectors

with mean zero, and let W1 = U + ε1 and W2 = U + ε2. If the joint characteristic function of (W1,W2)

does not vanish, then the distributions of U , ε1, and ε2 are uniquely determined from the joint distribution

of (W1,W2).

We apply Kotlarski’s lemma to prove (ii) of Proposition 1.

Proof of Proposition 1 (ii). We denote W = X − ηZ = αU + ε. Note that from (i) of proposition 1, any

admissible value for α can be written as α̃ = αR with R an arbitrary q× q orthogonal matrix, we only need

to prove that given α̃ = αR, the joint distribution f̃(w, u) = f(W = w,U = u; α̃) is uniquely determined

and f̃(w, u) = f(W = w,RTU = u;α).

Because after deleting any row of α there remain two full-rank submatrices of α, there must exist two

disjoint square submatrices of α with full rank q. Note that α̃ = αR, there must exist two disjoint square

submatrices of α̃ with full rank q, which we denote by α̃I and α̃J with I and J denoting the corresponding

indices, respectively. Note that WI = α̃IV + εI and WJ = α̃J V + εJ with V = RTU , we have

α̃−1
I WI = V + α̃−1

I εI and α̃−1
J WJ = V + α̃−1

J εJ . According to Lemma 1, the distributions of V ,

α̃−1
I εI , and α̃−1

J εJ are uniquely determined given α̃, and therefore, the distribution of ε = W − α̃V is

uniquely determined. As a result, given α̃, there is only one admissible joint distribution, which must be

f̃(w, u) = f(W = w,RTU = u | α).

1.2 Proof of Theorem 1

Proof. Under the equivalence (Assumption 2 (ii)), given any admissible joint distribution f̃(x, u | z), there

must exist some invertible function V (U) such that f̃(x, u | z) = f{X = x, V (U) = u | z}. Because

V (U) is invertible, the ignorability assumption 1 (Y (x) ⊥⊥ X | U ) implies that Y (x) ⊥⊥ X | V (U), the

exclusion restriction Z ⊥⊥ Y | (U,X) implies that Z ⊥⊥ Y | {X,V (U)}, and the completeness (Assumption

2 (iii)) implies that f̃(u | x, z) is also complete in z. Letting f̃(y | u, x) = f{y | V (U) = u, x}, then we

have that

f{Y (x) = y} =

∫
u
f(y | u, x)f(u)du =

∫
u
f̃(y | u, x)f̃(u)du, (S.1)

f(y | x, z) =

∫
u
f̃(y | u, x)f̃(u | x, z)du, (S.2)
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with f̃(u) and f̃(u | x, z) derived from f̃(x, u | z). Because f̃(u | x, z) is complete in z, the solution to

(S.2) is unique; this is because for any candidate solutions f̃1(y | u, x) and f̃2(y | u, x) to (S.2), we must

have that
∫
u{f̃1(y | u, x)− f̃2(y | u, x)}f̃(u | x, z) = 0, which implies that f̃1(y | u, x) = f̃2(y | u, x) by

the completeness of f̃(u | x, z) in z. Thus, f̃(y | u, x) is uniquely determined from (S.2), and f{Y (x)} is

identified by plugging in it into (S.1).

1.3 Proof of Theorem 2

Proof. Under the equivalence (Assumption 3 (ii)), for any admissible joint distribution f̃(x, u) we must

have some invertible function V (U) such that f̃(u, x) = f{X = x, V (U) = u}. Letting C = {i :

f(u | x) varies with xi} and C̃ = {i : f̃(u | x) varies with xi}, then we must have C = C̃ by noting that

f̃(u | x) = f{V (U) = u | x}, i.e., C can be identified from any admissible joint distribution f̃(x, u).

Because V (U) is invertible, the ignorability assumption 1 (Y (x) ⊥⊥ X | U) implies that Y (x) ⊥⊥ X |

V (U), and the completeness (Assumption 3 (iii)) implies that f̃(u | x) is also complete in xS for any S ⊂ C

with cardinality q. Letting f̃(y | u, x) = f{y | V (U) = u, x}, then we have that

f{Y (x) = y} =

∫
u
f(y | u, x)f(u)du =

∫
u
f̃(y | u, x)f̃(u)du, (S.3)

f(y | x) =

∫
u
f̃(y | u, x)f̃(u | x)du, (S.4)

with f̃(u) and f̃(u | x) obtained from f̃(x, u).

We prove that f̃(y | u, x) is uniquely determined from (S.4) given f(y | x) and f̃(u | x) by way of

contradiction. Suppose two candidate outcome models f̃1(y | u, x) and f̃2(y | u, x) satisfy (S.4), then∫
u{f̃1(y | u, x)− f̃2(y | u, x)}f̃(u | x) = 0. Under the null treatments assumption, each of f̃1(y | u, x) and

f̃2(y | u, x) can depend on only (|C| − q)/2 confounded treatments, and thus the contrast {f̃1(y | u, x) −

f̃2(y | u, x)} can depend on at most |C|− q confounded treatments. We let XS denote the rest q confounded

treatments that the contrast {f̃1(y | u, x) − f̃2(y | u, x)} does not depend on, then the completeness

(Assumption 3(iii)) implies that f̃(u | xS , xS̄) is complete in xS , and thus {f̃1(y | u, x)− f̃2(y | u, x)} = 0

almost surely, i.e., f̃1(y | u, x) = f̃2(y | u, x) almost surely. Therefore, the solution to (S.4) must be unique.

Finally, plugging in f̃(y | u, x) and f̃(u) into (S.3) identifies the potential outcome distribution.
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1.4 Proof of Proposition 2

Proof. We first note that the confounded treatments can be identified under the equivalence assumption, by

the argument in the proof of Theorem 2. Note that the candidate solutions depending on more than (|C| −

q)/2 confounded treatments contradict the null treatments assumption that at most (|C| − q)/2 confounded

ones can affect the outcome, we only focus on solutions that depends on at most (|C| − q)/2 confounded

treatments.

We let AC denotes the number of active ones of the confounded treatments. Consider a solution f̃(y |

u, xB) that solves

f(y | x) =

∫
u
f̃(y | u, xB)f̃(u | x)du. (S.5)

where |B ∩ C| ≤ (|C| − q)/2, i.e., xB includes at most (|C| − q)/2 confounded treatments. Equation (S.5)

is a Fredholm integral equation of the first kind with the kernel f̃(u | x) complete in xB̄, where xB̄ denotes

the remaining treatments of x except for xB. For xB that includes all active treatments, i.e., xA ⊂ xB and

|B∩C| = AC , the solution to (S.5) exists and must be unique and equal to f̃(y | u, xA). For xB that includes

t < AC active ones of the confounded treatments, i.e., |B∩C| = t < AC , the solution to (S.5) does not exist.

We prove this by way of contradiction.

Suppose (S.5) has a solution f̃(y | u, xB), then it must also satisfy the following equation

f(y | x) =

∫
u
f̃(y | u, xB ∪ xA)f̃(u | x)du; (S.6)

where the unknown function f̃(y | u, xB ∪ xA) of u is allowed to depend on all active treatments. Note that

f̃(y | u, xB ∪ xA) can depend on at most (|C| − q)/2− t null ones of the confounded treatments, Equation

(S.6) is a Fredholm integral equation of the first kind, with the kernel f̃(u | x) complete in xB̄ ∩ xĀ ∩ xC ,

i.e., the remaining q + t null ones of the confounded treatments. Therefore, (S.6) can be satisfied by only

one function, which in fact is f̃(y | u, xA). This contradicts that f̃(y | u, xB) depend on only t < AC active

ones of the confounded treatments.

As a result, all solutions that depend on at most (|C| − q)/2 confounded treatments must be equal to

f̃(y | u, xA), i.e., the solution to (6).

1.5 Proof of Theorem 3

We first describe a lemma that is useful for proof of Theorem 3.
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Lemma 2. For a p × p positive-definite matrix Σε and a p × q matrix α of full column rank with p > q,

letting γ = (Σε + ααT)−1α, then γ = Σ−1
ε α{Iq − αT(Σε + ααT)−1α}.

Proof. Letting A = Σ
−1/2
ε α and B = Σ

1/2
ε γ, then A has full rank, and it is straightforward to verify that

B = (Ip +AAT)−1A = A{Iq −AT(Ip +AAT)−1A}.

Because {Iq − AT(Ip + AAT)−1A}{AT(Ip + AAT)A} = ATA and ATA has full rank of q, then {Iq −

AT(I +AAT)−1A} must have full rank of q as a q× q matrix, i.e., {Iq −αT(Σε +ααT)−1α} has full rank.

Thus, we have that

γ = {Σε + ααT}−1α = Σ−1
ε α{Iq − αT(Σε + ααT)−1α}.

In the special case that Σε is diagonal and q = 1, we have γi = Σ−1
ε,i αi{1−αT(Σε +ααT)−1α}, where

Σε,i is the ith diagonal element of Σε. Therefore, if αi 6= 0, we must have γi 6= 0.

We then prove Theorem 3.

Proof of Theorem 3. Under model (16) and condition (i) of Theorem 3, Σε is identified and any admissible

value α̃ is a rotation of the truth (Proposition 1), i.e., α̃ = αR for some q × q orthogonal matrix R. We let

γ = Σ−1
X α denote the coefficient by linear regression of U onX . Given an admissible value α̃ = αR, we let

γ̃ = Σ−1
X α̃ = γR and δ̃ = RTδ. We let C = {i : αi is not a zero vector} denote the confounded treatments,

where αi is the ith row of α.

Note that Σε is diagonal under model (16), then according to Lemma 2, we have γ̃i = Σ−1
ε,i αi{Iq −

αT(Σε +ααT)−1α}R, where γ̃i is the ith row of γ̃ and Σε,i is the ith diagonal element of Σε. Therefore, γ̃i

is a zero vector if and only if αi is a zero vector, i.e., C is identified by the set {i : γ̃i is not a zero vector}.

Letting ξ denote the ordinary least squares coefficient by regressing Y on X , then we have

ξ = β + γ̃δ̃. (S.7)

By way of contradiction, we prove that (β, δ̃) is uniquely determined from this equation given (β̃, γ̃) and

under the null treatments assumption. Suppose that two sets of values (β(1), δ̃(1)) and (β(2), δ̃(2)) satisfy

(S.7), and both β(1)
C and β(2)

C satisfies the null treatments assumption that at most (|C| − q)/2 entries are

nonzero.
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For unconfounded treatments, the corresponding rows of α̃ and γ̃ must be zero as we show in the above,

thus β(1)

C̄ = β
(2)

C̄ = β̃C̄ . We remain to prove that β(1)
C = β

(2)
C and δ̃(1) = δ̃(2). From (S.7), we have that

β
(1)
C − β

(2)
C = γ̃C(δ̃

(2) − δ̃(1)).

On the left hand side of this equation, β(1)
C −β

(2)
C has at least q zero entries under assumption (i) of Theorem

3. We use Z to denote the indices of zero entries of β(1)
C − β

(2)
C and γ̃Z the corresponding submatrix of γ̃C ,

then we have that 0 = γ̃Z(δ̃(2) − δ̃(1)). Note that γ̃Z = γZR must have full rank of q under assumption

(iii) of Theorem 3, then we must have δ̃(2) = δ̃(1), and thus β(1)
C = β

(2)
C . In summary, β(1) = β(2), i.e., β is

uniquely determined.

2. DISCUSSION AND EXAMPLES ON THE COMPLETENESS CONDITION

Completeness is a fundamental concept in statistics (see Lehman and Scheffe (1950); Basu (1955)), which

is taught in most foundational courses of statistical inference. It has been used to establish the theory

for hypothesis testing and unbiased estimation in mathematical statistics (Lehman and Scheffe, 1950), and

recently been used to establish identification in causal inference, missing data, and measurement error prob-

lems. Nonetheless, it may still be abstract to practitioners. Therefore, it is worth explaining in more detail.

We add further explanation and extra examples to facilitate the interpretation and use of the completeness

condition in practice. In particular, we illustrate completeness from the following perspectives.

• The role of completeness in identification. Since its prevalent use in statistics, completeness has been

widely used to establish identification for a variety of nonparametric and semiparametric models, for

instance, the IV regression model (Newey and Powell, 2003; Darolles et al., 2011), IV quantile model

(Chernozhukov and Hansen, 2005; Chen et al., 2014), measurement error model (Hu and Schennach,

2008), missing data model (Miao and Tchetgen Tchetgen, 2016; D’Haultfœuille, 2010), and proximal

inference (Miao et al., 2018). It has been very well studied by statisticians and economists, prim-

itive conditions are readily available in the literature including very general exponential families of

distributions and regression models, and the literature is still growing; see for example, Newey and

Powell (2003); D’Haultfœuille (2010, 2011); Darolles et al. (2011); Chen et al. (2014); Hu and Shiu

(2018). Our use of completeness falls in this line of work, where the main identifying assumption that

captures the underlying causal structure is an IV, auxiliary variables, or null treatments assumption

and the completeness is viewed as a regularity condition.
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• Intuition and implication of completeness. Completeness is equivalent to the injectivity of the condi-

tional expectation operator (D’Haultfœuille, 2011). Completeness characterizes the informativeness

of the auxiliary variable about the confounder and its ability to recover the confounding bias. It is

analogous to the relevance condition in the instrumental variable identification. It can be interpreted

as a nonparametric rank condition and is easiest understood in the categorical and the linear cases

where the outcome model to be identified is parametric. In the categorical case where both U and

Z have k levels, completeness means that the matrix [f(ui | x, zj)] consisting of the conditional

probabilities is invertible for any x. This is stronger than dependence of Z and U given X . Roughly

speaking, dependence reveals that variability in U is accompanied by variability in Z, and complete-

ness reinforces that any infinitesimal variability in U is accompanied by variability in Z. For instance,

if Z is a proxy of U , completeness of f(u | x, z) can be interpreted as no coarsening in the mea-

surement Z of the confounder U . As a consequence, completeness fails if the number of levels or

dimension of Z is smaller than that of U . For the binary case, completeness holds if U and Z are

correlated within each level of X . In the linear model E(U | x, Z) = γ0(x) + γ1(x)Z, completeness

reduces to a rank condition that γ1(x) has full row rank for all x. The rank condition can only hold

if the dimension of Z is no smaller than that of U . This argument provides a rationale for measuring

a rich set of potential auxiliary variables for the purpose of confounding adjustment. However, if

the outcome model is unrestricted, completeness serves as a generic rank condition accommodating

both categorical and continuous variables, linear and nonlinear models, although, it can no longer be

expressed so concisely as a full rank condition.

• How to assess or test completeness. Completeness can be checked in specific models, for instance,

one can check whether the covariance matrix is of full rank in the joint normal model. Unfortunately,

Canay et al. (2013) show that for unrestricted models the completeness condition is in fact untestable,

even if all relevant variables (X,Z,U in our problem) are observed. Therefore, without restrictions on

the distribution, it is impossible to provide empirical evidence in favor of the completeness condition,

akin to the ignorability assumption.

• When does completeness hold or fail, and is it a stringent condition? A number of papers (Andrews,

2017; D’Haultfœuille, 2011; Newey and Powell, 2003; Darolles et al., 2011; Chen et al., 2014; Hu
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and Shiu, 2018) have established genericity results for parametric, semiparametric, and nonparametric

distributions satisfying completeness. Andrews (2017) has shown that if Z and U are continuously

distributed and the dimension of Z is larger than that of U , then under a mild regularity condition

the completeness condition holds generically in the sense that the set of distributions or conditional

expectation operators for which completeness fails has a property analogous to having zero Lebesgue

measure (Chen et al., 2014; Andrews, 2017). By appealing to such results, completeness holds in a

large class of distributions and thus one may argue that it is commonly satisfied.

In short, completeness is one of the most general conditions made in problems of identification. It

requires that Z must have sufficient dimensions or levels and variability relative to U . Commonly-used

parametric and semiparametric models, such as exponential families (Newey and Powell, 2003, Theorem

2.2) and location-scale families (Mattner, 1992; Hu and Shiu, 2018), and nonparametric additive models

(D’Haultfœuille, 2011) satisfy the completeness condition. For nonparametric models, it is not testable but

holds in a large class of models.

In the following, we provide extra examples illustrating completeness, see also Lehman and Scheffe

(1950) for a variety of parametric examples where completeness holds and also counterexamples. We also

refer to Newey and Powell (2003) for completeness of exponential families, Hu and Shiu (2018) for location-

scale families, and D’Haultfœuille (2011); Darolles et al. (2011) for additive separable regression models.

Example S.1. The binary case. Suppose bothZ andU are binary, then for any x completeness of f(u | x, z)

holds as long as U ⊥6⊥ Z | X = x, but otherwise completeness fails if U ⊥⊥ Z | X = x.

Example S.2. The categorical case. Suppose U has q levels and Z has r levels, then for a given x com-

pleteness of f(u | x, z) in z holds as long as the matrix

[f(ui | x, zj)]q×r =


f(u1 | z1, x) · · · f(u1 | zr, x)

:
. . . :

f(uq | z1, x) · · · f(uq | zr, x)


consisting of the conditional probabilities has full row rank. Therefore, it is necessary that q ≤ r and

U ⊥6⊥ Z | X = x. Otherwise, completeness fails if either q > r or U ⊥⊥ Z | X = x. However for

q > 2, the full rank condition is stronger than the dependence (U ⊥6⊥ Z | X = x). For instance, if

f(u1 | z, x) 6= f(u2 | z, x) and f(u3 | z, x) = f(u1 | z, x) for all z, then U ⊥6⊥ Z | X = x but the full rank
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condition is obviously not met. This is because the variability in U from u1 to u3 is not sufficiently captured

by Z, i.e., the measure of Z is coarsened if we view it as a proxy of U . Roughly speaking, dependence reveals

that variability in U is accompanied by variability in Z, and completeness reinforces that any infinitesimal

variability in U is accompanied by variability in Z.

Example S.3. Gaussian distributions. Suppose U and Z have dimensions of q and r, respectively, and

f(u, z | x) is joint normal given x, then completeness of f(u | x, z) in z reduces to a rank condition: the

coefficient matrix γ1(x) in model E(U | x, Z) = γ0(x) + γ1(x)Z has full row rank given x. It is required

that the dimension of Z is no smaller than that of U and that the regression coefficients of each confounder

on X and Z are not collinear; otherwise, the completeness fails.

Example S.4. A scale model. Lehman and Scheffe (1950, example 3.3) presents a counterexample where

completeness fails for f(u | x, z) ∼ N(0, σ2
x,z). This is because the conditional density is an even function

of u and E{g(U) | x, z} = 0 for any square-integrable and odd function g. In this example, the scale or

magnitude of variability of U is captured by Z but not the orientation.

3. CONSISTENCY OF THE LEAST MEDIAN OF SQUARES ESTIMATOR (δ̃lms, β̂lms)

For the consistency of (δ̂lms, β̂lms), we need an additional regularity condition that is slightly stronger than

assumption (i) of Theorem 3, which is routinely assumed in the least median squares estimation (see Theo-

rem 3 in Chapter 3 of Rousseeuw and Leroy, 2005).

Assumption S.1. At most [|C|/2]− q+ 1 entries of βC are nonzero, where [x] is the largest integer less than

or equal to x.

We show consistency of (δ̂lms, β̂lms) under this assumption and the assumptions of Theorem 3, given

n1/2-consistency of (ξ̂, γ̂), i.e., n1/2(ξ̂−ξ) and n1/2(γ̂−γR) are bounded in probability for some unknown

orthogonal matrix R. We show that δ̂lms → Rδ and β̂lms → β. For notational simplicity, we only consider

the special case where R is the identity matrix. For general cases with R unknown, the following proof

holds by simply replacing δ with Rδ and γ with γR.

Because n1/2(γ̂ − γ) is bounded in probability, then ||γ̂i||22 → ||γi||22 > log(n)/n for γi 6= 0 and

n/ log(n)||γ̂i||22 → 0 for γi = 0. Lemma 2 implies C = {i : ||αi||22 > 0} = {i : ||γi||22 > 0} and therefore,
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f(Ĉ 6= C)→ 0, i.e., Ĉ consistently selects the confounded treatments. Letting

δ̃lms = arg min
δ

median {(ξ̂i − γ̂iδ)2, i ∈ C}, C = {i : ||γi||22 > 0},

we only need to show consistency of δ̃lms because δ̃lms = δ̂lms upon Ĉ = C.

Note that

median{(ξ̂i − γ̂iδ̃lms)2 : i ∈ C} ≤ median{(ξ̂i − γ̂iδ)2 : i ∈ C}

≤ median{(ξ̂i − ξi − (γ̂i − γi)δ + ξi − γiδ)2 : i ∈ C}

≤ median{(ξ̂i − ξi − (γ̂i − γi)δ + βi)
2 : i ∈ C}.

For sufficiently large sample size n, ξ̂i − ξi and γ̂i − γi are close to zero so that (ξ̂i − ξi − (γ̂i − γi)δ)2 <

(ξ̂j − ξj − (γ̂j − γj)δ + βj)
2 for any i with βi = 0 and any j with βj 6= 0. Assumption S.1 states that more

than half entries of βC are zero, and thus, median{(ξ̂i − ξi − (γ̂i − γi)δ + βi)
2 : i ∈ C} is attained among

the null treatments. Therefore, we have asymptotically

median{(ξ̂i − ξi − (γ̂i − γi)δ + βi)
2 : i ∈ C} ≤ max{(ξ̂i − ξi − (γ̂i − γi)δ)2 : i ∈ C and βi = 0}

≤ max{(ξ̂i − ξi − (γ̂i − γi)δ)2 : i ∈ C}.

Hence,

median{(ξ̂i − γ̂iδ̃lms)2 : i ∈ C} ≤ max{(ξ̂i − ξi − (γ̂i − γi)δ)2 : i ∈ C}.

Letting ∆ = δ̃lms − δ, we can show the following result,

Result 1: median{(ξ̂i − γ̂iδ̃lms)2 : i ∈ C} ≥ 1

2
{(ξ̂i − ξi)− (γ̂i − γi)(δ + ∆)− γi∆}2

for at least q elements belonging to the subset {i ∈ C : βi = 0}.

Given Result 1, we have

1

2
(ξ̂i − ξi − (γ̂i − γi)(δ + ∆)− γi∆)2 ≤ max{(ξ̂i − ξi − (γ̂i − γi)δ)2 : i ∈ C}

for at least q elements belonging to the subset {i ∈ C : βi = 0}.

Assuming that (ξ̂, γ̂) are consistent, then the right hand side must converge to zero and thus γi∆ → 0 for

at least q elements in C. Moreover, any submatrix of γC consisting of q rows has full rank (Assumption
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(iii) of Theorem 3), then ∆ must converge to zero, i.e., δ̃lms is consistent and as a result δ̂lms is consistent.

Consistency of β̂lms = ξ̂ − γ̂δ̂lms follows from consistency of (ξ̂, γ̂, δ̂lms).

Now we prove Result 1. Note that

median{(ξ̂i − γ̂iδ̃lms)2 : i ∈ C} = median{(βi + (ξ̂i − ξi)− (γ̂i − γi)(δ + ∆)− γi∆)2 : i ∈ C}.

If |C| is odd, Assumption S.1 implies that at most (|C| − 1)/2− q + 1 entries of βC are nonzero. Arranging

(ξ̂i−γ̂iδ̃lms)2 in increasing order, then median{(ξ̂i−γ̂iδ̃lms)2 : i ∈ C} is equal to the (|C|+1)/2-th element.

Thus, the following inequality holds for at least (|C|+1)/2−{(|C|−1)/2−q+1} = q elements belonging

to the subset {i ∈ C : βi = 0},

median{(ξ̂i − γ̂iδ̃lms)2 : i ∈ C} ≥ {(ξ̂i − ξi)− (γ̂i − γi)(δ + ∆)− γi∆}2

≥ 1

2
{(ξ̂i − ξi)− (γ̂i − γi)(δ + ∆)− γi∆}2.

If |C| is even, Assumption S.1 implies that at most |C|/2 − q + 1 entries of βC are nonzero. Arranging

(ξ̂i − γ̂iδ̃
lms)2 in increasing order, then median{(ξ̂i − γ̂iδ̃

lms)2 : i ∈ C} is equal to the average of the

|C|/2-th and (|C|/2 + 1)-th elements. Thus, median{(ξ̂i − γ̂iδ̃lms)2 : i ∈ C} is no smaller than half of the

(|C|/2+1)-th element. As a result, the following inequality holds for at least |C|/2+1−(|C|/2−q+1) = q

elements belonging to the subset {i ∈ C : βi = 0},

median{(ξ̂i − γ̂iδ̃lms)2 : i ∈ C} ≥ 1

2
{(ξ̂i − ξi)− (γ̂i − γi)(δ + ∆)− γi∆}2.

This completes the proof of Result 1.

4. DISCUSSION ON IDENTIFICATION OF A PARAMETRIC BINARY OUTCOME MODEL

Without assist of auxiliary variables and null treatments assumptions, identification is not generally avail-

able and depends on specific model assumptions. In a recent note, Kong et al. (2021) consider a binary

outcome model with one confounder. Under a factor model for normally distributed treatments and a couple

of assumptions such as knowing the sign of confounding bias, they prove identification via a meticulous

analysis of the link distribution. However, their identification results do not generalize to the multivariate

confounder case as illustrated by the following counterexample.

Example S.5. Assuming that

X = αU + ε, f(Y = 1 | X,U) = G(β0 + βTX + δTU), ε ∼ N(0,Σε), U ∼ N(0, Iq), (S.8)
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where U is a q-dimensional confounder, Σε is diagonal, and G is a known distribution function relating the

outcome mean to a linear model of the treatments and confounder. The unknown parameters (β, δ) capture

the treatment effects and the magnitude of confounding, respectively.

Under this setting, one can verify that the observed data distribution f(x, y) is satisfied with α̃ = αR1,

δ̃ = RT
1 Σ−1/2R2Σ1/2δ, and β̃ = β + γ(Iq − Σ−1/2R2Σ1/2)δ, where Σ = Iq − αTΣ−1

X α and R1, R2 are

arbitrary q × q orthogonal matrices.

In the special case where U is univariate, i.e., q = 1, there are only two possible values −1 and 1 for

orthogonal matrices R1, R2; thus, there are at least two possible values for the treatment effect, β̃ = β and

β̃ = β + 2γδ. If further the signs of δ and at least one entry of α are known, i.e., R1 = R2 = 1, then

β̃ = β + 2γδ can be excluded, and in fact, Kong et al. (2021) have shown that β̃ = β is the only possible

value for the treatment effect provided that G is not a normal distribution. However, this argument does not

generalize to the multivariate confounder case, because there are infinite number of orthogonal matrices

with dimension q ≥ 2, in which case, it is impossible to specify R1, R2.

5. DETAILS FOR EXAMPLES

5.1 Details for Example 1

Note that η can be identified by regression of X on Z. Given η, an arbitrary admissible value α̃, and

f̃(u | x, z) ∼ N(γ̃Tx− γ̃Tηz, σ̃2) with γ̃ = (ΣX−ηZ)−1α̃ and σ̃2 = 1− α̃T(ΣX−ηZ)−1α̃, we solve

f(y | x, z) =

∫
u
h(y, x, u)f̃(u | x, z)du (S.9)

φ is the probability density function of N(0, 1), (S.10)

=

∫
u
h(y, x, u) · 1

σ̃
φ

{
u− (γ̃Tx− γ̃Tηz)

σ̃

}
du (S.11)

for h(y, x, u), which is the outcome model f̃(y | x, u). Following the procedure described by Miao et al.

(2018), h(y, x, u) can be represented in Fourier transforms of f̃(u | x, z) and f(y | x, z).

By substitution z′ = {γ̃Tx− γ̃Tηz}/σ̃, u′ = u/σ̃, and by letting

g(y, x, z′) = f

{
y | x, z =

γ̃Tx− σ̃z′

γ̃Tη

}
,

12



(S.9) implies that

g(y, x, z′) =

∫ +∞

−∞

1

σ̃
φ(z′ − u′) · h(y, x, u′σ̃)du

=

∫ +∞

−∞
φ(z′ − u′) · h(y, x, u′σ̃)du′.

which is an integral equation of convolution type and can be solved by applying the Fourier transform.

Letting h1 and h2 denote the Fourier transforms of φ and g respectively:

h1(t) =

∫ +∞

−∞
exp(−itz)φ(z)dz,

h2(y, x, t) =

∫ +∞

−∞
exp(−itz′)g(y, x, z′)dz′

= − γ̃
Tη

σ̃

∫ +∞

−∞
exp

{
−it

γ̃Tx− γ̃Tηz

σ̃

}
f(y | x, z)dz,

with i = (−1)1/2 the imaginary unity, we have

h2(y, x, t) = h1(t)×
∫ +∞

−∞
exp(−itu′)h(y, x, u′σ̃)du′,∫ +∞

−∞
exp(−itu′)h(y, x, u′σ̃)du′ =

h2(y, x, t)

h1(t)
;

by Fourier inversion, we have

h(y, x, u′σ̃) =
1

2π

∫ +∞

−∞
exp(itu′)

h2(y, x, t)

h1(t)
dt;

by substitution u = u′σ̃, we obtain

h(y, x, u) =
1

2π

∫ +∞

−∞
exp

{
itu

σ̃

}
h2(y, x, t)

h1(t)
dt,

and the potential outcome distribution is

f{Y (x) = y} =

∫ +∞

−∞
h(y, x, u)φ(u)du.

5.2 A confounder proxy example for the auxiliary variables approach

For simplicity, we consider a binary confounder, p binary treatments, and a binary proxy Z of the con-

founder. We assume that

X1 ⊥⊥ · · · ⊥⊥Xp | U, (S.12)

at least three treatments are correlated with U ; (S.13)

Z ⊥6⊥ U, Z ⊥⊥ (X,Y ) | U ; (S.14)
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where the last independence is known as the nondifferentially error assumption (Ogburn and VanderWeele,

2013; Carroll et al., 2006). Under (S.12)–(S.14), completeness of f(u | x, z) in z holds as long as Z is

correlated with U , because E{g(U) | x, z} = 0 ⇔
∑

u g(u)f(x, u)f(z | u) = 0 ⇔ g(u)f(x, u) = 0 ⇔

g(u) = 0.

According to Kuroki and Pearl (2014), under (S.12)–(S.13), any admissible joint distribution f̃(x, u)

equals the joint distribution of X and some label switching of U . Given f̃(x, u), we solve f(z, x) =∑
u f̃(z | u)f̃(x, u) to obtain f̃(z | u) and f̃(x, z, u) = f̃(x, u)f̃(z | u). We then obtain f̃(y | u, x) by

solving f(y | x, z) =
∑

u f̃(y | u, x)f̃(u | x, z), and finally the potential outcome distribution is identified

by f{Y (x) = y} =
∑

u f̃(y | u, x)f̃(u). The identification result can be generalized to the categorical

setting, and we refer to Kuroki and Pearl (2014) for details of factor analysis in this case.

5.3 A normal mixture model that satisfies the equivalence assumption

Example S.6. (Yakowitz and Spragins, 1968, Proposition 2). Suppose U has q categories with f(U =

ui) = πi and X is a p dimensional vector with f(x | ui) ∼ N(µi,Σi). Assuming that the pairs (µi,Σi) are

all distinct, then f(x) has a unique representation in normal mixtures f(x) ∼
∑q′

i=1 p
′
iN(µ′i,Σ

′
i): we must

have q′ = q and for each i there must exist some j such that π′i = πj and (µ′i,Σ
′
i) = (µj ,Σj). That is, the

equivalence holds and f(x, u) is identified up to a label switching of the confounder.
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6. ADDITIONAL RESULTS FOR SIMULATIONS AND THE APPLICATION

6.1 Results for simulations

−
0.

4
0.

0
0.

4

β1

IV1 IV2 Aux1 Aux2 Aux3 PI1 PI2 OLS

−
0.

4
0.

0
0.

4

β2

IV1 IV2 Aux1 Aux2 Aux3 PI1 PI2 OLS

−
0.

4
0.

0
0.

4

β3

IV1 IV2 Aux1 Aux2 Aux3 PI1 PI2 OLS

−
0.

4
0.

0
0.

4

β4

IV1 IV2 Aux1 Aux2 Aux3 PI1 PI2 OLS

−
0.

4
0.

0
0.

4
β5

IV1 IV2 Aux1 Aux2 Aux3 PI1 PI2 OLS

−
0.

4
0.

0
0.

4

β6

IV1 IV2 Aux1 Aux2 Aux3 PI1 PI2 OLS

Figure S.1: Bias of estimators when the exclusion restriction fails in the auxiliary variables setting. White

boxes are for sample size 1000 and gray ones for 2000.
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Figure S.2: Bias of estimators in Case 2 of the null treatments setting. White boxes are for sample size 2000

and gray ones for 5000.
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6.2 Results for the application
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Figure S.3: Effect estimates for 17 genes when two (the first two panels) or three (the last two panels) factors

are used in analyses. The first and third panels are for the auxiliary variables estimation, and the second and

fourth for the null treatments estimation. Black points are for significant estimates at level of 0.05, gray ones

for 0.1, and white ones for estimates not significant at 0.1.

Point and confidence interval estimates

Bootstrap percentiles: 2.5%, 97.5%, 5%, 95%; Significance codes: “**” for significant at level of 0.05,

“*” for 0.1, and “0” for not significant at level 0.1.

17



Estimation with one confounder

1. Results for the auxiliary variables approach

estimates 2.5% 97.5% 5% 95% significance

Igfbp2 -10.626 -15.614 -5.266 -14.764 -5.719 **

Avpr1a -8.296 -14.568 -1.544 -13.494 -2.670 **

Abca8a -5.664 -12.368 1.072 -10.887 -0.032 *

Fam105a -4.325 -13.812 4.983 -12.137 2.933 0

Irx3 -3.793 -8.033 0.593 -7.297 -0.154 *

Ccnl2 -3.421 -7.810 0.917 -6.966 0.246 0

Dscam -2.442 -6.703 0.276 -5.072 -0.514 *

Glcci1 -1.429 -6.999 3.139 -5.964 2.360 0

Apoa4 -0.287 -4.226 3.821 -3.569 3.299 0

Socs2 1.162 -1.800 3.909 -1.276 3.516 0

Gpld1 1.456 -6.520 10.827 -4.847 8.951 0

Slc22a3 1.724 -4.953 7.274 -3.915 6.177 0

Lamc1 3.111 -1.267 8.967 -0.661 8.204 0

Vwf 3.410 -2.669 9.452 -1.400 8.589 0

Gstm2 5.717 1.181 10.045 1.864 9.304 **

Sirpa 7.283 1.312 13.743 2.263 12.774 **

2010002N04Rik 10.293 3.012 17.203 4.351 16.110 **

2. Results for the null treatments approach

estimates 2.5% 97.5% 5% 95% significance

Igfbp2 -1.194 -9.369 2.800 -8.045 1.840 0

Avpr1a -0.430 -7.574 3.999 -6.821 2.678 0

Abca8a 6.032 -3.043 13.693 -1.842 12.352 0
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Fam105a -6.726 -15.875 3.118 -14.526 1.234 0

Irx3 -2.465 -7.292 1.475 -6.661 0.988 0

Ccnl2 -1.349 -6.031 2.855 -5.338 2.083 0

Dscam -2.255 -7.043 -0.145 -5.540 -0.390 **

Glcci1 -1.536 -6.826 3.343 -6.151 2.567 0

Apoa4 -2.595 -6.378 2.136 -5.713 1.285 0

Socs2 2.117 -1.100 4.992 -0.533 4.513 0

Gpld1 8.681 -0.709 16.796 0.703 14.594 *

Slc22a3 -1.803 -7.358 4.809 -6.227 3.932 0

Lamc1 2.664 -1.792 8.506 -1.235 7.696 0

Vwf -1.072 -5.372 6.179 -4.309 5.445 0

Gstm2 3.688 -0.806 9.612 0.171 8.948 *

Sirpa 4.972 -0.704 11.731 0.285 10.628 *

2010002N04Rik 6.272 0.096 13.682 1.353 12.599 **

3. Results for the crude estimation

estimates 2.5% 97.5% 5% 95% significance

Igfbp2 -8.445 -12.797 -4.586 -12.124 -5.292 **

Avpr1a -6.607 -11.779 -1.634 -11.094 -2.395 **

Abca8a -3.236 -8.644 2.049 -7.674 1.429 0

Fam105a -5.017 -14.030 3.880 -12.662 2.108 0

Irx3 -3.494 -8.028 0.878 -7.284 0.263 0

Ccnl2 -2.962 -7.357 0.860 -6.716 0.269 0

Dscam -2.410 -7.427 -0.220 -5.806 -0.640 **

Glcci1 -1.522 -7.485 3.178 -6.389 2.303 0

Apoa4 -0.973 -4.563 2.935 -3.992 2.045 0

Socs2 1.518 -1.109 4.289 -0.743 3.828 0
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Gpld1 3.919 -2.720 10.907 -1.583 9.980 0

Slc22a3 0.609 -5.184 6.260 -4.205 4.983 0

Lamc1 3.174 -1.191 9.643 -0.598 8.337 0

Vwf 2.032 -3.505 7.896 -2.520 6.781 0

Gstm2 4.767 0.251 9.300 1.194 8.647 **

Sirpa 6.935 0.858 13.027 1.636 12.190 **

2010002N04Rik 9.226 2.454 15.538 3.235 14.574 **

Estimation with two confounders

1. Results for the auxiliary variables approach

estimates 2.5% 97.5% 5% 95% significance

Igfbp2 -7.707 -18.416 1.113 -16.599 -0.978 *

Avpr1a -6.586 -15.364 0.383 -13.920 -1.049 *

Abca8a -2.100 -15.114 8.107 -12.496 5.177 0

Fam105a 15.842 -43.428 59.749 -34.904 49.521 0

Irx3 -3.752 -8.337 0.682 -7.363 0.020 0

Ccnl2 -2.959 -7.808 1.329 -7.060 0.594 0

Dscam -1.671 -6.691 1.455 -5.357 0.861 0

Glcci1 -1.570 -7.136 3.210 -5.886 2.482 0

Apoa4 -1.913 -7.064 4.566 -5.579 3.704 0

Socs2 2.382 -2.566 6.707 -1.939 5.493 0

Gpld1 0.004 -9.004 11.469 -6.927 9.564 0

Slc22a3 -2.617 -15.306 11.915 -11.466 9.435 0

Lamc1 2.585 -1.511 9.001 -1.086 8.108 0

Vwf 2.503 -3.897 9.630 -2.735 8.523 0

Gstm2 4.962 0.284 10.218 1.271 9.119 **

Sirpa 14.276 -6.498 30.434 -2.951 26.550 0

2010002N04Rik 15.232 -2.550 31.459 0.999 25.530 *
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2. Results for the null treatments approach

estimates 2.5% 97.5% 5% 95% significance

Igfbp2 -0.584 -9.401 2.190 -7.986 1.276 0

Avpr1a 0.021 -8.330 2.998 -7.046 2.156 0

Abca8a 6.359 -3.449 13.216 -2.241 11.147 0

Fam105a -28.398 -318.341 1.951 -73.696 0.404 0

Irx3 -2.211 -7.370 1.553 -6.523 1.022 0

Ccnl2 -1.270 -6.192 2.666 -5.442 2.121 0

Dscam -2.692 -7.175 0.208 -5.986 -0.262 *

Glcci1 -1.582 -6.935 3.447 -5.972 2.602 0

Apoa4 -2.275 -6.315 2.239 -5.450 1.679 0

Socs2 1.784 -1.301 5.008 -0.813 4.409 0

Gpld1 13.077 -0.993 19.818 -0.040 17.053 0

Slc22a3 -1.340 -9.239 5.508 -7.669 4.482 0

Lamc1 3.058 -1.893 8.703 -1.245 7.451 0

Vwf -1.619 -5.267 6.335 -4.201 5.598 0

Gstm2 3.426 -0.295 9.968 0.438 9.129 *

Sirpa -1.141 -6.001 14.311 -3.833 12.380 0

2010002N04Rik 1.116 -2.534 14.654 -1.160 13.157 0

Estimation with three confounders

1. Results for the auxiliary variables approach

estimates 2.5% 97.5% 5% 95% significance

Igfbp2 -1.312 -17.987 6.862 -15.951 4.212 0

Avpr1a -4.481 -18.904 5.022 -15.353 2.897 0
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Abca8a 11.713 -17.207 34.518 -12.953 28.557 0

Fam105a 2.648 -71.350 81.166 -49.248 62.241 0

Irx3 -12.628 -33.805 4.268 -24.106 1.251 0

Ccnl2 -15.119 -23.126 4.215 -18.271 1.616 0

Dscam -4.751 -15.444 1.729 -11.027 0.785 0

Glcci1 -3.485 -9.837 4.176 -7.731 3.013 0

Apoa4 3.268 -7.404 10.427 -5.519 7.904 0

Socs2 2.249 -5.602 8.652 -3.800 6.912 0

Gpld1 28.073 -50.673 59.428 -19.273 42.508 0

Slc22a3 -7.413 -23.712 12.482 -18.348 9.988 0

Lamc1 2.841 -2.863 13.409 -1.291 10.471 0

Vwf 36.274 -11.822 56.152 -4.906 43.160 0

Gstm2 20.551 -4.118 30.792 -0.593 25.547 0

Sirpa 13.029 -6.271 33.161 -3.244 26.817 0

2010002N04Rik 19.805 -6.478 69.222 -0.918 53.812 0

2. Results for the null treatments approach

estimates 2.5% 97.5% 5% 95% significance

Igfbp2 0.304 -9.903 1.264 -8.630 0.689 0

Avpr1a -0.188 -8.836 3.601 -7.821 2.650 0

Abca8a 8.709 -4.579 13.954 -3.275 10.415 0

Fam105a -2.115 -1527.892 42.311 -900.908 6.914 0

Irx3 -2.364 -7.044 4.262 -6.313 2.759 0

Ccnl2 -0.936 -5.863 4.479 -5.029 3.555 0

Dscam -1.812 -6.532 1.339 -5.410 0.149 0

Glcci1 -1.523 -6.817 3.630 -5.850 2.827 0

Apoa4 -3.665 -7.561 2.568 -6.635 1.677 0
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Socs2 2.812 -1.284 5.211 -0.670 4.579 0

Gpld1 9.310 -4.096 19.869 -2.003 15.753 0

Slc22a3 -5.310 -7.903 5.516 -6.701 4.519 0

Lamc1 2.353 -2.483 9.319 -1.486 7.890 0

Vwf -3.877 -15.989 5.917 -11.843 4.612 0

Gstm2 2.807 -3.831 9.466 -2.007 8.653 0

Sirpa 7.923 -4.153 13.763 -2.283 12.411 0

2010002N04Rik 7.609 -19.287 178.871 -2.461 14.933 0
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