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Abstract
The Kodak Image Station In-Vivo FX has an x-ray module with cone-
beam configuration for radiographic imaging but lacks the functionality of
tomography. To introduce x-ray tomography into the system, we choose the
two-circles-plus-one-line trajectory by mounting one translation motor and
one rotation motor. We establish a reconstruction algorithm by applying the
M-line reconstruction method. Numerical studies and preliminary physical
phantom experiment demonstrate the feasibility of the proposed design and
reconstruction algorithm.

(Some figures may appear in colour only in the online journal)

1. Introduction

X-ray computed tomography (XCT) plays an instrumental role in emerging optical molecular
imaging techniques in addition to other structural imaging modalities such as magnetic
resonance imaging (MRI) (Ntziachristos et al 2005, Arridge and Schotland 2009). In
bioluminescence tomography, XCT image volumes are segmented to generate the geometrical
modelling of underlying objects and then optical property mapping is introduced to provide
the optical properties of anatomical structures for the bioluminescent source reconstruction
(Wang et al 2004, Jiang et al 2007, Gu et al 2004). Because optical tomography provides
only functional images with insufficient resolution, XCT or MRI is indispensible for
other optical modalities such as diffuse optical tomography (Yalavarthy et al 2007), and
florescence molecular tomography (Schulz et al 2010) at present. Hybrid systems that
combine the advantages of multiple modalities are under active development (Wang et al
2006, Alexandrakis et al 2005, Ntziachristos et al 2005).
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Figure 1. The two-circles-plus-one-line trajectory. The arrows indicate the directions of the source
movement.

We have been working on a multi-modality imaging system for small animals in our
laboratory. The system is built upon a commercial product, Kodak Image Station In-Vivo
FX (Carestream Health, Inc., Rochester, NY) (McLaughlin and Vizard 2006). The current
system has an x-ray module with cone-beam configuration for radiographic imaging but lacks
the functionality of tomography. We first need to improve the x-ray module by introducing
rotational and translational mechanical components to enable it for tomographic imaging. The
x-ray module is contained in a cabinet room with a dimension of length ≈560 mm, width
≈350 mm and height ≈440 mm. The room provides a very limited space to work out the
implementation of the add-on mechanical components. Moreover, the radiographic phosphor
screen for photo converse is fixed at one side of the cabinet room, which further reduces our
work space to half of the cabinet room. For exact cone-beam XCT reconstruction, we need
to find an efficient imaging geometry that works in such a small space. There are various
possible imaging geometries for us to choose from for exact cone-beam XCT reconstruction.
After analysis and comparison of several candidate imaging geometries and corresponding
exact reconstruction methods for cone-beam XCT, we found that a two-circles-plus-one-line
trajectory shown in figure 1 is preferable. Please refer to the discussions for details.

Cone-beam XCT has been extensively studied in the past decades. In Defrise and Clack
(1994), the authors proposed that a general cone-beam filtered-backprojection (FBP) algorithm
for any trajectory satisfies Tuy’s condition (Tuy 1983). Kudo and Saito reformulated the results
in Smith (1985) and Tuy (1983) and proposed a cone-beam reconstruction algorithm for non-
planar orbits (Kudo and Saito 1994). Katsevich reported the first exact shift-invariant FBP
reconstruction formula for helical XCT using more data than the Tam–Dannielson window
(Katsevich 2002). In Katsevich (2004b), this data requirement was reduced. Zou and Pan
established a backprojection-filtration (BPF) format formula using data only within the Tam–
Dannielson window (Zou and Pan 2004).

Helical cone-beam XCT (also called spiral cone-beam XCT) and its generalization to
arbitrary source trajectory exhibited flourishing development in the last decade. Katsevich
developed a general cone-beam FBP formula based on the Grangeat formula (Grangeat 1991)
using a general weight function (Katsevich 2003). Chen proposed an alternative derivation of
the Katsevich formula based on the Tuy formula (Tuy 1983) with relaxed Tuy’s data sufficiency
condition (Chen 2003). Pack et al proved a BPF reconstruction formula for both a single
curve and multiple smooth curves (Pack et al 2005). In their work, redundantly measured lines
(R-lines) and measured lines (M-lines) in image space were introduced for exact reconstruction
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Figure 2. The cone-beam projection and the coordinate system in the detector plane.

for various source trajectories to provide the flexibility in choosing the backprojection of locally
filtered projections. A measured line (M-line) is a line which contains only one source position
and is part of the measurements, while a redundantly measured line (R-line) is a line segment
that connects two source positions (Pack et al 2005). Ye et al proposed a generalized BPF
formula for reconstruction on R-lines for a single smoothing source trajectory in Ye et al
(2005). Ye and Wang established a FBP formula and gave suggestions for filtering directions
for a smooth curve (Ye and Wang 2005). In Zhao et al (2005), the authors provided a new proof
for Katsevich’s formula and extended Zou and Pan’s formula to any interior point on an R-line
on a continuous source trajectory. Pack and Noo demonstrated a FBP reconstruction formula
using 1D filtering along the projection of M-lines for multiple source curves (Pack and Noo
2005). R-lines are also alternatively called chords in Zhao et al (2005), Ye et al (2005) and Ye
and Wang (2005).

In this paper, we are to develop a BPF algorithm for the two-circles-plus-one-line trajectory
for our imaging application based on the result in Pack et al (2005). This two-circles-plus-one-
line trajectory consists of two circles with the same radius R in two parallel planes, respectively,
and one line segment with length H perpendicular to the two planes as shown in figure 1.
The two circles are oriented counterclockwise. In Yu et al (2011), the R-line coverage of the
arc–line–arc trajectory has been studied intensively. It has been proved that the R-lines for the
two-circles-plus-one-line trajectory can fully cover the region inside this trajectory. Hence,
the two-circles-plus-one-line trajectory satisfies the conditions for exact XCT reconstruction
in Pack et al (2005). Therefore, by the general reconstruction algorithm in Pack et al (2005),
the exact reconstruction on an M-line covered by R-lines inside the trajectory can be achieved.

The paper is organized as follows. In section 2, we apply the M-line reconstruction formula
for the two-circles-plus-one-line trajectory, and analyse the geometric properties of R-lines.
In section 3, we report numerical studies and a preliminary physical phantom experiment for
the reconstruction formula. In section 4, we discuss relevant issues. We conclude the paper in
section 5.

2. Method

2.1. Notations

We use similar notations as in Pack et al (2005). Let � be a bounded convex neighbourhood
containing an object in R3. The source trajectory �a, which is described by the parameter λ,
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Figure 3. M-lines and R-lines (dotted lines in this figure).

consists of N smooth curves � j, j = 1, . . . , N, such that a neighbourhood of each curve lies
outside � (see figure 2). The domain of λ is a union of disjoint intervals � j, j = 1, . . . , N,
each of which corresponds to one of the curves � j, j = 1, . . . , N. The tangent vector �a ′(λ) is
assumed to be bounded, continuous and nonzero in the interior of each � j, j = 1, . . . , N. For
�r ∈ R3, let f (�r): R3 → R be the absorption coefficient of x-ray of the object under imaging.
The support of f is contained in �.

The cone-beam projection at the source position �a(λ) is defined as (Natterer and
Wübbeling 2001)

g(λ, �θ ) =
∫ ∞

0
f (�a(λ) + t�θ ) dt, (1)

where �θ ∈ S2. Each cone-beam projection data is acquired by a flat panel detector placed
on the opposite side of the object relative to the source as shown in figure 2. The detector
plane intercepts all lines which diverge from the source and go through the object. The unit
vector �ew is perpendicular to the detector plane. Two unit vectors �eu and �ev on the detector
plane are chosen to formulate a coordinate system for the detector plane. Detector elements
have coordinates (u, v) with (u, v) = (0, 0) at the orthogonal projection of �a(λ) onto the
detector plane. D(λ) is the distance from �a(λ) to the detector plane. The detector is said to
be well-oriented when �eu and �ew are parallel and orthogonal to �a ′(λ), respectively (Pack et al
2005). The cone-beam projection g(λ, �θ ) can also be denoted as g (λ, u, v) where

�θ = 1√
u2 + v2 + D(λ)2

(u�eu + v�ev − D(λ)�ew). (2)

2.2. M-line reconstruction method

In this subsection, we introduce an M-line reconstruction method for a continuous and piece-
wise smooth source trajectory from Pack et al (2005). As shown in figure 3, a measured line
(M-line) is a line which contains only one source position and is part of the measurements,
while a redundantly measured line (R-line) is a line segment that connects two source positions.

It is proved in Pack et al (2005) that the Hilbert transform of f on one M-line is related to the
differentiated backprojection of cone-beam projection data. The differentiated backprojection
B (�r, λ1, λ2) at any �r ∈ � over any segment [λ1, λ2] of one of the smooth curves � j is

B(�r, λ1, λ2) =
∫ λ2

λ1

D(λ)‖ �a′(λ) ‖
[(�a(λ) − �r) · �ew]2

∂

∂u

[
D(λ)√

D(λ)2 + u2 + v2
g (λ, u, v)

]∣∣∣∣∣ u=ũ(λ,�r)
v=ṽ(λ,�r)

dλ, (3)
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where ũ = ũ (λ,�r) and ṽ = ṽ (λ,�r) are the local coordinates of the intersection point of the
line connecting �r and �a(λ) with the detector plane, respectively,

ũ(λ,�r) = −D(λ)
(�r − �a(λ)) · �eu

(�r − �a(λ)) · �ew

, ṽ(λ,�r) = −D(λ)
(�r − �a(λ)) · �ev

(�r − �a(λ)) · �ew

. (4)

For a fixed �α ∈ S2, �s ∈ R3, let

L (�α,�s) = {�s + t�α: t ∈ R} (5)

and

k (t, �α,�s) = f (�s + t�α). (6)

The Hilbert transform of f along the line L (�α,�s) with respect to t is defined as follows:

H f (t, �α,�s) = P.V.

∫ ∞

−∞

1

π(t − t ′)
k(t ′, �α,�s) dt ′ = P.V.

∫ ∞

−∞

1

π(t − t ′)
f (�s + t ′�α) dt ′, (7)

where P.V. stands for the Cauchy principal integral value.
Let �r (t, �α, �a(λ)) = �a(λ) + t�α be in the intersection of an M-line L (�α, �a(λ)) and �, and

�ω(λ,�r) = �r − �a(λ)

‖ �r − �a(λ) ‖ (8)

be the unit vector from �a(λ) to �r. The relation between the Hilbert transform of f and the
differential backprojection and boundary terms is established in Pack et al (2005):

1

π
B̄ (�r, λ1, λ2) = H f (t, �ω (λ2,�r) ,�r) |t=0 − H f (t, �ω (λ1,�r) ,�r) |t=0, (9)

where

B̄ (�r, λ1, λ2) = B (�r, λ1, λ2) + g (λ2, �ω (λ2,�r))

‖�r − �a(λ2)‖ − g (λ1, �ω (λ1,�r))

‖�r − �a(λ1)‖ , (10)

and [λ1, λ2] is a segment of one of the smooth curves.
In fact, equation (9) holds for any segment of a continuous and piece-wise smooth source

trajectory because such segment can be divided into several smooth parts. Therefore, the
M-line reconstruction method for one single smooth curve in Pack et al (2005) also holds for
a continuous and piece-wise smooth source trajectory, as follows:

H f (t, �α, �a(λ)) = − 1

2π
(B̄(�r(t, �α, �a(λ)), λ, λ′) + B̄(�r(t, �α, �a(λ)), λ, λ′′)), (11)

where �a(λ′) and �a(λ′′) are the endpoints of one R-line passing through �r ∈ L (�α, �a(λ)).
Let [tmin, tmax] be the interval such that k (t, �α, �a(λ)) = 0 for t /∈ [tmin, tmax]. Then f can
be reconstructed by applying the finite inverse Hilbert transform to H f (t, �α, �a(λ)) (Tricomi
1951, Pack et al 2005). The reconstruction formula for f is as follows:

f (�r) = k(t, �α, �a(λ))|t=(�r−�a(λ)) · �α = C (�α, �a(λ)) − f̄ (t, �α, �a(λ))

w (t, �α, �a(λ))
for t ∈ [tmin, tmax], (12)

where

w (t, �α, �a(λ)) =
√

(t − tmin) (tmax − t), (13)

f̄ (t, �α, �a(λ)) =
∫ tmax

tmin

w(t ′, �α, �a(λ))

π(t − t ′)
H f (t ′, �α, �a(λ)) dt ′, (14)

C(�α, �a(λ)) =
gL (�a(λ), �α) + ∫ tmax

tmin

f̄ (t,�α,�a(λ))

w(t,�α,�a(λ))
dt∫ tmax

tmin

1
w(t,�α,�a(λ))

dt
, (15)

with

gL (�a(λ), �α) =
∫ tmax

tmin

f (�a(λ) + t�α) dt = g(λ, �α), (16)

which is the cone-beam projection from �a(λ) in the direction �α.
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Figure 4. The coordinate system for the two-circles-plus-one-line configuration.

2.3. Reconstruction for the two-circles-plus-one-line trajectory

In this subsection, we apply the M-line reconstruction method described in the previous
subsection to the two-circles-plus-one-line trajectory �a in our system. This trajectory �a
consists of two circles C1 and C2 with the same radius R in two parallel planes, respectively,
and one line segment �L perpendicular to the two planes as shown in figure 4. The centres of
the two circles are at O1 and O2, respectively. The midpoint between O1 and O2 is at O∗. The
line from O1 to O2 is perpendicular to the two circle planes. The line segment �L intersects
the two circles C1 and C2 at O∗

1 ∈ C1 and O∗
2 ∈ C2, respectively. The two circles are oriented

counterclockwise.
A coordinate system for the two-circles-plus-one-line configuration is introduced as

follows. The z-axis in the coordinate system is the line from O1 to O2. The origin O of
the coordinate system is chosen to be any point between O1 and O2. The orthogonal projection
of the origin O on the line segment �L is at OL. The x-axis is the line from O to OL. The y-axis
is perpendicular to the xz plane such that the coordinate system xyz is right-hand oriented. In
this coordinate system, the two circles C1 and C2 are located at the planes z = z1 and z = z2,
respectively. The two-circles-plus-one-line trajectory �a can be represented as follows:

�a(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(R cos(λ), R sin(λ), z1) for λ ∈ [0, 2π),(
R, 0, z1 + (λ − 2π)

2π
(z2 − z1)

)
for λ ∈ [2π, 4π),

(R cos (λ) , R sin (λ) , z2) for λ ∈ [4π, 6π).

(17)

Let � be the region inside the two-circles-plus-one-line trajectory:

� = {(x, y, z): x2 + y2 < R2, z1 < z < z2}, (18)

and � be the support of f which locates strictly inside �.
In this paper, the reconstruction of f is performed slice by slice for parallel slices

perpendicular to the z-axis, as shown in figure 5. For each such slice, the M-line reconstruction
method is applied to the following M-lines:

L (�α, �a(λ)) : λ ∈ [2π, 4π), �α ⊥ z−axis, (19)

where �a(λ) is the intersection point of the slice and line segment �L. Since each slice is
covered by the M-lines in equation (19), � can be fully covered by the M-lines. Alternatively,
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Figure 5. The reconstruction of f is performed slice by slice for parallel slices perpendicular to
the z-axis. For each such slice (heavily shadowed area in the figure), M-lines L (�α, �a(λ)) with
�a(λ) ∈ �L and �α ⊥ z−axis are chosen for reconstruction.

  
(a) (b) (c)

Figure 6. The backprojection intervals for �r ∈ L(�α, �a(λ)) in the three cases (bold curves).
(a) Case �L − C1. (b) Case �L − C2. (c) Case C1 − C2.

the reconstruction of f can be conducted slice by slice for parallel slices perpendicular to the
x-axis or y-axis, respectively. M-lines can be chosen accordingly.

For the M-line reconstruction method, the first step is to obtain the Hilbert transform of
f along one M-line L (�α, �a(λ)) by equation (11). For the M-line in equation (19), there are
three cases for R-lines passing though one point �r ∈ L (�α, �a(λ)) ∩ �, as follows.

Case �L − C1. �r is on one R-line from the line segment �L to the circle C1.
Case �L − C2. �r is on one R-line from the line segment �L to the circle C2.
Case C1 − C2. �r is on one R-line from the circle C1 to the circle C2.

The R-lines are called �L − C1 R-line, �L − C2 R-line and C1 − C2 R-line, respectively,
in the following. Denote �r = (x, y, z). For each case, equation (11) is specified as follows.

Case �L − C1.

If �r is on one �L − C1 R-line as shown in figure 6(a), the two source positions on this
R-line will be

�a(λ′) = (R, 0, zL), �a(λ′′) = 1

1 − t1
(x, y, z) − t1

1 − t1
(R, 0, zL), (20)
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for some λ′ ∈ [2π, 4π) and λ′′ ∈ [0, 2π) where

zL = z1 + (z − z1)

t1
and t1 = R2 − (x2 + y2)

2(R2 − xR)
. (21)

In this case, equation (11) becomes

H f (t, �α, �a(λ)) = −1

2π
(B̄(�r, λ, λ′) + B̄(�r, λ, λ′′))

(22)
= −1

2π
(B̄(�r, λ, λ′) − B̄(�r, λ′′, 2π) − B̄(�r, 2π, λ)),

where B̄(�r, λ1, λ2) is given in equation (10). Then the Hilbert transform of f at �r along the
M-line can be computed by equation (22).

Case �L − C2.

The �L − C2 R-line can be obtained similarly to case �L − C1 according to geometric
symmetry of the trajectory, as shown in figure 6(b). Equation (11) becomes

H f (t, �α, �a(λ)) = −1

2π
(−B̄(�r, λ′, λ) + B̄(�r, λ, 4π) + B̄(�r, 4π, λ′′)). (23)

Case C1 − C2.

If �r is on one C1 − C2 R-line as shown in figure 6(c), the two source positions on this
R-line will be

�a(λ′) = 1

1 − t
(x − x0, y − y0, z − tz2) , �a(λ′′) = 1

t
(x0, y0, tz2) (24)

for some λ′ ∈ [0, 2π) and λ′′ ∈ [4π, 6π) where

t = z − z1

z2 − z1
(25)

and (x0, y0) are the real solutions of the following system of equations:{
(x − x0)

2 + (y − y0)
2 = (1 − t)2 R2

x2
0 + y2

0 = t2R2.
(26)

Two solutions of equation (26) are⎧⎪⎨
⎪⎩

x0 = 1

r2
(xδ ± y

√
t2r2R2 − δ2)

y0 = 1

r2
(yδ ∓ x

√
t2r2R2 − δ2),

(27)

where r2 = x2 + y2 and δ = (r2 − (1 − 2t)R2)/2.
Equation (11) becomes

H f (t, �α, �a(λ)) = −1

2π
(B̄(�r, λ, λ′) + B̄(�r, λ, λ′′))

(28)

= −1

2π
(−B̄(�r, λ′, 2π) − B̄(�r, 2π, λ) + B̄(�r, λ, 4π) + B̄(�r, 4π, λ′′)).

Then the Hilbert transform of f at �r along the M-line can be computed by equation (28).
In Yu et al (2011), it has been proved that the regions covered by �L − C1, �L − C2 and

C1 − C2 R-lines are the following regions �1, �2 and �3, respectively:

�1 = {(x, y, z): (x − tR)2 + y2 � (1 − t)2R2, z1 < z < z2}, (29)

�2 = {(x, y, z): (x − (1 − t)R)2 + y2 � t2R2, z1 < z < z2}, (30)

�3 = {(x, y, z): (1 − 2t)2R2 � x2 + y2 < R2, z1 < z < z2}, (31)
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Figure 7. The geometrical descriptions of �, �1, �2 and �3.

Table 1. The number of R-lines for each point in � except O.

Number of �L − C1 Number of
Region and �L − C2 R-lines C1 − C2 R-lines

�/�3 1 0
∂�3 ∩ �− 2 1
∂�3 ∩ (�/�−) 1 1
(�3/∂�3) ∩ �− 2 2
(�3/∂�3) ∩ (�+/�−) 1 2
(�3/∂�3) ∩ (�/�+) 0 2

where t is defined in equation (25). The geometrical descriptions of these regions are provided
in figure 7. � is the cylinder with bases C1 and C2. �1 is a cone with vertex O∗

2 ∈ C2 and
base C1, and �2 is a cone with vertex O∗

1 ∈ C1 and base C2. �3 is the complementary set,
with respect to �, of two cones with a common vertex O∗ and bases C1 and C2. Moreover,
� = �1 ∪ �2 ∪ �3. Thus for each �r ∈ � ∩ L (�α, �a(λ)), according to �r ∈ �d for some
d ∈ {1, 2, 3}, H f (t, �α, �a(λ)) can be obtained for t ∈ [tmin, tmax] by one of the equations (22),
(23) and (28). Then f can be reconstructed on this M-line using the finite Hilbert transform
equation (12). By M-line reconstructions on L (�α, �a(λ)) for all �a(λ) ∈ �L and �α ⊥ z−axis as
in equation (19), f can be reconstructed all over �.

2.4. Analysis of R-lines

In this subsection, we investigate the number of R-lines for each point, and present how to
select one proper R-line for each point. Without loss of generality, we take z1 = −z2 and
O = O∗ in the following.

According to the geometrical descriptions, the three regions �1, �2 and �3 do overlap
with each other. Let

�+ = �1 ∪ �2, �− = �1 ∩ �2 (32)

and

∂�3 = {(x, y, z): x2 + y2 = (1 − 2t)2R2, z1 < z < z2}. (33)

For the origin O, there exist one �L − C1 R-line, one �L − C2 R-line and infinite C1 − C2

R-lines. We summarize the number of R-lines for other points in table 1. We also provide the
intersection of the regions in table 1 and a slice z = z0 in figure 8.
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Figure 8. The intersections of �i for i = 1, 2, 3 and one slice z = z0 with z0 < 0 (i.e. t < 0.5). The
region inside the dash dotted circle represents �1, and the region inside the dotted circle represents
�2. The annular grey region between two solid circles represents �3.

From table 1, there are at least two R-lines passing through �r ∈ �3. In the following,
we introduce how to select one proper R-line for each point, such that sudden jumps can be
avoided in the segment of the source trajectory used by points on each M-line in equation (19).

(a) �r ∈ �/�3. We choose �L − C1 and �L − C2 R-lines for z � 0 and z > 0, respectively.
(b) �r ∈ �3 ∩ �+. We choose R-lines as in (a).
(c) �r ∈ �3∩(�/�+). For z � 0, we choose the C1−C2 R-line with endpoints in equation (24)

satisfying ⎧⎪⎨
⎪⎩

x0 = 1

r2
(xδ + sgn(y)y

√
t2r2R2 − δ2)

y0 = 1

r2
(yδ − sgn(y)x

√
t2r2R2 − δ2).

(34)

For z > 0, we choose the C1 − C2 R-line similarly according to the geometric symmetry of
the trajectory.

We explain the method as follows. For �r ∈ �/�3 in (a), the �L − C1 or �L − C2 R-line
is the only choice. For �r ∈ �3 ∩ �+ in (b), there are both �L − C1/�L − C2 and C1 − C2

R-lines. We choose the same type of R-lines as in (a) to avoid sudden jumps. For the boundary
point �r ∈ ∂�+, because the �L − C1 R-line passing through �r has an endpoint O∗

2 ∈ �L ∩ C2,
the �L − C1 R-line can also be considered as a C1 − C2 R-line determined by equation (34).
Similar discussions can be conducted for the �L − C2 R-line. For �r ∈ �3 ∩ (�/�+) in (c),
there are two C1 −C2 R-lines. We choose the same type of C1 −C2 R-line as�r ∈ ∂�+. Because
sgn (y) in equation (34) keeps unchanged for points on each single M-line in equation (19),
the segment of the trajectory used for points in (c) has no sudden jumps.

2.5. Practical issues

In this subsection, we discuss two practical issues in our algorithm.
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Table 2. Parameters for the numerical study of the Shepp–Logan phantom.

Scanning radius of the circle 3 Circle planes z = ±1
Scanning length of the line segment 2 Detector size 221 × 441
Source to detector distance 3 Detector pixel size 0.01
Number of projections per circle 720 Radius of the support 1.1
Number of projections per length 1 100 Reconstruction matrix 221 × 221 × 201
Sampling interval of the M-lines 0.004 Reconstruction pixel size 0.01

The first issue is about the data usage. In the backprojection step, the direct use of
equations (22), (23) and (28) will cause ineffective use of projections from both ends of the
source trajectory. In the following we provide an alternative method to compute the differential
backprojection which utilizes all projections on the circles for each point. By equations (9)
and (10), it follows that

B̄ (�r, 0, λ) + B̄ (�r, λ, 2π) = 0, (35)

for any λ ∈ (0, 2π). Thus

B̄(�r, λ, 2π) = 1
2 (B̄(�r, λ, 2π) − B̄(�r, 0, λ)). (36)

Similar discussions can be conducted for λ ∈ (4π, 6π).
The second issue is about the computation of derivatives in the backprojection step. In

order to compute derivatives of piecewise smooth functions, following the upwind idea in
computational fluid dynamics (Courant et al 1952), we use the one-sided finite difference
scheme at the location of a jump to reduce the numerical errors. By comparing the
difference between the projection values with a threshold, we select forward or backward
finite difference to get the derivative value and effectively avoid using stencils across the jump.

3. Experiments

Four experiments are conducted for the proposed two-circles-plus-one-line trajectory. Three
numerical studies are with the Shepp–Logan phantom, the FORBILD head phantom and a line-
pair phantom. A preliminary physical phantom experiment is conducted with a wax phantom
with thin aluminium wires and small aluminium fritters inside. In our implementation, the
Hilbert transform in equation (14) and finite inverse Hilbert transform in equation (12) are
computed with the same method as in Noo et al (2003), Yu and Wang (2004) and (Pack et al
2005), respectively. In the following, the support of f is a cylinder with the same length of �.
The algorithm proposed in sections 2.3 and 2.4 is applied for reconstruction.

The computing environment is as follows. The computer is a DELL Precision 670
Workstation (CPU: Intel R© XeonTM 2.80 GHz; memory: 6 GB) under Linux (OPEN SUSE
11.2 x86-64). The M-line reconstruction algorithm is implemented in the R language, which
is a popular statistical programming environment (R Development Core Team 2010). The
bigmemory package of R supports multiple-gigabyte matrices and enables the algorithm to
run successfully even when matrices involved in our implementation exceed the available
RAM in the workstation (Kane and Emerson 2010).

3.1. Numerical study 1: the Shepp–Logan phantom

In this experiment, we use a 3D low contrast Shepp–Logan phantom with ten ellipsoids to test
the algorithm (Kak and Slaney 1988). The parameters for the simulation are given in table 2.
This reconstruction takes about 2 h. The reconstruction images of the slices at the planes
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Figure 9. The reconstructed images of the Shepp–Logan phantom at the planes (a) x = 0 and
(b) z = −0.25. The display window is [1.01,1.03].

(a) (b) (c)

Figure 10. The images of the Shepp–Logan phantom at the plane z = −0.25 with |x| < 0.3,
|y| < 0.3. (a) The original image; (b) the reconstructed image using equations (22) and (28);
(c) the reconstructed image using equation (36). The display window is [1.01,1.03].

Table 3. Parameters for the numerical study of the FORBILD head phantom.

Scanning radius of the circle 30 cm Circle planes z = ±15 cm
Scanning length of the line segment 30 cm Detector size 801 × 1401
Source to detector distance 30 cm Detector pixel size 0.05 cm
Number of projections per circle 720 Radius of the support 14 cm
Number of projections per length 1 20 Reconstruction matrix 601 × 601 × 601
Sampling interval of the M-lines 0.04 cm Reconstruction pixel size 0.05 cm

x = 0 and z = −0.25 are shown in figure 9. The display window is [1.01, 1.03] for images to
demonstrate the low contrast structures.

Gaussian noise with standard deviation of 5 is added into 16-bit grey scale projection
images with 15% saturation (set the maximum grey scale as 10 000). The reconstructed
image using equations (22) and (28) is shown in figure 10(b). The reconstructed image using
equation (36) is shown in figure 10(c). The total relative error of the two reconstructed images
is 16.99 and 13.79, respectively. The results demonstrate that the usage of all projections on
the circles can improve the performance of the algorithm for noisy data.

3.2. Numerical study 2: the FORBILD head phantom

In this experiment, we use the FORBILD head phantom without ears which contains
both low and high density objects (www.imp.uni-erlangen.de/phantoms/head/head.html). The
parameters for the simulation are given in table 3. This reconstruction takes about 26 h. The

http://www.imp.uni-erlangen.de/phantoms/head/head.html
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Figure 11. The reconstructed images of the FORBILD head phantom at the plane z = 0. (a) The
original image and (b) the reconstructed image. The display window is [0,100] HU.

(a) (b) (c)

Figure 12. The images of the FORBILD head phantom at the plane z = 0 with |x| < 5.5,
−6.5 < y < 3.5. (a) The original image; (b) reconstructed image using equations (22) and (28);
(c) reconstructed image using equation (36). The display window is [0,100] HU.

true image and the reconstructed image of the slice at the plane z = 0 are shown in figure 11.
The display window is set to [0, 100] HU for images. The reconstructed images show that the
algorithm performs well for low contrast regions in the presence of high density objects.

Gaussian noise with standard deviation of 5 is added into 16-bit grey scale projection
images with 15% saturation (set the maximum grey scale as 10 000). The reconstructed
image using equations (22) and (28) is shown in figure 12(b). The reconstructed image using
equation (36) is shown in figure 12(c). The total relative error of the two reconstructed images
is 815.16 and 741.68, respectively. The results show that the usage of all projections on the
circles can improve the performance of the algorithm for noisy data even when the phantom
has high density objects inside.

3.3. Numerical study 3: a line-pair phantom

In the third experiment we design a numerical line-pair phantom with more than 1300 small
cuboids to test the spatial resolution that the XCT in our system may achieve.

The line-pair phantom is designed as follows. The support of the phantom is a cuboid of
60 mm × 60 mm × 120 mm. There are six slices of small cuboids around the planes z =
0 mm, z = ±22 mm, z = ±38 mm and y = 0 mm, in the phantom. Each slice consists of
several groups of line-pairs with different widths as 0.7, 0.5, 0.3, 0.2 and 0.1 mm. Each group
consists of six cuboids with the same size. The height of all small cuboids is 0.5 mm and the
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Figure 13. Pseudo-colour reconstructed images of the line-pair phantom at the plane z = 0 mm.
(a) Reconstructed image; (b) image in the box of (a); (c) reconstructed image in the box of (a) with
noise. The digital values in the images are the width of the cuboids in the line-pair groups (unit:
mm). The display window is [0.05, 2].

Table 4. Parameters for the numerical simulation of the line-pair phantom.

Scanning radius of the circle 400 mm Circle planes z = ±60 mm
Scanning length of the line segment 120 mm Detector size 801 × 1601
Source to detector distance 400 mm Detector pixel size 0.1 mm
Number of projections per circle 360 Radius of the support 35 mm
Number of projections per length 1 2 Reconstruction matrix 801 × 801 × 1201
Sampling interval of the M-lines 0.04 mm Reconstruction pixel size 0.1 mm

length is 3 mm. The absorption coefficient is a constant for each cuboid, but varies from 0.02
to 2 for different cuboids.

Gaussian noise with standard deviation of 30 is added into 16-bit grey scale projection
images with 15% saturation (set the maximum grey scale as 10 000). The parameters for the
simulation are given in table 4. The reconstruction takes about 40 h. Typical reconstructed
images at the plane z = 0 mm are shown in figure 13. The digital values in the images are
the width of the cuboids in the line-pair groups. In figures 13(b) and (c), the line-pairs whose
width is 0.3 mm can be distinguished clearly while the line-pairs whose width is 0.1 mm are
totally mixed. The results have demonstrated that our system can achieve a spatial resolution
of 0.3 mm under this noise level, and the reconstruction of low contrast regions is sensitive to
noise.

3.4. Preliminary physical phantom experiment

We have introduced rotational and translational mechanical components to the Kodak Image
Station In-Vivo FX (Carestream Health, Inc., Rochester, NY) to enable it for XCT. After
successful system calibration, we have conducted a preliminary phantom experiment with the
two-circles-plus-one-line trajectory. Details of the system development and calibration will be
reported in subsequent papers due to the size of the current paper.

A preliminary physical phantom is made in our lab with thin aluminium wires and small
aluminium fritters (∼1 mm diameter) surrounding by wax in a cylinder container. The diameter
of the region of interest (ROI) is 30.0 mm, and the length of the ROI is 60.0 mm. The one-
sided finite difference scheme for computation of derivatives in section 2.5 is applied in the
reconstruction.

The phantoms, its x-ray radiograph image, and the ROI are illustrated in figure 14. The
parameters for the physical phantom experiment in the two-circles-plus-one-line trajectory are
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Figure 14. The phantom used for the XCT experiment and its x-ray radiograph image. (a) The
phantom; (b) pseudo-colour image of the x-ray radiograph image, the ROI in the box and the length
of the ROI along the z-axis. The units are mm except in the colour bars.

Table 5. Parameters for the preliminary physical phantom experiment.

Scanning radius of the circle 450.2 mm Circle planes z = ±30 mm
Scanning length of the line segment 60.0 mm Detector size 401 × 1601
Source to detector distance 486.2 mm Detector pixel size 0.1 mm
Number of projections per circle 360 Radius of the support 15.0 mm
Number of projections per length 1 4 Reconstruction matrix 317 × 317 × 601
Sampling interval of the M-lines 0.04 mm Reconstruction pixel size 0.1 mm

given in table 5. The reconstructed images of a slice in the plane z = 11.7 mm are shown in
figure 15. The reconstructed images of a slice in plane y = 3.6 mm are shown in figure 16.
Please note that the black shade or black holes in figures 15 and 16 within the phantom image
are due to blank regions in the phantom. Those blank regions contain air left in the phantom
while the wax is solidifying, for which the absorption coefficients are zero.

The reconstructed images of the aluminium–wax phantom show that the 1 mm aluminium
fritters can be exactly reconstructed and the absorption coefficient of the aluminium and the
wax can be clearly distinguished.

4. Discussions

The x-ray module in the Kodak Image Station In-Vivo FX (Carestream Health, Inc., Rochester,
NY) is in a cabinet with small volume. Moreover, the radiographic phosphor screen is fixed
at the bottom of the left of the cabinet, which further constrains our work space to nearly half
length of the cabinet. Therefore, we need to find a scanning geometry that could meet the
requirement for exact cone-beam XCT reconstruction with the x-ray module.

There are several scanning geometries that can be conveniently implemented for exact
cone-beam XCT reconstruction. One choice could be a scanning geometry with only circles
that are not coplanar and parallel, which would require more than two rotation devices to
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Figure 15. The reconstructed image at the plane z = 11.7 mm. (a) The pseudo-colour reconstructed
image; (b) image in the box of (a); (c) the profile of the dash dotted line 1 in (b); (d) the profile of
the dash dotted line 2 in (b). The display window is [0.05, 0.6] mm−1 in (a) and (b). The units of
the horizontal axis and the vertical axis in (c) and (d) are mm and mm−1, respectively.
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Figure 16. The reconstructed image at the plane y = 3.6 mm. (a) The pseudo-colour reconstructed
image; (b) the profile of the dash dotted line 1 in (a); (c) the profile of the dash dotted line 2 in (a).
The display window is [0.05, 0.6] mm−1 in (a). The units of the horizontal axis and the vertical
axis in (b) and (c) are mm and mm−1, respectively.
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implement. Hence, we abandon this geometry with only circles because of the limited space
to mount the rotation devices. Other scanning geometries are a combination of circles plus
lines, and the helical trajectory. In the following, we estimate the translation length for the
geometries with one circle plus one line, two circles plus one line, and the helical trajectory.
We conclude that the trajectory with two circles plus one line (i.e. the two-circles-plus-one-line
trajectory in previous sections) is the appropriate choice for our system.

Let the support of the object be a cylinder with radius R′ and length H. Let R be the radius
of circles in the geometries with one circle plus one line, two circles plus one line, and the
helical trajectories, and μ = R′/R < 1.

For the scanning geometry with one circle plus one line, the translation length T1 along
the line segment is estimated in Katsevich (2004a) as follows

T1 = 2H

1 − μ
. (37)

Therefore, the translation distance is twice as long as the length H of the object support.
For the scanning geometry with two circles plus one line proposed in this work, as shown

in figure 4, the translation length T2 along the line segment is equal to

T2 = H. (38)

The exact reconstruction with this geometry has been established in previous sections. Only
two full rotations are required for this geometry, which is implemented with the same rotation
stage in our work and does not take more space than the previous one-circle-plus-one-line
trajectory and the next helical trajectory. Hence, the translation length T2 is the same as the
length H of the object support.

For the scanning geometry with the helical trajectory, the translation length T3 should
satisfy the following constraint

T3 � H + 1

π
(π − arccos μ) (1 + μ) h, (39)

where h is the helical pitch. The estimate in equation (39) could be derived from equation
(33) in Yu and Wang (2004). Thus, the translation length T3 is longer than the length H of the
object support.

By comparing equations (37)–(39), the two-circles-plus-one-line trajectory takes less
space than the other two geometries and hence is preferable for our system. In our
implementation, we set R = 450 mm. For typical small animals such as mice, H =
100 mm, R′ = 30 mm, we have T1 = 214.3 mm, T2 = 100.0 mm and T3 � 127.8 mm
with a pitch h = H/2 = 50 mm, respectively, by equations (37)–(39). We set h = 50 mm for
the helical trajectory because the rotation in this case is about the same as in the two-circles-
plus-one-line trajectory, which provides a fair basis for the comparison in both cases.

The artefacts in figure 16 are caused by under-sampling of projections for sharp, high
density aluminium objects with 6–9 times absorption coefficient against the wax background.
The derivatives of projection at the edges of aluminium objects are about 20 times larger
than that at the wax background. Under-sampling generates errors in the backprojection step:
mainly in the differential operation and integration operation as well.

As a result, the differential backprojection near aluminium objects deviates far from its
true value. Then the Hilbert transform transports local backprojection errors to the whole
M-line. Therefore, the reconstruction shown in figure 16 seems to exhibit strong line artefacts
around aluminium objects along the direction of Hilbert transform.

In practice, we use the one-sided difference scheme with a single threshold to compute the
derivatives in the physical phantom reconstruction. However, it is hard to use a single threshold
to find all edges in different projection images. A method using an adaptive threshold will be
developed for the one-sided difference scheme in future work.
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5. Conclusion

We have proposed an improvement for the x-ray module in the Kodak Image Station by
introducing a two-circles-plus-one-line trajectory for tomography. We have developed a
cone-beam reconstruction algorithm by applying the M-line reconstruction method to the
two-circles-plus-one-line trajectory. We have conducted numerical studies and a preliminary
physical phantom experiment to demonstrate the feasibility of the proposed design and
reconstruction algorithm.
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