PRIME ORBIT THEOREMS FOR EXPANDING THURSTON MAPS

ZHIQIANG LI, TIANYI ZHENG

ABSTRACT. We obtain an analogue of the prime number theorem for a class of branched
covering maps on the 2-sphere S? called expanding Thurston maps, which are topolo-
gical models of some non-uniformly expanding rational maps without any smoothness
or holomorphicity assumption. More precisely, we show that the number of primitive
periodic orbits, ordered by a weight on each point induced by a non-constant (eventu-
ally) positive real-valued Holder continuous function on S? satisfying some additional
regularity conditions, is asymptotically the same as the well-known logarithmic integral,
with an exponential error term. In particular, our results apply to postcritically-finite
rational maps for which the Julia set is the whole Riemann sphere. Moreover, a stronger
result is obtained for Lattes maps.
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1. INTRODUCTION

1.1. History and motivations. Counting is probably one of the very first mathematical
activities that predates any written history of mankind. It remains at the core of virtually
all fields of mathematics to count important objects in the field and study their statistical
properties.

One useful idea in such studies is to code the important objects in a function in the form
of a polynomial or a series. Perhaps the most famous of such functions is the Riemann
zeta function

+oo
1 Cev—
CRicmann(S) = Z E = H (1 - P ) 17 éR(S> > 17
n=1 p prime

whose analytic properties were studied by B. Riemann in the 19th century, even though the
product formula was already known to L. Euler in the 18th century. Analytic properties
of the Riemann zeta function are closely related to the distribution of prime numbers. It
is known that the assertion that (Rriemann has a non-vanishing holomorphic extension on
the line R(s) = 1 except for a simple pole at s = 1 is equivalent to the famous Prime
Number Theorem of Ch. J. de la Vallée-Poussin and J. Hadamard stating that the number
7(T') of primes no larger than 7" > 0 satisfies

w(T) ~ Li(T), as T'— 400,
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where Li(y) is the FEulerian logarithmic integral function

Y1
1.1 Li = .
(1) )= [ o y>0

A more careful study of Criemann reveals that a condition of H. von Koch from 1901 [vKO0I]
on the error term in the Prime Number Theorem, namely,

m(T) = Li(T) + O(VTlog T), as T — +00,

is equivalent to the Riemann hypothesis (see also [BCRWO08), Section 5.1]).

The idea of studying zeta functions was first introduced by A. Selberg in 1956 from
number theory into geometry, where (primitive) closed geodesics serve the role of prime
numbers. He defined a zeta function

(12) CSelberg H H —(s+n )), %(S) > 1,

yeP n=0

where P8 denotes the set of primitive closed geodesics and I(7y) is the length of the geodesic
v [Seh6).

H. Huber established the first Prime Geodesic Theorem, as an analogue of the Prime
Number Theorem, for surfaces of constant negative curvature in 1961, where A. Selberg’s
work [Se56] was implicitly used.

Theorem 1.1 (H. Huber [Hu61]). Let M be a compact surface of constant curvature —1,
and by 7(T) we denote the number of primitive closed geodesics v of length I(y) < T.
Then there exists o € (0,1) such that

m(T) = Li(e") + O(eT), as T — +o0.

The zeta functions were then introduced into dynamics by M. Artin and B. Mazur
[AMG65] in 1965 for diffeomorphisms and by S. Smale [Sm67] in 1967 for Anosov flows,
where (primitive) periodic orbits serve the role of prime numbers. S. Smale used A. Sel-
berg’s formulation in the context of geodesic flows on surfaces of constant negative cur-
vature due to the direct correspondence between closed geodesics on the surface and
periodic orbits of the geodesic flow. A related formulation of zeta functions for flows was
later proposed and studied by D. Ruelle [Rue76al Rue76bl, Rue76c] in 1976, which behaves
better under changes of time scale in the more general context of Axiom A systems. More
precisely, for Anosov flows, the Ruelle zeta function is defined as

(1.3) Cruete(s) = [ (1 — ™), R(s) > 1,
vEPB

where P denotes the set of primitive periodic orbits of the flow and /() is the length of
the orbit 7. With this interpretation of 8 and [(~y), we have

CSOlborg (3 + 1)

(1 4) gRueHe(S) - CSelberg (S>

when both sides are defined.
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Extensive researches have been carried out in geometry and dynamics in establishing
Prime Geodesic Theorems on various spaces and Prime Orbit Theorems for various flows
and other dynamical systems. We recall but a few such results here and by no means
claim to give a complete review of the literature.

We denote by 7(T") the number of primitive periodic orbits «y of “length” (appropriately
interpreted for the corresponding dynamical system) {(v) < T'. By a Prime Orbit Theorem
without an error term, we mean the assertion that there exists a constant A > 0 such
that m(7T) ~ Li(ehT) as T' — +o00. By a Prime Orbit Theorem with an exponential error
term, we mean the assertion that there exist constants h > 0 and ¢ € (0, h) such that
7(T) = Li(e") + O(e"9T) as T — +oo0.

Generalizing the first order asymptotics of H. Huber for geodesic flows over compact
surfaces of constant negative curvature, G. A. Margulis established in his thesis in 1970
[Mar04] (see also [Mar69]) a Prime Orbit Theorem without an error term for the geodesic
flows over compact Riemannian manifolds with variable negative curvature, and more
generally, for weak-mixing Anosov flows preserving a smooth volume. Similar results
were obtained by P. Sarnak in his thesis in 1980 for non-compact surfaces of finite volume
[Sag0].

For geodesic flows over convex-cocompact surfaces of constant negative curvature, a
Prime Orbit Theorem without an error term was obtained conditionally by L. Guillopé
[Gu86] and later unconditionally by S. P. Lalley [La89].

The exponential error terms in the Prime Orbit Theorems in the contexts above (except
in H. Huber’s result) were out of reach until D. Dolgopyat’s seminal work on the expo-
nential mixing of Anosov flows in his thesis [Dol98], where he developed an ingenuous
approach to get new upper bounds on the norms of the complex Ruelle (transfer) opera-
tors on some appropriate function spaces. M. Pollicott and R. Sharp [PoSh98] combined
these bounds with techniques from number theory to get a Prime Orbit Theorem with an
exponential error term for the geodesic flows over compact surfaces of variable negative
curvature. For related works on closed geodesics satisfying some homological constraints,
see R. Phillips and P. Sarnak [PhSa87], S. P. Lalley [La89], A. Katsuda and T. Sunada
[KS90], M. Pollicott [Po91], R. Sharp [Sh93], M. Babillot and F. Ledrappier [BabLe98]|,
M. Pollicott and R. Sharp [PoSh9§|, N. Anantharaman [An00al, [An00b], etc.

The elegant idea of M. Pollicott and R. Sharp in [PoSh98] used in establishing the error
term for their Prime Orbit Theorem, is summarized in a nutshell below:

(1) Obtain a quantitative bound for each term in the additive form of the Ruelle
zeta function Cryene (compare with (B.37) and (B.39)) in terms of the operator
norm of the Ruelle operator via an argument of D. Ruelle [Rue90] that matches
the preimage points and periodic points of the symbolic dynamics induced by the
Bowen—Ratner symbolic coding for the geodesic flows.

(2) By combining the bound above with D. Dolgopyat’s bound [Dol98] on the norms
of the Ruelle operator on some appropriate function spaces, derive a non-vanishing
holomorphic extension to (ruene On a vertical strip h — e < R(s) < h, for some
€ > 0, except for a simple pole at s = h, where h € R is the smallest number
such that the additive form of Cruene(s) converges on {s € C|R(s) > h}, and
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additionally, obtain a quantitative bound of |(gruene| on this strip (compare with

@L.1).

(3) Establish the Prime Orbit Theorem with an exponential error term from the bound
of |Cruente| above via standard arguments from analytic number theory.

Variations and simplifications of this general strategy of M. Pollicott and R. Sharp,
relying on the machinery of D. Dolgopyat, have been adapted by many authors in various
contexts, see for example, F. Naud [Na05], L. N. Stoyanov [St11], P. Giulietti, C. Liverani,
and M. Pollicott [GLP13], H. Oh and D. Winter [OW16, (OW17], D. Winter [Wil6],
etc. The importance of the analytic properties of various dynamical zeta functions in
understanding the distribution of periodic orbits now becomes apparent. Not surprisingly,
in view of the connection between [Dol98] and [PoSh98|, dynamical zeta functions are
also closely related to the decay of correlations and resonances. As M. Pollicott has
put it, these are basically “two sides of the same coin”. For related researches on the
side of decay of correlations, see for example, D. Dolgopyat [Dol98], C. Liverani [Liv04],
A. Avila, S. Gouézel, and J. C. Yoccoz [AGY06], L. N. Stoyanov [StO1) [St11], V. Baladi
and C. Liverani [BalLiv12], V. Baladi, M. Demers, and C. Liverani [BDLIS], etc.

In the context of convex-cocompact surfaces M of constant negative curvature, i.e., M =
['\H? being the quotient of a classical Fuchsian Schottky group T (see [Na05, Section 4.1])
acting on the hyperbolic plane H?, F. Naud [Na(05] established in 2005 a Prime Orbit
Theorem with an exponential error term by producing some vertical strip in C on which
the Selberg zeta function (seperg (resp. the Ruelle zeta function (ryene) has a non-vanishing
holomorphic extension except a simple zero (resp. pole, see ([L4])). For stronger results
on the zero free strip and distribution of zeros in these contexts, see the recent works of
J. Bourgain, A. Gamburd, and P. Sarnak [BGS11], F. Naud [Nal4], H. Oh and D. Winter
[OW16], S. Dyatlov and J. Zahl [DZ16], J. Bourgain and S. Dyatlov [BD17].

In the context of subgroups of the group of orientation preserving isometries of hig-
her dimensional real hyperbolic space H" and more general settings, T. Roblin [Ro03]
proved a Prime Orbit Theorem without an error term for geometrically finite subgroups,
G. A. Margulis, A. Mohammadi, and H. Oh [MMO14] established an exponential error
term for geometrically finite subgroups under additional conditions, and D. Winter [Wil6]
showed a Prime Orbit Theorem with an exponential error term for convex-cocompact sub-
groups. A form of Prime Orbit Theorem without an error term for abelian covers of some
hyperbolic manifolds was established by H. Oh and W. Pan [OP18].

In the same work [Na05], F. Naud also established the first Prime Orbit Theorem with
an exponential error term in complex dynamics, for a class of hyperbolic polynomials
22+ ¢, ¢ € (—00,—2). One key feature of this class of polynomials is that their Julia
sets are Cantor sets. For an earlier work on dynamical zeta functions for a class of sub-
hyperbolic quadratic polynomials, see V. Baladi, Y. Jiang, and H. H. Rugh [BJR02]. For
hyperbolic rational maps, S. Waddington studied a variation of the Ruelle zeta function
defined by strictly preperiodic points instead of periodic points (compare with ([B.37) and
(339)), and established a corresponding form of Prime Orbit Theorem without an error
term in [Wad97].
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The study of iterations of polynomials and rational maps, known as complex dynamics,
dates back to the work of G. Koenigs, E. Schroder, and others in the 19th century. This
subject was developed into an active area of research, thanks to the remarkable works of
S. Lattes, C. Carathéodory, P. Fatou, G. Julia, P. Koebe, L. Ahlfors, L. Bers, M. Herman,
A. Douady, D. P. Sullivan, J. H. Hubbard, W. P. Thurston, J.-C. Yoccoz, C. McMullen,
J. Milnor, M. Lyubich, M. Shishikura, and many others.

In the early 1980s, D. P. Sullivan [Su85l [Su83] introduced a “dictionary”, known as
Sullivan’s dictionary nowadays, linking the theory of complex dynamics with another
classical area of conformal dynamical systems, namely, geometric group theory, mainly
concerning the study of Kleinian groups acting on the Riemann sphere. Many dynamical
objects in both areas can be similarly defined and results similarly proven, yet essential
and important differences remain.

The Prime Orbit Theorems with exponential error terms of F. Naud in [Na05] can be
considered as another new correspondence in Sullivan’s dictionary. Despite active resear-
ches on dynamical zeta functions and Prime Orbit Theorems in many areas of dynamical
systems, especially the works of L. N. Stoyanov [St11], G. A. Margulis, A. Mohammadji,
and H. Oh [MMO14], and D. Winter [Wil6] on the group side of Sullivan’s dictionary, the
authors are not aware of similar entries in complex dynamics since F. Naud [Na05], until
the recent work of H. Oh and D. Winter [OW17]. At a suggeston of D. P. Sullivan regar-
ding holonomies, H. Oh and D. Winter established a Prime Orbit Theorem (as well as
the equidistribution of holonomies) with an exponential error term for hyperbolic rational
maps in [OWI7]. A rational map is hyperbolic if the closure of the union of forward orbits
of critical points is disjoint from its Julia set. The Julia set of a hyperbolic rational map
has zero area. A rational map is forward-expansive on some neighborhood of its Julia set
if and only if it is hyperbolic. The novelty and emphasis of this paper somewhat differs
from that of [OW17], see Subsection [[.3] for more details.

In Sullivan’s dictionary, Kleinian groups, i.e., discrete subgroups of Mo6bius transfor-
mations on the Riemann sphere, correspond to rational maps, and convex-cocompact
Kleinian groups correspond to rational maps that exhibit strong expansion properties
such as hyperbolic rational maps, semi-hyperbolic rational maps, and postcritically-finite
sub-hyperbolic rational maps. See insightful discussions on this part of the dictionary in
[BM17, Chapter 1], [HP09, Chapter 1], and [LM97, Section 1].

One important question in conformal dynamical systems is: “What is special about con-
formal dynamical systems in a wider class of dynamical systems characterized by suitable
metric-topological conditions?”

W. P. Thurston gave an answer to this question in his celebrated combinatorial charac-
terization theorem of postcritically-finite rational maps (i.e., the union of forward orbits
of critical points is a finite set) on the Riemann sphere among a class of more general
topological maps, known as Thurston maps nowadays [DH93]. A Thurston map is a
(non-homeomorphic) branched covering map on the topological 2-sphere S? whose fini-
tely many critical points are all preperiodic (see Subsection B3 for a precise definition).
Thurston’s theorem asserts that a Thurston map is essentially a rational map if and only
if there exists no so-called Thurston obstruction, i.e., a collection of simple closed curves
on S? subject to certain conditions [DH93].
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Under Sullivan’s dictionary, the counterpart of Thurston’s theorem in the geometric
group theory is Cannon’s Conjecture [Ca94]. This conjecture predicts that an infinite,
finitely presented Gromov hyperbolic group G' whose boundary at infinity 0,,G is a to-
pological 2-sphere is a Kleinian group. Gromov hyperbolic groups can be considered as
metric-topological systems generalizing the conformal systems in the context, namely,
convex-cocompact Kleinian groups. Inspired by Sullivan’s dictionary and their interest
in Cannon’s Conjecture, M. Bonk and D. Meyer, along with others, studied a subclass of
Thurston maps by imposing some additional condition of expansion. A new characteri-
zation theorem of rational maps from a metric space point of view is established in this
context by M. Bonk and D. Meyer [BM10, BM17], and by P. Haissinsky and K. M. Pilgrim
[HP09]. Roughly speaking, we say that a Thurston map is expanding if for any two points
x,y € S?, their preimages under iterations of the map get closer and closer. For each
expanding Thurston map, we can equip the 2-sphere S? with a natural class of metrics,
called visual metrics. As the name suggests, these metrics are constructed in a similar
fashion as the visual metrics on the boundary 0,,G of a Gromov hyperbolic group G. See
Subsection [B.3] for a more detailed discussion on these notions.

Theorem 1.2 (M. Bonk & D. Meyer [BM10, BM17], P. Haissinsky & K. M. Pilgrim
[HPQO9]). An expanding Thurston map is conjugate to a rational map if and only if the
sphere (S?,d) equipped with a visual metric d is quasisymmetrically equivalent to the
Riemann sphere C equipped with the chordal metric.

See [BM17, Theorem 18.1 (ii)] for a proof. For an equivalent formulation of Cannon’s
conjecture from a similar point of view, see [Bon06, Conjecture 5.2]. The definition of the
chordal metric is recalled in Remark and the notion of quasisymmetric equivalence
in Subsection IOl

We remark on the subtlety of the expansion property of expanding Thurston maps
by pointing out that such maps are never forward-expansive due to the critical points.
In fact, each expanding Thurston map without periodic critical points is asymptotically
h-expansive, but not h-expansive; on the other hand, expanding Thurston maps with at
least one periodic critical point are not even asymptotically h-expansive [Lil5]. Asymp-
totic h-expansiveness and h-expansiveness are two notions of weak expansion introdu-
ced by M. Misiurewicz [Mis73] and R. Bowen [Bow72], respectively. Note that forward-
expansiveness implies h-expansiveness, which in turn implies asymptotic h-expansiveness
[Mis76].

Thanks to the fundamental works of W. P. Thurston, M. Bonk, D. Meyer, P. Halssinsky,
and K. M. Pilgrim, the dynamics and geometry of expanding Thurston maps and simi-
lar topological branched covering maps has attracted considerable amount of interests,
with motivations from both complex dynamics as well as Sullivan’s dictionary. Under
the dictionary, an expanding Thurston map corresponds to a Gromov hyperbolic group
whose boundary at infinity is the topological 2-sphere, and the special case of a rational
expanding Thurston map (i.e., a postcritically-finite rational map whose Julia set is the
whole Riemann sphere) corresponds to a convex-cocompact Kleinian group whose limit
set is homeomorphic to a 2-sphere (i.e., a cocompact lattice of PSL(2,C)) (see [BM17,
Chapter 1], [Yil5, Section 1], and compare with [HP09, Chapter 1]).
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Lastly, we want to remark that we have not been able to make connections to another
successful approach to dynamical zeta functions dating back to the work of J. Milnor and
W. P. Thurston in 1988 on the kneading determinant for real 1-dimensional dynamics
with critical points [MT8§|]. The Milnor-Thurston kneading theory has been developed
and used by many authors since then, see for example, V. Baladi and D. Ruelle [BR96],
V. Baladi, A. Kitaev, D. Ruelle, and S. Semmes [BKRS97], M. Baillif [Bai04], M. Baillif
and V. Baladi [BB05|, H. H. Rugh [Rugl6], and V. Baladi [Ball8, Chapter 3].

1.2. Main results. The main goal of this paper is to establish a Prime Orbit Theorem
with an exponential error term for expanding Thurston maps by a quantitative investiga-
tion on the holomorphic extension properties of the related dynamical zeta functions as
well as more general dynamical Dirichlet series. In the holomorphic context, as a special
case, these results hold for postcritically-finite rational maps whose Julia set is the whole
Riemann sphere.

To the best of the authors’ knowledge, ours is the first Prime Orbit Theorem with
an exponential error term in complex dynamics outside of hyperbolic rational maps, in
constract to the abundance of remarkable results on the other side of Sullivan’s dictionary
mentioned abovel] We also want to emphasize that our setting is completely topological,
without any holomorphicity or smoothness assumptions on the dynamical systems or the
potentials, with metric and geometric structures arising naturally from the dynamics of
our maps, while most if not all of the previous results of Prime Orbit Theorems were
established for smooth dynamical systems.

Much of the difficulty in the study of the ergodic theory of complex dynamics comes
from the singularities caused by critical points in the Julia set. In this sense, postcritically-
finite maps are naturally the first class of rational maps to be considered after hyperbolic
rational maps. We believe that the techniques and approaches we develop in this paper
can be used in the investigations of dynamical zeta functions and Prime Orbit Theo-
rems for more general rational maps and other (non-smooth) branched covering maps on
topological spaces.

Before stating our main results, we first briefly recall dynamical zeta functions and
define dynamical Dirichlet series in our context. See Subsection for a more detailed
discussion.

Let f: S? — S? be an expanding Thurston map and ¢ € C(S?%, C) be a complex-valued
continuous function on S2. We denote by the formal infinite product

“+oo
1 —S X
Cr,—p(s) = exp <Z - D el )), s e C,
)

n=l" a=fr(a

the dynamical zeta function for the map f and the potential ¢. Here we write S, (x) =
Z;L:_S Y(f7(z)) as defined in (24). We remark that (; , is the Ruelle zeta function for

't has come to our attention that M. Pollicott and M. Urbariski have recently completed a mono-
graph [PoU17] in which they established, among other things, asymptotic counting results without an
error term for periodic points (as opposed to primitive periodic orbits considered in this paper) for a
remarkable collection of hyperbolic and parabolic conformal dynamical systems, among them, hyperbolic
and parabolic rational maps. Our emphasis is different and results disjoint from [PoU17].
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the suspension flow over f with roof function v if v is positive. We define the dynamical
Dirichlet series associated to f and 1) as the formal infinite product

+0o0
1 —S x
D, 4, deg, (8) = exp (Z - Z e~ s5n¥( )degfn (x)), s e C.
)

n=1 x:f”l(gp

Here deg . is the local degree of f" at x € S? (see Definition B.]).

Note that if f: S? — S? is an expanding Thurston map, then so is f" for each n € N
(Remark [3.14)).

Recall that a function is holomorphic on a set A C C if it is holomorphic on an open
set containing A.

Theorem 1.3 (Holomorphic extensions of dynamical Dirichlet series and zeta functions
for expanding Thurston maps). Let f: S* — S? be an expanding Thurston map, and d
be a visual metric on S* for f. Given a € (0,1]. Let ¢ € C%*(5% d) be an eventually
positive real-valued Holder continuous function that is not co-homologous to a constant in
C(S?%). Denote by sy the unique positive number with P(f, —sq¢) = 0.

Then there exists Ny € N depending only on f such that for each n € N with n > Ny,
the following statements hold for F = ™ and ® := Z?:_ol o fi:

(i) Both the dynamical zeta function (p_o(s) and the dynamical Dirichlet series
Dr, -, degp (8) converge on the open half-plane {s € C|R(s) > so} and extend to
non-vanishing holomorphic functions on the closed half-plane {s € C|R(s) > s}
except for the simple pole at s = sg.

(ii) Assume in addition that ¢ satisfies the a-strong non-integrability condition. Then
there exists a constant ¢y € (0,s9) such that both the dynamical zeta function
Cr,—a(s) and the dynamical Dirichlet series D, ¢, deg,(S) converge on the open
half-plane {s € C|R(s) > so} and extend to non-vanishing holomorphic functions
on the closed half-plane {s € C|R(s) > so — €} except for the simple pole at
s = So. Moreover, for each € > 0, there exist constants C. > 0, a. € (0, €], and
be > 2sg+ 1 such that

(1.5) exp (—C|S(s)]*7) < [Cr-a(s)] < exp (C|S(s)]*7)
and

(1.6) exp (—C’€|%(s)|2+ﬁ) < }@E @,degF(S)} < exp (C’e\%(s)\%’e)
for all s € C with |R(s) — so| < a. and |I(s)| > b..

Here by P(f,v) we denote the topological pressure of f with respect to a potential
Y € C(S?) (see Subsection B.I). A real-valued continuous function ¢ € C(S?) is co-
homologous to a constant in C'(S?) if there is a constant K € R and a real-valued conti-
nuous function 8 € C(S?) with ¢ = K + o f — 3. The function ¢ is eventually positive
if g+ ¢of+- -+ ¢o fis strictly positive on S? for all sufficiently large n € N (see
Definition 3.32]). We postpone the discussion of the a-strong non-integrability condition
on ¢ until Theorem [L.I0.
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Remark 1.4. The integer N can be chosen as the minimum of N(f,C) from Lemma[3.17]

over all Jordan curves C with post f € C C S?, in which case N; = 1 if there exists
a Jordan curve C C S? satisfying f(C) C C, postf C C, and no 1-tile in X!(f,C)
joins opposite sides of C (see Definition B.I8). The same number Ny will be used in
the statements of Theorem [[L6, Theorem [I.7], and Theorem [L.T2l Here the set X!(f,C) of
1-tiles consists of closures of connected components of S*\ f~1(C) (see Subsection 3.3 for
more detailed discussions). We also remark that most properties of expanding Thurston
maps f whose proofs rely on the Markov partitions can be established for f after being
verified first for f™ for all n > Ny. However, some of the finer properties established
for iterates of f still remain open for the map f itself, see for example, [Mey13, Mey12].
That being said, we do expect all theorems in this subsection to hold for f itself, but the
verification may require new techniques.

Below is a symbolic version of Theorem For the notion of subshift of finite type, and
the corresponding subshift of finite type (ZjA O AA> for an expanding Thurston map indu-
ced by a Jordan curve from Remark [[.4] see Proposition and the general discussions
in Subsection [3.41

Theorem 1.5 (Holomorphic extensions of the symbolic zeta functions). Let f: S? — 52
be an expanding Thurston map with a Jordan curve C C S? satisfying f(C) C C, post f C
C, and no 1-tile in X (f,C) joins opposite sides of C. Let d be a visual metric on S*
for f. Given a € (0,1]. Let ¢ € C%*(S?,d) be an eventually positive real-valued Holder
continuous function that is not co-homologous to a constant in C(S?). Denote by sy the
unique positive number with P(f, —sop) = 0. Let (EL, O'AA) be the one-sided subshift of
finite type associated to f and C defined in Proposition[3.38, and let 7y : ZXA — 52 be the
factor map as defined in (3.33).

Then the dynamical zeta function (o, | _gor,(s) converges on the open half-plane {s €
C|R(s) > so}, and the following statements hold:

(i) The function (o, —gor,(8) extends to a non-vanishing holomorphic function on the
closed half-plane {s € C|R(s) > so} except for the simple pole at s = sg.

(ii) Assume in addition that ¢ satisfies the a-strong non-integrability condition. Then
there exists a constant € € (0,80) such that (s,  _gor,(s) extends to a non-
vanishing holomorphic function on the closed half-plane {s € C|R(s) > so — €0}
except for the simple pole at s = so. Moreover, for each € > 0, there exist constants
C.>0,a.€(0,s), and b, > 2so + 1 such that

(1.7) exp(—CelS(5)[**) < [Con,, goms (5)] < exp(CS(5)[*+)
for all s € C with |R(s) — so| < @ and |S3(s)| > b.

Theorem [L3] leads to the following bound for the logarithmic derivative of the zeta
function (p _o.

Theorem 1.6. Let f: S? — S? be an expanding Thurston map, and d be a visual metric
on S? for f. Let ¢ € C%*(S? d) be an eventually positive real-valued Holder continuous
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function with an exponent o € (0, 1] that satisfies the a-strong non-integrability condition.
Denote by sg the unique positive number with P(f, —so¢) = 0.

Then there exists Ny € N depending only on f such that for each n € N with n > Ny,
the following statement holds for F = f™ and ® := Z?:_ol ¢o fi:

There exist constants a € (0,5s¢), b > 2s9+ 1, and D > 0 such that
Gr, _a(5)
ey
for all s € C with |R(s) — so| < a and |S(s)| > b.

N=

(1.8)

< D[3(s)|

Given an expanding Thurston map f: S? — S? and a real-valued function 1: S? — R,
we define the weighted length l;,(7) (induced by f and ) of a primitive periodic orbit

7= {xz, f(x), -, " x)} € B(f)

(1.9) L(T) = (@) + O(f(2)) + -+ (f" ().
We denote by
(1.10) Trp(T) = card{T € P(f) | ls(7) < T}, for T'> 0,

the number of primitive periodic orbits with weighted length upto 7. See (2.3)) for the
precise definition of P(f).
The corresponding Prime Orbit Theorems follow from Theorem [[3 and Theorem

Theorem 1.7 (Prime Orbit Theorems for expanding Thurston maps). Let f: S? — S? be
an expanding Thurston map, and d be a visual metric on S? for f. Let ¢ € C¥%(S?,d) be
an eventually positive real-valued Hélder continuous function with an exponent o € (0, 1].
Denote by sg the unique positive number with P(f, —so¢) = 0.

Then there exists Ny € N depending only on f such that for each n € N with n > Ny,

the following statements hold for F := f™ and ® = Z?:_Ol o fi:
(i) The asymptotic relation
Tpe(T) ~ Li(esOT) as T" — +o00
holds if and only if ¢ is not co-homologous to a constant in C(S?), i.e., there are
no constant K € R and function 8 € C(S*) with $ = K + o f — .

(ii) Assume that ¢ satisfies the a-strong non-integrability condition. Then there exists
a constant § € (0, ) such that

re(T) = Li (eSOT) + O(e(so_é)T) as T — +o00.
Here Li(+) is the Eulerian logarithmic integral function defined in ({I.1).

Note that lim “®) — 1, thus we also get mp (1) ~ exp(s0T) a9 T 5 +o0.
y—+00 logy ’ soT’

Once Theorem and Theorem are established, Theorem [L.7 follows from standard
number-theoretic arguments. More precisely, a proof of the backward implication in
statement (i) in Theorem [[.7], relying on statement (i) in Theorem [[L3] and the Ikehara—
Wiener Tauberian Theorem (see [PP90, Appendix I]), is verbatim the same as that of
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[PP90, Theorem 6.9] on pages 106-109 of [PP90] (after defining h = sg, A(7) = lpa(T),
T = Tre, and ¢ = (p _se in the notation of [PP90]) with an additional observation

that hI—P L® — 1. The forward implication in statement (i) in Theorem [L.7] follows
Y—+00 logy

immediately from Proposition and Theorem [6.4l Similarly, a proof of statement (ii)
in Theorem [I.7 relying on Theorem and statement (ii) in Theorem [[3] is verbatim
the same as that of [PoSh98, Theorem 1| presented in [PoSh98| Section 3]. We omit the
these proofs here and direct the interested readers to the references cited above.

Remark 1.8. We remark that Theorems [L.3] [L.5] [[.6] and [ apply to general expanding
Thurston maps including ones that are conjugate to rational maps and ones that are
obstructed (in the sense of W. P. Thurston’s characterization theorem) In partlcular
these theorems apply to the special case when S? is the Riemann sphere C and f: C—C
is a rational expanding Thurston map, i.e., f is a postcritically-finite rational map whose
Julia set is the whole sphere C (or equivalently, f is a postcritically-finite rational map
without periodic critical points).

The following Prime Orbit Theorem for rational expanding Thurston maps follows
immediately from Remark 3.16] and statement (i) in Theorem [L.7]

Corollary 1.9. Let f: C - Cbea posteritically-finite rational map without periodic
critical points. Let o be the chordal metric Riemann sphere (C and ¢ € C* O‘(C O') be an
eventually positive real-valued Hélder continuous function with an exponent o € (0, 1].
Then there exists a unique positive number so > 0 with P(f,—so¢) = 0 and there
exists Ny € N depending only on f such that for each n € N with n > Ny, the following
statement holds for F = f™ and ® =", Ypo fi:
The asymptotic relation

Tpe(T) ~ Li(esOT) as T — +o00.
holds if and only if ¢ is not co-homologous to a constant in C(@)

The strong non-integrability condition on the potential ¢ essential in the theorems men-
tioned above is introduced in Subsection The idea was first used by D. Dolgopyat
[Dol98]. In the contexts of classical smooth dynamical systems on Riemannian manifolds
with smooth potentials, the corresponding condition is often equivalent to a weaker con-
dition, called non-local integrability condition, introduced in our context in Section [Gl We
can actually show that in the context of expanding Thurston maps, a potential is non-
locally integrable if and only if it is not co-homologous to a constant (see Theorem
for more details). However, as we are endeavoring out of Riemannian settings into more
general self-similar metric spaces in this paper, the equivalence between the strong non-
integrability condition and the non-local integrability condition for smooth potentials is
not expected except for Lattes maps, for reasons discussed in Subsection [10.Il Nevert-
heless, generic potentials always satisfy the strong non-integrability condition, as stated
more precisely in the following theorem.

Theorem 1.10 (Genericity). Let f: S? — S? be an expanding Thurston map, and d be
a visual metric on S for f. Given o € (0,1]. The space C**(S?,d) of real-valued Holder
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continuous functions with an exponent « is equipped with the Holder norm ||-||CO’Q(527d).
Let 8 be the subset of C%*(S? d) consisting of functions satisfies the a-strong mon-
integrability condition.
Then 8% is open in C%*(S? d). Moreover, the following statements hold:
(i) 8 is an open dense subset of C**(S% d) if a € (0,1).
(ii) S' is an open dense subset of C¥1(S?,d) if the expansion factor A of d is not equal
to the combinatorial expansion factor Ao(f) of f.

The Holder norm ||| o.a (g2 4) 18 recalled in Section 2l The definition of the combinatorial
expansion factor Ag(f) of f is given in (I0I1). See [BMI7, Chapter 16] for a more
detailed discussion on Ag(f). In particular, the inequality A < A¢(f) always holds for the
expansion factor A of any visual metric d for an expanding Thurston map f.

We note here that for each a € (0, 1], the set of real-valued Hélder continuous functions
¢ € C%(S?, d) that are eventually positive is an open subset of C%®(S?, d) with respect
to either the uniform norm or the Holder norm.

For Lattes maps f: C — C (see Definition [[0.1]) and continuously differentiable potenti-
als ¢: C — R on the Riemann sphere, the equivalence between the strong non-integrability
condition and the condition that ¢ is not co-homologous to a constant is established in
Proposition 0.3, depending crucially on the properties of the canonical orbifold metric

(see Remark [10.2]).

Remark 1.11. Let f: C — C be a Lattes map on the Riemann sphere C equipped with
the spherical metric. It follows immediately from Proposition [10.3] that we can replace
the conditions on ¢ (including the additional assumptions that ¢ satisfies the a-strong
non-integrability condition) in Theorems [[L3| [L5], [[L6l and [L.7] by the following condition:

o: C —» Risan eventually positive, continuously differentiable, real-valued function
that is not co-homologous to a constant in C(C),
and these theorems still hold.

In particular, we have the following characterization of the Prime Orbit Theorem in
the context of Lattes maps.

Theorem 1.12 (Prime Orbit Theorem for Lattes maps). Let f: C — C be a Lattés
map on the Riemann sphere C. Let ¢: C — R be an eventually positive, continuously

differentiable real-valued function on C. Then there exists a unique positive number sg > 0
with P(f,—so¢) = 0 and there exists Ny € N depending only on f such that the following
statements are equivalent:

(i) ¢ is not co-homologous to a constant in C(((A:), i.€., there are no constant K € R
and function B € C’(@) with g = K+ o f— (.
(ii) For each n € N with n > Ny, we have
Tro(T) ~ Li(e™T) as T — 400,

where F = " and ® = Z?:_ol ¢o fi.
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(iii)
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For each n € N with n > Ny, there exists a constant § € (0, s9) such that
mre(T) = Li(e*") + 0(6(30_5)T) as T — 400,

where F = f" and ® = > po f'.

Here Li(+) is the Eulerian logarithmic integral function defined in ({I1).

1.3. Plan of the paper. We adapt the general strategy of M. Pollicott and R. Sharp
[PoSh98| mentioned above combined with the machinery of D. Dolgopyat [Dol98] in our
context. Apart from our new metric-topological setting which differs from the more
classical smooth settings in the literature, there are other major obstacles to carrying out
this plan. We describe such difficulties and comment on our tactics in overcoming them
below before giving a summary of the contents of each section.

(1)

(iii)

One key ingredient shared both in the strategy of M. Pollicott and R. Sharp
[PoSh98| and in the original machinery of D. Dolgopyat [Dol98] is finite symbolic
codings of the dynamicsq. There is no general finite symbolic coding for rational
maps outside of the hyperbolic case. However, thanks to the works of J. W. Can-
non, W. J. Floyd, and W. R. Parry [CEP07] and M. Bonk and D. Meyer [BM17],
we know that for each postcritically-finite rational map whose Julia set is the
whole Riemann sphere , or more generally, each expanding Thurston map f, there
exists N € N such that for each n > N, the iteration F' := f" has some forward
invariant Jordan curve C on the sphere S? that induces finite Markov partitions
for . We actually need a slightly stronger result (see Lemma [B.I7)) that was
first established in [Lil8]. It is known that there exist expanding Thurston maps
without such forward invariant Jordan curves (see [BM17, Example 15.11]).

The symbolic coding induced by the finite Markov partitions mentioned above
is not finite-to-one for general expanding Thurston maps F, and A. Manning’s
argument that is used in the literature for symbolic codings that are finite-to-one
does not apply here to account for the periodic points on the boundaries of cylinder
sets in the symbolic space induced by the Markov partitions (that we call tiles).
To overcome this obstacle, we introduce the dynamical Dirichlet series D g _y, deg,.
and study its holomorphic extension properties from the symbolic coding instead,
reducing the part of Theorem [L.3l on ®r _y deg, to Theorem [[LAl It seems to be
the first instance in the field where such general dynamical Dirichlet series other
than L-functions are crucially used.

D. Dolgopyat’s machinery builds upon the existence of a spectral gap of the Ruelle
operator acting on appropriate function spaces from the study of thermodynami-
cal formalism for the corresponding dynamical systems. However, for a general
rational map f with at least one critical point in the Julia set—so f is not a hy-
perbolic rational map—the set of a-Holder continuous functions on the Riemann

2Many efforts have been made to remove the requirement of finite symbolic coding in D. Dolgopyat’s
machinery for applications in decay of correlations, notably the functional approaches of V. Baladi,
S. Gouézel, C. Liverani, M. Tsujii, and others.
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sphere equipped with the spherical metric is not invariant under the Ruelle ope-
rator (see [DPU96, Remark 3.1]), even though it is known a-Holder continuous
functions are mapped by all iterations of the Ruelle operator to o/-Holder conti-
nuous functions for some o € (0, a) sufficiently small (see [DPU96, Section 3]).
It is not clear how to incorporate this technical phenomenon with the intricate
machinery of D. Dolgopyat. Another related obstacle arises from the fact that the
temporal distance @Dgg (see Definition [6.2) for an a-Hélder continuous potential 1)
may not be a-Holder continuous due to the non-uniform hyperbolicity caused by
the critical points of f. Similar phenomenon of the lack of regularity appears in
the seminal work of D. Dolgopyat [Dol98] in the study of exponential mixing of
generic Anosov flows, in which jointly non-integrable C*! strong stable and strong
unstable foliations were assumed. More recently, C. Liverani [Liv04] established
exponential mixing for contact Anosov flows, for which stronger regulairty of the
temporal distance function is known, by constructing spaces of distributions on
which the Ruelle operator acts directly. Overcoming such obstacles lies in the core
of current research. See [Filll Section 1] for an insightful account of historical
developments. In the context of expanding Thurston maps in this paper, we use
a fruitful point of view introduced in the thesis of the first-named author (see
[Li18]) in developing the thermodynamical formalism. Namely, instead of spher-
ical metric (or chordal metric), we use the more dynamically natural metrics on
the sphere, i.e., the visual metrics. In this setting, the Ruelle operator (for an
a-Holder continuous potential) preserves the set of a-Hélder continuous functi-
ons for a € (0, 1], and moreover, most of the classical results similar to those in
the thermodynamical formalism for expansive systems with specification property
hold including the existence of spectral gap. See [Lil§] for a detailed study of the
thermodynamical formalism in this setting.

One still cannot use the Ruelle operator for an expanding Thurston map and a
Holder continuous potential introduced in [Lil8] in the proof of Theorem di-
rectly. One key problem is that in order to use D. Ruelle’s argument to bound the
dynamical Dirichlet series in terms of the operator norm of the Ruelle operator by
matching the preimage points in the Ruelle operator with periodic points in the
dynamical Dirichlet series, one needs to apply the Ruelle operator to characteristic
functions supported on the tiles. However, such characteristic functions are not
(Holder) continuous. Our strategy here is to “split” the Ruelle operator £, into
“pieces” Eq(fz  corresponding to each tile (see Definition [7.2) and to piece them
together to define a new operator L, on the product space C’(X[?, C) X C(Xg, C)
that we call the split Ruelle operator for the map F' and potential ¢ (see De-
finition [TH). Here X{ and X0 are the (closures) of the Jordan regions on the
sphere induced by the invariant Jordan curve C. We then deduce various pro-

perties including spectral gap of L, from, or in a similar way to, those of £, in
Section [7l

We also need to relate the dynamical Dirichlet series D, _y, deg, and the dynamical
zeta function (p _,. As mentioned above, A. Manning’s argument used in the
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literature for other dynamical systems does not apply in our setting since our
symbolic coding is not finite-to-one in general. Instead, we establish the quotient of
D, _p, deg, and (p, _y as a combination of a product and a quotient of the dynamical
zeta functions for three symbolic dynamical systems on the boundaries of the tiles
(see (5:25)) by a careful study of the combinatorics of tiles (see Subsection [5.2])
with ideas from [Lil6].

(vi) In order to deduce the holomorphic extension properties of (., from those of
D F,_y, deg» We need to show that there are strictly less dynamics on the boundaries
of tiles than on the tiles themselves measured by the topological pressures of
corresponding symbolic dynamical systems, which is not a priori clear. A key
construction (see (5.I5)) first introduced in [Lil5] is used in Subsection B3] to
establish such relations in Theorem [5.8

(vii) The existence of critical points in the Julia set, and more seriously of periodic
critical points for some expanding Thurston maps, also gives rise to obstacles in the
proof of the equivalence of the non-local integrability condition (see Definition [6.3])
and the cohomology conditions on the potentials (see Theorem [6.4]). For example,
an inverse branch of an expanding Thurston map with a periodic critical point may
not have a fixed point. We nevertheless successfully establish such equivalence in
Theorem by a careful study of the universal orbifold covers, introduced by
W. P. Thurston [Th80] in 1970s for geometry of 3-manifolds, in our context in
Section

(viii) In the case of rational expanding Thurston maps f: C — C and continuously
differentiable potentials ¢: C — R, one would hope to establish the Prime Orbit
Theorem under the weaker assumption that ¢ is not co-homologous to a constant,
or more precisely, to derive from this assumption the strong non-integrability con-
dition. This is often done in the literature in smooth dynamical systems. However,
the dynamically more nature metrics, i.e., the visual metrics, that we use to de-
velop the thegnodynamical formalism are not quite compatible with the smooth
structure on C. In fact, the chordal metric o (see Remark for the definition)
is never a visual metric for f (see [BM17, Lemma 8.12]), and (@, o) is snowflake
equivalent to (52, d) for some visual metric d if and only if f is topologically con-
jugate to a Lattes map (see [BM17, Theorem 18.1 (iii)] and Definition [[0.1] below).
Moreover, the canonical orbifold metric wy (see Remark [[0.2)) is a visual metric
if and only if f is a Lattes map. Nevertheless, we provide a positive answer in
Theorem for Lattes maps using properties of the canonical orbifold metric in
this setting. The case of all rational expanding Thurston maps is still open.

We will now give a brief description of the structure of this paper.

After fixing some notation in Section 2, we give a review of the dynamical and geometric
notions and basic facts needed in this paper in Section[3l We first discuss thermodynamical
formalism in Subsection B.Ilvery briefly. General branched covering maps between surfaces
are reviewed in Subsection even though we are only concerned with the special case
of Thurston maps on the topological 2-sphere in the whole paper except Section [@], .
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Subsection [3.3] focuses on the main objects of investigation of this paper, namely, ex-
panding Thurston maps f. Many notions and results from M. Bonk and D. Meyer [BM17]
and the previous works of the first-named author [Lil6, [Lil5 [Lil8| [Lil7] that are cru-
cially used in this paper are recorded for the convenience of the reader. We recall the
notion of eventually positive potentials at the end of this subsection and show that for
such a potential ¢, the topological pressure t — P(f, —t¢) has unique zero t = s in
Corollary 3341

In Subsection [B.4], we first recall and set notation for the symbolic dynamical systems
known as subshifts of finite type. Some basic properties of the topological pressure and
its relations with periodic points and preimage points in this context are recalled in
Proposition [3.35] Lemma [3.36] and Lemma [3.37, We then construct a one-sided subshift
of finite type (EZA, O'AA) in Proposition encoding the dynamics on the tiles induced
by an expanding Thurston map with some forward invariant Jordan curve C C S?, and
show that f is a factor of (X} ,04,) with the factor map m,: ¥} — S? given by (B33).

In Subsection B.5] we recall in (8.37) the notion of dynamical zeta function (, ., for
a continuous map g on a compact metric space (X, d) and a complex-valued continuous
function ¢ on X. More generally, for an additional complex-valued function w on X,
we introduce the dynamical Dirichlet series ®, _y o in Definition as an analogue of
Dirichlet series in analytic number theory, where w corresponds to a strongly multipli-
cative arithmetic function. We establish the convergence of ®, _ ,, and an analogue of
the Euler product formula for ®, _ ,, in Lemma under relevant assumptions in our
context on periodic points. The corresponding results for (y, ¢, Dy 4w, and (o, gor,
are recorded in Proposition B.44] for some expanding Thurston map f and an eventually
positive (see Definition [3.32)) real-valued Holder continuous function ¢ on S2.

In Section [ we state the assumptions on some of the objects in this paper, which we
are going to repeatedly refer to later as the Assumptions. Note that not all assumptions
are assumed in all the statements in this paper. In fact, we have to gradually remove the
dependence on some of the assumptions before proving our main results. This makes the
paper more technically involved.

The goal of Section [l is to establish a relation between the dynamical zeta functions
Cr.—¢ and (s, —gor, for an expanding Thurston map f with some forward invariant Jordan
curve C C S? and a Holder continuous potential ¢: S? — R through a careful investigation
on the dynamics induced by f on the curve C. Consequently, we reduce Theorem on f
to Theorem on the corresponding one-sided subshift of finite type (ZL, o AA) defined
from the tiles induced by C.

In Subsection (.1l we construct two one-sided subshift of finite type (ZX,O’AI) and
(E*Af“, O’A”) induced by f on C. We study the combinatorics induced by f and C in Sub-
section and establish in Theorem (.3 a counting formula (5.7) relating the “multi-
plicity” of an arbitrary point y € S? in the sets of periodic points for the four related
symbolic dynamical systems (X5 ,04,), (X5 ,04,), (£ ,04,), and (V°, flvo) where the
set VO coincides with the finite set post f of postcritical points of f (i.e., union of forward
orbits of critical values of f).
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Before deducing Theorem from Theorem in Subsection [5.4] using the counting
formula in Theorem [5.3] we need to show in Subsection [5.3] that topological pressures of
the dynamical systems induced by f and a real-valued Hoélder continuous functions ¢ on
C are strictly smaller than the topological pressure P(f, ) of f and ¢ (see Theorem [(.§]).
Such a calculation uses a characterization of topological pressure (8.30) in terms of refining
sequences of finite open covers, and relies on a fine quantitative control over the rate of
increase of the number of preimages of a point ¢ € S? under iterations of f|c that stay close
along the orbit. In order to derive such a quantitative control in Proposition [5.7], we use a
key device En,(qn, Gn-1, ---, q1; q) (see (5.13])) to keep track of such quantities that were
first introduced and crucially used to establish some weak expansion property, namely,
the asymptotic h-expansiveness of expanding Thurston maps with no periodic critical
points in [Lil5]. The method used here to bound E,.(¢n, qn-1, ---, q1; q) is different
from that in [Lil5]. In [Lil5], the non-recurrence of critical points is the key. But here
we allow periodic critical points, and the bound relies crucially on the topology of the
(1-dimensional) Jordan curve instead.

Section [0] is devoted to characterizations of a necessary condition, called non-local in-
tegrability condition, on the potential ¢: S? — R for the Prime Orbit Theorems (Theo-
rem [[7]). We recall the notion of temporal distance in Definition [6.2] and define the non-
local integrability condition on a potential ¢ for an expanding Thurston map f: S% — S2.
The characterizations are summarized in Theorem In particular, a real-valued Holder
continuous ¢ on S? is non-locally integrable if and only if ¢ is co-homologous to a constant
in the set of real-valued continuous functions on S?. We recall that a precise counting
formula was obtained in [Lil6l Theorem 1.1] in the case of potentials ¢ co-homologous to a
constant K € R, i.e., ¢ = K+ 7o f —7 for some continuous function 7: S? — R. We show
that in this case the Prime Orbit Theorems do not hold in Corollary [6.5] establishing the
non-local integrability condition as a necessary condition for the Prime Orbit Theorems
for expanding Thurston maps.

In order to establish Theorem [6.4] we recall in Subsection the notion of orbifolds
introduced in general by W. P. Thurston in 1970s in his study of geometry of 3-manifolds
(see [Th8&0), Chapter 13]). We follow the setup from [BM17] for expanding Thurston maps.
We recall the definitions of ramification functions, orbifolds, universal orbifold covering
maps, deck transformations, and inverse branches, before showing in Proposition
that, roughly speaking, each inverse branch on the universal orbifold cover has a unique
attracting fixed point (possibly at infinity).

In Subsection [6.3], we first deduce in Lemmal[6.18 a consequence of the local-integrability
condition on f and ¢ to a condition on the inverse branches of f and the lifting of ¢ to
the universal orbifold cover of f. Then the proof of Theorem is given.

In Section [0, we define appropriate variations of the Ruelle operator on the suita-
ble function spaces in our context and establish some important inequalities that will
be used later. More precisely, in Subsection [ for an expanding Thurston map f
with a forward invariant Jordan curve C C S? and a complex-valued Hélder continuous
function ¢, we “split” the Ruelle operator L, : C(5?% C) — C(S? C) (see ([3.20)) into pie-
ces Efsz C(E,C) — C(X?,C) in Definition [T.2} for ¢ € {b, 1w}, n € Ny, and a union E
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of n-tiles in the cell decomposition D"(f,C) of S? induced by f and C. Such construction
is crucial to the proof of Proposition [8.]] where the image of characteristic functions sup-

ported on n-tiles under EE;LZ 5 are used to relate periodic points and preimage points of
f. We then define the split Ruelle operators L, in Definition on the product space

C(X?,C) x C(XQ,C) by piecing together ﬁfbl,)cl,X&’ ¢1,cy € {b,tv}. The operator norm

of Ly induced by the normalized Holder norm (see (2.6))) on the space C%*((X,d),C) of
complex-valued Holder continuous functions is recorded in Definition [[.6l with a equivalent
characterization given in Lemma [7.7]

Subsection is devoted to establishing various inequalities, among them the basic
inequalities in Lemma [7.13] that are indispensable in the arguments in Section [@, adapted
into our context from the machinery of D. Dolgopyat.

In Subsection [.3] we verify the spectral gap for L, that are essential in the proof of
Theorem B3

Section [§ contains arguments to bound the dynamical zeta function (o,  —gor, With
the bounds of the operator norm of L_,4, for an expanding Thurston map f with some
forward invariant Jordan curve C and an eventually positive real-valued Holder continuous
potential ¢.

Subsection [R.1] contains the proof of Proposition Rl which provides a bound of the
dynamical zeta function (5,  —gor, for the symbolic system (ZL, O’AA) asscociated to f in
terms of the operator norms of L.”,, n € N and s € C in some vertical strip with [S(s)|
large enough. The idea of the proof originated from D. Ruelle [Rue90].

In Subsection B.2] we establish in Theorem an exponential decay bound on the
operator norm H‘Lﬁmma of L",,, n € N, assuming the bound stated in Theorem B2
Theorem will be proved at the end of Subsection

Combining the bounds in Proposition Bl and Theorem R3], we give a proof of Theo-
rem in Subsection 8.3

In Subsection R.4, we deduce Theorem from Theorem following the ideas from
[PoSh98| using basic complex analysis.

In Section [0, we adapt the arguments of D. Dolgopyat [Dol98] in our metric-topological
setting aiming to prove Theorem at the end of this section, consequently establishing
Theorem [I.3] Theorem [L.5], Theorem [I.6] and Theorem [L.7]

In Subsection [0.1], we first give a formulation of the a-strong non-integrability condition,
a € (0,1], for our setting (Definition @0.1]) and then show its independence on the choice
of the Jordan curve C in Lemma [0.2

In Subsection 0.2] a consequence of the a-strong non-integrability condition that we
will use in the remaining part of this section is formulated in Proposition We remark
that it is crucial for the arguments in Subsection to have the same exponent o € (0, 1]
in both the lower bound and the upper bound in (@.25). The definition of the Dolgopyat
operator M 4 in our context is given in Definition after important constants in the
construction are carefully chosen (see for example, ([@.6]) through (@.15)). The adjustment
of such constants is one key difficulty in the intricate mechaniery of D. Dolgopyat.

In Subsection 0.3, we adapt the cancellation arguments of D. Dolgopyat to establish
the 2-bound in Theorem
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Section[I10lis devoted to examples of potentials that satisfy the a-strong non-integrability
condition, and the investigation of the genericity of this condition.

Subsection [[0.1] focuses on the Lattes maps (recalled in Definition [[0.1]). We show in
Proposition that for a Lattes map f and a continuously differentiable real-valued
potential ¢: C — R the weaker condition of non-local integrability implies a stronger
condition, namely, 1-strong non-integrability for some visual metric d for f. We include
the proof of Theorem at the end of Subsection 10.1

Similar results for continuously differentiable potentials seem to be too much to ex-
pect for general rational expanding Thurston maps, since the chordal metric o (see Re-
mark for definition) is never a visual metric for f (see [BM17, Lemma 8.12]), which
prevents us to get the same exponent in both the lower bound and upper bound in ([9.25])
in Proposition 0.5l Nevertheless, we can still show that the a-strong non-integrability
condition is generic in the set C%%(S?, d) of real-valued Holder continuous functions with
an exponent « equipped with the Holder norm, i.e., there exists an open dense subset
of functions satisfying such condition in C%%(S? d), provided o € (0,1) or A% < Ag(f)
as stated in Theorem [LI0] A constructive proof of Theorem is given at the end of
Subsection [[0.2], relying on Theorem that gives a construction of a potential ¢ that
satisfies the a-strong non-integrability condition arbitrarily close to a given real-valued
Holder continuous potential 1 € C%%(S?, d).
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2. NOTATION

Let C be the complex plane and C be the Riemann sphere. For each complex number
z € C, we denote by R(z) the real part of z, and by &(z) the imaginary part of z. We
denote by D the open unit disk D :== {z € C||z] < 1} on the complex plane C. For each
a € R, we denote by H, the open (right) half-plane H, := {z € C|R(2) > a} on C, and
by H, the closed (right) half-plane H, := {z € C|R(2) > a}.

We follow the convention that N := {1,2,3,...}, Ny := {0} UN, and N := N U {+o0},
with the order relations <, <, >, > defined in the obvious way. For = € R, we define |z]
as the greatest integer < z, and [z] the smallest integer > x. As usual, the symbol log
denotes the logarithm to the base e, and log, the logarithm to the base ¢ for ¢ > 0. The
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symbol i stands for the imaginary unit in the complex plane C. For each z € C\ {0},
we denote by Arg(z) the principle argument of z, i.e., the unique real number in (—m, 7]
with the property that |z|e!4™() = 2. The cardinality of a set A is denoted by card A.
Given real-valued functions w, v, and w on (0,+00). We write uw(T) ~ v(T) as
T — 400 if limy oo 22 = 1, and write u(T) = v(T) + O(w(T)) as T — +oo if

T)—o(T) o(T)
hmsupT_,Jroo‘“( (v( | < 4o0.

Let g: X — Y be a map between two sets X and Y. We denote the restriction of g to
a subset Z of X by ¢|z.
Given a map f: X — X on a set X. The inverse map of f is denoted by f~!. We
write f* := fo---o f for the n-th iterate of f, and f= = (f*)™", for n € N. We set
—_—

1% == idy, where the identity map idx: X — X sends each z € X to z itself. For each
n € N, we denote by

(2.1) Pop={zeX } i) =a ff2) £z ke {l,2,....n—1}}
the set of periodic points of f with periodic n, and by
(2.2) B(n, f) = {{f(x)]|i€{0,1,....,n—1}} |z € Py}

the set of primitive periodic orbits of f with period n. The set of all periodic orbits of f
is denoted by

(2.3) B = B0 ).

Given a complex-valued function ¢: X — C, we write

>_A

n—

(2.4) Sup(x) = Sie(x) = ) o(f(x))

J

I\
o

for x € X and n € Ny. The superscript f is often omitted when the map f is clear from
the context. Note that when n = 0, by definition we always have Syp = 0.

Let (X, d) be a metric space. For subsets A, B C X, we set d(A, B) = inf{d(z,y) |z €
A,y € B}, and d(A,z) = d(x,A) = d(A,{z}) for z € X. For each subset Y C X, we
denote the diameter of Y by diamy(Y) = sup{d(z,y) |z,y € Y}, the interior of Y by
int Y, and the characteristic function of Y by 1y, which maps each z € Y to 1 € R and
vanishes otherwise. We use the convention that 1 = 1y when the space X is clear from
the context. For each r > 0 and each x € X, we denote the open (resp. closed) ball of
radius r centered at x by By(z,7) (resp. By(z,7)).

We set C'(X) (resp. B(X)) to be the space of continuous (resp. bounded Borel) functions
from X to R, M(X) the set of finite signed Borel measures, and P(X) the set of Borel
probability measures on X. We denote by C'(X, C) (resp. B(X, C)) the space of continuous
(resp. bounded Borel) functions from X to C. Obviously C(X) C C(X,C) and B(X) C
B(X,C). We will adopt the convention that unless specifically referring to C, we only
consider real-valued functions. If we do not specify otherwise, we equip C(X) and C(X, C)
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with the uniform norm ||| cox)- For g € C(X) we set M(X], g) to be the set of g-invariant
Borel probability measures on X.

The space of real-valued (resp. complex-valued) Hélder continuous functions with an
exponent o € (0,1] on a compact metric space (X,d) is denoted by C%*(X,d) (resp.
C**((X,d),C)). For each ¢ € C**((X,d),C), we denote

25) ol = o { Ly e x4,

and for b € R\ {0}, the normalized Holder norm of v is defined as
(2.6) [ ligbacxa = W [Wla, ey + [¥llenxy

and for each bounded linear operator L: C%*((X,d),C) — C*((X,d),C), the normalized
operator norm of L is

1L ()| 2h.e
(2.7) Il e x.0 —sup{ > ||“’]CO (X.d)

CO%e(X,d)

c C"*((X,d),C) with v # 0},

while the standard Holder norm of ¢ and operator norm of L are denoted by |[¢[| co.a(x.a)
and ||L||CO,Q(X 4 respectively, as usual, ie.,

-1
(2.8) 1l coniray = 18500 cen = 1Pl 5ok oca = [Pla,a + 1¥llcox
( (X,d) (X,d) (X)

and respectively,

1
(2.9) Il coagx.ay = IZllcvacxa = I lcon g

For a Lipschitz map ¢: (X, d) — (X, d) on a metric space (X, d), we denote the Lipschitz
constant by

dl9(z), 9(y))

(2.10) LIP4(g) = sup{ a0 y)

x,yEXWithx;éy}.

3. PRELIMINARIES

3.1. Thermodynamical formalism. We first review some basic concepts from dyna-
mical systems. We refer the readers to [PrU1L0, Chapter 3], [Wal82, Chapter 9] or [KH95,
Chapter 20] for more detailed studies of these concepts.

Let (X, d) be a compact metric space and g: X — X a continuous map. For n € N
and z,y € X,

dy(w,y) = max{d(¢"(z), ¢"(y)) [k € {0,1,....,n — 1}

defines a new metric on X. A set F' C X is (n, €)-separated, for some n € N and € > 0, if
for each pair of distinct points z,y € F, we have dj(z,y) > €. For € >0 and n € N, let
F,.(€¢) be a maximal (in the sense of inclusion) (n, €)-separated set in X.
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For each real-valued continuous function ¢ € C(X), the following limits exist and are
equal, and we denote these limits by P(g, gb) (see for example, [PrUIL0, Theorem 3.3.2)):

P(g, ) —hmhmsup log Z exp(S,o(x))

=0 pstoo

Z‘EFn( )
(3.1) _lg%lrlgli{gn log GFZ( )exp (Sno(2)),

n—1
where S, ¢(z) = Y ¢ (¢’(x)) is defined in ([2.4). We call P(g, ¢) the topological pressure of
=0

j=
g with respect to the potential ¢. The quantity hiop(g) == P(g,0) is called the topological
entropy of g. Note that P(g, ¢) is independent of d as long as the topology on X defined
by d remains the same (see [PrU10, Section 3.2]).

A cover of X is a collection { = {A;|j € J} of subsets of X with the property that
U¢& = X, where J is an index set. The cover ¢ is an open cover if A; is an open set for
each j € J. The cover £ is finite if the index set J is a finite set.

Let £ ={A,|j € J} and n = {By |k € K} be two covers of X, where J and K are the
corresponding index sets. We say ¢ is a refinement of 7 if for each A; € &, there exists
By, € n such that A; C By. The common refinement § V n of £ and 1 defined as

vy ={A,NB,|je ] keK}

is also a cover. Note that if £ and n are both open covers (resp., measurable partiti-
ons), then £ V 7 is also an open cover (resp., a measurable partition). Define g=1(¢) =
{g7*(A;)|j € J}, and denote for n € N,

n—1
=\ 9O =EVvg OV Vg ),
j=0

and let £° be the smallest o-algebra containing U &g

A measurable partition £ of X is a cover £ = {A | j € J} of X consisting of countably
many mutually disjoint Borel sets A;, j € J, where J is a countable index set. The
entropy of a measurable partition £ is

= = 2_ 1Ay log (u(4y)).,

where 0log0 is defined to be 0. One can show (see [Wal82, Chapter 4]) that if H,(§) <
+00, then the following limit exists:

hu(g,€) = lim_ ~H,(€2) € [0,400)

n—+oo N

The measure-theoretic entropy of g for p is given by

(3.2)  hu(g) =sup{h.(g,&) | is a measurable partition of X with H, () < 4+o0}.
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For each real-valued continuous function ¢ € C(X), the measure-theoretic pressure P,(g, ¢)
of g for the measure p and the potential ¢ is

(33) Pulg:6) = lg) + [

By the Variational Principle (see for example, [PrUI0, Theorem 3.4.1]), we have that
for each ¢ € C(X),

(3.4) P(g,¢) = sup{Pu(g,¢) | p € M(X, 9)}.
In particular, when ¢ is the constant function 0,
(3.5) hiop(g) = sup{hu(g) | € M(X, g)}.

A measure p that attains the supremum in ([3.4]) is called an equilibrium state for the
map ¢ and the potential ¢. A measure p that attains the supremum in (3.3]) is called a
measure of maximal entropy of g.

Given a continuous map ¢g: X — X on a compact metric space (X, d) and a real-valued
continuous potential ¢ € C'(X). By [PrUL(, Theorem 3.3.2], our definition of the topologi-
cal pressure P(g, ¢) in (8)) coincides with the definition presented in [PrUL0], Section 3.2].
More precisely, combining (3.2.3), Lemma 3.2.1, Definition 3.2.3, and Lemma 3.2.4 from
[PrU10], the topological pressure P(g, ) of g with respect to ¢ is also given by
(3.6)

P(g,¢) = lim lim 1 loginf{z exp(sup Snw(x)) ‘V C \n/g—i(gm), UV = X}7
Vey i=0

m——+00 n—+00 N, z€V

where {&,, }men, 18 an arbitrary sequence of finite open covers of X with lirJIrl max{diam,(U) |U €
m—r—+00
Em} =0.

One of the main tools in the study of the existence, uniqueness, and other properties of
equilibrium states is the Ruelle operator. We will postpone the discussion of the Ruelle
operators of expanding Thurston maps to Subsection [3.3

3.2. Branched covering maps bewteen surfaces. This paper is devoted to the dis-
cussion of expanding Thurston maps, which are branched covering maps on S? with
certain expansion properties. We will discuss such branched covering maps in detail in
Subsection 3.3l However, since we are going to use lifting properties of branched cove-
ring maps and universal orbifold covers in Section [6] we need to discuss briefly branched
covering maps between surfaces in general here. For more detailed discussions on the
concepts and results in this subsection, see [BM17, Appendix A.6] and references the-
rein. For a study of branched covering maps between more general topological spaces, see
P. Haissinsky and K. M. Pilgrim [HP09].

This subsection is only used in Section [6l Relevant concepts and results adapted to the
special case of branched covering maps on S? will be reiterated in Subsection B.3. The
readers may safely skip this subsection in the first reading.

In this paper, a surface is a connected and oriented 2-dimensional topological manifold.
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Definition 3.1 (Branched covering maps between surfaces). Let X and Y be (connected
and oriented) surfaces, and f: X — Y be a continuous map. Then f is a branched
covering map (between X and Y) if for each point ¢ € Y there exists an open set V C Y
with ¢ € V and there exists a collection {U;};c; of open sets U; C X for some index set
I # () such that the following conditions are satisfied:

(i) f7H(V) is a disjoint union f~H(V) = U, U,
(i) U; contains precisely one point p; € f~*(q) for each ¢ € I, and

(iii) for each ¢ € I, there exists d; € N, and orientation-preserving homeomorphisms
wi: Uy = D and ¢;: V — D with ¢;(p;) = 0 and 1;(¢) = 0 such that

(3.7) (Wiofopt)(z) = 2"
for all z € D.
The positive integer d; is called the local degree of f at p := p;, denoted by deg;(p).

Remark 3.2. We say that the set V C Y is evenly covered by f if conditions (i) and (ii)
above are both satisfied.

Note that in Definition [3.1] we do not require X and Y to be compact. In fact we will
need to use the incompact case in Section [@l

Note that the local degree deg;(p;) = d; in Definition B.] is uniquely determined by
p=p;. If ¢ €V is a point close to, but distinct from, ¢ = f(p), then deg(p) is equal to
the number of distinct preimages of ¢ under f close to p. In particular, near p (but not
at p) the map f is d-to-1, where d = deg;(p).

Every branched covering map f: X — Y is surjective, open (i.e., images of open sets
are open), and discrete (i.e., the preimage set f~!(q) of every point ¢ € Y has no limit
points in X). Every covering map is also a branched covering map.

A critical point of a branched covering map f: X — Y is a point p € X with deg;(p) >
2. We denote the set of critical points of f by crit f. A critical value is a point g € Y such
that f~'(q) contains a critical point of f. The set of critical points of f is discrete in X
(i.e., it has no limit points in X), and the set of critical values of f is discrete in Y. The
map f is an orientation-preserving local homeomorphism near each point p € X \ crit f.

Branched covering maps between surfaces behave well under compositions. We record
the facts from Lemma A.16 and Lemma A.17 in [BM17] in the following lemma.

Lemma 3.3 (Compositions of branched covering maps). Let X, Y, and Z be (connected
and oriented) surfaces, and f: X — Z, g: Y — Z, and h: X — Y be continuous maps
such that f = go h.

(i) If g and h are branched covering maps, and Y and Z are compact, then f is also
a branched covering map, and moreover, for each x € X, we have

deg(x) = degy(h(x)) - degy(z).

(ii) If f and g are branched covering maps, then h is a branched covering map. Si-
milarly, if f and h are branched covering maps, then g is a branched covering
map.
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If, in addition, X, Y, and Z are Riemann surfaces and the two branched covering maps
in the hypotheses of (1) or (ii) are holomorphic, then the third map is also holomorphic.

Let m: X — Y be a branched covering map, Z a topological space, and f: Z — Y be
a continuous map. A continuous map g: Z — X is called a lift of f (by 7) if To g = f,

i.e., the following diagram commutes:
X
S

J ——Y.
f

We record Lemma A.18 in [BM17] below.

Lemma 3.4 (Lifting paths by branched covering maps). Let X and Y be (connected and
oriented) surfaces, m: X — Y be a branched covering map, v: [0,1] =Y be a path inY,
and xo € 7 1(y(0)). Then there exists a path X: [0,1] — X with A(0) = z¢ and mo X = 7.

Branched covering maps are closely related to covering maps. The following lemma
recorded from [BM17, Lemma A11] makes such a connection explicit.

Lemma 3.5. Let X and Y be (connected and oriented) surfaces, and f: X — Y be a
branched covering map. Suppose P CY is a set with f(crit f) C P that is discrete in'Y'.
Then f: X \ f~Y(P) — Y \ P is a covering map.

We will use the lifting properties of covering maps in Section [0l The proof and the
terminology of the following lemma formulated as Lemma A.6 in [BM17] can be found
in [Ha02, Section 1.3, Proposition 1.34, and Proposition 1.33] (see also [Fo81l, Section 1.4
and Theorem 4.17]).

Lemma 3.6 (Lifting by covering maps). Let X andY be (connected and oriented) surfa-
ces, m: X — Y be a covering map, and Z be a path-connected and locally path-connected
topological space.

(i) Suppose g1,g2: Z — X are two continuous maps such that wo gy = wo gy. If there
exists zg € Z with g1(z0) = g2(20), then g1 = go.

(ii) Suppose Z is simply connected, f: Z — Y is a continuous map, and zy € Z and
xo € X are points such that f(z9) = m(xg). Then there exists a continuous map
g: Z — X such that g(z9) = xo and f =mog.

3.3. Thurston maps. In this subsection, we go over some key concepts and results
on Thurston maps, and expanding Thurston maps in particular. For a more thorough
treatment of the subject, we refer to [BM17].

Let S? denote an oriented topological 2-sphere. A continuous map f: S? — S? is called
a branched covering map on S? if for each point x € S?, there exists a positive integer
d € N, open neighborhoods U of x and V of y = f(x), open neighborhoods U’ and V'

of 0 in C, and orientation-preserving homeomorphisms ¢: U — U’ and n: V' — V' such
that ¢(z) =0, n(y) =0, and
(no fop™)(z) =21
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for each z € U’. The positive integer d above is called the local degree of f at x and is
denoted by deg(z).
Note that the definition of branched covering maps on S? mentioned above is compatible
with Definition B.] see the discussion succeeding Lemma A.10 in [BM17] for more details.
The degree of f is

(3.8) deg f = Z deg /()

z€f~1(y)
for y € S? and is independent of y. If f: S? — S% and ¢g: S? — S? are two branched
covering maps on S?, then so is f o g, and
(3.9) deg;.,(z) = deg, () deg,(g(x)), for each x € S

and moreover,

(3.10) deg(f o g) = (deg f)(degg).

A point z € S? is a critical point of f if deg;(x) > 2. The set of critical points of f
is denoted by crit f. A point y € S? is a posteritical point of f if y = f(x) for some
x € crit f and n € N. The set of postcritical points of f is denoted by post f. Note that
post f = post f™ for all n € N.

Definition 3.7 (Thurston maps). A Thurston map is a branched covering map f: S? —
S?% on 5% with deg f > 2 and card(post f) < +oo.

We now recall the notation for cell decompositions of S? used in [BM17] and [Lil7]. A
cell of dimensionn in S*, n € {1,2}, is a subset ¢ C S? that is homeomorphic to the closed
unit ball B" in R™. We define the boundary of ¢, denoted by Oc, to be the set of points
corresponding to OB™ under such a homeomorphism between ¢ and B". The interior of ¢
is defined to be inte(c) = ¢\ dc. For each point x € S?, the set {z} is considered as a cell
of dimension 0 in S?. For a cell ¢ of dimension 0, we adopt the convention that dc = ()
and inte(c) = c.

We record the following three definitions from [BM17].

Definition 3.8 (Cell decompositions). Let D be a collection of cells in S?. We say that
D is a cell decomposition of S? if the following conditions are satisfied:
(i) the union of all cells in D is equal to S?,

(ii) if ¢ € D, then Jc is a union of cells in D,

(iii) for ¢1,co € D with ¢; # ¢, we have inte(cy) Ninte(cy) = 0,

(iv) every point in S? has a neighborhood that meets only finitely many cells in D.
Definition 3.9 (Refinements). Let D’ and D be two cell decompositions of S?. We say
that D’ is a refinement of D if the following conditions are satisfied:

(i) every cell ¢ € D is the union of all cells ¢ € D’ with ¢ C c.

(ii) for every cell ¢ € D’ there exits a cell ¢ € D with ¢ C ¢,
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Definition 3.10 (Cellular maps and cellular Markov partitions). Let D’ and D be two
cell decompositions of S2. We say that a continuous map f: S? — S? is cellular for
(D', D) if for every cell ¢ € D', the restriction f|. of f to ¢ is a homeomorphism of ¢ onto
a cell in D. We say that (D', D) is a cellular Markov partition for f if f is cellular for
(D, D) and D’ is a refinement of D.

Let f: 5% — S? be a Thurston map, and C C S? be a Jordan curve containing post f.
Then the pair f and C induces natural cell decompositions D"(f,C) of S?, for n € Ny, in
the following way:

By the Jordan curve theorem, the set S?\ C has two connected components. We call
the closure of one of them the white 0-tile for (f,C), denoted by X2 and the closure of the
other the black 0-tile for (f,C), denoted by X. The set of 0-tiles is X°(f,C) = {X¢, X2 }.
The set of O-vertices is VO(f,C) = post f. We set V'(f,C) = {{z} |z € V°(f,C)}. The
set of 0-edges E°(f,C) is the set of the closures of the connected components of C\ post f.
Then we get a cell decomposition

D°(f,C) = X(f,C) UE'(f.C) UV (}.C)

of S? consisting of cells of level 0, or 0-cells.

We can recursively define unique cell decompositions D"(f,C), n € N, consisting of
n-cells such that f is cellular for (D™*(f,C), D"(f,C)). We refer to [BMI7, Lemma 5.12]
for more details. We denote by X" (f,C) the set of n-cells of dimension 2, called n-tiles;
by E*(f,C) the set of n-cells of dimension 1, called n-edges; by V' (f,C) the set of n-cells
of dimension 0; and by V"(f,C) the set {z | {z} € V'(f, C)}, called the set of n-vertices.
The k-skeleton, for k € {0, 1,2}, of D™(f,C) is the union of all n-cells of dimension k in
this cell decomposition.

We record Proposition 5.16 of [BM17] here in order to summarize properties of the cell
decompositions D"(f,C) defined above.

Proposition 3.11 (M. Bonk & D. Meyer [BMI7)]). Let k,n € Ny, let f: S* — S? be a
Thurston map, C C S? be a Jordan curve with post f C C, and m = card(post f).

(i) The map f* is cellular for (D"**(f,C),D"(f,C)). In particular, if c is any (n+k)-
cell, then f*(c) is an n-cell, and f*|. is a homeomorphism of ¢ onto f*(c).

(i) Let ¢ be an n-cell. Then f~*(c) is equal to the union of all (n + k)-cells ¢ with
ffd)=e

(i) The 1-skeleton of D™(f,C) is equal to f~"(C). The 0-skeleton of D™(f,C) is the
set VI(f,C) = f~"(post f), and we have V*(f,C) C V"Fk(f C).

(iv) card(X"(f,C)) = 2(deg f)", card(E™(f,C)) = m(deg f)", and card(V"(f,C)) <
m(deg f)".

(v) The n-edges are precisely the closures of the connected components of f~"(C) \
f™(post f). The n-tiles are precisely the closures of the connected components of
S2\ f7(0).

(vi) Ewvery n-tile is an m-gon, i.e., the number of n-edges and the number of n-vertices
contained in its boundary are equal to m.
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(vii) Let F == f* be an iterate of f with k € N. Then D"(F,C) = D"(f,C).

We also note that for each n-edge e € E"(f,C), n € Ny, there exist exactly two n-tiles
X, X' € X"(f,C) such that X N X' =e.
For n € Ny, we define the set of black n-tiles as
Xi(f,€) = {X e X"(f,C) | f*(X) = Xi'},
and the set of white n-tiles as
X (f.0) = {X e X"(f,0)| f{(X) = Xy}
It follows immediately from Proposition B.11] that
(3.11) card(Xy(f,C)) = card(Xy (f,C)) = (deg f)"

for each n € Nj.

From now on, if the map f and the Jordan curve C are clear from the context, we will
sometimes omit (f,C) in the notation above.

If we fix the cell decomposition D"(f,C), n € Ny, we can define for each v € V" the
n-flower of v as

(3.12) W™(v) = U{inte(c) lce D" v e c}.

Note that flowers are open (in the standard topology on S?). Let W (v) be the closure
of W™(v). We define the set of all n-flowers by

(3.13) W" = {W"v)|ve V"]
Remark 3.12. For n € Ny and v € V", we have
W) =X, UXoU---UXp,

where m = 2 deg . (v), and Xi, Xy, ... X, are all the n-tiles that contain v as a vertex (see
[BM17, Lemma 5.28]). Moreover, each flower is mapped under f to another flower in such
a way that is similar to the map z — z* on the complex plane. More precisely, for n € N
and v € V"1 there exist orientation preserving homeomorphisms ¢: W"*(v) — D and
n: W"(f(v)) — D such that D is the unit disk on C, ¢(v) =0, n(f(v)) =0, and
(o foyp™)(z) = 2"

for all z € D, where k := deg;(v). Let WnH(U) =X, UXoU---UX,, and W' (f(v)) =
X{UXjuU---UX/, where X, Xo,...X,, are all the (n + 1)-tiles that contain v as a
vertex, listed counterclockwise, and X7, X),... X/, are all the n-tiles that contain f(v)
as a vertex, listed counterclockwise, and f(X;) = Xj. Then m = m'k, and f(X;) = X
if i = j (mod k), where k = deg;(v). (See also Case 3 of the proof of Lemma 5.24 in

[BM17] for more details.) If particular, both W"(v) and W" (v) are simply connected.
We denote, for each z € S? and n € Z,
(3.14)  U"(z) = | J{Y"™ € X"|there exists X" € X" with € X", X" NY™" # ()}

if n >0, and set U"(z) := S? otherwise.
We can now give a definition of expanding Thurston maps.
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Definition 3.13 (Expansion). A Thurston map f: S? — S? is called ezpanding if there
exists a metric d on S? that induces the standard topology on S? and a Jordan curve
C C S? containing post f such that
lirf max{diam,(X) | X € X"(f,C)} = 0.

n—-+0oo
Remarks 3.14. It is clear from Proposition B.I1] (vii) and Definition B.13 that if f is an
expanding Thurston map, so is f" for each n € N. We observe that being expanding is a
topological property of a Thurston map and independent of the choice of the metric d that
generates the standard topology on S?. By Lemma 6.2 in [BM17], it is also independent
of the choice of the Jordan curve C containing post f. More precisely, if f is an expanding
Thurston map, then

nl_l)lrfoo max{dlam&(X) ‘X e X (f,C)} =0,
for each metric d that generates the standard topology on S? and each Jordan curve
C C S? that contains post f.

P. Haissinsky and K. M. Pilgrim developed a notion of expansion in a more general con-
text for finite branched coverings between topological spaces (see [HP09, Section 2.1 and
Section 2.2]). This applies to Thurston maps and their notion of expansion is equivalent to
our notion defined above in the context of Thurston maps (see [BM17, Proposition 6.4]).
Such concepts of expansion are natural analogues, in the contexts of finite branched
coverings and Thurston maps, to some of the more classical versions, such as expansive
homeomorphisms and forward-expansive continuous maps between compact metric spaces
(see for example, [KH95, Definition 3.2.11]), and distance-expanding maps between com-
pact metric spaces (see for example, [PrU10, Chapter 4]). Our notion of expansion is not
equivalent to any such classical notion in the context of Thurston maps. One topological
obstruction comes from the presence of critical points for (non-homeomorphic) branched
covering maps on S2. In fact, as mentioned in the introduction, there are subtle connecti-
ons between our notion of expansion and some classical notions of weak expansion. More
precisely, one can prove that an expanding Thurston map is asymptotically h-expansive
if and only if it has no periodic points. Moreover, such a map is never h-expansive. See
[Li15] for details.

For an expanding Thurston map f, we can fix a particular metric d on S? called a visual
metric for f. For the existence and properties of such metrics, see [BM17, Chapter 8].
For a visual metric d for f, there exists a unique constant A > 1 called the expansion
factor of d (see [BM17, Chapter 8] for more details). One major advantage of a visual
metric d is that in (5%, d) we have good quantitative control over the sizes of the cells
in the cell decompositions discussed above. We summarize several results of this type
(IBM17, Proposition 8.4, Lemma 8.10, Lemma 8.11]) in the lemma below.

Lemma 3.15 (M. Bonk & D. Meyer [BMI7]). Let f: S* — S? be an ezpanding Thurston
map, and C C S? be a Jordan curve containing post f. Let d be a visual metric on S* for
f with expansion factor A > 1. Then there exist constants C > 1, C' > 1, K > 1, and
ng € No with the following properties:
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(i) d(o,7) > C7A™" whenever o and T are disjoint n-cells for n € Ny.
(i) C7*A™ < diamy(7) < CA™ for all n-edges and all n-tiles 7 for n € Ny.
(iii) Bg(z, K7'A™™) C U™(x) C By(z, KA™") for x € S* and n € Ny.
(iv) U™ (z) C By(x,r) C U™ (z) where n = [—logr/logA] forr >0 and z € S
(v) For every n-tile X™ € X"(f,C), n € Ny, there ezists a point p € X™ such that
By(p, C7'A™™) C X" C By(p, CA™").
Conversely, ifc?is a metric on S? satisfying conditions (i) and (ii) for some constant
C > 1, then d is a visual metric with expansion factor A > 1.

Recall that U™(z) is defined in (3.14)).

In addition, we will need the fact that a visual metric d induces the standard topology
on S? ([BMIT, Proposition 8.3]) and the fact that the metric space (S?,d) is linearly
locally connected ([BMI17, Proposition 18.5]). A metric space (X,d) is linearly locally
connected if there exists a constant L > 1 such that the following conditions are satisfied:

(1) For all z € X, r > 0, and x,y € By(z,7) with = # y, there exists a continuum
E C X with z,y € E'and E C By(z,rL).

(2) Forall z € X, r >0, and z,y € X \ By(z,7r) with z # y, there exists a continuum
EC X withz,y € Fand E C X \ By(z,r/L).

We call such a constant L > 1 a linear local connectivity constant of d.

Remark 3.16. If f: C — C is a rational expanding Thurston map, then a visual metric
is quasisymmetrically equivalent to the chordal metric on the Riemann sphere C (see

Theorem [[Z). Here the chordal metric o on C is given by o(z, w) = \/ﬁ\z‘ﬂ—w\?
z,w € C, and o(00,2) = 0(z,00) = ——=— for z € C. We also note that quasisymme-

V122

tric embeddings of bounded connected metric spaces are Holder continuous (see [He(ll
Section 11.1 and Corollary 11.5]). Accordingly, the class of Hélder continuous functions
on C equipped with the chordal metric and that on S? = C equipped with any visual
metric for f are the same (upto a change of the Holder exponent).

A Jordan curve C C S? is f-invariant if f(C) C C. We are interested in f-invariant
Jordan curves that contain post f, since for such a Jordan curve C, we get a cellular
Markov partition (D!(f,C),D°(f,C)) for f. According to Example 15.11 in [BMI17],
such f-invariant Jordan curves containing post f need not exist. However, M. Bonk and
D. Meyer [BM17, Theorem 15.1] proved that there exists an f"-invariant Jordan curve C
containing post f for each sufficiently large n depending on f. A slightly stronger version
of this result was proved in [Lil6, Lemma 3.11] and we record it below.

Lemma 3.17 (M. Bonk & D. Meyer [BMI7], Z. Li [Lil6]). Let f: S* — S* be an
expanding Thurston map, and C C S? be a Jordan curve with post f C C. Then there
exists an integer N(f, C) € N such that for each n > N(f, C) there exists an f"-invariant

Jordan curve C isotopic to C rel. post f such that no n-tile in X"(f,C) joins opposite sides
of C.
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The phrase “joining opposite sides” has a specific meaning in our context.

Definition 3.18 (Joining opposite sides). Fix a Thurston map f with card(post f) > 3
and an f-invariant Jordan curve C containing post f. A set K C S? joins opposite sides
of C if K meets two disjoint 0-edges when card(post f) > 4, or K meets all three 0-edges
when card(post f) = 3.

Note that card(post f) > 3 for each expanding Thurston map f [BMI17, Lemma 6.1].
We now summarize some basic properties of expanding Thurston maps in the following
theorem.

Theorem 3.19 (Z. Li [Lil8|, [Li16]). Let f: S* — S? be an expanding Thurston map,
and d be a visual metric on S? for f with expansion factor A > 1. Then the following
statements are satisfied:

(i) The map f is Lipschitz with respect to d.

(ii) The map f has 1+deg f fized points, counted with weight given by the local degree
of the map at each fived point. In particular, card ) deg.(x) =14 deg f".
TEP) fn
Theorem (i) was shown in [Lil8, Lemma 3.12]. Theorem (ii) follows from
[Lil6, Theorem 1.1] and Remark B14l
We record the following two lemmas from [Lil6] (see [Lil6, Lemma 4.1 and Lemma 4.2])
which give us almost precise information on the locations of the periodic points of an
expanding Thurston map.

Lemma 3.20 (Z. Li [Lil6]). Let f be an expanding Thurston map with an f-invariant
Jordan curve C containing post f. If X € X} (f,C)UXY,(f,C) is a white 1-tile contained
in the while 0-tile X0 or a black 1-tile contained in the black 0-tile X, then X contains at
least one fized point of f. If X € XL, (f,C)UX],(f,C) is a white 1-tile contained in the
black 0-tile X or a black 1-tile contained in the white O-tile X2, then inte(X) contains
no fized points of f.

Recall that cells in the cell decompositions are by definition closed sets, and the set of
0-tiles X°(f,C) consists of the white 0-tile X2 and the black 0-tile X.

Lemma 3.21 (Z. Li [Lil6]). Let f be an expanding Thurston map with an f-invariant
Jordan curve C containing post f such that no 1-tile in X1(f,C) joins opposite sides of C.
Then for every n € N, each n-tile X™ € X"(f,C) contains at most one fized point of f™.

The following lemma proved in [Lil8, Lemma 3.13] generalizes [BM17, Lemma 15.25].

Lemma 3.22 (M. Bonk & D. Meyer [BMI17], Z. Li [Lil8]). Let f: S* — S? be an
expanding Thurston map, and C C S? be a Jordan curve that satisfies post f C C and
fre(C) C C for some ne € N. Let d be a visual metric on S* for f with expansion factor
A > 1. Then there exists a constant Cy > 1, depending only on f, d, C, and n¢, with the
following property:

If k,n € Ng, X"tk € X"+*(f,C), and x,y € X"**, then

(3.15) Cid(x,y) < "(C’X’n "W < codtwy).

0
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We summarize the existence, uniqueness, and some basic properties of equilibrium
states for expanding Thurston maps in the following theorem.

Theorem 3.23 (Z. Li [Lil8]). Let f: S* — S? be an expanding Thurston map and d
a visual metric on S* for f. Let ¢,y € C%(S? d) be real-valued Holder continuous
functions with an exponent o € (0,1]. Then the following statements are satisfied:

(i) There exists a unique equilibrium state g, for the map f and the potential ¢.
(i) For eacht € R, we have LP(f, ¢+ t7) = [vdpgsey.

(iii) If C C S? is a Jordan curve containing post f with the property that f¢(C) C C
for some ne € N, then

w(gf"'(c)) )

Theorem (1) is part of [Lil8, Theorem 1.1]. Theorem (ii) follows immediately
from |Lil8 Theorem 6.13] and the uniqueness of equilibrium states in Theorem .23 (i).
Theorem (iii) was established in [Lil8, Proposition 7.1].

The following two distortion lemmas serve as cornerstones in the developement of ther-
modynamical formalism for expanding Thurston maps in [Lil§] (see |[Lil8, Lemma 5.1
and Lemma 5.2]).

Lemma 3.24 (Z. Li [Lil8]). Let f: S* — S? be an expanding Thurston map and C C S?
be a Jordan curve containing post f with the property that f"<(C) C C for some ne € N.
Let d be a visual metric on S* for f with expansion factor A > 1. Let ¢ € C*%(S?,d) be
a real-valued Hélder continuous function with an exponent o € (0,1]. Then there ezists a
constant C; = C1(f,C,d, ¢,a) depending only on f, C, d, ¢, and o such that

(3.16) [Sné(x) — Sno(y)| < Crd(f" (), f" ()",
forn,m € Ny withn <m, X™ € X"(f,C), and x,y € X™. Quantitatively, we choose
0] (52,d) Co
1 =7
(3.17) C T A

where Cy > 1 is a constant depending only on f, C, and d from Lemma[3.22.

Lemma 3.25 (Z. Li [Li18]). Let f: S? — S? be an exzpanding Thurston map and C C S? be
a Jordan curve containing post f with the property that f<(C) C C for some ne € N. Let
d be a visual metric on S? for f with expansion factor A > 1 and a linear local connectivity
constant L > 1. Let ¢ € C**(S?,d) be a real-valued Hoélder continuous function with an
exponent o € (0,1]. Then there exists Co = Cy(f,C,d, p,a) > 1 depending only on f, C,
d, ¢, and o such that for each x,y € S?, and each n € Ny, we have

>, degs(2') exp(Sho(2))

wlef—n(w)

Y. degm(y) exp(Snd(y'))

y'ef~m(y)

(3.18) < exp (4C1 Ld(z,y)*) < Cy,
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where Cy is the constant from Lemma[3.24) Quantitatively, we choose

1—A-
where Cy > 1 is a constant depending only on f, C, and d from Lemma[322.

(3.19) Cy == exp (4C; L (diamy(S?))") = exp <4ML (diamd(S2))a),

Recall that the main tool used in |Lil8] to develop the thermodynamical formalism for
expanding Thurston maps is the Ruelle operator. We will need a complex version of the
Ruelle operator in this paper discussed in [Lil7]. We summarize relevant definitions and
facts about the Ruelle operator below and refer the readers to [Lil7, Chapter 3.3] for a
detailed discussion.

Let f: S? — S? be an expanding Thurston map and ¢ € C(S?, C) be a complex-valued
continuous function. The Ruelle operator Ly (associated to f and ¢) acting on C(S?, C)
is defined as the following

(3.20) Lo(u)(w) =Y degs(y)uly) exp(é(y)),

yef~1(x)

for each u € C(S%,C). Note that L, is a well-defined and continuous operator on C'(S?, C).
The Ruelle operator £,: C(S?,C) — C(5?,C) has an extension to the space of complex-
valued bounded Borel functions B(S? C) (equipped with the uniform norm) given by
[3:20) for each u € B(S? C).

We observe that if ¢ € C'(S?) is real-valued, then £,(C/(S?)) C C(S?) and L4(B(S?)) C
B(S?). The adjoint operator L£: C*(S%) — C*(S?) of Ly acts on the dual space C*(S?)
of the Banach space C'(S?). We identify C*(S?) with the space M(S?) of finite signed
Borel measures on S? by the Riesz representation theorem.

When ¢ € C(S?) is real-valued, we denote

(3.21) ¢ =¢— P(f, 0)
We record the following three technical results on the Ruelle operators in our context.

Lemma 3.26 (Z. Li [Lil8]). Let f: S* — S? be an expanding Thurston map and C C S*
be a Jordan curve containing post f with the property that f<(C) C C for some ne € N.
Let d be a visual metric on S% for f with expansion factor A > 1. Let ¢ € C%*(S?,d) be
a real-valued Hélder continuous function with an exponent o € (0,1]. Then there exists
a constant C3 = Cs3(f,C,d, ¢, ) depending only on f, C, d, ¢, and o such that for each
x,y € S% and each n € Ny the following equations are satisfied

L£5(1)(x)
2= < exp (4C, Ld(z,y)*) < Oy,
(3.22) B < P UG <
(3.23) Ci < £2(1)(2) < G,
G2 e - L300 < G (exp UC L)) — 1) < Cud(a )",
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where Cy,Cy are constants in Lemma and Lemma depending only on f, C, d,
o, and «.

Lemma [3.26 was proved in [Lil8, Lemma 5.15]. The next theorem is part of [Lil§,
Theorem 5.16].

Theorem 3.27 (Z. Li [Lil8]). Let f: S* — S? be an expanding Thurston map and C C S*
be a Jordan curve containing post f with the property that f<(C) C C for some ne € N.
Let d be a visual metric on S? for f with expansion factor A > 1. Let ¢ € C%*(S?,d) be
a real-valued Holder continuous function with an exponent a € (0,1]. Then the sequence

n—1 .
{% > L%(IL)} , converges uniformly to a function ug € C%*(S?,d), which satisfies
j=0 ne

(3.25) L(ug) = uy,

and

(3.26) C’i < wug(x) < Cy, for each x € S?,
2

where Cy > 1 is a constant from Lemma 323,

Let f: S — S? be an expanding Thurston map and d be a visual metric on S? for
f with expansion factor A > 1. Let ¢ € C%%(S? d) be a real-valued Hélder continuous
function with an exponent a € (0, 1]. Then we denote

(327) 6=~ P(f.¢) +logu, —log(ug 0 f),
where w4 is the continuous function given by Theorem
The next theorem follows immediately from [Lil8, Theorem 6.8 and Corollary 6.10].

Theorem 3.28 (Z. Li [Lil8]). Let f: S? — S? be an expanding Thurston map. Let d be a
visual metric on S% for f with expansion factor A > 1. Let b € (0,+00) be a constant and
h: [0,400) — [0,400) be an abstract modulus of continuity. Let H be a bounded subset
of C%(S% d) for some o € (0,1]. Then for each v € C?(S?%,d) and each ¢ € H, we have

ﬁ%(v) — U¢ /’U dm¢

Moreover, the convergence in (3.28) is uniform in v € C2(S?,d) and ¢ € H. Here we
denote by my the unique eigenmeasure of L, the function uy as defined in Theorem[3.27,

and ¢ = ¢ — P(f,9).

A measure pu € P(S?) is an eigenmeasure of L if L = cp for some ¢ € R. See [Lil8,
Corollary 6.10] for the uniqueness of the measure m.
We only need the following two corollaries of Theorem [3.2§] in this paper.

=0.

(3.28) lim ‘
C0(52)

n——+o0o

Corollary 3.29. Let f: S? — 52 be an expanding Thurston map and d be a visual metric
on S? for f with expansion factor A > 1. Let ¢ € C%*(S?,d) be a real-valued Holder
continuous function with an exponent a € (0,1]. We define a map 7: R — C%*(S?,d) by
setting T(t) = wp. Then T is continuous with respect to the uniform norm || - ||cocs2y on

C%e(S2,d).
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Proof. Fix an arbitrary bounded open interval I C R. For each n € N, define T,,: I —
C(S%,d) by T,(t) = E%(ﬂ_s2> for t € I. Since t¢ = t¢ — P(f,t¢), by (B20) and the
continuity of the topological pressure (see for example, [PrUIL0, Theorem 3.6.1}), we know
that 7,, is a continuous function with respect to the uniform norm | - [|co(s2) on C'(S?,d).
Applying Theorem with v = 1g2 and H = {t¢ |t € I}, we get that T),(t) converges
to 7|7(¢) in the uniform norm on C(S? d) uniformly in ¢ € I as n — +oo. Hence 7(t) is
continuous on /. Recall uyy € C%*(S?%,d) (see Theorem[3.27). Therefore 7(t) is continuous
in t € R with respect to the uniform norm on C%*(S52, d). O

Corollary 3.30. Let f: S* — S? be an expanding Thurston map. Let d be a visual metric

on S?% for f with expansion factor A > 1. Let H be a bounded subset of C%*(S? d) for
some € (0,1]. Then for each ¢ € H and x € S?, we have

(329)  P(f,6)= lim Slogi(1)(x) = lm ~log 3 degsn(y) exp(Sud(v).

n—-+oo N n—4+oo N, = ( )
ye

Moreover, the convergence in (3.29) is uniform in ¢ € H and x € S?.

Proof. The second equality in (3:29) follows from (B:20) and (3.9]). Substitute u := 1 into
Theorem B.28, we get that [,%(IL)(:E) = Pl ’d’)ﬁg(ﬂ)(z) converges to ug(x) uniformly

in ¢ € Hand x € S? as n — +oo. By Theorem B.27, the function wu, is continuous
and c% < wug(x) < Oy for the same constant Co > 1 from Lemma B.25 Note that
Cy depends only on f, C, d, ¢, and «a, but it is bounded on H by (BI9). Therefore
L log Eg(]l)(x) = —P(f,¢)++log L}(1)(x) converges to 0 uniformly in ¢ € H and z € 5*
as n — +00. ([

Another characterization of the topological pressure in our context analogous to (3.29])
but in terms of periodic points was obtained in [Lil5, Proposition 6.8]. We record it
below.

Proposition 3.31 (Z. Li [Lil5]). Let f: S?* — S? be an expanding Thurston map and
d be a visual metric on S? for f with expansion factor A > 1. Let ¢ € C**(S% d) be
a real-valued Hélder continuous function with an exponent o € (0,1]. Fiz an arbitrary
sequence of functions {wy,: S? — R}.en satisfying wy(y) € [1,deg s (y)] for each n € N
and each y € S%. Then

(3.30) P(f,¢)= lim —log Z Wy (y) exp(Sno(y)).

n—4+oo N
YyEP fn
The potentials that satisfy the following property are of special interest in the conside-
rations of Prime Orbit Theorems and in the analytic study of dynamical zeta functions.

Definition 3.32 (Eventually positive functions). Let g: X — X be a map on a set X,
and ¢: X — C be a complex-valued functions on X. Then ¢ is eventually positive if
there exists NV € N such that S,¢(z) > 0 for each z € X and each n € N with n > N.

Lemma 3.33. Let f: S* — S? be an expanding Thurston map and d be a visual metric
on S? for f. If ¢ € C%*((S?,d),C) is a complez-valued Holder continuous function with
an exponent € (0,1], then Sy also satisfies Sy € C¥((S?%,d),C) for each n € N.
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Proof. Since f is Lipschitz with respect to d by Theorem (i), so is f* for each i € N.
Then o f* € C%*((S?,d),C) for each i € N. Thus by ([24)), S,v € C**((5%,d),C). O

Theorem [3.23] (ii) leads to the following corollary that we frequently use, often implicitly,
throughout this paper.

Corollary 3.34. Let f: S? — S? be an expanding Thurston map, and d be a visual metric
on S? for f. Let ¢ € C%*(S? d) be an eventually positive real-valued Holder continuous
function with an exponent o € (0,1]. Then the function t — P(f, —t¢), t € R, is strictly
decreasing and there exists a unique number so € R such that P(f,—sop) = 0. Moreover,
So > 0.

Proof. By Definition B.32] we can choose m € N such that ® := S,,¢ is strictly posi-
tive. Denote A := inf{®(z)|z € S?} > 0. Then by Theorem (ii) and the fact
that the equilibrium state p_4, for f and —t¢ is an f-invariant probability measure (see
Theorem (i) and Subsection [3.1]), we have that for each t € R,

d

By Corollary B30, (B.8)), and (3.9), for each t € R suﬂic1ent1y large, we have

P(f> _t¢) lim — log Z degfmn exp( tz d o fmz )

n—+oo Mmmn
yef—mn(x)

< lim — log((deg f)™"exp(—tnA)) = E log((deg f)™ exp(—tA)) < 0.

T n—+oco mn

Since the topological entropy hiop(f) = P(f,0) = log(deg f) > 0 (see [BM17, Corol-
lary 17.2]), the corollary follows immediately from (3.31)) and the fact that P(f,-): C(S?%) —
R is continuous (see for example, [PrUIL0, Theorem 3.6.1]). O

3.4. Subshifts of finite type. We give a brief review on the dynamics of one-sided
subshifts of finite type in this subsection. We refer the readers to [Kid§] for a beautiful
introduction to symbolic dynamics. For a discussion on results on subshifts of finite type
in our context, see [PP90, [Bal00].

Let S be a finite nonempty set, and A: S x S — {0, 1} be a matrix whose entries are
either 0 or 1. For n € Ny, we denote by A" the usual matrix product of n copies of A.
We denote the set of admissible sequences defined by A by

Yh={{zitien, |2 € S, A(xy, xiy1) = 1, for each i € Ny}

Given 6 € (0, 1), we equip the set ¥} with a metric dy given by do({x; }ieng, {¥i Hien,y) = 0
for {z; }ieny # {¥i}ien,, where N is the smallest integer with xx # yy. The topology on
the metric space (Zj, dg) coincides with that induced from the product topology, and is
therefore compact.

The left-shift operator oa: X7 — ¥} (defined by A) is given by

O'A({Ii}ieNo) = {$i+1}ieNo for {Ii}ieNo c EJAT-
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The pair (Zj, O’A) is called the one-sided subshift of finite type defined by A. The set
S is called the set of states and the matrix A: S x S — {0,1} is called the transition
matrix.

We say that a one-sided subshift of finite type (Zj, O’A) is topologically mixing if there
exists NV € N such that A™(z,y) > 0 for each n > N and each pair of z,y € S.

Let X and Y be topological spaces, and f: X — X and g: Y — Y be continuous
maps. We say that the topological dynamical system (X, f) is a factor of the topological
dynamical system (Y, g) if there is a surjective continuous map 7: Y — X such that
mog = fom. We call the map 7: Y — X a factor map. We get the following commutative
diagram:

1

X —X.
f

It follows immediately that m o g" = f™ o 7w for each n € N.
We collect some basic facts about subshifts of finite type.

Proposition 3.35. Given a finite set of states S and a transition matric A: S x S —
{0,1}. Let (ZX,O’A) be the one-sided subshift of finite type defined by A, and ¢ €
CO(Zh, dy) be a real-valued Lipschitz continuous function with 8 € (0,1). Then the
following statements are satisfied:

(i) card P on < (card S)" for all n € N.

(ii) P(oa,¢) > limsup +log > exp(Spé(z)).
n—-+o0o EEPLGX

(iii) P(oa,¢) = lim sup%log S exp(Sno(y)).
n_H_OOzEZjX gEo_gn(z) -

If, in addition, (X7, 04) is topologically mizing, then
(iv) P(oa, @) = 1i51_1 Llog > exp(Sno(y)) for each z € X}
n—-+0oo -

yco, " ()

Proof. (i) Fix n € N. The inequality follows trivially from the observation that each
{z:}ien, € Py o is uniquely determined by the first n entries in the sequence {z:}ieng -

(ii) Fix n € N. Since each {;}icn, € P17 is uniquely determined by the first n entries
in the sequence {z;}ien,, it is clear that each pair of distinct {;}ien,, {7} }ien, € Pron
are (n, 1)-separated (see Subsection B.I]). The inequality now follows from (B.I]) and the
observation that an (n, 1)-separated set is also (n, €)-separated for all € € (0, 1).

(iii) As remarked in [Bal00, Remark 1.3], the proof of statement (iii) follows from
[Rue89l Lemma 4.5] and the beginning of the proof of Theorem 3.1 in [Rue89).

(iv) One can find a proof of this well-known fact in [PrU1L0, Proposition 4.4.3] (see the
first page of Chapter 4 in [PrU10(] for relevant definitions). O

Lemma 3.36. For each i € {1,2}, given a finite set of states S; and a transition matriz
A;: S; x S; — {0,1}, we denote by (EJATZ,, 04,) the one-sided subshift of finite type defined
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by A;. Let ¢ € COH (XS], dy) be a real-valued Lipschitz continuous function on X with
0 € (0,1). Suppose that there exists a uniformly bounded-to-one Holder continuous factor
map m: X — X7, i.e., 7 is a Holder continuous surjective map with 04, 0T =T 0 04,
and sup{card (7 (z)) ‘z € X4} < 4oo. Then

P(UA1a¢O7T) = P(UA2>¢)'

Proof. We observe that since (ZXZ, UAQ) is a factor of (ngl, O’Al) with the factor map m,
it follows from [PrUI0, Lemma 3.2.8] that P(c4,,¢om) > P(0a,,¢). It remains to show
P(UAI’ ¢o ﬂ-) < P(UA2>¢)'

Denote M := sup{card(7~(z)) |z € =} }.

Note that ¢ o € C% (X . dg) for some ¢ € (0,1). By Proposition (iii), for each
€ > 0, we can choose a sequence {z"}nen, in ¥ such that

n—1
o1 :
(3.32) lér_rgigofglog E exp<;:0 (qbowoaAl)(g)) > P(oa,,pom) — €.

yeoy ' (z™)

Observe that for all z,y € Zzl, and n € Ny, if 0%}, (y) = z, then 7(z) = (7T o aﬁl)(g) =
(0%, o) (y). Thus by ([B:32) and Proposition (iii),

—_

1 -
P(oa,,pom) —e <liminf — log Z exp(

n—+4oo M -
yeoy (@) !

(6o %)(W(g)))

Il
o

<liminf = log > exp (g (poaly,)(m (y)))

n—-+oo M
yer1 (037 (x(@))

<limsup — log <M > exp (ni(cb °0Y,) (z)))

o oy (nl@m) i
SP(Usz (b)
Since € > 0 is arbitrary, we get P(o4,,¢0m) < P(0a,,®). The proof is complete. O

We will now consider a one-sided subshift of finite type associated to an expanding
Thurston map and an invariant Jordan curve on S? containing post f. The construction
of other related symbolic systems will be postponed to Section We will need the
following technical lemma in the construction of these symbolic systems.

Lemma 3.37. Let f: S? — S? be an expanding Thurston map with a Jordan curve
C C S? satisfying f(C) C C and post f C C. Let {X;}ien, be a sequence of 1-tiles in
X(f,C) satisfying f(X;) 2 X1 for all i € No. Let {e;}jen, be a sequence of 1-edges in
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E!(f,C) satisfying f(e;) 2 ej+1 for all j € Ng. Then for each n € N, we have

(3.33) ((flxo) ™ o (flx) " oo (f

fo ) (Xa) =) 71X € X770,

(3.34) ((fleo)™ 0 (fley)™H o0 (f

) o) = () 1 (es) € BY(A,).

Moreover, both (\;en, f~'(Xi) and ey, f77(e;) are singleton sets.

Proof. Let d be a visual metric on S? for f.
We call a sequence {c;}ien, of subsets of S? admissible if f(c;) D ¢4 for all i € Ny.
We are going to prove ([3.33) by induction. The proof of the case of edges in ([3.34) is
verbatim the same.
For n = 1, (3.33) holds trivially for each admissible sequence of 1-tiles {X;};en, in X'.
Assume that ([3.33)) holds for each admissible sequence of 1-tiles {X;}ien, in X! and
for n = m for some m € N. We fix such a sequence {X;}ien,. Then {X;i1}ien, is also
admissible. By the induction hypothesis, we denote

X™ = ((flx) ™ o (flxa) ™ oo (flxn ) ™) (Xim) = ﬂ T (Xi) € XM

Since f(Xp) 2 X; and X™ C X;, we get from Proposition BTl (i) and (ii) that f is
injective on Xy, and thus () f(X;) = Xo N f1(X™) € X7, and (f]x,) 1 (X™) =
Xon fU(xXm) e Xmit

The induction is complete. We have established (3.33)).

Note that nﬁ: f74X;) 2 'rn]o f74X;) € X" for each n € N. By Lemma (ii),

MNien, f ~Y(X;) is the intersection of a nested sequence of closed sets with radii convergent
to zero, thus it contains exactly one point in S*. Similarly, card (o, f7'(¢;) = 1. O

Proposition 3.38. Let f: S? — S? be an expanding Thurston map with a Jordan curve
C C S? satisfying f(C) C C and post f C C. Let d be a visual metric on S for f with
expansion factor A > 1. Fiz 6 € (0,1). We set S, = X(f,C), and define a transition
matriz Ay: Sy x Sy — {0,1} by

1 if f(X) 2 X,
0 otherwise

A (X, X" :{
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for X, X' € XY(f,C). Then f is a factor of the one-sided subshift of finite type (ZXA,O'AA)
defined by the transition matrix Ax. More precisely, the following diagram commutes

oA
+ A +
ZAA ZAA

Ml lm

2 2
S—>f Se,

where the factor map m, : ZL — 52 is a surjective Holder continuous map defined by

(3.35) s ({Xitiew,) =z, where {x} = [ f7H(X

1€Np

Here X3 is equipped with the metric dy defined in Subsection[34, and S* is equipped with
the visual metric d.
Moreover, (X} ,04,) is topologically mizing and 7, is injective on ;" (52\ U f‘i(C)) .
1€Np

Remark 3.39. We can show that if f has no periodic critical points, then 7 is uniformly
bounded-to-one (i.e., there exists N € Ny depending only on f such that card (7;'(z)) <
N for each z € S?); if f has at least one periodic critical point, then 7, is uncountable-
to-one on a dense set. We will not use this fact in this paper.

Proof. We denote by {X;}ien, € X, an arbitrary admissible sequence.
Since f(X;) 2 X;41 for each i € Ny, by Lemma B.37, the map 7, is well-defined.
Note that for each m € Ny and each {X]}ien, € X3, with X0 # X, and X; = X

for each integer j € [0,m], we have {m,({X;}ien, ), 7o ({ X/ }ieny)} C ﬂ [7YX;) € Xmtt

by Lemma B.37 Thus it follows from Lemma BI5 (ii) that m, is Holder continuous.
To see that m, is surjective, we observe that for each x € S?, we can find a sequence
{Xj(x)}jeN of tiles such that X’(z) € X?, z € X’(z), and X7 (z) DO X7T!(x) for each

j € N. Then it is clear that { f* (X (@) }ien, € X4, and s ({fZ (Xi“(:v))}ieN()) = .

To check that 7, 004, = f om,, it suffices to observe that

(om0 ({Xohiem)) =f( N f‘j(Xj)) c M7,

j€Np jEN
- ﬂ f Z+1 (ﬂ-A © UAA)({Xi}i€N0>}‘
i€Ng
To show that 7, is injective on 7, '(5% \ E), where we denote E = |J f7(C), we

1€Np
fix another arbitrary {Y;}ien, € ZL with {X;}ien, # {Yilien,- Suppose that z =
Ta({Xitieny) = ma({Yi}ien,) € E. Choose n € Ny with X,, # Y,,. Then by Lemma [3.37],

re ) f(X;) e X" and z € ﬂ f7UY;) € X"t Thus f*(z) € X, NY, C f~1(C) by
1=0 1=0
Proposition B.I1] (v). This is a contradiction to the assumption that = ¢ E.
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We finally demonstrate that (Z AL ,O’AA) is topologically mixing. By Lemma (iii),
there exists a number M € N such that for each m > M, there exist white m-tiles
Xm oy e X and black m-tiles X7, Y™ € X" satisfying X7UX[™ C X and Y,"UY;™ C
X?, where X? and X? are the black 0-tile and the white 0-tile, respectively. Thus for all
X, X' € X! and alln > M +1, we have f*(X) = f1(f(X)) 2 XuX) =52 X" O

3.5. Dynamical zeta functions and Dirichlet series. Let g: X — X be a map on a
topological space X. Let 1): X — C be a complex-valued function on X. We write

(3.36) Zé%(g — Z e~ s ¥(@) n€NandscC.
Z‘EPLgn

Recall that Py 4o defined in (210 is the set of fixed points of ¢”, and S, is defined in
(24). We denote by the formal infinite product

+00 Z(n) ( )
(3.37) (g —p(s) =exp (Z T = exp Z Z e~sSn¥(@ seC
n=1 n=1 xEPI g™
the dynamical zeta function for the map g and the potential ).
More generally, we can define dynamical Dirichlet series as analogues of Dirichlet series

in analytic number theory.

Definition 3.40. Let g: X — X be a map on a topological space X. Let ¢v: X — C and
w: X — C be complex-valued functions on X. We denote by the formal infinite product

(3.38) Dy _p,w(s) =exp (Z Z e~ 55 ¥(@) H w( ) seC

=1 TEP; g™
the dynamical Dirichlet series with coefficient w for the map ¢ and the potential ).

Remark 3.41. Dynamical zeta functions are special cases of dynamical Dirichlet series,
more precisely, (5 = Dy _y 1. Dynamical Dirichlet series defined above can be consi-
dered as analogues of Dirichlet series equipped with a strongly multiplicative arithmetic
function in analytic number theory. We can define more general dynamical Dirichlet se-
ries by replacing w by w,,, where w,,: X — C is a complex-valued function on X for each
n € N. We will not need such generality in this paper.

Lemma 3.42. Let g: X — X be a map on a topological space X. Let ¢: X — R and
w: X — C be functions on X. Given a € R. Suppose that the following conditions are
satisfied:

(i) card Py 4yn < +00 for alln € N.

(ii) limsup L log > exp(—aS,p(x H lw(g’ } < 0.

n—-+o00 CCEPl’gn

Then for each s € C with R(s) = a, the dynamical Dirichlet series ©, ., ,(s) as an
infinite product converges uniformly and absolutely, and

(3.39) Dy eu(s) = [] | (1 —e O T] w(:c)) _1,

T€P(g TET
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where 1,(T) = ) o(z).

TEeT
If, in addition, we assume that ¢ is eventually positive, then D4 _, .,(s) converges

uniformly and absolutely to a non-vanishing continuous function on H, :_{s e C|R(s) >
a} that is holomorphic on H, = {s € C|R(s) > a}, and (3.39) holds on H,.

Recall P3(g) denotes the set of all primitive periodic orbits of g (see (2.3])). We recall that
an infinite product of the form exp > a;, a; € C, converges uniformly (resp. absolutely)
if 3" a; converges uniformly (resp. absolutely).

Remark 3.43. It is often possible to verify condition (ii) by showing P(g, —ay) < 0
and P(g, —ayp) > limsup = log > exp(—aS,¢(z H |w(g'())| (when the topological

n—+00 zEP gn
pressure P (g, —ay) makes sense). This is how we are going to use Lemma 342 in this
paper. In particular, if card X < 400, then it follows immediately from (B.1]) that

P(g,—ap) = lim —logZexp —aSyp(z ))>hmsup log Z exp(—aS,p(x)).

n—+oo N
zeX e z€P) 4n

Proof. Fix s € C with R(s) =
By condition (ii), we can choose constants N € N and g € (0,1) such that

Z exp(—aS,p(x H‘w ‘<5"

ZBEPl,gn

for each integer n > N. Thus
n—1

Z S Jep(-sSpte) [Tl <>)\

SCEPl g™ =

5L S ewtasison [t <3

SCEPl g™

Combining the above inequalities with condition (i), we can conclude that D, o (s)
converges absolutely. Moreover,

Dy, —p,w(s) =exp Z Z el H (' (@))
=exp Z Z Z /{: e~ skSmel@ U w(y’(s:)))
=exp Z Z —skl@(r) H wk(y)>
TePB(g9) k=1 YET
=exp| — Z log(l — eole(n) H w(y)))

T€P(9) yeT
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—1
— H (1 _ e slke(7) Hw(y))
T€B(9) yeT

Now we assume, in addition, that ¢ is eventually positive. Then it is clear from the
definition that S,¢(z) > 0 for all n € N and x € P, gqn. For each z € H, and each m € N,
n—1

Z Z exp(—zSpp(x ))H ‘ Z Z exp(—aS,p(x H‘w

n=m xEPl g™ n=m xePl g™

Hence ®,, _, (2) converges uniformly and absolutely to a non-vanishing continuous function
on H, that is holomorphic on H,.

Finally, to verify (3.39) for z € H, when ¢ is eventually positive, it suffices to apply
B39) to a := R(z) with the observation that

lim sup — L log Z exp(— H}w

n
n—-4o0o 2€P, n o

< limsup — L log Z exp(—aS,p(x H‘w ))} <0,

n
n—-+4oo 2€P, n o

i.e., condition (ii) holds with a = R(z). O

We now consider dynamical zeta functions and Dirichlet series associated to expanding
Thurston maps.

Proposition 3.44. Let f: S? — S? be an expanding Thurston map with a Jordan curve
C C S?% satisfying f(C) C C and post f C C. Let d be a visual metric on S* for f with
expansion factor A > 1. Let ¢ € C%*(S?,d) be an eventually positive real-valued Hdlder
continuous function with an exponent o € (0,1]. Denote by so the unique positive number
with P(f, —so¢) = 0. Let (EA ,UAA) be the one-sided subshift of finite type associated
to f and C defined in Proposition[3.38, and let 7, : ZXA — S? be the factor map defined

in (3.33). Denote by deg;(-) the local degree of f. Then the following statements are
satisfied:

(i) P(oa,,pomy) = P(f, ) for each o € C¥*(S% d) . In particular, for an arbitrary
number t € R, we have P(oa,,—t¢ oms) =0 if and only if t = so.

(ii) All three infinite products (s 4, Cou,,~gors, aNd Dy 4 aeg, converge uniformly
and absolutely to respective non-vanishing continuous functions on H, = {s €

C|R(s) > a} that is holomorphic on H, = {s € C|R(s) > a}, for each a € R
satisfies a > sg.
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(iii) For all s € C with RN(s) > so, we have

(3.40) o) = 11 (1—exp(—sZ¢<y>))_l,

TEPR(f) yeT
-1
(B41) Dy ) = [ (1—exp(—sz¢<y>)ﬂdegf<z>) ,
TEPR(f) YyET ZET
-1
(342)  Guom(®= ]I (1—6Xp<—sz¢om(y))) .
TEP(0a,) yeT

Proof. We first claim that for each p € C%*(S?,d), P(oa,,pom,) = P(f,¢). Statement (i)
follows from this claim and Corollary B.34] immediately.

Indeed, by Theorem B:23] (iii), we can choose x € S*\ |J f~%(C). By Proposition B.38|
i€Ng
the map m, is Hélder continuous on ¥} and injective on m,'(B), where B = {z} U

U f7“(x). So we can consider 75! as a function from B to 7, '(B) in the calculation below.
ieN

By Corollary B30, Proposition B33 (iv), and the fact that (EJATA,UAA) is topologically
mixing (see Proposition 3.38)),

) 1 o
P(oa,,pom,) :nETooﬁlog Z e:x;p(SnAA (apOWA)(g))
gEJZZ(ﬂgl(x))

~ lim Llog Yo ep(Sit(pom)(y)

n—+oo N, 4
yeEm, (f~(2))
1
= lim —1 St S .
Jim —log Y exp(Sfe(2)) = P(f.9)

zef~"(z)
The claim is now established.
Next, we observe that by Corollary [3.34], for each a > s,

(3.43) P(oa,,—apom,) = P(f,—a¢p) < 0.
By Theorem (ii), Proposition B.31], and Proposition (i) and (ii), we can apply
Lemma and Remark to establish statements (ii) and (iii). O

4. THE ASSUMPTIONS

We state below the hypotheses under which we will develop our theory in most parts
of this paper. We will repeatedly refer to such assumptions in the later sections. We
emphasize again that not all assumptions are assumed in all the statements in this paper.

The Assumptions.
(1) f: S? — S? is an expanding Thurston map.



46 ZHIQIANG LI, TTANYI ZHENG

(2) C C 8% is a Jordan curve containing post f with the property that there exists
ne € N such that f"¢(C) C C and f™(C) € C for each m € {1,2,...,nc — 1}.

(3) d is a visual metric on S? for f with expansion factor A > 1 and a linear local
connectivity constant L > 1.

(4) a € (0,1].
(5) ¥ € C%*((S?,d),C) is a complex-valued Holder continuous function with an ex-
ponent «.

(6) ¢ € C%*(S?% d) is an eventually positive real-valued Holder continuous function
with an exponent «, and sy € R is the unique positive real number satisfying
P(f, —s00) = 0.

(7) e is the unique equilibrium state for the map f and the potential ¢.

Note that the uniqueness of sy in (6) is guaranteed by Corollary B34l For a pair of f
in (1) and ¢ in (6), we will say that a quantity depends on f and ¢ if it depends on s.

Observe that by Lemma [B.17, for each f in (1), there exists at least one Jordan curve
C that satisfies (2). Since for a fixed f, the number n¢ is uniquely determined by C in
(2), in the remaining part of the paper we will say that a quantity depends on C even if
it also depends on nc.

Recall that the expansion factor A of a visual metric d on S? for f is uniquely determined
by d and f. We will say that a quantity depends on f and d if it depends on A.

Note that even though the value of L is not uniquely determined by the metric d, in the
remainder of this paper, for each visual metric d on S? for f, we will fix a choice of linear
local connectivity constant L. We will say that a quantity depends on the visual metric
d without mentioning the dependence on L, even though if we had not fixed a choice of
L, it would have depended on L as well.

In the discussion below, depending on the conditions we will need, we will sometimes
say “Let f, C, d, v, a satisfy the Assumptions.”, and sometimes say “Let f and d satisfy
the Assumptions.”, etc.

5. DYNAMICS ON THE INVARIANT JORDAN CURVE

The main goal in Sections [7] through [l is to establish Theorem [L5], namely, a holomor-
phic extention of the dynamical zeta function with quantitative bounds for the one-sided
subshift of finite type g4, : ZXA — ZL associated to some expanding Thurston map f
with some invariant Jordan curve C C S%. One hopes to derive from Theorem similar
results for the dynamical zeta function for f itself (stated in Theorem [[3]). However,
there is no one-to-one correspondence between the periodic points of 04, and those of f
through the factor map 7, : EL — 52, A relation between the two dynamical zeta functi-
ons (f, ¢ and (s, o, can nevertheless be established through a careful investigation on
the dynamics induced by f on the Jordan curve C.

5.1. Constructions. Let f: S? — S? be an expanding Thurston map with a Jordan
curve C C S? satisfying f(C) C C and post f C C.

Let (ZXA, o AA) be the one-sided subshift of finite type associated to f and C defined in
Proposition B38|, and let 7, : X} — S? be the factor map defined in (3:35).
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We first construct two more one-sided subshifts of finite type that are related to the
dynamics induced by f on C.

Define the set of states S, := {e e EX(f,C) ‘ e C C}, and the transition matrix A4,: S, X
S —{0,1} by

1 if f (61) 2 €2,
0 otherwise

(5-1) A (61, 62) = {

for e;,en € S,.
Define the set of states S, = {(e,c) € E'(f,C) x {b,0} |e C C}. For each (e,c) € S,
we denote by X1(e, ¢) € X1(f,C) the unique 1-tile satisfying

(5.2) e C X'(e,c) C X?.

The existence and uniqueness of X(f,¢) defined by (5.2)) follows immediately from Pro-
position B.11] (iii), (v), and (vi) and the assumptions that f(C) C C and e C C. We define
the transition matrix A,: S, x S, — {0,1} by

1 if f (61) 2 €9 and f (Xl (61, Cl)) 2 X1(62, Cg),
0 otherwise

(5.3) Ay ((er, 1), (e2,02)) = {

for (61, Cl) s (62, Cg) € S,,.
We will consider the one-sided subshift of finite type (EJATI, o A.) defined by the transition
matrix A, and (Ejg“, O’A”) defined by the transition matrix A,, where

i = {{eitieny | € € i, Ai(es, €i41) = 1, for each i € Ny},
Ez,, = {{(ei> ci)}iENo I (67L> ci) S S||> Au((@i, Ci), (67;_1,_1, CH_l)) = ]., fOI' each 1 E No},

04, and 04, are the left-shift operators on ¥ and ¥} , respectively (see Subsection B.4).

See Figure for the sets of states S, and S, associated to an expanding Thurston map
f and an invariant Jordan curve C whose cell decomposition D!(f,C) of 52 is sketched in
Figure 5.1l Note that S, = X!(f,C). In this example, f has three postcritical points A,
B, and C.

Proposition 5.1. Let f, C, d satisfy the Assumptions. We assume in addition that
f(C) € C. Let (X% ,04,) be the one-sided subshift of finite type associated to f and C
defined in Proposition [3.38, and let m,: ¥} — S? be the factor map defined in (3.33).
Fiz 0 € (0,1). Recall the one-sided subshifts of finite type (X7 ,04,) and (S 04,).
with the spaces ¥} and ¥ equipped with the corresponding metrics dy constructed in

Subsection[3.4. We write V(f,C) = |J V'(f,C).
i€Ng
Then the following statements are satisfied:

(i) (Zjl, O’AI) is a factor of (EX“, UA,,) with a Lipschitz continuous factor map ,: ZXH —
¥} defined by

(5.4) mu({(ei; €) Fieno) = {€i}iens
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B el e C
FIGURE 5.1. The cell decomposition D!(f,C). S, = X!(f,C).

NN
A t;\* /

€2
617 627
FIGURE 5. 2. Elements in S, (left) and elements in S, (right).

for {(es, ¢;) Yien, € X% . Moreover, for each {e;}ien, € X} , we have
card (m, ' ({ei}ien,)) = 2.

(ii) (C, fle) is a factor of (X3 ,04,) with a Holder continuous factor map m: 5§ — C

defined by
(5.5) m({eitien,) = x, where {z} = (7] f~(e:)
i€Np
for{e;}ien, € ZXI. Moreover, for each x € C, we have
1 g A\
(56) card (ﬂ'l_l(ﬂf)) — fo S C\ (.fa C)a
2 ifzelCnV(fC).
Thus we have the following commutative diagram:
o vk e
O—Aul lo—Al [{fc
), =24, ——C.

Proof. (i) It follows immediately from (5.4), (53), (G.I), and the definitions of ¥} and
>H that m, (2} ) € X% . By (B4), it is clear that , is Lipschitz continuous.
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Next, we show that card(m, ' ({e;}ien,)) = 2 for each {e;}ien, € Y% . The fact that m,
is surjective then follows for free.

Fix arbitrary ¢ € {b,10} and {e;}ien, € X} .

We recursively construct ¢; € {b, o} for each i € Ny such that ¢y = ¢ and {(e;, ¢;) bien, €
Ej“, and prove that such a sequence {¢; }ien, is unique. Let ¢g := ¢. Assume that for some
k € Ny, ¢; is determined and is unique for all integer j € Ny with 7 < k, in the sense
that any other choice of ¢; for any j € Ny with j < k would result in {(e;, ¢;) bien, & X4
regardless of choices of ¢; for j > k. Recall X' (e, ¢i) defined in (5.2)). Since f(ex) 2 ex41
and f (X' (ex, ¢x)) is the black 0-tile X{ or the white 0-tile X by Proposition BT (i),
we will have to choose ¢y = b in the former case and ¢, = tv in the latter case
due to (5.3). Hence {(e;, ¢;)}ien, € T, '({€i}ien, ) is uniquely determined by {e;}sen, and
¢ € {b,10}. This proves card(m, ' ({e;}ien,)) = 2 for each {e;}ien, € I -

Finally, it follows immediately from (&.4]) that m, 0 04, = 04, 0 7,.

(ii) Fix an arbitrary {e;}ien, € X7 .

Since f(e;) D e;yq for each i € Ny, by Lemma B.37 the map m, is well-defined.

Note that for each m € Ny and each {e]}ien, € X with eppq # €, and e; = €]

j

for each integer j € [0,m], we have {m ({ei}ien,), m({€ }ieny)} € () [ (e;) € E™T! by
i=0

Lemma [3.37 Thus it follows from Lemma (ii) that 7, is Holder continuous.

To see that 7, is surjective, we observe that for each x € C, we can find a sequence
{ej(x)}jeN of edges such that e/(x) € E’, e/(x) C C, z € €(x), and €’(x) 2 /T (x) for
each j € N. Then it is clear from Proposition B.I1] (i) that {fi(e”l(x))}ieNo € ¥} and
n ({1 (@) Y, ) =

Next, to check that m 004, = f om, it suffices to observe that

(o m)({eshiers)) =f( N f‘j(ej)) c /75

j€Ng jEN
= £ (enn) = {(m o oa){ediens)}-
i€No
Finally, we are going to establish (5.6]). Fix an arbitrary point x € C.
Case 1. x € C\ V(f,C).

We argue by contradiction and assume that there exist distinct {e;}ien,, {€}}ien, €
7Y (z). Choose m € Ny to be the smallest non-negative integer with e,, # €/ . Then

by Lemma B3T, = € () f(e;) € E™™ and z € ) f7(e}) € E™. Thus f™(z) €
i=0 1=0

em N e, € V! by Proposition B Il (v). This is a contradiction to the assumption that

z € C\ V(f,C). Hence card(m '(z)) = 1.

Case 2. £ € CNV(f,C).
Denote n := min{i eN ‘ T € V’} € N.
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For each j € N with 7 < n, we define e{,eg € E’ to be the unique j-edge with
z €¢] =€, CC. Foreachi € N with i > n, we choose the unique pair €, ¢} € E? of
i-edges satisfying (1) el Uel, C C, (2) €l Ney = {x}, and (3) if i > 2, then ¢} C e
and e} C e5'. Then it is clear from Proposition B.I1l (i) that for each k € {1,2},
{F(E™) Y, € Th and 7 ({F(6) Y, ) = 7

Note that if n = 1, then el # ed. If n > 2, then fi(x) ¢ V! and thus fi(z) ¢ crit f|¢, for
each i € {0,1,...,n —2}. So f" ! is injective on a neighborhood of z and consequently
by Proposition BT (i), f*~*(e}) # f**(e4). Hence card(m '(z)) > 2.

On the other hand, for each {e;}icn, € 7 *(z) and each j € Ny, (1) if j < n — 1,
then e; = f7(e]"") = f7(e}™") (since ]! = ") and fi(x) € inte(f7(e]™")) (by the
definition of n); (2) if j = n — 1, then either e; = f7(e]™") or e; = f7(e}"") since f/(z) €
F(e N (e"); (3)if j > n, then f7(x) € VO and consequently by Proposition B.111 (i)
and (v), there exists exactly one 1-edge e; € E! such that f/(x) € e; and f(e;_1) 2 e;.
Hence card(m, " (z)) < 2.

The identity (5.0]) is now established. O

5.2. Combinatorics.

Lemma 5.2. Let f and C satisfy the Assumptions. We assume in addition that f(C) C C.
For each n € N and each x € S* with f"(x) = x, exactly one of the following statements
holds:

(i) = € inte(X™) for some n-tile X™ € X"(f,C), where X™ is either a black n-tile
contained in the black 0-tile X or a white n-tile contained in the white 0-tile X2.

Moreover, z ¢ |J (UE(f,Q)).

1€Np
(ii) = € inte(e") for some n-edge e" € E"(f,C) satisfying e" C C. Moreover, x ¢
U V(.0
1€Np

(iii) = € post f.

Proof. Fix x € S? and n € N with f*(z) = x. It is easy to see that at most one of
Cases (i), (ii) and (iii) holds. By Proposition B11] (iii) and (v), it is clear that exactly one
of the following cases holds:

(1) x € inte(X™) for some n-tile X™ € X".
(2) x € inte(e™) for some n-edge " € E™.
(3) z e V™
Assume that case (1) holds. We argue by contradiction and assume that there exist
j € Ng and e € B/ such that @ € e. Then for k = [ZH] € N, 2 = fkn(z) € f(e) C C,
contradicting with z € inte(X"). So z ¢ U (UE?). By Lemma B20, the rest of
statement (i) holds. Hence statement (i) holdsleil\r? case (1).
Assume that case (2) holds. By Proposition Bl (i), x = f"(x) € inte(e’) C C where
eV = fr(e") € E°. Since f(C) C C, D" is a refinement of D° (see Definition B3). So we
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can choose an arbitrary n-edge ¢” € E™ contained in e® with x € . Since x ¢ V", we
have z € inte(e”). By Definition B8 ¢" = e? C " C C. To verify that z ¢ |J V*, we
i€Ng
argue by contradiction and assume that there exists j € Ny such that x € V. Then for
k= [2] e N, z = f"(z) € VO, contradicting with = € inte(e"). Thus z ¢ |J V'
1€Np

Hence statement (ii) holds in case (2).

Assume that case (3) holds. By Proposition B11] (i), 2 = f"(z) C VY = post f. Hence
statement (iii) holds in case (3). O

Let f be an expanding Thurston map with an f-invariant Jordan curve C containing
post f. We orient C in such a way that the white 0-tile lies on the left of C. Let p € C
be a fixed point of f. We say that f|c preserves the orientation at p (resp. reverses
the orientation at p) if there exists an open arc [ C C with p € [ such that f maps [
homeomorphically to f(I) and f|c preserves (resp. reverses) the orientation on [. Note
that it may happen that f|c neither preserves nor reverses the orientation at p, because
flc need not be a local homeomorphism near p, where it may behave like a “folding map”.

Theorem 5.3. Let f and C satisfy the Assumptions. We assume in addition that f(C) C
C. Let (ZXA, O’AA) be the one-sided subshift of finite type associated to f and C defined in
Proposition [3.38, and let wy: X5 — S be the factor map defined in (3.33). Recall the
one-sided subshifts of finite type (Zjl, O'AI) and (ZXH, O’A”) constructed in Subsection [5.1],
and the factor maps m: X3 — S, m: X — X} defined in Proposition[51. We denote
by (VO flvo) the dynamical system on V° = VO(f,C) = post f induced by flyo: V° —
Vo,
For each y € S? and each i € N, we write

M,(y,1i) = card(PL(f‘vo)i N {y}),
Mi(y,i) i=card (P, N7 (),
Ml(ya Z) = card (Pl,ofq N (7T| o ﬂ-ll)_l(y))7

M, (y,i) = Card<P1,oqu N ng(y)).
Then for each n € N and each v € Py ¢», we have
(5.7) My(x,n) — M(2,n) + M,(x,n) + My(z,n) = deg ().

Proof. Fix an arbitrary integer n € N and an arbitrary fixed point z € P g of f.

We establish (5.7)) by verifying it in each of the three cases of Lemma depending on
the location of z.

Case (i) of Lemma[22 x € inte(X™) for some n-tile X™ € X", where X" is either a
black n-tile contained in the black 0-tile X or a white n-tile contained in the white 0-tile
X2. Moreover, z ¢ |J (UE') = U f7(C) (see Proposition B.ITl (iii)).

1€Np 1€Np
Thus by Proposition B38| card(m,*(z)) = 1. For each i € Ny, we denote by X'(z) € X'
the unique i-tile containing z. Fix an arbitrary integer j € Ny. Then f/(X7*!(z)) € X!
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(see Propostion BI1l (i)) and X7*!(z) C XJ(z). Thus f(f/ (X7 (z))) 2 f7H(XI+2(x)).
It follows from Lemma [3.37 and (3.38) that ' ( {{f’ (X () >}ieNo} C ¥},. Ob-

serve that f7(X7*(z)) is the unique 1-tile contalnmg f7(z), and that f7 (X7t (z))
is the unique 1-tile containing fj+"(:v). Since f(x) =z, we can conclude from Defini-
tion B8 that fi+" (X7t (z)) = f7(X7*!(z)). Hence {fZ(X”l(a:))}ieNo € Pyon and
M, = 1. On the other hand, since x ¢ C, we have M, (x,n) = M,(z,n) = M,(x,n) = 0 by
Proposition .1l Since x € inte(X™), we have deg;.(z) = 1. This establishes the identity
(50) in Case (i) of Lemma 5.2l

Case (ii) of LemmaliZ = € inte(e™) for some n-edge €™ € E™ with e” C C. Moreover,
¢ |J V. Sodeg(x) =1 and M,(x,n) = 0.

i€Ng

We will establish (5.1) in this case by proving the following two claims.

Claim 1. M,(x,n) = 1.

Since card (7 !(z)) = 1 by Proposition 5.1 (ii), it suffices to show that o7} (7, '(z)) =
7 (z). Foreach y € C\ |J V' and i € Ny, we denote by ei(y) € E’ to be the unique

1€Ng

i-edge containing y. Fix an arbitrary integer j € Nyp. Then fi(e/™(z)) € E' (see
Proposition BT (i)) and /™ (z) C ej(x). Thus f(fi (e’ (z))) 2 f7H (e (2)). It
follows from Lemma B3 and (5.5) that 7, {{fz( i1 )}ZENO} C ¥ . Observe

that f7(e/*'(z)) is the unique 1-edge contamlng f/(z), and that f7" (et (z)) is the
unique 1-edge containing f/*"(z). Since f™(x) = z, we can conclude from Definition 3.8
that 7t (e 1(z)) = fi(e’™(x)). Hence {f'(e ’*1 () }ien, € Proy and Mi(z,n) = 1,
proving Claim 1.

Claim 2. M, (z,n) = M,(z,n).

We prove this claim by constructing a bijection h: 7' (z) — (m o )~ (z) explicitly
and show that h(z) € P n if and only if z € PleZA

For each y € C\ |J V¢, each ¢ € {b,10}, and each i € Ny, we denote by X*'(y) € X'

i€Ng

the unique i-tile satisfying y € X%(y) and X% (y) C X?. Here X? (resp. XQ) is the
unique black (resp. white) O-tile. Recall that as defined above, e‘(z) € E is the unique
i-edge containing z, for i € Ny. Then for each ¢ € {b,tv} and each i € Ny, we have
e'(z) € X%(x) (see Definition B), f/(X“*(x)) € X' (see Proposition BIT (i)), and
Xo () C X% (z). Thus

(5.8) f(fZ(XcZ-i-l(x))) > fi+1(Xc,i+2(l,)>.
It follows from Lemma B37 and (337) that { f/(X“"(z))}

m ({1 @) ), ) =

Next, we show that card(ﬁgl(a:)) = 2. We argue by contradiction and assume that
card(m, ' (z)) > 3. We choose {X;}ien, € 7, '(z) different from { (X" (z))} . and

1€Np

€ ¥}, and

i€Ng
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{r (X“”i“(:v))} . Since z € C\ |J V¥, for each j € Ny, there exist exactly two 1-tiles
1€Np

containing f7(x), namely, X1 (fi(x)) and X™!(f7(x)). Since f7(z) € X; for each j € Ny
(see (B30)), we get that there exists an integer k& € Ny and distinct ¢1, ¢ € {b,w} such
that Xk — fk(Xq,k—i-l(x)) and Xk—i-l — fk—i—l (Xc27k+2($)). Since Xc27k+2(.7;) C th,k-l—l(x)’
XM 2(g) ¢ XRH(z), and ! is injective on inte(X*™(z)) U inte (X2 ! (z)), we
get
f(Xk) — fk-‘rl (Xcl’k+l(l')) ;é fk-i-l (Xcz,k+2(l,)> — Xk—i—l-
This is a contradiction. Hence card(7;'(z)) = 2.
We define h: 7 (z) — (m, 0m,) ' (x) by

(5.9 h({F @)} ) = L E @) 60) iy, € b},
where ¢;(¢) € {b,t0} is the unique element in {b, o} with the property that
for 7 € Ny.
We first verify that {(f’(e ’+'1( z)), ci(c)>}i€No e xj for each = {b,w}. Fix arbitrary
¢ € {b,w} and j € Ny. Since e/%(z) C /™ (z) C C, we get f7(e*!(z)) C C and

(5.11) FF (e () 2 7 (e (2).
Recall that X' (f7(e/*!(z)),¢;(c)) € X' denotes the unique 1-tile satisfying

f (ej-i-l ) - X! (f] (6]+1(1’)> ( )) C ch(c)

(see Proposition B.11] (iii), (v), and (vi) for its existence and uniqueness). Then by (B.10)
and the fact that e/™!(z) C X% T1(x) (see Definition B.8)), we get

(5.12) XU (@), () = F (X9 ().

Then by (£3), E12), (5.8), and EIT), {(f (e (2)), ¢ Z(c>)}i€No X},
Note that since X%'(z) C X?, we get ¢1(c) = ¢ for ¢ € {b, 10} from (5.I0). Thus

{1 @) ei(0) } i, # {1 (€7 (@) €w0)) }

i.e., his injective. By Proposition 5.1 (i) and (ii), card((m, o m,)~*(x)) = 2. Thus h is a
bijection.

It suffices now to show that for each z € 7' (z), h(z) € P on if and only if 2z € Pion .
Note that e’(x) C C for all i € Ny. Fix arbitrary ¢ € {b,1w} and ¢ € N. Note that since

fi(z) € fi(e(x)), fi(z) = f(z) € fH (e (2)), and fi(z) ¢ U V', we have

i€Ng
(5.13) (f1(e™ (), ci(c)) = (e (@), cixn(c))
if and only if X (f* (e (2)),¢i(c)) = X' (f7 (e (2)), ¢isn(c)). Thus by (G.I2), we
get that (BI3) holds if and only if fi(X%*!(z)) = fi+ (X"t (z)). Hence by (E9),
h(z) € Pl,rfff,“ if and only if z € P o , for each z € ().
Claim 2 is now established. Therefore (5.7) holds in Case (ii) of Lemma [5.2]
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Case (iii) of LemmalilZ x € post f.
We will establish (5.7)) in this case by verifying it in each of the following subcases.

(1) If « ¢ crit f™, then (f™)|c either preserves or reverses the orientation at = and the
point z is contained in exactly one white n-tile X} and one black n-tile X'

(a) If (f™)|c preserves the orientation at x, then X C X and X" C X_.
In this subcase, M, =2, M, = 4, M, = 2, M, = 1, and deg.(z) = 1.

(b) If (f™)|c reverses the orientation at x, then X C X? and X C X?2.
In this subcase, M, = 0, M, =0, M, =0, M, = 1, and deg.(z) = 1.
(2) If x € crit f*, then © = f"(x) € post f and so there are two distinct n-edges
e1, ez C C such that {z} = e; Ney. We refer to Figures [5.3] to

(a) If e; C f™(e1) and eo C f"(ey), then x is contained in exactly k& white and
k — 1 black n-tiles that are contained in the white 0-tile, as well as in exactly
[ — 1 white and [ black n-tiles that are contained in the black 0-tile, for some
k,l € N with k+1—1 = deg(v). Note that in this case (f")|c preserves the
orientation at x.
In this subcase, My = k+1, M, = 4, M, = 2, M, = 1, and deg.(z) = k+1—1.

(b) If e; C f™(e1) and e; C f™(ez), then z is contained in exactly k — 1 white and
k black n-tiles that are contained in the white 0-tile, as well as in exactly [
white and [ — 1 black n-tiles that are contained in the black 0-tile, for some
k,l € N with k& +1— 1= deg;.(v). Note that in this case (f")|c reverses the
orientation at z.
In this subcase, M, = k+1—2, M, =0, M, =0, M, = 1, and deg.(r) =
kE+1—1.

(c) If e C f™(e1) = f"(e2), then z is contained in exactly k& white and k black
n-tiles that are contained in the white 0-tile, as well as in exactly [ white and
[ black n-tiles that are contained in the black 0-tile, for some k,l € N with
k41 = deg;.(z). Note that in this case (f")|¢ neither preserves nor reverses
the orientation at z.
In this subcase, My =k +1, M, =2, M, =1, M, = 1, and deg.(v) = k + L.

(d) If ea € f™(e1) = f™(eq), then z is contained in exactly k white and k black
n-tiles that are contained in the white 0-tile, as well as in exactly [ white and
[ black n-tiles that are contained in the black 0-tile, for some k,! € N with
k + 1 = deg.(z). Note that in this case (f")|¢ neither preserves nor reverses
the orientation at z.
In this subcase, My =k +1, M, =2, M, =1, M, = 1, and deg.(v) = k + .

This finishes the verification of (5.7)) in Case (iii) of Lemma
The proof of the theorem is now complete. O

Since all periodic points of (ZXI, O'AI) and (ZXH, UA,,) are mapped to periodic points of f
by the corresponding factor maps, we can write the dynamical Dirichlet series D, 4 deg, (5)

formally as a combination of products and quotient of the dynamical zeta functions for
(%, 04.), (% ,04,), (h,04,), and (VO flyo). In order to deduce Theorem [L3 from
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FIGURE 5.4. Subcase (2)(b) where f"(e1) D es and f™(e3) D e;. k=2,1=3.
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FIGURE 5.6. Subcase (2)(d) where f"(e1) = f™(e2) D ey. k=2,1=1.
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Theorem [L.5] we will need to verify that the zeta functions for the last three systems
converge on an open half-plane on C containing {s € C|R(s) > s¢}.

5.3. Calculation of topological pressure. Let f: S? — S? be an expanding Thurston
map with a Jordan curve C C S? satisfying f(C) C C and post f C C. We define for
m € Ngand p e CNV™(f,C),
(5.14) ™ (p) = inte(e;) U {p} Uinte(ey) and ®"(p) = e; Uey,
where e, e, € E™(f,C) are the unique pair of m-edges with e; Uey C C and e; Ney = {p}.
We denote for m € Ng, n € N, g € C, and ¢; € CNV™(f,C) for j € {1,2,...,n},

Em(Qna Gn—1, - -+ 415 Q)

(5.15) — {2 (fl0)"(@) | (1)) € T (guos)r i € {(0,1,....n — 1}}
— (flo) (@) " (ﬂ(ﬂc)—i@m(qn_m)

i=0
CCNV™(f.C).
Lemma 5.4. Let f and C satisfy the Assumptions. We assume in addition that f(C) C C.
Then
U En(Pr+1; ) = Em(Pat1s Pns - - -5 D15 Do)

€ Em (PnsPn—1; -+, P1;P0)
form € Ng, n € N, and p; € COV™(f,C) fori € {1,2,...,n+ 1}. Here E,, is defined
Proof. By (B.15), we get
U Em(pn-i-l; ZL’)

2E€Em (Pn,Pn—1,.--,P1;P0)

= [yt @ |y e @, » € G own (0o @ 0u) )

=0

g €T (pasa), f(y) € ﬁ<f|c>—i<@m<pn_i>>}

1=0

_ {y € (F1e)" (7o)

- Em(pn-‘rla Pn, -5 P13 pO)

The lemma is now established. O

Lemma 5.5. Let f and C satisfy the Assumptions. Fix m,n € Ny with m < n. If
f(C) CC, then the following statements hold:

(i) For eachn-edge e € E™(f,C) and each m-edge e™ € E™(f,C), if e™Ninte(e™) # 0,
then e™ C e™.

(ii) For each n-vertex v € C N V"(f,C) and each m-vertex w € CNV™(f,C) on the
curve C, if v & @™ (w), then " (w) N &"(v) = 0.
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(iii) Assume that m > 1 and no 1-tile in X'(f,C) joins opposite sides of C. For each

pair vo,v; € CNV™(f,C) of m-vertices on C, we denote by e}, e? € E™(f,C) the
unique pair of m-edges with ej Ue? =" (v;) and ejNe; = {v;}, for each i € {0,1}.
Then f is injective on €] for each j € {1,2}, and exactly one of the following cases
is satisfied:
(1) f(ee™(v1))Nee™(vg) = 0. In this case, card{z € ®"(v1) | f(x) € ™ (vg)} < 2.
(2) There exist j, k € {1,2} such that

o f(el) D¢,

. f(e{) Nek \ {vo} =0 for k' € {1,2}\ {k},

o f(el) n@E"(v) = 0 for j' € {1,2}\ {5}, and

® U1 ¢ crit f‘C
(3) There exists j € {1,2} such that

o fe]) D& (vy) = e Uel,

o f(e] \ {u1}) NE"(vg) = 0 for j' € {1,2}\ {j}.

o v1 ¢ it fle, and f(1) # vo.
(4) There exists k € {1,2} such that

o F(el) 2 eby £e3) 2 ek

o flei\{u})nes =0, fei \ {v}) Nef =0,

o vy ¢ crit fle, and f(v1) = vy,

where k' € {1,2} \ {k}.

(5) There exists k € {1,2} such that

o fef) N f(e}) Def,

o fler) Neg \{vo} =0 for k" € {1,2}\ {k},

o f(el) = f(e?), and vy € crit f|c.
(6) For each j € {1,2}, f(e1) 2 ®™(vo). In this case, we have f(e}) = f(e}) and

V1 € crit f‘c

We say that a point x € C is a critical point of f|c, denoted by x € crit f|c, if there is
no neighborhood U C C of x on which f is injective. Clearly, crit f|c C crit f. Our proof
below relies crucially on the fact that C is a Jordan curve.

Proof. (i) Fix arbitrary e” € E™ and ™ € E™. Since f(C) CC, e™ =|J{e € E"|e C e™}.
If e™ Ninte(e™) # (), then there exists e € E" with e C ™ and inte(e) N inte(e™) # (.
Then e = e" (see Definition B.8). Hence " C e™.

(ii) Fix v e CN V" and w € CN'V™ with v ¢ &™(w). Suppose &"(w
Then there exist ¢” € E" and €™ € E™ such that e C &"(v), ™
inte(e”) N e™ # (). Then by Lemma (i), e C ™. Hence v € e
contradiction.

(iii) Fix arbitrary vg,v; € CN'V™. Recallm > 1.

By Proposition B.I1] (i), the map f is injective on e] for each j € {1,2}.

D)
8
3
=
N
=

1N
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Recall that card(post f) > 3 (see [BM17, Lemma 6.1}).
We denote I == {(j, k) € {1,2} x {1,2} ‘ f(el) 2 et} Then card I € {0,1,2,3,4}.
We will establish Lemma (iii) by proving the following statements:

)

) Case (1), (2), or (6) holds if and only if card I = 0, 1, or 4, respectively.
(c) Case (3) holds if and only if card I = 2, vy ¢ crit f|c, and f(v1) # vo.
(d)

)

(a) Suppose card I = 3. Without loss of generality, we assume that f(e7) 2 ef U g,
f(el) 2 ef, and f(e?) € €3. Since f(e), f(el) € E™ ' (see Proposition BII (i),
flel)Nf(e?) 2 ef, we get f(ei)Ninte(f(e2)) # 0, thus by LemmaB.5l (i), f(e}) = f(e3).
Hence card I = 4. This is a contradiction.

(b) If Case (1) holds, then clearly card I = 0. Conversely, we assume that card I = 0.
Fix arbitrary j, k € {1,2}. Since f(e{) € E™ ' and f is injective on e (see Proposi-
tion B (i)), by LemmalB.Hl (i), f (inte (e{)) Nek = f(e{) Ninte(ef) = 0. Observe that it
follows from card I = 0 and Lemma 5.5 (i) that f(v1) # vo. Thus f(ae™(vy))Nee™(vy) = 0.
In order to show card{z € &™(v)| f(z) € ®"(vo)} < 2, it suffices to prove card{z €
el \ inte(e]) | f(z) € ®"(vy)} < 1. Suppose not, then since f(inte(e])) N&@™(vy) = 0, f
is injective on e{, and C is a Jordan curve, we get f(e{) U&™(vg) = C. This contradicts
the fact that card(post f) > 3 and the condition that no 1-tile in X! joins opposite sides
of C. Therefore, Case (1) holds.

If Case (2) holds, then clearly card I = 1. Conversely, we assume that card/ = 1.
Without loss of generality, we assume that f (e%) D e). We observe that v, ¢ crit f|c. For
otherwise, f(e}) = f(e?) € E™™! (see Proposition BIT (i)), thus card I # 1, which is a
contradiction.

To show f(e1) Ned \ {vo} = 0, we argue by contradiction and assume that f(e1) N
eg \ {vo} # 0. Since e§ € f(ef) € E™ ! (see Proposition BIT (i)), by Lemma (i),
f(el) Nninte(ef) = 0. Note that vy € ej C f(el). Since f(e7) is connected and C is a
Jordan curve, we get f(e}) Ued = C. This contradicts the fact that card(post f) > 3.

Next, we verify that f(v;) ¢ e} as follows. We argue by contradiction and assume that
f(v1) € ej. Since f(v1) € V™! (see Proposition BT (i), we get f(v1) € ef \ inte(ep).
Since card I = 1, it is clear that f(v;) # vo. Thus f(v1) € €f \ (inte(ef) U {vo}). Since
vy & crit f|e and no 1-tile in X' joins opposite sides of C, we get from Proposition BT (i)
that either f(e}) 2 ej Uel or f(e?) 2 ej Uel. This contradicts the assumption that
card I = 1. Hence f(vy) ¢ €.

Finally we show that f (e%) N&"(vg) = 0. To see this, we argue by contradiction and
assume that f(e?) N&®™(v) # 0. Since C is a Jordan curve, vy ¢ crit fle, f(v1) ¢ €},
f(el) D e, and f(el) 2 €3, we get that f(e1) U f(e}) Ued = C. This contradicts the fact
that card(post f) > 3 and the condition that no 1-tile in X' joins opposite sides of C.

Therefore, Case (2) holds.
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If Case (6) holds, then clearly card I = 4. Conversely, we assume that card = 4. Then
f(e]) 2 el Ued = ®"(vy) for each j € {1,2}. We show that v; € crit f|c as follows.
We argue by contradiction and assume that v; ¢ crit f|c. Then Since C is a Jordan
curve and f(e}) N f(el) 2 e, we get that f(ef) U f(ef) = C. This contradicts the fact
that card(post f) > 3. Hence v; € crit f|c, and consequently f(ei) = f(e?) € E™! by
Proposition B.11] (i). Therefore, Case (6) holds.

(c) If Case (3) holds, then clearly card I = 2, vy ¢ crit f|c, and f(v1) # vg. Conversely,
we assume that card [ = 2, vy ¢ crit f|e, and f(v1) # vg. Suppose that f(e%) D ek and
f(e?) D e¥ for some k, k' € {1,2} with k # K, then since v; ¢ crit f|c and f(v1) # vo,
we get from Proposition B.1I1] (i) that f (e%) uf (e%) = C. This contradicts the fact that
card(post f) > 3. Thus, without loss of generality, we can assume that f(e7) D ejUed. In
order to show that Case (3) holds, it suffices now to verify that f(e?\ {v1}) N&™(vy) = 0.
We argue by contradiction and assume that f(ef\ {v1})N&™(vo) # 0. Then f(ef\{vi})N
f(el) # 0. Since C is a Jordan curve and v; ¢ crit f|e, we get from Proposition BIT (i)
that f(e) U f(ef) = C. This contradicts the fact that card(post f) > 3. Therefore,
Case (3) holds.

(d) If Case (4) holds, then clearly card I = 2, vy ¢ crit f|c, and f(v1) = vg. Conversely,
we assume that card I = 2, vy ¢ crit fle, and f(v1) = vo. Without loss of generality,
we assume that f(e}) 2 ef and f(e}) D €. In order to show that Case (4) holds, by
symmetry, it suffices to show that f (e} \ {vl}) Ne2 = 0. We argue by contradiction and
assume that f(el\ {v1}) Ned # 0. Then f(e} \ {v1}) N f(e}) # 0. Since C is a Jordan
curve and vy ¢ crit f|e, we get from Proposition BIT (i) that f(e) U f(e}) = C. This
contradicts the fact that card(post f) > 3. Therefore, Case (4) holds.

(e) If Case (5) holds, then clearly card I = 2 and v; € crit f|c. Conversely, we assume
that card I = 2 and v; € crit f|c. Since vy € crit fle, f(e}) = f(e) € E™! by Proposi-
tion BIT (i). Without loss of generality, we assume that f(e}) N f(e?) 2 ¢j. In order to
show that Case (5) holds, it suffices now to show that f(e}) Nef\ {vo} = 0. We argue
by contradiction and assume that f(ef) Ne3 \ {vo} # 0. Since ¢ ¢ f(e}) € E™! (see
Proposition B.11] (i)), by Lemma (i), f(et) Ninte(ef) = @. Thus e} \ inte(ed) C f(e})
as we already know vy € ej C f(e1). Since f(ej) is connected and C is a Jordan curve, we

get f(el) Ueg = C. This contradicts the fact that card(post f) > 3. Therefore, Case (5)
holds. O]

Lemma 5.6. Let f and C satisfy the Assumptions. We assume in addition that f(C) C C.
Then

n

m(f|C>_Z(%m(pn—z)) - U %m+n(x)7
=0 :L‘EEm(pmpnflv---7p1§PO)

for all m € No, n € N, and p; € CNV™(f,C) for each i € {0,1,...,n}. Here &™ is
defined in (5.14) and E,, in ([5.13).

Proof. We fix m € Ny and an arbitrary sequence {p; }ien, in CN'V™. We prove the lemma
by induction on n € N.
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For n =1, we get
" (p1) N (fle) ™ (" (o) €& (@) | @ € (Fle) ™ (o), = € =" (1)}
= U @
@€ Em(p1;po)

by (515), Proposition BT (ii), and the fact that &™(z) N &™(p;) = O if both z €
CNV™and 2 ¢ ®(p;) are satisfied (see Lemma (ii)).

We now assume that the lemma holds for n = [ for some integer [ € N. Then by the
induction hypothesis, we have

I+1

ﬂ(f|0)_i(3em(29l+1—i))

1=0

= () 0 (7)™ () )

=1

Ca™(p1) N (f|c)_1< U aemﬂ(x))
€ Em (p1, P11, -+, P1;P0)

C

(™ (pre1) N (Fle) ™ (=™ ()

z€Em (p1,P1—1, - P1;P0)

-

-

(U= w) |y € (Flo) @), y € " (pren)})
U =",

T€EEm(p1,Pi—1, - P1;P0) YEEm (P141; %)

where the last two lines are due to (B.13l), Proposition BIT] (ii), and the fact that
2™ (y) N ae™(pryy) = 0 if both y € CN V™ and y ¢ ®™(py1) are satisfied (see
Lemma (ii)).

By Lemma 5.4 we get

TE€Em (p1, P11, -+, P15P0)

-

I+1
m(ﬂC)_Z(aem(pl—i-l—i)) C U ™ (1)
i=0 €L (P141,P1s - P13 P0)
The induction step is now complete. O

Proposition 5.7. Let f and C satisfy the Assumptions. We assume in addition that
f(C) C C and no 1-tile in X (f,C) joins opposite sides of C. Then

(5.16) card(E (Pn, Pot, -- -, P1; Do) < m20m
for allm,n € N with m > 14, and p; € CNV™(f,C) for each i € {0,1,...,n}. Here E,,
is defined in (5.13).

Proof. We fix m € N with m > 14, and fix an arbitrary sequence {p;};en, of m-vertices
inCNvV™
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For each n € N, we write E,,,, := Ey(Pn, Pn-1, - --, P1; Po). Note that for each n € N,
by (B.15),
(517) Em,n = Em(pna Pn—15 -+, D1, pO) g Em(pn)>

where @" is defined in (5.14). We denote by e, 1,e,2 € E™ the unique pair of m-edges
with e, 1 Ue,o =&"(p,) and e,1 Ne,o = {pn}. For each i € {1,2}, we define

card(Em,n N en,i) if Em,n M en \ {pn} # ®>
0 otherwise.

(5.18) L, = {

We first observe that by (5.15), (5.17), Lemma [5.4] and the fact that f is injective on
each m-edge (see Proposition B.11] (i)), we get that

(5.19) card B, 1 <2 and card B, 41 < 2card B, ,,,

for each n € N.
Next, we need to establish two claims.

Claim 1. For each n € N, if L, 1L, o # 0 then L, ; = L, 5.

We will establish Claim 1 by induction on n € N.

For n = 1, we apply Lemma (iii) with vg = po and v; = p;. By (B.15), it is easy to
verify that in Cases (1) through (4) discussed in Lemma (iii), we have Ly 1Ly2 = 0,
and in Cases (5) and (6), we have Ly ; = Ly .

We now assume that Claim 1 holds for n = [ for some integer | € N. We apply
Lemma[5.5] (iii) with vy = p; and v; = p;51. Then by (517) and LemmaBAlwith n = [, it is
easy to verify that in Case (1) discussed in Lemma[5.5 (iii), we have either L;y1 1Li412 =0
or Liy11 = Lip12 = 1; in Cases (2) and (3), we have L;;11L;412 = 0; in Case (4), we have
Ll+171 = L“f and LH_LQ = Ll,kH where ]{7, K c {1, 2} S&tiSfy f(€l+1,1> 2 €Lk, f(€l+1,2> 2 €Lk,
and k # k’; and in Cases (5) and (6), we have Ljy11 = Ljj10.

The induction step is now complete. Claim 1 follows.

Claim 2. For each n € N with card £, ,, > 4, the following statements hold:
(i) If card B, 41 < card E,, ,,, then

1
card By, 41 < B card Emn-‘ .

(ii) If card E,, 11 = card B, ,, and pp41 € crit fle, then
card(en41.1 N Epy 1) = card(ent12 N Epny)-
(iii) If card E,, 1 > card B, 5, then
(a) card(ept1,1 N By 1) = card(ent12 N Epnti),

(b) pnt1 € crit fle, and
(¢) Epmn Ce™ !t e E™! where €™ == f(eny11) = f(€ni12).
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To prove Claim 2, we first note that by (5.19), card £, ; < 2, so it suffices to consider
n > 2. We fix an integer n > 2 with card E,, , > 4. If such n does not exist, then Claim 2
holds trivially.

We will verify statements (i) through (iii) according to the cases discussed in Lemma[5.5] (iii)
with vg = pn, V1 = Ppi1, € = eni, and €} = e, 41, for each i € {1,2}.

Case (1). 1t is easy to see that card B, 41 < 2 < E card Emvn]

Case (2). We have p,.1 ¢ crit flc. Without loss of generality, we assume that
flent11) 2 eny, flensin) Nena \ {pn} = 0, and f(eny12) N&™(p,) = 0. Since f is
injective on each m-edge (see Proposition BI1 (1)), Enn C &"(pn) (see (BI5)), and
either L, 1L, 2 = 0 or L, = L, 2 by Claim 1, it is easy to verify from Lemma [5.4] that
either card £, 41 = card £, ,, or card )y, 41 < E card Emnw

Case (3). We have p,.1 ¢ crit flc. Without loss of generality, we assume that
flent11) 2 ®™(pn) and f(ent12 \ {Pni1}) NE"(pn) = 0. Since f is injective on each
m-edge (see Proposition B.I1] (1)), Eyn € & (py) (see (G.15])), and either L, 1L, 2 =0 or
L, = L, by Claim 1, it is easy to verify from Lemma [5.4] that card E,, ,+1 = card E,,, ,,.

Case (4). We have p,, 11 ¢ crit f|c. By PropositionB.111(i), f maps &™ (pn+1) bijectively

Ont0 f (@™ (prs)). Sice f(E™ (pusr)) D E™(pn) and Fopp C B (py) (se0 BIF), we get
card By, 41 = card E,, , by Lemma [5.4

Case (5). We have p,,1 € crit f|e C crit f. Without loss of generality, we assume that
.f(en-i-l,j) 2 €n,1 and .f(en-i-l,j) N €n,2 \ {pn} = @ for each ] € {17 2} Since Em,n g Em(pn)
(see (5.10)) and either L, ;L,9 = 0 or L,; = L, by Claim 1, it is easy to verify from
Lemma [5.4lthat either card E,,, 11 <2 < ’—% card Emn-‘ or card E,, ,,+1 > card E,, ,,. Note
that in either case, we have card(e,+11 N Emnt1) = card(en112 N Eppngr). Moreover, if
card E,, 11 > card E,, ,,, then it follows that L, » = 0, and thus E,,,, C e,1 C f(en+11) =
f(ent12) € E™ ! (see Proposition BT (i)).

Case (6). We have p,.1 € crit flc C crit f. Since f is injective on each m-edge
(see Proposition B.I1l (i)) and E,,, C &"(p,) (see (G.1H)), it is easy to verify that
card By, 11 > card E,,,, and E,,, C&™(p,) C f(ens11) = f(ens12) € E™! (see Propo-
sition B.1T1 (i)).

Claim 2 now follows.

Finally, we will establish (5.16) by induction on n € N. Recall that we assume m > 14.

For n = 1, by (519), card E,,,; < 2 < m2wm.

We now assume that (5.16]) holds for all n <[ for some integer [ € N. If card E,,,; < 8,
then (5.I6) holds for n = [ 4+ 1 by (5.19) and the assumption that m > 14. So we
can assume that card E,,,; > 8. Moreover, if card E,, ;11 < card E,,,;, then (5.16]) holds
for n = [ 4+ 1 trivially from the induction hypothesis. Thus we can also assume that
card By, ;41 > card E,, ;.

Since card E,,, 1 < 2 (see (5.19)) and card E,,; > 8, we can define a number

(5.20) k:=max{i e N|i <, card E,,; # card E,,,; } <1 — 1.

Note that [ > 3 and card E,,, , > %card Bkl = %card E,.;>4by (619).
We will establish (5.16) for n =1+ 1 by considering the following two cases:
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Case I. card E,, , > card E,,; = card E,, ;1. Then by (5.19) and Claim 2(i), we have

1
card By, 41 < 2card B, = 2 card 5, 1 < 2 b card Emk—‘

+1

<1l+card B, < 1—|—m2% SmQ% <m2m,

where the second-to-last inequality follows from the fact that the function h(z) = x(Q% -
1), z > 1, satisfies lim h(z) =log4 > 1, liIJP L h(z) =0, and %h(aj) > 0 for z > 1.
T—r+00

T—+00

Case II. card E,, , < card E,,; = card E,, x+1. Then by Claim 2(iii), we have pyyq €
crit fle. We define

(5.21) K =max{i e N|i <, p; € crit f|c} € [k +1,1].

Note that by (5.20), (5.2I)), and (E.19), we get card By, -1 > %cardEmvl > 4. By
Claim 2(ii) and (iii), regardless of whether &' = k 4 1 or not, we have

(5.22) card(eg 1 N B pr) = card(ex o N Eppr) > 2.

By Claim 2(iii), we have p;y1 € crit fle € V!, E,; C e™ ! € E™! where ¢! =
fleiz11) = f(err12). Note that f(p41) € VONe™ 1. We now show that &' < . We argue
by contradiction and assume that &’ > [. By (5.21)), ¥ = [. Then p; = py € crit f|o C V!
and p; = py € inte(e™ ') (see (5.22)). This contradicts the fact that no (m — 1)-edge can
contain a l-vertex in its interior. Thus &’ < [.

We now show that

(5.23) [— K >m—1.

Fix an arbitrary integer ¢ € [k’ +1,(]. Since card E,,,; = card B, ;—1 € [8,+00) (see (5.2]))
and (520)), f(Emi) C Emi1 (see (5I8)), and f=* is injective on ™! D E,,; (see
Proposition BTl (i), we get f(Em;) = Epi-1. By Proposition B (i), f'=% (em™!) €
Em1=4F Since f17F (em ™) D fF (Epy) = Emgp and fF is injective and continuous
on ™! (see Proposition BT (i)), it follows from (5.22) that py € inte(f'=* (em~1)).
Since py € crit fle € V1, we get m — 1 — 1+ k' <0, proving (5.23).

Hence by (£.19), (5.20), (5.21)), (5.23), and the induction hypothesis, we get

+1

card Eppy1 < 2card Epy = 2 card Ep g < 2m2'm < 2m2m < m2'm .

The induction step is now complete, establishing Proposition [5.71 O

Theorem 5.8. Let f, C, d, « satisfy the Assumptions. We assume in addition that f(C) C
C. Let ¢ € C**(S?,d) be a real-valued Holder continuous function with an exponent
. Recall the one-sided subshifts of finite type (X} ,04,) and (X ,04,) constructed in
Subsection[51l. We denote by (VO, flyo) the dynamical system on VO = VO(f C) = post f
induced by flyo: VO — VO, Then the following relations between the topological pressure
of these systems hold:

P(oa,pomom) = Ploa,pom)=P(fle,ple) < P(f,) > P(flve, ¢lvo)-
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Proof. The identity P(c4,, ¢ om om,) = P(oa,, ¢ om) follows directly from Lemma
and Holder continuity of m, and 7, (see Proposition [5.1]).

The strict inequalities P(f|c, ¢lc) < P(f, ) and P(f|vo),¢|vo) < P(f,¢) follow from
the uniqueness of the equilibrium state p4 for the map f and the potential ¢ (see The-
orem (1)), the fact that ps(C) = 0 (see Theorem (iii)), and the Variational
Principle (B:4) (see for example, [PrUL0, Theorem 3.4.1]).

We observe that since (C, fl¢) is a factor of (X} ,04,) with a factor map 7,: ¥} —
C (Proposition B (ii)), it follows from [PrUI0, Lemma 3.2.8] that P(oa,¢ o m) >
P(fle,¢le). It remains to show P(oa,pom) < P(fle,¢lc)-

By Lemma (ii) and Proposition Bl (vii), no 1-tile in X'(f™,C) joins opposite
sides of C for all sufficiently large n € N. Note that for all m € N, P(f™[c, S} ¢lc) =
mP(fle,¢lc) and P (o7, S (p o m)) = mP(oa,, ¢ om) (see for example, [Wal82, The-
orem 9.8]). It is clear that, without loss of generality, we can assume that no 1-tile in
X1(f,C) joins opposite sides of C.

We define a sequence of finite open covers {1; }ien, of C by

n; = {aei(v) }v eC F‘lV’}

for i € Ng. We note that since we are considering the metric space (C,d), #'(v) is indeed
an open set for each i € Ny and each v € C N V*. By Lemma B.I5 (ii),

lim max{diamy(V) |V € n;} = 0.

i——+00
n

Fix arbitrary integers I,m,n € N with [ > m > 14. Choose U € \/ (fle) " (nm)
i=0
arbitrarily, say

U= [(fle) ™ (" (pami)),
i=0
where pg, p1,...,p, € CN'V™. By Lemma [5.6]
U C U & (1),

2€EEm(Pn,Prn—1, .-, P1;P0)

where E,, is defined in (5.15]). It follows immediately from (B.8)) and Proposition B.IT] (i)
and (v) that
card{e't" € E""| " C e} < (deg f)""™ card(post f)

for each (m + n)-edge e € E™™™. Thus we can construct a collection E4™(U) C E!*" of
(I + n)-edges such that U C |JEH™(U) by setting

€l+n(U) — U {el—i-n e El+n ‘ el—i—n C Em+n (ZL’)}
TEEm (Pn,Pn—1, -+ P1;P0)

Then
card (£ (U)) < 2(deg )"~ card(post f) card(Ep,(Pn, Pa—ts - -, P1; Po))
(5.24) < 2m2w (deg f)!~™ card(post f),

where the last inequality follows from Proposition [5.7]
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Hence by (B.6]), Lemma B.24] and (5.24]), we get

P(fle,¢lc) = lim  lim lim —1og1nf{2exp (sup{Slp(z) |z € U})}

m—+o00 [—+ocon—+00 N,
Uveg

> lim lim lim —loglnf{z Z exp (sup{SIp(z ‘erﬂU})}

m——+00 [—+oo n—+00 N, Uet ecslin(U) Card(ﬁ“’”(U))

f
> lim lim lim —loglnf{z Z exp Sup{Sap ‘zee})}

m—+00 [—+4ocon—+o0o N Uct ccoirmu) 2m2 deg f)l m )

f
log Z exp sup{S o(z ‘x € e})

> lim lim lim —
2m2m (deg f)l=mD

m—+o00 l—++ocon—+oo N
ecE!tn
eCC

= lim lim lim —<log Z exp(supSf (x )) —log(QmQ%(degf)l_mD)>

m—+0o0 [—+ocon—+oco N x€e
ecEl*n
eCC
= lim lim — log g exp sup{ () }x € e}),
l—+ocon—+o0o N
ecEl*n
eCC

where the constant D > 1 is defined to be D = card(post f) exp(Cy(diamg(S?))®) with

Cy = C1(f,C,d,¢,a) > 0 depending only on f, C, d, ¢, and « defined in (BI7), and

the infima are taken over all finite open subcovers £ of \/ (flc) " (nm), i.e., € € {g ‘ ¢ C
i=0

V (fle) (), Us =C } The second inequality follows from Lemma [3:24], and the last

i=0

inequality follows from the fact that

coU(Ue ) =UUerw) 2Js=c

Ue¢ Ueg

and thus |J &7"(U) = {e e E"*"|e C C}.
Ue¢
Finally, we will show that

P(oa,pom) = zk?wngrfooﬁ log %; exp Sllp{ (x) }x € e}).
ee n
eCC

We denote by C),(eq, €1, ..., e,) the n-cylinder set
Chleo, €1, ... €)= {{€} }ien, € by ‘ ¢; = ¢; for all i € Ny with i <n}

in ¥} containing {e; }ien,, for each n € Ny and each {e;}ien, € X% . For each n € Ny, we
denote by €, the set all n-cylinder sets in ¥} Lie, €, = {Cn(eo,el, cey€n) } {ei}ien, €
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ZXI}. Then it is easy to verify that for all n,l € Ny, €, is a finite open cover of ZXI, and

V a;f(&) = €;1,,. Hence by ([B.6]), Lemma B.37, and Proposition .11 (i), we have
i=0
P(UA,a @ o 7TI)

= lim lim 1 log inf{ Z exp (sup Syt (po ﬂ.)(é))

l—>+ocon—+o00 N
Vey zeV

Y C \n/a;f(etl), Uy = z;}

=0
: 1 A,
- b 3 ({5 o] v))
l+n

= lim lim l1og Z exp(sup{S,{gp(:B)}:Eee}).

l—+ocon—+oco N

ecEltn+1
eCC

Hence, P(flc,¢lc) > P(oa,, ¢ om). The proof is therefore complete. O

5.4. Deduction of Theorem [1.3] from Theorem In this subsection, we give a
proof of Theorem [[.3] assuming Theorem [L5l

Proof of Theorem[1.3. We choose Ny € N as in Remark [[.4] Note that P(fi, —sOSZ.qu) =
iP(f,—so¢) = 0 for each i € N (see for example, [Wal82, Theorem 9.8]). We observe that
by Lemma [3.17] it suffices to prove the case n = Ny = 1. In this case, F' = f, & = ¢,
and there exists a Jordan curve C C S? satisfying f(C) C C, post f C C, and no 1-tile in
X1(f,C) joins opposite sides of C.

In this proof, we write l4(7) == > ¢(y) and deg(7) := [] deg;(y) for each primitive

YyeT yeT
periodic orbit 7 € B(f) and each y € 7.

Claim 1. The dynamical Dirichlet series Dy 4 qeq, converges on the open half-plane
Hy, = {s € C[R(s) > so} and extends to a non-vanishing holomorphic function on the
closed half-plane H;, = {s € C|R(s) > so} except for the simple pole at s = s.

We first observe that by the continuity of the topological pressure (see for example,

[PrU10, Theorem 3.6.1]) and Theorem [5.8] there exists a real number €, € (0, min{€y, so})
such that P(f|vo, —(so — €))®|vo) < 0 and

P(oa,, =(s0 — €g)pomom) = Ploa, —(so —€)pom) <0.

Here ¢y > 0 is a constant from Theorem depending only on f, C, d, and ¢.

By Lemma [342] Remark 343 Proposition (ii), and the fact that ¢ is eventually
positive, each of the zeta functions (y| q, g0+ Con,~goms a0 Coy | —gomom, CONVErges uni-
formly and absolutely to a non-vanishing bounded holomorphic function on the closed
half-plane H,,_ = {s € C|R(s) > so — €)}-

On the other hand, for each n € N, we have P (s ,)» C P s+, and by Proposition (.1}

(7 0 Wll)(Pl,ag“) cm (P1,o;;l) C Pi ey © Prgn.
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Thus by (8:38), (8.37), and Theorem [5.3] we get that for each s € Hj,,

CO'AI , —om, (S)Cf\vo, —¢|VO (S)
CUA,,7 *¢>07T.07T..(3) .

(525) ©f7 _¢7degf(8) = CUAA,—¢°7TA(S)

Claim 1 now follows from statement (i) in Theorem and the discussion above.
Next, we observe that by (3.40) and (3.41)) in Proposition B.44]

(5260 Gools) I (1) =D paee, () [] (1 degy(r)e o)
TE€P>(flyo) T€P> (flyo)

for all s € C with R(s) > so, where

(5.27) P~ (flvo) = {7 € B(flvo) | degy(r) > 1}

is a finite set since V? = post f is a finite set.
We denote, for each 7 € B~ (f|vo),

Br = deg; (T)e%0le(™),

Fix an arbitrary 7 € B~ (f|vo). We show now that 1 — 3, > 0. We argue by con-
tradiction and assume that 8, > 1. Let k := card 7, and fix an arbitrary y € 7. Then
y € Py prm for each m € N. Thus by Proposition [3.31]

0= P(f,~500) > Tim 1 log(deggun (y) xp( 0], 0(0))

m—+
L 1 my _ log B-
—mgrfm—mlog(@ ) = - > 0.

This is a contradiction, proving 1 — 3, > 0 for each 7 € P~ (f|vo).
Claim 2. We have 1 — 8, > 0 for each 7 € P~ (f|vo).

We argue by contradiction and assume that there exists n € B~ (f|vo) with 1 — 3, = 0.
We define a function w: S? — C by

() = {gegf(:v) if v € S?\ n,

otherwise.

Fix an arbitrary real number a > sy. By (8.9), Proposition B.31] and Corollary 3.34]
for each n € N,

n—1

limEUp%bg > exp(—aS.0(y) [[w(f (v)
n——+o00 yEPy n i=0
<limsup log Y degy () exp(~aS,6(0) = P(f. ~ag) <0,

YeP
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Hence by Lemma [3.42] and Theorem B.19 (ii), ®, 4 »(s) converges uniformly and abso-

lutely on the closed half-plane H,, and
(5.28)

—1
Dspuls) = ] <1 - degf(7)6_81¢(T)) =Dy, -5, deg, () <1 - degf(ﬁ)6_5l¢("))
T€P(F)\{n}
for s € H,. Note that by our assumption that 1 — 3, = 0, we know that 1—degf( )esle ()
is an entire function with simple zeros at s = so + ijho, j € Z, where hy = ; (n Note
that l,(n) > 0 since ¢ is eventually positive (see Definition [3.32)). Since Dy 4 aeg, has

a non-vanishing holomorphic extension to H,, except a simple pole at s = sy, we get
from (5.28) that Dy, 4, has a holomorphic extension to H,, with D 4 ,(so) # 0 and
D¢ ¢ w(so+1ijho) =0 for each j € Z\ {0}.

On the other hand, for each s € H,,

n—1
(5.29) —s5né(a H < Z Z e RS d(@) H w(f'(z)).
n=1 xEPl S =0 n=1 xEPl T =0

Since a > sq is arbitrary, it follows from (3.35), (IBTZQI) and Dy, 4 (o) # 0 that

Z Z —(a+1bsn¢(x H (fz( ))

n=1 (EGPl S 1=0

lim sup < +00

a—)so

for each b € R. By (3.38)), this is a contradiction to the fact that ®, _ ,, has a holomorphic
extension to Hy, with ©y 4 (so + ijho) = 0 for each j € Z \ {0}. Claim 2 is now
established.

Hence

1—deg, (1) exp(—slg (7))
TE‘J3>1_([f\Vo) 1—exp(—slg (7))
closed half-plane H,, ., for some €y € (0, ¢)).

Statement (i) in Theorem [[.3] now follows from Claim 1 and (5.26]).

To verify statement (ii) in Theorem [[.3] we assume that ¢ satisfies the a-strong non-
integrability condition. By statement (ii) in Theorem and the proof of Claim 1,
D, -4, deg, extends to a non-vanishing holomorphic function on H,, e, except for the simple
pole at s = sg. Moreover, for each € > 0, there exists a constant C! > 0 such that

exp (—ClS(5)[**) < Dy, _g,dee, (5)| < exp (CUS(s)[*™)

is uniformly bounded away from 0 and 400 on the

for all s € C with |R(s) — so| < ¢, and |J(s)| > b, where b, == b. > 0 is a constant from

Theorem depending only on f, C, d, ¢, and e. N
Therefore, statement (ii) in Theorem [[.3] holds for a. := min{ey, a.} > 0, b = b. > 0,

and some constant C, > C’ > 0 depending only on f, C, d, ¢, and e. 0

6. NON-LOCAL INTEGRABILITY

This section is devoted to characterizations of a necessary condition, called non-local
integrability condition, on the potential ¢: S? — R for the Prime Orbit Theorems for
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expanding Thurston maps. The characterizations are summarized in Theorem [6.4l In
particular, a real-valued Holder continuous ¢ on S? is non-locally integrable if and only if
¢ is co-homologous to a constant in the set of real-valued continuous functions on S?. As
we will eventually show, such a condition is actually equivalent in our context to the Prime
Orbit Theorem without an error term (see Theorem [[7)). In our proof of Theorem [6.4]
we use the notion of orbifolds introduced in general by W. P. Thurston in 1970s in his
study of geometry of 3-manifolds (see [Th80, Chapter 13]).

6.1. Definition and charactizations. Let f: S? — S? be an expanding Thurston map,
d be a visual metric on S? for f, and C C S? be a Jordan curve satisfying f(C) C C and
post f C C. Recall the one-sided subshift of finite type (ZL, O’AA) associated to f and C
defined in Proposition In this section, we write E}r’c = ZL and 0 = 0y4,, ie.,

(6.1) YF o = {{Xi}iew | Xs € X!(£,C) and f(X;) 2 Xy, for i € Ny},

and o is the left-shift operator defined by o({X;}ien,) = {Xit1}ien, for {Xi}ien, € X7 -
Similarly, we define

(6.2) Y7 o= {{X ibien, | X € XN(f,C) and f(X_(i11)) 2 X4, for i € No}.

For each X € X1(f,C), since f is injective on X (see Proposition 3111 (i)), we denote the
inverse branch of f restricted on X by fy': f(X) — X, ie., fx' = (flx)™"

Let ¢ € C%*((S2,d),C) be a complex-valued Holder continuous function with an ex-
ponent a € (0,1]. For each § = {£ i }ien, € X} ¢, we define the function

+00
(63)  ALL(my) = ((Wofiloof ) (@)= (Wofito-of!) )
=0
for (r,y) e |J X xX.
XeX!(f,0)
XCf(éo)

We will see in the following lemma that the series in (6.3) converges.

Lemma 6.1. Let f, C, d, ¥, « satisfy the Assumptions. We assume in addition that
f(C) CC. Let & = {&i}ien, € X5 . Then for each X € X'(f,C) with X C f(&) and

each triple of x,y,z € X, we get that Ai’é(z,y) as a series defined in (6.3) converges
absolutely and uniformly in x,y € X, and moreover, the identity

(6.4) ALz, y) = ALz y) — ALS (2, @)
holds with
Al y)| < Cudlay),

where Cy = C1(f,C,d, v, «) is a constant depending on f, C, d, 1, and a from Lemma[3.24),

Proof. We fix X € X!(f,C) with X C f(&). By Proposition 311l (i) and LemmaB.15 (ii),
for each 7 € Ny,

(o fioofy)w) = (boflo ol )W)
(6.5) < 1o, (s2.0 diama (e 0 0 f ') (X)) S Tl (52,0 CAT
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for x,y € X, where C' > 1 is a constant from Lemma [B.I5l Thus the series on the
right-hand side of (6.3]) converges absolutely. Hence by (6.3)), Aicg(:c,y) = Ai’é(z, y) —
Ai’é(z,x). Moreover, by Proposition B.I1l (i), Lemma 324 and (G.H), for each pair of
r,y € X, and eachj e N,

\Awy\— (o ft oo ) = (o oo £ )
s -1 -1 -1 -1 |¢‘ (52,d)
< Z((wofs_io'”ofso (@) = (o fe o ofy)w) ZW
i=0 i=j
< Cud(,y)" + [, 52 C*(1 — A A,
We complete our proof by takmg Ji to infinity:. O

Definition 6.2 (Temporal distance). Let f, C, d, ¥, « satisfy the Assumptions. We
assume in addition that f(C) C C. For § = {{ i}ien, € ¥ and 7 = {n.i}ien, € X} ¢

with f(&) = f(no), we define the temporal distance @Dgs as

(66) ¢5 n (SL’ y) AQE(I’? y) - Ai’i(l’, y)
for
@y e |J Xxx
XeXx!(f,0)
XCf(&)

Recall that f™ is an expanding Thurston map with post f” = post f for each expanding
Thurston map f: S? — S? and each n € N (see Remark B.14]).

Definition 6.3 (Local integrability). Let f: S? — S? be an expanding Thurston map
and d a visual metric on S? for f. A complex-valued Holder continuous function ¢ €
C%((S%,d),C) is locally integrable (with respect to f and d) if for each natural number
n € N, and each Jordan curve C C 52 satisfying f"(C) C C and post f C C, we have

"

(6.7) (Sfe)! (@ y) =0

for all § = {{-i}ien, € Y cand n = {n-i}iew, € Y o satistying f™(&) = f"(m0), and all
(x,y) € U X x X.

XeX!(f.C)
XCfm(%o)

The function v is non-locally integrable if it is not locally integrable.

The main theorem of this section is the following characterization of the local integra-
bility condition.

Theorem 6.4 (Characterization of the local integrability condition). Let f: S? — 5% be
an expanding Thurston map and d a visual metric on S* for f. Let ¢ € C%*((S?,d),C)
be a complez-valued Holder continuous function with an exponent o € (0,1]. Then the
following statements are equivalent:
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(i) The function v is locally integrable (in the sense of Definition[6.3).
(ii) There exists n € N and a Jordan curve C C S? with f*(C) C C and post f C C
such that
fm.c
(Siv)e, (z,y) =0

for all § = {& i}ieny € Xy ¢ and = {n_i}ien, € Ep ¢ with f"(&o) = ["(m0), and
all (z,y) € U XxX.

XeX(f.C)

XCf™ (&)

(iii) The function 1) is co-homologous to a constant in C(S?,C), i.e.,
b=K+pof—p
for some K € C and 8 € C(5?%,C).
(iv) The function 1 is co-homologous to a constant in C%*((S?,d),C), i.e.,

Yp=K+T1of—1T
for some K € C and 7 € C**((S%,d),C).

(v) There existsn € N and a Jordan curve C C S? with f*(C) C C and post f C C such
that the following statement holds for F == f*, U = S/, the one-sided subshift
of finite type (ZL,UAA) associated to F' and C defined in Proposition [3.38, and
the factor map my: X} — S* defined in (3.33):

The function Yo, is co-homologous to a constant multiple of an integer-valued
continuous function in C(X} ,C), i.e.,

Vomy=KM+wooy, —w
for some K € C, M € C(EL,Z), and w € C(ZL,C).
If, in addition, 1 is real-valued, then the above statements are equivalent to

(vi) The equilibrium state ., for f and ¢ is equal to the measure of mazimal entropy

po of f-

We will prove Theorem in Subsection after we introduce orbifolds associated to
Thurston maps in the next subsection.

It follows from Theorem and Theorem (ii) that the non-local integrability
condition is a necessary condition for the Prime Orbit Theorem.

Corollary 6.5. Let f, d, ¢, so satisfy the Assumptions. Let ws4(T), for T > 0, denote
the number of primitive periodic orbits T € PB(f) with weighted length l,(T) no larger than
T (as defined in (LI0) and (1.9)). Then 7s4(T) ~ Li(e*T) as T — +oo implies that ¢
is mon-locally integrable (in the sense of Definition[0.3).

Proof. We assume that my,4(T) ~ Li(e*”) as T — +o0. Thus

esoT

(6.8) Tro(T) ~ T

as " — +oo.
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We argue by contradiction and assume that ¢ is locally integrable. Then by Theo-
rem [6.4],

(6.9) p=K+pof-p

for some K € C and 8 € C((5?%,d),C). By taking the real part on both sides of (6.9]) and
due to the fact that ¢ is eventually positive (see Definition [3.32]), we can assume without
loss of generality that K € R with K > 0. By (6.9), S,¢(x) = nK for each n € N and
each x € Py ¢n.

We note that by Proposition B.31 and Theorem (ii),

P10 i Lg 5 et B0 )

K n—-+oo N K
yEPl,fn
.1 (deg /)" +1
= lim —log( —22L T-) =
Jim () =0

Thus by Corollary 3.34], sg = %.

Denote a finite set M = post f N U:;olo P, ji consisting periodic postcritical points.
Observe that we can choose positive integers 2 < N; < Ny < --- < N,, < --- such that
for each m € N and each integer n > N,,,

1
(6.10) card M < E(deg .

Then by [Lil6, Lemma 5.11], there exist constants C' > 0 and € € (0, 1] depending only
on f such that for each m € N,

(6.11) ! G Z deg s (z) < Cm™ for n > Np,.

(deg f)" =
Note that if z € S?\ M is periodic,

(6.12) degi(z) =1 for all i € N.

Recall that deg f > 2. Fix arbitrary m € N and n > N,,,. Then

esonK B (deg f)n

(6.13) sonk  nlog(deg f)’
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Since n and n — 1 are coprime, by Theorem (ii), (612)) and (€.11)),

Tro(nK) > card PB(i, f) + > card B(j, f) — card B(1, f)

tn jln—1
card P f card P; ¢
> L1 —
> Zl — deg f
iln jln—
2caurd(PLfn \ M) N card(Py g1 \ M) 1~ deg f
n n—1
1-— ~)(d "4+ 1 11— —)(d =l
(= Cm)deg f) +1 | (L= Cm-)(deg " +1
n n—1
2(1—C’m )(deg f) -1+degf—1—degf.
n deg f
Combining the above with (G.I3) we get
K 1-— € o1 1
lim sup % > limsuplimsup<( Cm*)(deg f) s deg f —1- degf) M
n——+o00 ZonK m—+400 n—+00 n deg f (deg f)"
1+ deg f 3
= —log(d > —log2 > 1.
dos f og(deg f) = 5 log2 >

This contradicts (6.8)). O

6.2. Orbifolds and universal orbifold covers. In order to establish Theorem [6.4], we
need to consider orbifolds associated to Thurston maps. An orbifold is a space that is
locally represented as a quotient of a model space by a group action (see [Th80, Chap-
ter 13]). For the purpose of this work, we restrict ourselves to orbifolds on S?. In this
context, only cyclic groups can occur, so a simpler defintion (than that of W. P. Thurston)
will be used. We follow closely the setup from [BMI17].

An orbifold is a pair O = (5, a), where S is a surface and a: S — N=NU {+o0} is
a map such that the set of points p € S with a(p) # 1 is a discrete set in S, i.e., it has
no limit points in S. We call such a function a a ramification function on S. The set
supp(a) == {p € S|a(p) > 2} is the support of a. We will only consider orbifolds with
S = 52, an oriented 2-sphere, in this paper.

The Euler characteristic of an orbifold O = (S?, a) is defined as

O =2- 3 (1- )

z€S2

where we use the convention %O = 0, and the terms in the summation are nonzero on a

finite set of points. The orbifold O is parabolic if x(O) = 0 and hyperbolic if x(O) < 0.
Every Thurston map f has an associated orbifold O; = (52, ay), which plays an im-
portant role in this section.



74 ZHIQIANG LI, TTANYI ZHENG

Definition 6.6. Let f: S? — 82 be a Thurston map. The ramification function of f is
the map a;: S? — N defined as

(6.14) ay(z) =lem{degm(y) |y € S*,n €N, and f*(y) =z}
for x € S2.

Here N = NU {+00} with the order relations <, <, >, > extended in the obvious way,

and lem denotes the least common multiple on N defined by lem(A) = +o0 if A C N is
not a bounded set of natural numbers, and otherwise lem(A) is calculated in the usually
way.

Note that different Thurston maps can share the same ramification function, in parti-
cular, we have the following fact from [BM17, Proposition 2.16].

Proposition 6.7. Let f: S? — S? be a Thurston map. Then ay = ayn for each n € N.

Definition 6.8 (Orbifolds associated to Thurston maps). Let f: S? — S? be a Thurston
map. The orbifold associated to f is a pair O; = (S? ay), where S? is an oriented

2-sphere and a;: S? — N is the ramification function of f

Orbifolds associated to Thurston maps are either parabolic or hyperbolic (see [BM17,
Proposition 2.12]).

For an orbifold O = (52, ), we set
(6.15) Sg = 5*\{z € 5| a(z) = +oo}.

We record the following facts from [BM17], whose proofs can be found in [BM17] and
references therein.

Theorem 6.9. Let O = (S «) be an orbifold that is parabolic or hyperbolic. Then the
following statements are satisfied:
(i) There exists a simply connected surface X and a branched covering map ©: X — S3
such that
dege (7) = a(O(x))
for each x € X.
(ii) The branched covering map © in (i) is unique. More precisely, zf§§ is a simply
connected surface and ©: X — S§ satisfies degg(y) = a(é(z)) for each y € X,
then for all points xy € X and zy € §§~with O(zo) = O(Zy) there exists orientation-

preserving homeomorphism A: X — X with A(xg) = Zg and © = ©o A. Moreover,
if a(©(xg)) =1, then A is unique.

See Theorem A.26 and Corollary A.29 in [BM17].

Definition 6.10 (Universal orbifold covering maps). Let O = (5% a) be an orbifold that
is parabolic or hyperbolic. The map ©: X — S2 from Theorem is called the universal
orbifold covering map of O.

We now discuss the deck transformations of the universal orbifold covering map.
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Definition 6.11 (Deck transformations). Let O = (S? a) be an orbifold that is par-
abolic or hyperbolic, and ©: X — S2 be the universal orbifold covering map of 0. A
homeomorphism o: X — X is called a deck transformation of © if © o 60 = ©. The group
of deck transformations with composition as the group operation, denoted by m(Q), is
called the fundamental group of the orbifold O.

Note that deck transformations are orientation-preserving. We record the following
proposition from [BM17, Proposition A.31].

Proposition 6.12. Let O = (S?, ) be an orbifold that is parabolic or hyperbolic, and
O: X — S2 be the universal orbifold covering map of O. Then for all u,v € X, the
following statements are equivalent:

(i) There exists a deck transformation o € m(O) with v = o (u).

(ii) ©(u) = O(v).

We now focus on the orbifold O; = (S?, a;) associated to a Thurston map f: 5% — 52
One of the advantages of introducing orbifolds is the ability to lift branches of inverse
map f~! by the universal orbifold covering map.

Lemma 6.13. Let f: S* — 52 be a Thurston map, Oy = (S? ay) be the orbifold associ-
ated to f, and ©: X — S2 be the universal orbifold covering map of Oy. Given ug, vy € X
with (f 0 ©)(vy) = O(uyp).
Then there ezists a branched covering map g: X — X with g(ug) = vy and
foBog=0.
If ug ¢ crit ©, then the map g is unique.
See Lemma A.32 in [BM17] for a proof of Lemma [6.13]

Definition 6.14. Let f: S* — S? be a Thurston map, O; = (S? ;) be the orbifold
associated to f, and ©: X — S2 be the universal orbifold covering map of O;. A branched
covering map ¢: X — X is called an inverse branch of f on X if fo©og= 0.

We denote the set of inverse branches of f on X by Inv(f).

Note that by the definition of branched covering maps, g: X — X is surjective for each
g € Inv(f).

Lemma 6.15. Let f and C satisfy the Assumptions. Let Oy = (5% ay) be the orbifold
associated to f, and ©: X — SZ be the universal orbifold covering map of O;. Then
there exists N € N such that for each n € N with n > N and each continuous path
7:10,1] — X\ ©~(post f), there exists a continuous path ~: [0,1] — X\ ©~(post f)
with the following properties:
(i) 7 is homotopic to ¥ relative to {0,1} in X\ ©~*(post f).
(ii) There exists a number k € N, a strictly increasing sequence of numbers 0 = ag <
ap < - < ap—1 < ap =1, and a sequence { X[ }icqi 2.k of n-tiles in X"(f,C)
such that for each i € {1,2,... k},

(© 07)((ai1,a:)) € inte(X"),

-----
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Let Z and X be two topological spaces and Y C Z be a subset of Z. A continuous
function f: Z — X is homotopic to a continuous function g: Z — X relative to Y (in X)
if there exists a continuous function H: Z x [0,1] — X such that for each z € Z, each
y€Y,and each t € [0,1], H(z,0) = f(2), H(z,1) = g(z), and H(y,t) = f(y) = g(y).

Remark. We can choose N to be the smallest number satisfying no n-tile joins opposite
sides of C for all n > N.

Proof. Since post f is a finite set, by Lemma [B.15 (ii), we can choose N € N large enough
such that for each n € N with n > N and each n-tile X™ € X" such that

(6.16) card(X" Npost f) < 1.

Fix n > N and a continuous path 7: [0,1] — X\ ©7!(post f).

We first claim that for each x € [0, 1], there exists an n-vertex v € V" \ post f and an
open interval I, C R such that z € I, and (© 0 5)(I,) C W"(v?) C Sz.

We establish the claim by explicit construction in the following three cases:

(1) Assume (Oo%)(x) € V™. Then we let v? := (©0o%)(x). Since (Oo7)(x) is contained
in the open set W™(v2), we can choose an open interval I, C R containing = with
(©07)(Ls) € Wn(vy) € S§.

(2) Assume (Oo7)(z) € inte(e”) for e® € E". Since card(e"Npost ) < 1 by (6.10]), we
can choose v € e"MNV™\post f C Sz. Then (©07)(z) € inte(e™”) C W™ (v?) C Sp.
Thus we can choose an open interval [, C R containing z with (0 o 7)(I,) C
Wn(vr) C S2.

(3) Assume (O o 7)(x) € inte(X") for X™ € X". By (6.16]), we can choose v} €
X"NV™\ post f € S2. Then (O o 7¥)(z) C inte(X™) C W™(v?) C S2. Thus we
can choose an open interval I, C R containing x with (@ 0%)(I,) C W"(v?) C Sz.

The claim is now established.

Since [0,1] is compact, we can choose finitely many numbers 0 = 2y < 27 < -+ <

Ty < ), = 1 for some m’ € N such that |J I, 2 [0,1]. Then it is clear that we
i=1

can choose m < m’ and 0 = by < by < -+ < b1 < b,, = 1 such that for each

ie{1,2,...,m}, [bi—1,b;] C I, for some ji) €{1,2,...,m'}.
Fix an arbitrary 7 € {1,2,...,m}. From the discussion above, we have
(©07)([bi1,b]) € (©0F)(L,,) CW"(er ) C S2.
It follows from Remark B.I2] that we can choose a continuous path ~;: [b;_1,b;] —
Wn(vgj(i)) such that ~; is injective, ;(bi—1) = (© 0 7)(bi—1), 7i(b;)) = (© ©7)(b;), and
that for each n-tile X" € X" with X» C W" (vﬁj(i)), ~v; *(inte(X™)) is connected and
card(;'(0X")) < 2. See Figure Since W™ (vfjj (i)) is simply connected (see Re-
mark 3.12)), (© 0%)|p,_, 5] is homotopic to 7; relative to {b;_q, b;} in W™ (v;‘j(i)). It follows
from Definition [6.6] Definition [6.10, Lemma[3.5, and Lemma[3.6]that there exists a unique
continuous path 7;: [b;_1, b;] — X\ ©~(post f) such that © 07; = v; and 7; is homotopic
t0 |(p;_,,5,] relative to {b;_1,b;} in X\ ©7(post f).
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FIGURE 6.1. Homotopic curves in W" (vﬁj (i)).

We define : [0,1] — X\ ©7!(post f) by setting ¥|p, ,p) = Y- Then it is clear that
7 is continuous and homotopic to 7 relative to {0,1} in X\ ©~!(post f). It also follows
immediately from our construction that Property (ii) is satisfied. O

Corollary 6.16. Let f and C satisfy the Assumptions. Let O; = (S?, ay) be the orbifold
associated to f, and ©: X — S2 be the universal orbifold covering map of O;. For each
pair of points x,y € X, there exists a continuous path 7: [0,1] — X, numbers k,n € N,

a strictly increasing sequence of numbers 0 = ag < a1 < -+ < ax_1 < ar = 1, and a
sequence { X' }icqi,2,...ky of n-tiles in X"(f,C) such that ¥(0) = x, 7(1) =y, and
(6.17) (©07)((ai-1,0:)) S inte(X])

for each i€ {1,2,... k}.

Moreover, if {g;}jen is a sequence in Inv(f) of inverse branches of f on X, (i.e., foOo
g; = © for each j € N,) then for each m € N, there exists a sequence {X" ™ }icqi 0, 1} Of
(n 4+ m)-tiles in X" (f,C) such that

(6.18) (©0gmo---0gio)((aim1,a;)) C inte(X]™)

for eachi € {1,2,...,k}. Ifd is a visual metric on S* for f with expansion factor A > 1,
then

(6.19) diamg((© 0 gm0 - - - 0 g1 07)([0,1])) < kCA~ ™)
for m € N, where C' > 1 is a constant from Lemmal3.13 depending only on f, C, and d.

Proof. Let C C S? be a Jordan curve on S? with post f C C. Fix an arbitrary number
n > N, where N € N is a constant depending only on f and C from Lemma
Choose n-tiles X7, X™ € X"(f,C) with ©(z) € X and ©O(y) € X™. Since n-
tiles are cells of dimension 2 as discussed in Subsection [3.3] we can choose continu-
ous paths v,: [0,1] — 5% and ~,: [2,1] — SZ with 7,(0) = O(z), 1,(1) = O(y),

14
7:((0,1]) C inte(X7), and 7,((2,1]) C inte(X™). Since © is a branched covering
map (see Theorem [6.9), by Lemma 3.4 we can lift 7, (resp. 7,) to 7,: [0,1] — X (resp.

Yy: [2,1] = X) such that 7,(0) = z and © 07, = 7, (resp. 7,(1) =y and © 07, = v,).
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Since u == 7,(1) € ©~!(inte(X})) and v == 7,(2) € O~ (inte(X™)), we have {u,v} C
X\ ©~(post f). Since post f is a finite set and © is discrete, we can choose a continuous
path 7: [i, %] — X\ O (post f) with ?(i) = u and 3(%) = v. By Lemma [6.15] there
exists a number k € N, a continuous path ~: [i, %] — X\ ©7}(post f), a sequence of
numbers i = < ay < 0 < Qp_g < Qp_q = %, and a sequence {X7}icq23,. k-1} of
n-tiles in X"(f,C) such that v(1) = u, 7(2) = v, and

(© 07)((ai-1,0:)) S inte(X})

for each i € {2,3,...,k —1}.
We define a continuous path 7: [0, 1] — X by

Y.(t) ifte0,1),
() =) ifte 39,
Fy(t) ifte (3,1].
Let X' == X", ap =0, and a; = 1. By our construction, we have 7(0) = x, 7(1) = v,
and
(© 07)((ai-1,a:)) € inte(X]")
for each i € {1,2,...,k}, establishing (6.17).

Fix a sequence {g;};en of inverse branches of f on X in Inv(f). Fix arbitrary integers
m € Nand i€ {1,2,...,k}. Denote I; = (a;_1, a;).

By (6.17), each connected component of f~™((©07%)(l;)) is contained in some connected
component of f~"(inte(X")). Since both (© o0 g, o0---0g;07)(;) and f"((©ogno---o
g107)(L;)) = (©07)(1;) are connected, by Proposition B.11] (i), (ii), and (v), there exists
an (n + m)-tile X" € X" (f C) such that

(@0 Gmo---o0gio7)(I;) Cinte(X ™).

Since m € N and i € {1,2,...,k} are arbitrary, (G.I8) is established. Finally, it is clear
that (619) follows immediately from (G.I8) and Lemma (ii). O

If we assume that f is expanding, then roughly speaking, each inverse branch on the
universal orbifold cover has a unique attracting fixed point (possibly at infinity). The
precise statement is formulated in the following proposition.

Proposition 6.17. Let f, d, A satisfy the Assumptions. Let Oy = (5%, ay) be the orbifold
associated to f, and ©: X — SZ be the universal orbifold covering map of Oy. Given a
branched covering map g: X — X satisfying f o © o g = ©. Then the map g has at most
one fixed point. Moreover,

(i) if w € X is a fized point of g, then ,liin G'(u) =w for allu € X;
1—>+00
(ii) if g has no fized point in X, then f has a fived critical point z € S? such that
,li+m O(g'(v)) = z for all u € X.
1—>+00

Proof. Fix an arbitrary Jordan curve C C S? on S? with post f C C.
We observe that it follows immediately from statement (i) that g has at most one fixed
point.
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(i) We assume that w € X is a fixed point of g. We argue by contradiction and assume

that §'(u) does not converge to w as i — +oo for some u € X. By Corollary (with
g; = g for each j € N), we choose a continuous path 7: [0,1] — X with ¥(0) = u,
(1) = w, and
(6.20) z£+moo diamy ((© 0 g’ 07)([0,1])) = 0.
Denote ¢ == ©(w). Since O is a branched covering map (see Theorem [6.9]), we can choose
open sets V C S2, U; C X, and homeomorphisms ¢;: U; — D, ¢;: V — D, for i € I, as in
Definition B.I] (with X =X, Y := 52, and f := ©). We choose iy € I such that w € U;,.
Then by our assumption there exists € (0, 1) and a strictly increasing sequence {k;}jen
of positive integers such that

9" (u) ¢ i, ({2 € Cll2| <1}
for each 7 € N.
For each j € N, since (ﬁkﬁ 0&')([0, 1]) is a path on X connecting §% (u) and g% (w) = w,
we have
(@ 07)([0,1) Npi' ({z € C|[2] =7}) # 0.
Combining the above with ([B.7) in Definition Bl we get

diam, (¢, 0 © 03" 07)([0,1))) = p(0, (i, 0 O 0 ) ({2 € C|[z] = })) = r*0 > 0

for j € N, where d;, := degg(w) as in Definition Bl and p is the Euclidean metric on C.
This immediately leads to a contradiction with the fact that 7 satisfies (6.20), proving
statement (i).

(ii) We assume that g has no fixed point in X. Fix an arbitrary point v € X. Let z := u
and y == g(u).

By Corollary (with g; = g for each j € N), there exists a continuous path
7v:[0,1] — X, numbers k,n € N, a strictly increasing sequence of numbers 0 =: ay <
a; < -+ < ag_1 < a, =1, and for each m € Ny there exists a sequence {szm}ie{o,l ,,,,, k)
of (n 4+ m)-tiles in X™*™ such that 5(0) = x, (1) = y, and

(6.21) (© 0™ o) (@i 1, a0)) C inte(X7+)
for each i € {1,2,...,k} and each m € Ny. Moreover, for each m € Ny,
(6.22) diamg((© o g™ 0 7)([0,1])) < kCA~+™).

where C' > 1 is a constant from Lemma depending only on f, C, and d.
Since ¥(0) = z and (1) = g(x), by ([6.22), for each m € N we have

(6.23) d(0(F™(x)), 07 (2))) < kCA=+™),
Since S? is compact, we get liIJrrl O(g™(z)) = = for some z € S%. Since (foOogmt!) =

© o g™ for each m € N, we have f(z) = z. To see that z is independent of z, we choose
arbitrary points 2’ € X and 2/ € S? with lirJIrl O(g'm(z’)) = 2’. Then by the same
m——+0o0

argument as above, we get f(z') = z/. Applying Corollary 610 (with y = z’), we get
z=2z.
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It suffices to show z € crit f now. We observe that it follows from (6.15]), (6.14]), and
f(2) = z that it suffices to prove z ¢ S3. We argue by contradiction and assume that
z € S3. Since © is a branched covering map (see Theorem [6.9]), we can choose open sets
V C Sgand U; C X, i € I, as in Definition Bl (with X = X, Y = 52, ¢ := 2, and
f = 0). By Lemma 317 (ii) and the fact that flowers are open sets (see Remark B.12), it
is clear that there exist numbers [, L € N, an [-vertex v' € V!, and an L-vertex v’ € VF
such that [ < L and

(6.24) 2 e WEHWP) C W' (oh) C W) C V.
By (6.23) there exists N € N large enough so that for each m € N with m > N, we have
OF"(x)  WH(vH) C V-
Since g has no fixed points in X, g™ (x) does not converge to any point in ©7!(2) as
m — +oo, for otherwise, suppose lirJIrl g™ (x) = p € X, then g(p) = p, a contradiction.
m——+0o0
Hence there exists a strictly increasing sequence {m;};en of positive integers such that
g™ (x) and g™t (z) are contained in different connected components of ©7!(V). Since
g™ (3(0)) = g™ (x), g™ (3(1)) = g™+ (x), and the set g™ (7([0,1])) is connected, we get
from (6.24)) that
(© g™ oF)([0,1]) NOWE (o) £ 0 £ (8 0 g™ o F)([0, 1]) N O (o).

This contradicts with (6.22). Therefore z € S? and z ¢ crit f. O

6.3. Proof of the characterization Theorem [6.4]. We first lift the local integrability
condition by the universal orbifold covering map.

Lemma 6.18. Let f, C, d, v satisfy the Assumptions. We assume in addition that

f(C) CC. Let Oy = (52, ) be the orbifold associated to f, and ©: X — S the universal
orbifold covering map of O. Assume that

(6.25) Wl (,y) =0

for all § == { i}ien, € Xfc and = {n_i}ien, € X5 with f(&) = f(m), and all
(x,y) e U X xX.

XeX(f,0)

XCf(&o)

Then for each pair of sequences {Gi}ien and {?Li}ieN of inverse branches of f on X,
(i.e., fo®og =0 and foOoh; =0 forieN,) we have

“+oo

(6.26) S ((Fogio0g)@—(dogio0g))

1=

:§<<@Ogio...ozl)<u>_ (Fofuor-on))

for u,v € X, where {E:: 10 O.
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Proof. Fix sequences {¢;};en and {TLZ'}Z'GN of inverse branches of f on X. Fix arbitrary
points u, v € X.
By Corollary [6.16] there exists a continuous path 7: [0, 1] — X, integers k,n € N, a

strictly increasing sequence of numbers 0 = a9 < a7 < --- < a1 < a; = 1, and a
sequence { X/ }icq1,2,.ky of n-tiles in X"(f,C) such that 7(0) = u, 7(1) = v, and
(6.27) (©o7)((ai-1,a;)) C inte(X}").

Moreover, for each m € N, there exist two sequences { X" }icq12, gy and {Y" ™ }icri2, k)
of (n + m)-tiles in X" (f,C) such that

(6.28) (©0Gmo---ogio7)((ai-1,a;)) C inte(X;™™)
and
(6.29) (@ 0 By o+ ohyo 7)((@i—1> a;)) € inte(Y;""™™)

for each i € {1,2,...,k}.

We denote ug = (ag) = u, u; :=(a;), and I; := (a;_1,a;) for i € {1,2,... k}.

Observe that it suffices to show that ([6.26]) holds with v and v replaced by u;_; and w;,
respectively, for each i € {1,2,..., k}.

Fix an arbitrary integer ¢ € {1,2,...,k}.

For each j € Ny, we denote by & ; the unique 1-tile in X! containing
denote by 1_; the unique 1-tile in X! containing Y;"H +

We will show that & = {{_;}jen, and 1 := {n_; },en, satisfy the following properties:

(1) &ne Xy

(2) f(&) = f(no) = X° 2 X} D (©07)(I). i i

(3) (©ogjpr10---0gi07) (L) € (fgjo-.-ofgol)(XO) and (Qohjy 0---0hoF)(I;) C
( lo...0 n_ol)(Xo) for each j € N.

=5

j+1
X+ and

(1) Fix an arbitrary integer m € Ny. We note that by (6.28)),
F(Eman) Ninte(Em) D F(XTF™H2) A inte(X1Hm+Y)
(6.30) 2(fe®ogmizo---0g10y)(L;)) N(O0gmiio---0g107)(L)
= (@0 gm0 0gio7) (L) # 0.

Since f (& (m+1)) € X (see PropositionB.I11(i)), we get from (6.30) that f (& n+1)) 2 Em.
Since m € Ny is arbitrary, we get { € ¥ .. Similarly, we have n € X7 ..

(2) We note that by ([€6.28), (6.29), and (6.27),
f(inte(&)) N f(inte(no)) N inte( X])
(6.31) D (foB®og o) (L) N (foBohyoF)(l;)Ninte(X) = (O 0F)(L;) # 0.

It follows from (G.3I)) and Proposition BT (i) that f(&) = f(m) = X° 2 X" O (B o
¥)(I;). This verifies Property (2).
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(3) We will establish the first relation in Property (3) since the proof of the second one
is the same. We note that by (6.28), it suffices to show that
(6.32) XN C (fh oo £ ) (XD)

for each j € N.
We prove ([6.32)) by induction on j € Ny.
For j = 0, we have fg_ol(XO) =& D X! by Property (2) and our construction above.
We now assume that (6.32)) holds for some j € Ny. Then by the induction hypothesis,
(6.28), and the fact that f is injective on & (j11) 2 XZ-"Jer (see Proposition B.17] (i)), we
get
(f{_tjﬂ) 0---0 fg}l)(XO) N inte(Xi"HH)

») fs_—:tj+1) (Xin+j+1) Ninte (Xirz+j+2) _ fﬁjﬁl) (XinJerrl N f(inte (Xirz+j+2)))
2 f o ((©0Gjo0giod)(L)N(fo®o0gjz0-0g07)(l))
= ey (O 0G5 00051 0F) (1),

The set on the right-hand side of the last line above is nonempty, since by (.28 and our
construction,

(©ogjr10-0G107) () = (fo®ogeo---0gi07) (L) C f(X]™?) C f(&yn).
On the other hand, since § € X} ., it follows immediately from Lemma [3.37 that
(6.33) (fé_—tjm 0---0 fg)l)(XO) e Xi*2,

Hence X1 C (fg_tjﬂ) oo fe 1) (X9).
The induction step is now complete, establishing Property (3).
Finally, by Property (3), for each m € Ny and each w € {u;_1, u;} we have

(B0 gniro---og)(w) C (f, oo fe ) (X).
Since f™ ! ((©0gmyr0---0g1)(w)) = O(w) and f™* is injective on (f ! o-- -0 fi 1) (X?)

(by (6.33) and Proposition B.ITI (i)) with (f™*'o f! o---0 fi ') (2) = x for each z € X",
we get
(©0Gmiro-oq)(w) = (fi) oo fi!)(O(w)).
Hence
+o00

Z((TZO@HO...oﬁl)(ui_l) — (Jogjﬂo...o:qvl)(ui))

J=0

3 ((vo s oo fat) O — (0 St o o £27) OFw)

= AL UO(uimy), O(uy)),
where Af;cg is defined in ([6.3)).
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Similarly, the right-hand side of (6.26]) with u and v replaced by w;_1 and u;, respectively,
is equal to Ai’,i(@(ui_l), O(u;)).
Since {O(u;—1),0(u;)} € X C f(&) = f(no) by Property (2), we get from (6.25) and
Definition [6.2] that
0= {1 (O(uir), B(w)) = ALG(O(uir), O(wi)) — AL (O(ui1), O(us).

Therefore (6.26]) holds with u and v replaced by u;_; and w;, respectively. This establishes
the lemma. 0

Proof of Theorem[6.4). In the case when ¢ € C%*(S? d) is real-valued, the implication
(vi) = (iii) follows immediately from Theorem 5.45 in [Lil7]. Conversely, statement (iii)
implies that S,y (z) = nK = S,,(K1g:2)(z) for all x € S? and n € N satisfying f"(z) = z.
So K € R. By Proposition 5.52 in [Lil7], the function f in statement (iii) can be assumed
to be real-valued. Then (vi) follows from Theorem 5.45 in [Lil7].

We now focus on the general case when ¢ € C%*((5?,d),C) is complex-valued. The
implication (i) = (ii) is trivial.

To verify the implication (iii) = (iv), we note that statement (iii) implies that
Spth(z) = nK = S, (Klg)(x) for all z € S* and n € N satisfying f"(z) = z. Now
statement (iv) follows from Proposition 5.52 in [Lil7].

To verify the implication (iv) = (i), we fix a Jordan curve C C S? satisfying post f C C
and f"(C) C C for some n € N (see Lemma [3.I7)). We assume that statement (iv) holds.
Denote F:== f* and ¥ == Sf¢p =nK +70F —71 € C%%((S?,d),C) (by LemmaB.33). Fix
any £ = {{i}ien, € g and n = {n_i}ien, € Xf e with F(§) = F(no). By (6.3), we get
that for all (z,y) e U X xX,

XeXL(F,C)
XCF (&)

AG§ay) = lim (7(0) —7(F o0 Fy(@) = () +7(Felo -0 F'(w) )
=7(x) = 7(y)-

The second equality here follows from the Holder continuity of 7 and Lemma (ii).

Similarly, we have Ag”f](x, y) = 7(x) — 7(y). Therefore by Definition [6.2] \Ifgnc(x, y)=0

for all (z,y) € |J X x X, establishing (i).

XeX!(FC)
XCF(o)

To verify the implication (iv) = (v), we define M = Iyt and @ = 7om,. Then (v)
follows immediately from Proposition [3.38]

To verify the implication (v) = (ii), we argue by contradiction and assume that
(i) does not hold but (v) holds. Fixn € N, C C S?, K € C, M € C’(ZL,Z), and
w e C(X},,C) asin (v). Recall F := f", ¥ = S/4), and

(6.34) Vory,=KM+wooy, —w.

Since ZXA is compact, we know that card(M (ZL)) is finite. Thus considering that the
topology on ZL is induced from the product topology, we can choose m € N such that
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M(u) = M(v) for all u = {u;}ien, € X}, and v = {v;}ien, € X, with u; = v; for each
1€ {0,1,...,m}. Fix g = {5,1-}1-61\10 - EEC, n = {ﬂfi}ieNo - EE’C7 X ¢ Xl(F,C), and
z,y € X with X C F(&) = F(no) and

U, y) £0

as in (ii). Since D = 5%\ U;ey, F'(C) is dense in S? by (64) in Lemma and
Definition [6.2] we can assume without loss of generality that there exists X € X" (F,C)
with z,y € X™\ D C X. Thus by Proposition B.38 7, is injective on 7, *(P) where
P = Ujen, F7'({z,y}). With abuse of notation, we denote by n;': P — 7;'(P) the
inverse of m, on P. Then by (6.3)), Proposition 3.38, and (6.34)),

+oo

Aye@y) =D ((Wom)o (mite Flomy) oo (w0 Ftomy)) (m ()

—((Wom)o (n;t o Frtoms) oo (npt o Bt oma)) (3 (1))

= 1im (w(m;'(#)) - @ (73 (1)
—(@o(m o Fom) o o (m o Bl omy)) (m (x))
F (o (r3t o Floma) o-oo (171 0 Fil o)) (73 (1) )
=w(m; ' (2) — = (72 ().

The last identity follows from the uniform continuity of w. Similarly, Agi(aj,y) =
w(my'(z)) — @w (7, (y)). Thus by Definition 6.2 \Ifg,f(x,y) = 0, a contradiction. The
implication (v) == (ii) is now established.

It remains to show the implication (i) = (iii).

We assume that statement (ii) holds. Fix n € N and a Jordan curve C C S? with
post f € C and f*(C) C C. We denote F := f", and ¥ = Sl € C%((S?,d),C) (see

Lemma [3.33)).
Let Op = (S?, ar) be the orbifold associated to F. By Proposition 6.7 we have

Or = Oy. Let ©: X — SZ be the universal orbifold covering map of Or = Oy, which
depends only on f, and in particular, is independent of n.

For each branched covering map he Inv(F), i.e., h:X > X satisfying F o © o h =0,
we define a function E};: X — C by

+oo

(6.35) Br(u) = > (W0 0) (I (u)) — ¥3)

i=1

for u € X, where

(6.36) U; = lim (0o 0)(h(u))

Jj—+oo

converges and the limit in (6.36)) is independent of v € X by Proposition 617
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Fix an arbitrary point u € X. We will show that the series in (6.35]) converges absolutely.
Note that it follows immediately from (6.19) in Corollary [6.16 (applied to x = wu and

y = h(u)) that there exists an integer £ € N such that for each i € N,

‘(xp 00)(h'(u)) — lim (¥ o ©)(h+(u)) ) < Z‘(qf 0 ©) (R (w)) — (¥ 0 ©) (R (u)) ‘

Jj—+oo
+00
S, kC o
<Y RCAT TN o o gy < TN P lleoasea)
j=1

where C' > 1 is a constant from Lemma depending only on f, C, and d. Thus the
series in ([6.35]) converges absolutely, and E,; is well-defined and continuous on X.

Hence, for arbitrary | € Ny and u € X, it follows from (6.19) in Corollary (applied
tor:=wuandy = E(u)) that

Bir(w) = S (T 0 ©) (R (u)) — (¥ 0 0) (A (B (w))))

i=1

< ;‘(qfo@)(w(u)) — lim (qfo@)(ﬁiﬂ'(u)))‘

+oo ‘

Jj—+oo
+oo 400 _ _
<> Y |woo) (T w) - (o 6) (W (w)|
i=1 j=I+1
+o0o 400 o kC
< Z Z ]{ZQCQA_(H—]_UQ ||\IIHCO,a(52’d) < m/\—la H\IIHCO’O‘(SQ,d) :
i=1 j=I+1
Hence for each u € X,
+oo
(6.37) Biu) = lim 3 ((¥o0)(h'(w) — (o) (A (W (u))).

We now fix an inverse branch g € Inv(F) of F' on X and consider the map Eg. Note
that by the absolute convergence of the series in ([6.35]), for each u € X,

(6.38) By(u) = B3(g(u) = ¥(O(g(u)) - ¥5.

We claim that gg(u) = fz(0(u)) for each u € X and each deck transformation ¢ €
m(Oy).

By Proposition and the fact that Oy is either parabolic or hyperbolic (see [BM17,
Proposition 2.12]), the claim is equivalent to
(6.39) Eg(u) = Eg(v), for all y € S* u,v € O~ (y).

We assume that the claim holds for now and postpone its proof to the end of this
discussion. Then by (6.39), the function 3: S2 — C, defined by

(6.40) Bly) = Bs(v)
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with v € ©!(y) independent of the choice of v, for y € S, is well-defined.

For each = € S2, by the surjectivity of g, we can choose uy € X such that O(g(ug)) = .
Note that O(ug) = (Fo©o0g)(uy) = F(x). So g(ug) € ©(z) and ug € ©*(F(z)). Then
by (6.38),

B(F(x)) = Blw) = By(uo) — B(G(uo)) = V(OG(up))) — ¥y = W(x) — V.

We will show that 8 € C%((X?\ post F,d),C) for each ¢ € {b,w}. Here X{ (resp.
X?) is the black (resp. white) O-tile in X°(F,C).

Fix arbitrary ¢ € {b,tv} and zg,yo € X? \ post F. Let v: [0,1] — X?\ post F' be an
arbitrary continuous path with v(0) = 2o, (1) = yo, and ((0,1)) C inte(X?).

By Lemma [B.4] we can lift v to 7: [0,1] — X such that © o5 = 7. Denote u = 75(0),
v=7(1), and I == (0,1). Thus

(6.41) (©07)(I) C inte(X?).

Fix an arbitrary integers m € N.

By (6.41]), each connected component of F~™((©07%)(I)) is contained in some connected
component of F~™ (inte(X?)). Since both (8 0 g™ o 7)(I) and F™((© 0 g™ oF)(I)) =
(© 07)(I) are connected, by Proposition B.I1] (v), there exists an m-tile X™ € X" (F,C)
such that

(©0g™o7)(I) C inte(X™).
We denote z,, :== (©0g™)(u) and y,,, = (©0g™)(v). Then F™(x,,) = (F™oOog™)(u) = xo,
F™(ym) = (F™ 0 ©o0g™")(v) = yo, and @y, ym € X™. Hence by (6.40), the absolute
convergence of the series defining f; in (6.35]), and Lemma [3.27]

By(w) = Bg(v)| = lim_

i((%@o?w—<\Ifo@oai><v>>\

1=

i((@onOGOW)(u)— (\Dono@oﬁm)(v))'

|6(x0) = Byo)| =

= lim
m——+00

— lim }S,ﬁ\l/(xm) — S,ﬁ\lf(ym)} < limsup C1d(F™ (), F™ (Ym))*

m—+00 m——+o0o

= Cld(xm yO)av

where C = C1(F,C,d, ¥, «) > 0 is a constant depending only on F', C, d, ¥, and a from
Lemma [3.241

Hence g € C%*((X? \ post F,d),C).

We can now extend 3 continuously to X, denoted by 3. Since ¢ € {b,w} is arbitrary,
(X? \ post F) N (X \ post F) = C\ post F, and post F' is a finite set, we get Sp|c = Sulc-
Thus 3 can be extended to S2, and this shows that ¥ = S/ is co-homologous to a
constant K; in C(S?, C). Therefore, by Lemma 5.53 in [Lil7],

p=K—-f+pof

for some constant K € C, establishing statement (iii).



PRIME ORBIT THEOREMS FOR EXPANDING THURSTON MAPS 87

Thus it suffices to prove the claim. The verification of the claim occupies the remaining
part of this proof.

We denote ¥ := W o ©.

Let o € m(Oy) be a deck transformation on X. Then by Definition .14 and Defini-
tion [6.11] it is clear that ¢ o g € Inv(F'). Thus by the absolute convergence of the series

defining Eﬁ in ([6.35), for each u € X,
B7((F 0 9)(w)) — B(a(w)) = (55((5 0 §)(u)) — Bz(u)) — (B(G(u)) — B(u))
(6.42) = Z( @0 9)w)) - (7 (w)) + (V@) - ¥5).

Fix arbitrary g, jo € N. It follows immediately from (6.19]) in Corollary [6.16] that all three
series
+00

Y (G (G o)) — V(G ((Fog)"(w))

Y

S| ) - V(G (@ g »(u)))|, and

> # @ (@ o3y ) - (G (@ o5y )]

are majorized by convergent geometric series. Hence the right-hand side of (6.42) is equal
to

_Z< (g og)( ))>_i’,(§i((50*§)ja(u))>>
. Z( V@ (o @) + (V) - ¥5)

+oo

- jgglmz(@@f((a' o)) — (7 ((F o7V ()
- jgglmf(@@i(u» — V(7 (Fea)W)) + (P@w) - v),

1=

Then by Lemma 618 (6.37), and (6.38), the right-hand side of the above equation is
equal to

“+oo

Jim > (V(F 05y (7o) (w) — U(Fo9) (o) w))
— lim Y (¥(F05) (W) — ¥((F05) (G o7 W) + (VGw) - v5)

i=1
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= Br3((3 0 §) (1)) = Brg(w) + ¥(g(w)) - ¥

= —V((0 0 g)(u)) + Yoz + V(g(u)) - U5

= \Dgog — \Dg.
The last equality follows from W o5 = o (©o0d) = UoO = ¥. Since §: X — X is
surjective, we can conclude that for each v € X and each 7 € m(Oy),
(6.43) B3(3(v)) = B3(v) = Vo5 — V.

The claim follows once we show that W5 = Uj; for each 0 € m(Oy). We argue by
contradiction and assume that Vz,; — ¥z # 0 for some 7 € m(Oy). Then by (6.43), for
each k € N,

k-1

Wi — W5 = B3 (1) = B0) = D (B(F (7' (1)) = Ba(3'(v) ) = k(W — W5).

i=0
However, by (6.36]), Proposition [6.17, and Theorem (i),
card{ Wze.; | k € N} <card{¥; | h € Inv(F)}
<card{¥(z) |z € S? F(z) =2} < +oo.

This is a contradiction.
The claim is now proved, establishing the implication (ii) = (iii). O

7. RUELLE OPERATORS AND SPLIT RUELLE OPERATORS

In this section, we define appropriate variations of the Ruelle operator on the suita-
ble function spaces in our context and establish some important inequalities that will
be used later. More precisely, in Subsection [ for an expanding Thurston map f
with a forward invariant Jordan curve C C S? and a complex-valued Hélder continu-
ous function ¢, we “split” the Ruelle operator L4: C(S?* C) — C(S? C) into pieces
E&"ZE C(E,C) — C(X?,C), for ¢ € {b,w}, n € Ny, and a union E of n-tiles in the cell
decomposition D"(f,C) of S? induced by f and C. Such construction is crucial to the
proof of Proposition [B.I] where the image of characteristic functions supported on n-tiles
under EE;LZ 5 are used to relate periodic points and preimage points of f. We then define
the split Ruelle operators L, on the product space C’(XE?, (C) X C(X,%, (C) by piecing to-

gether ﬁfﬁhw = 5;1’)% X0 €15 €2 € {b,}. Subsection[[.2is devoted to establishing various

inequalities, among them the basic inequalities in Lemma [.13] that are indispensable in
the arguments in Section [0 In Subsection [T.3] we verify the spectral gap for L, that are
essential in the proof of Theorem [R.3l

7.1. Construction.

Lemma 7.1. Let f, C, d, A, « satisfy the Assumptions. Fiz a constant T > 0. Then for
alln € N, X" € X"(f,C), x,2' € X", and ¢ € C**((S?,d),C) with R, 5200 < T
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we have

(7.1) 1 —exp(Sutp(x) — Spp(a))] < Cro Y], (52,4 A(f"(2), f7(2)),
where the constant

2C) (@Y A 2\ @
T A-a exp(1 —Aa (diamgy(5?)) ) > 1

depends only on f, C, d, a, and T. Here Cy > 1 is a constant from Lemmal3.29 depending
only on f, C, and d.

Proof. Fix T'> 0, n € N, X" € X"(f,C), z,2’ € X", and ¢p € C**((S?,d),C) with
(R(Y),, 52,0y < T By Lemma3.24] for each ¢ € C%(S2 d),

(73) 15,6(0) — Sub(a')] € DI i) e

Then by (Z3)) and the fact that |1 — e¥| < |y|el?l and |1 — €| < |y| for y € R, we get

1 = exp(Spth(z) — Sutp(2)))]
< ‘1 S R)(@) =S R(¥) ()

Co | R 2
< 0 | 1 (ip?/l(i,o(ls ,d) d(fn(x), fn(SL’/))a exp(l fof—a (diamd(SQ))a)

+exp< CoT (diamd(52)>a) RIOUNEY

(7.2) Cio = Cio(f.C.d, 0, T) =

+ SnRW)(@)=SnRW) (@) 1] _ 1 S(¥)(2)-15n I (¥)(2")

La(fr(x), f(2'))°

1—A-@ 1—A«
< Cio [l (52,0 Af" (), £ (@)
Here the constant Cg = Cio(f,C,d, a,T) is defined in (7.2)). O

Fix an expanding Thurston map f: S? — S? with a Jordan curve C C S? satisfying
post f C C. Let d be a visual metric for f on S?, and ¢ € C%*((S?,d),C) a complex-
valued Holder continuous function.

Let n € N, ¢ € {b,w}, and z € inte(X?), where X{ (resp. X?) is the black (resp.
white) O-tile. If £ C S? is a union of n-tiles in X"(f,C), u € C((E,d),C) a complex-
valued continuous function defined on E, and if we define a function v € B(S?, C) by

(7.4) mm:{“” o,

0 otherwise,

then by Proposition B.I1] (i) and (ii), the Ruelle operator associated to f and v recalled
in (320) acting on B(S?, C) can be written in the following form:

(7.5) Loy @)= Y ul(f"xn) ™ @) exp(Sarp ((f"x) " (@)

Note that by default, a summation over an empty set is equal to 0. We will always use
this convention in this paper. Inspired by (1)), we give the following definition.
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Definition 7.2. Let f: S? — S? be an expanding Thurston map, C C S? a Jordan curve
containing post f, and 1 € C(S?%, C) a complex-valued continuous function. Let n € Ny,

and £ C S? be a union of n-tiles in X"(f,C). We define a map E&"ZE C(E,C) —
C(X?,C), for each ¢ € {b,w}, by

(7.6) L3 s @) = D u((f"xn) ™ W) exp (St (f"x) 7 (»))),

for each complex-valued continuous function v € C'(E,C) defined on F, and each point
y € X2, When E = X0 for some ¢’ € {b, 0}, we often write

() . pn)
vacvc/ T Ed},c,X?, :
u if Xc0 CFE

Note that ESEL pu) = , for ¢ € {b, w0}, whenever the expression on the

0 otherwise
left-hand side of the equation makes sense.

Lemma 7.3. Let f, C, d, a satisfy the Assumptions. Let ) € C(S% C) be a complez-
valued continuous function. Fiz numbers n,m € Ny and a union E C S?% of n-tiles in
X™(f,C), i.e.,

E=|J{x"eX"(f.C)| X" C E}.
Then for each ¢ € {b,w} and each u € C(E,C), we have

(7.7) £§) p(u) € C(X?,C),

and

(7.8) Loy = 3 £ (250 pw),
e{b,w}

If, in addition, ¢ € C%*((5%d),C) and u € C**((E,d),C) are Hdlder continuous,
then

(7.9) L) p(u) € C*((X2,d),C).

Remark 7.4. In the above context, £j(v) € B(S? C) may not be continuous on S”
if £ # S?, where v is defined in (74) extending u to S%. If E = S? then it follows
immediately from (Z.7) that for each ¢ € {b, 0},

L) = (£5)]
Hence by (7.9) and the linear local connectivity of (52, d), it can be shown that
L3(C**((8%,d),C)) € C**((5*,d),C).
We will not use the last fact in this paper (except in Remark [7.g)).
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Proof. Fix arbitrary ¢ € {b,w} and u € C(E,C).

The case of Lemma when either m = 0 or n = 0 follows immediately from Defini-
tion [[.2l Thus without loss of generality, we can assume m,n € N.

The continuity of EI(;LZ p(u) follows trivially from (7.6) and Proposition BT (i).

By (.6)), Proposition Bl (i) and (ii), and the fact that f~"(z) NC # (), we get

> Lle(Esm)e= 3 3 3

¢’e{b,w} de{b,w} yef~m(x) z€f7"(y)
yEXO z€E
= > D SR = 3T S Ou(e) = L75 (w)(@).
yefm(z) zef " (y) zef =M ()
zeE zelR

The identity ((Z8) is now established by the continuity of two sides of the equation above.
Finally, to prove (7.9), we first fix two distinct points z,2’ € X?. Denote yx» =
(f™|xn)"Hz) and yn = (f"|xn) " (z') for each X" € X™.
By Lemma [3.22] Lemma [8.24] and Lemma [7.T], we have

1 ) (n)
d(z, z')e ch(u)(x) - ﬁw,c,E(U)(l"/)
1 /
< T Do 1 () — e uy)|
’ XneXn
X’!LgE
1 /
S W Z <}eSnw(yX )“u(an) —u(y;{n” + ‘6Snw(yX )_eSnw(an)“u(y;(n”)
’ XneXn
X"CFE
d(z, x/ > ST ) dlyxen, yie)®
XneXy
X”CE
D Dl Ll G (1]
X"EX”
X"CE
< il ) s D2 SO0 O] gy D S EOOE )
XneXn XnEXn
X’!LgE
< 4 L5 (Ls2) || o2y + Cro ¥ £ (Jul)
= pan Mo, (Ba) [IZR@)IESlcog2) T 10 Wa, (5%.d) || =Rw)e 2NV || o g2y

where Cy > 1 is a constant depending only on f, C, and d from Lemma 322, and Cjy > 1
is a constant depending only on f, C, d, «, and ¢ from Lemma [[Il Therefore (7.9])
holds. O

Definition 7.5 (Split Ruelle operators). Let f: S — S? be an expanding Thurston map
with a Jordan curve C C S? satisfying f(C) C C and post f C C. Let d be a visual metric
for f on S% and ¥ € C%*((S?,d),C) a complex-valued Holder continuous function with
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an exponent o € (0,1]. Let X?, XU € X°(f,C) be the black 0-tile and the while 0-tile,
respectively. The split Ruelle operator

Ly: C(X0,C) x C(X2,C) — C(X°,C) x C(X2,C)

on the product space C'(X?,C) x C'(X?,C) is given by

Ly (wp, uw) = (51(/;)551(“[1) +£wbm(um) ﬁfplb(ub) +£wmm( m))
for uy € C(XY,C) and uy, € C(X3,C).

Note that by (7.7)) in Lemma [7.3] the operator L, is well-defined. Moreover, by (7.9)
in Lemma [7.3] we have

(7.10) Ly(CO((X0.d). €) x C((X8.d).C)) € CO((X0.d).C) x CO((X2.d).C).

Note that it follows immediately from Definition that L, is a linear operator on
the Banach space C**((X?,d),C) x C**((X2,d),C) equipped with a norm given by

|W%u@”:qmm“mmgﬂww,W%M%%WM}JMemthR\{@.&e@ﬂﬂdtm

definition of the normalized Holder norm ||u||[g]Oa (B.d)-
For each ¢ € {b,w}, we define the projection m.: C'(X¢,C) x C(X2,C) — C(X?,C) by

(7.11) e (Up, Upp) = U, for (up, up) € C(XE?,C) X C’(Xg,(C).

Definition 7.6. Let f: S? — S? be an expanding Thurston map with a Jordan curve

C C S? satisfying f(C) C C and post f C C. Let d be a visual metric for f on S?,

and ¢ € C%*((S?,d),C) a complex-valued Holder continuous function with an exponent
€ (0,1]. For all n € Ny and b € R\ {0}, we write the operator norm

(o] (0]
M = e (L s 00) [
- 19 ¢ € {b,w}, up € C*((X7,d), C), up € C*((Xy,d), C)
(7.12) mmumeWw<1wdemaW@<1 }
For typographical reasons, we write
] - ]
(7.13) N, = el = el

Lemma 7.7. Let f, C, d, a, v satisfy the Assumptions. We assume in addition that
f(C) CC. Let X0, X2 € XO(f,C) be the black 0-tile and the while 0-tile, respectively.
Then for all n € Ny, u, € C(X¢,C), and uy, € C(X2,C),

(T14)  Lue ) = (L5106 (06) + L5 (), £ o(106) + L% (1))
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Consequently,
(n) (n) (0]
H‘L ‘H { Hﬁw,c,b(ub) _'_Ew,c,m(um)Hco,a(Xg’d)
b b
max{ e [Eb e o gy » 1o )
(7.15) c € {b,w}, up, € C**((XP,d),C), uyp € C**((X2,d),C)
' with [[ul|co(xo)|[twllcoxg) # 0 ’

Proof. We prove (.I4)) by induction. The case when n = 0 and the case when n = 1 both
hold by definition. Assume now (7.14) holds when n = m for some m € N. Then by (7.8))
in Lemma [[:3] for each ¢ € {b,w}, we have

Te (H‘$+l(ub> um)) = T (]Lw (ﬁgz; b, o(Up) + Ew b, m(um) ﬁgp@,b(ub) + ﬁfpmn)am(um)))

= > L0 (L0 ) + £570 ()

o e{b,w}
- Z Ewccl <£(mC’b Up ) Z ‘chc’ <£7El)mc’ ( ))
e{b,w} e{b,w}

= L3755 () + L (),
for up € C (X[?, C) and uy, € C (Xg, (C). This completes the inductive step, establishing

The identity (Z.I5]) follows immediately from Definition [0l and the identity (ZI14). O

Remark 7.8. One can show that H‘IL ‘H[b] HE Hc@a sz € Ny, where HE Hc@a s2a)

is the normalized operator norm of L7 : C%*((S?,d), (C) — C%((S?,d),C) deﬁned in
(27). We will not use this fact in this paper.

7.2. Basic inequalities. Let f: S? — S? be an expanding Thurston map, and d be a
visual metric on S? for f with expansion factor A > 1. Let ¢ € C%%((S?,d),C) be a
complex-valued Holder continuous function with an exponent o € (0,1]. We define

(7.16) 0= R(@) +iS() = & — P(f,R()) + log un(y) — log(une) o ).

where ug(y) is the continuous function given by Theorem with ¢ := R(¢). Then for
each u € C'(5?%,C) and each z € 5%, we have

Z deg ;(y) ()= P(f,R())+Hog ug(y) (y) —log (ur(y) (f (1))
yes- 1(96)
exp
(7.17) e Z deg s (y)u(y)uncw) (y) exp(t(y))
u%(d} yelfH(x)

= eXp(;%(lf)Jz’g( D £ (unoru) @)
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Given a Jordan curve C C S? with post f C C, then for each n € Ny, each union E of
n-tiles in X"(f,C), each v € C(E,C), each ¢ € {b,w}, and each z € X?,

EZZH,Z,E(U) ()= 3 (veSn@PUR@n um@—log(uae(w)of))) ((F"]x)"2(2))

_exp(—nP(f, (1)) } )
(7.18) e Xng;(ﬁc)(vum( ) exp(Su)) ((f"xn) 7' (2))
XnCE

exp(—nP ,§R n
— u%}e(wS{Z) (W)ﬁfmzﬂ(“%(iﬂ)”)(z)'

Definition 7.9 (Cones). Let f: S? — S? be an expanding Thurston map, and d be a
visual metric on S? for f with expansion factor A > 1. Fix a constant « € (0, 1].

For each subset £ C S? and each constant B € R with B > 0, we define the B-cone
inside C**(E, d) as
(7.19)
Kp(E,d) = {ue C*(E,d)|u(z) >0, |u(z)—u(y)| < B(u(z)+u(y))d(z,y)* for z,y € E}.

It is important to define the B-cones inside C%*(E,d) in the form above in order to
establish the following lemma, which will be used in the proof of Proposition [9.13]

Lemma 7.10. Let (X, d) be a metric space and o € (0,1]. Then for each B > 0 and each
u € Kp(X,d), we have u? € Kyp(X,d).

Proof. Fix arbitrary B > 0 and u € Kg(X,d). For any =,y € X,
|u?(z) — w*(y)| =lu(z) + u()|lu(z) — uly)| < Blu(z) + u(y)[*d(z, y)*
<2B(u2(x) + u2(y))d(, y)".
Therefore u? € Kop(X, d). O

Lemma 7.11. Let f, d, o, v satisfy the Assumptions. Let ¢ € C**(S? d) be a real-valued
Holder continuous function with an exponent oc. Then the operator norm of E(;; acting on

C(S?) is given by H£¢HCO 5y = 1. In addition, L;(1s2) = L.
Moreover, given a Jordan curve C C S? satisfying post f C C. Assume in addition that
f(C) CC. Then for alln € Ny, ¢ € {b,w}, up, € C(X¢,C), and uy, € C(X2,C), we have

(7.20) Hﬁwcb )‘ copxey = lslleocep Hﬁwcm ()] gy < Mmooy

and

(21) |2 () +£8) ()| < macuellong: uollonsg )

Proof. The fact that HE(EHCQ(SQ) = land £3(1s2) = Lg» is established in [Lil7, Lemma 5.25].

To prove (.2])), we first fix arbitrary n € Ny, ¢ € {b, w0}, up € C(X?), and u, € C(X?).
Denote M = maX{HUE)Hc'O(Xg), [tin]|co(x0) }- Then by Definition 7.2 (ZI6), and the fact
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that E%(ﬂsz) = lg2, for each y € inte(X?),

<MY exp (St (fMx) T W)

XneX?

—ML (L) (y) = M.

e+ €2, 0]

CO(X0)

This establishes (Z.21]). Finally, (7.20) follows immediately from (7.21]) and Definition
by setting one of the functions u, and uy, to be 0. O

Lemma 7.12. Let f, C, d, L, a, A satisfy the Assumptions. Then there exist constants
Ci3 > 1 and C4 > 0 depending only on f, C, d, and « such that the following is satisfied:

For all K, M,T,a € R with K >0, M >0, T >0, and |a| < T, and all real-valued
Hélder continuous function ¢ € C**(S?,d) with ||, o g < K and [|¢]lco(s2y < M, we
have

(7.22) ad | o (s2) < Cis(K + M)T + [log(deg f)],
(7.23) a9, (s2.q) < CraK T KT,

TKC(] 2015
(724) HUWHCO»G(S?,d) S <4ﬁ[z + 1) s
(7.25) exp(—Chs) < Ugp() < exp(Chs)

for x € S?, where the constant Cy > 1 depending only on f, d, and C is from Lemmal3.23,
and the constant

TKCy
1—A=@

(726) CY15 - Cl5(f> C7 da «, T’ K) =4 (dlamd(52))a >0

depends only on f,C, d, o, T, and K.

Proof. Fix K, M, T, a, ¢ satisfying the conditions in this lemma.
Recall

(7.27) a = a¢ — P(f,ag) +10g g — l0g(ttag o f),

where the function u,4 is defined as uy in Theorem [3.27]
By (8:26]) in Theorem 3.27 and (B.19) in Lemma [3.25] we immediately get (7.25).
By Corollary B.30, (3.8), and (3.9)), for each z € S?,

P(f,a¢) = lim ~log Z degfn ) exp(aS,é(y))

n—+oo N
yef—n

< lim —log Z deg . (y) exp(nT'M)

n—-+oo N
yef " (z)

=TM + lim —log Z deg . (y) = T'M + log(deg f).

n—-+oo N,
yef " (x)

Similarly, P(f,a¢) > —TM + log(deg f). So |P(f,a¢)| < TM + |log(deg f)]|.
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Thus by combining the above with (7.28) and (7.26]), we get
(7.28) HaﬂgzléHco(Sz) <TM+TM + |log(deg f)| + 2C15 = C16T (K + M) + |log(deg f)],

(diamd(Sz))a is a constant depending only on f, C, d, and «.

By ([Z27), Theorem BI9l (i), (Z.25), and the fact that |[logt; — logts| < mi‘fll{;tftt} for all
t1,t2 > 0, we get

Wb} (S%.d) <lagl, (52, + [loguag, (S2.d) + [log(uag © f)l, (S2,d)

(7.29) <TK + ¢ (1 + LIP4(f)) [ttag,, (S2,d) *

Here LIP,4(f) denotes the Lipschitz constant of f with respect to the visual metric d (see

2.10)).
By Theorem B.27, (3.24) in Lemma 326, (819) in Lemma 325 (7.26), and the fact
that |1 — e <t fort > 0, we get

n—1

1 . .
) =t =| i, 13 (eL10)0)- cz—¢<nsa><y>)'
‘]:
1 n—1
<1 =S (a ~ L (1s2) ()]
e S (15) 1) - (1)
TKC, AT KC
< 2C15 _ 0 « < 2C15 0
e (1 exp< 4— A_aLd(x, ) )) e —=a Ld(z,y),
for all z,y € S2. So
TKC,
(7.30) sl 52y < 47—y n L2
Thus by (7.29), (7.30), and (7.26]), we get
‘%‘a’(527d) < TK0136014TK,
where the constants
4C
(731) 013 = maX{ClG, 1+ (1 + LIPd(f)> 1 AO—aL}
and
CO . 21\ &
(7.32) Cra = 12— A_aL(dlamd(S )
depend only on f, C, d, and «. Since Ci3 > Cig, (L.22)) follows from (7.28)).
Finally, (7.24) follows from (7.25) and (7.30). O

Lemma 7.13 (Basic inequalities). Let f, C, d, a, ¢, so satisfy the Assumptions. Then
there exists a constant Ag = Ag (f C,d,|9|, (82,d) ) > 2Cy > 2 depending only on f,
C, d, |9l,, (s2,0s and a such that A increases as |0la, (52,0) increases, and that for all
ce {b,w}, 2,2 € X° n €N, union £ C S? of n- tiles in X"(f,C), B € R with B > 0,
and a,b € R with |a| < 2sy and |b| € {0} U[1, +00), the following statements are satisﬁed:
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(i) For each uw € Kp(FE,d), we have
(n) _ pr) /
£ (@) - £2 ()

£ ()(@) + L2 (u)()

B |ad|,
(7.33) < A0<Am N }1_\ }\(lf:l)>d(x,zf)a.

(i) Denote s = a+ ib. Given an arbitrary v € C**((E,d),C). Then
(7.34)

£ 000 - £ 06| < (G RED 4 dgmax(t, YLD, (o) Jatr, )

where Cy > 1 is a constant from Lemmal3.22 depending only on f, d, and C.
If, in addition, there exists a non-negative real-valued Hélder continuous function
h € C%(E,d) such that

[v(y) —v(y)| < B(h(y) + h(y))d(y,y")"
when y,y' € E, then
(735) |2 @w)) —£2)  w)(a)

so,c, B
B .m (n) / (n) na
<A ( o (ﬁg(;’ch(h)(:v) +L2 (M) )) +max{l, p}L7 ([v])(z) |d(z, ).

Proof. Fix ¢, n, E, B, a, and b as in the statement of Lemma [7.13]
(i) Note that by Lemma [[.12],

(7.36) sup{‘%}m (52.4d) }7‘ eR, || <2s0} < T,

where the constant
(7-37) =Ty (f>c d, |¢| ,(S2,d) ) (230 + 1)013 |¢| ,(S2,d) exp(230014 |¢| ,(S2,d) ) >0

depends only on f, C, d, |¢|a7 (52.d) and «. Here Ci3 > 1 and Cy4 > 0 are constants from
Lemma [7.12] depending only on f, C, d, and «.
Fix u € Kg(F,d) and z,2’ € X?. For each X" € X", denote yx» = (f"|x») "' (x) and

Yxn = (f"xn) " H2).
Then by (Z.I9),
(n) _ pn) /
20 (@) - £ ()@
< Z ’u(yxn)es’“%(yx") — u(y%n)esncﬁ(y’xn)
XmexXn
X"CE
< Z <|u(an) N u(y;(n)| 6Sn¢;<2>(y'xn) + u(an)’eSn:uvb(yxn) _ eSn;{b(y'Xn) )
Xnexn
X"CE

< B(u(yxn)esnc?&yxn)e\Sn%(y;{n)—s@(ym

Xnexry
XnCE

Fulyfe)e P08 Yy, )
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+ Y ‘1 _ Snad(yin)~Snad(yxn) | Snad(yxn)

XneXr
XCE

Combining the above with Lemma [3.24] Lemma [3.22, Lemma [71] (7.30), and (7.37)), we
get

L2 w@) = L2 (u)(')

LY (u)(z) + LY (u) ()

ap,c, F ap,c, F

< Bexp<‘a¢‘a,(52,d)00(d1amd (5%))" )d(gjfjc

o + C’lo}agb} fL’ LL’/)Q

B “%‘ (S2,d)
< «, ) 1A
_Al <Aan + 1_A—a d(l’,l‘) )

,(52,d)

where

2C CoT
(738> CIO = ClO(f7C7d7a7T0) = : p( .

0 . 27\ &
A Pl T (dlamd(S )) )
is a constant from Lemma [Z.I], and
(7.39) A= (1-A")Cy(f,C,d,a, Tp).

Both of these constants only depend on f, C, d, |¢],, (52, and a.
Define a constant
(1+2Ty) Ay

(740) A(] - AO (f7 C7 d7 ‘¢|a,(52,d) ,Oé) = 1—-— A«

depending only on f, C, d, |9, (52 4, and a. By (Z40), (Z37), and (Z38), we see that A,
increases as |9/, (g2 g increases. Now ([733)) follows from the fact that Ay > A;.

(ii) Fix 2,2’ € X?. For each X" € X", denote yxn = (f"|x»)"*(z) and v, =
(")~ ().
Note that by ([3.:27) and (7.30), we have

(741> ’8¢}a,(52,d) < ’a(b’m (52,d) + |b¢|a,(52,d) < TO + ‘b| ‘¢|a, (82,d) < 2T0 max{l, ‘b|}7

since Ty > [¢],, (52,4 by ([37) and the fact that Ci3 > 1 from Lemma [7.12]
Note that

£ (0)@) - L2 ()(@)

= (1 -+ 2T0)Clo (f, C, d, «, To) > 2

< T ol e g e B

X"exn
X7LCE
(7.42) <y < 0(yxn) — v(yn) |’ Snsb(wxn)| 4 |U(an)|’ Susdyxn) _ oSnb(n) )
X7exn
XnCE

We bound the two terms in the last summation above separately.
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By Lemma [3.24] Lemma [7.1] (7.39), and (7.41]),

Z "U X” ) Sn3¢ (yxn) _ eSn;é(yS(n)

XmreX?
X"CE

< Z |'U an |’1 7L5¢ an Sn;‘g(yX”)

Snad(uxn)

(7.43) < 010( f.Cd.a, Ty)|s9| (52 (x,x')%%{wqm)(x)
2Ty max{1, |b|}£%’c’E(|v|)(x)

! 1— A«
= Agmax{1, [B}LY | (jv])(@)d(x,a')",

d(x,x')”

where the last inequality follows from (Z.40).
By (7.16)), Lemma 322 and (7.20) in Lemma [T.1T]

> o) = o) 5P| £ ST ol g e )

Xmexr X"eXn
X"CE XnCE
d(x,z")*C§ a v | ,(E.d) o
(7.44) < |vly, (5.4 —— e Z eSnadWin) < (22 Ed) A d(z,z")°.
Xnexr

Thus (T.34) follows from (7.42), (7.43) and (7.44]).

If, in addition, there exists a non-negative real-valued Holder continuous function h €
C%(E,d) such that

lv(y) — o) < B(h(y) + h(y))d(y, y')"
when y, 4’ € E, then by Lemma B.24] Lemma [3.22] (7.36]), (Z.39), and (.38,
(7.45)

XneXr
XnCE
< § : B(h(an>€Sn(;a/)(an)€’Sn(;i)(yfxn)_sn(%(yx”l) + h(y%n)esn%(y;{n)>d(y)(",yf)(vl)a
X”LGX?
X"CFE
}C/;QZ;} C(] (diamd(S2))a d( ! aa
o, (52,d) z, 7' )*C [ () (n) )
< Bexp( L (e @)+ £ () (@)
B () (n) ) ,
< \ v [0
< A (L) (@) + L2 () )d(z, )"

Therefore, ([Z33) follows from (Z42), (Z43)), (Z45), and the fact that Ay > A; from
(C40). O
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7.3. Spectral gap. Let (X,d) be a metric space. A function h: [0, +00) — [0, +00) is
an abstract modulus of continuity if it is continuous at 0, non-decreasing, and h(0) = 0.
Given any constant 7 € [0, +00], and any abstract modulus of continuity g, we define the

subclass CT((X, d),C) of C(X,C) as
CgT((X d), {u € C(X,C) } ||u||CO < b and for z,y € X, |u(z) —u(y)| < g(d(:v,y))}.

We denote CgT(X, d) = C7((X,d),C) N C(X).

Assume now that (X, d) is compact. Then by the Arzela-Ascoli Theorem, each C7 ((X, d), C)
(resp. C7 (X, d)) is precompact in C(X, C) (resp. C(X)) equipped with the uniform norm.
It is easy to see that each C7((X,d),C) (resp. C7(X,d)) is actually compact. On the
other hand, for u € C'(X,C), we can define an abstract modulus of continuity by

(7.46) 9(t) = sup{lu(z) —u(y)| [z, y € X, d(z,y) <t}

for t € [0, +00), so that u € C;((X,d),C), where ¢ := [Jul|
The following lemma is easy to check (see also [Lil7, Lemma 5.24)).

Lemma 7.14. Let (X,d) be a metric space. For each pair of constants 11,75 > 0 and
each pair of abstract moduli of continuity g1, go, we have

(7.47) {urus | uy € CJH((X, d),C), uz € CF(( C)}ccopr . (X,d),C),
and for each ¢ > 0,

1
(7.48) {5 }u € C7((X,d),C),u(x) > c for each v € X} C o gl((X, d),C).

The following corollary follows immediately from Lemma [7.14. We leave the proof to
the readers.

Corollary 7.15. Let (X,d) be a metric space, and o € (0,1] a constant. Then for all
Holder continuous functions u,v € C**((X,d),C), we have u,v € C**((X,d),C) with

||UU||co,a(X,d) < ||u||COvQ(X7d) ||U||Cova(X,d) g

and if, in addition, |u(z)| > ¢, for each x € X, for some constant ¢ > 0, then +

C%((X,d),C) with
1

Ullco.e(x,d)

Lemma 7.16. Let f, C, d, « satisfy the Assumptions. Assume in addition that f(C) C C
Let ¢ € C%%(S?,d) be a real-valued Holder continuous function with an exponent o, and
Ly denote the unique equilibrium state for f and ¢. Given arbitrary ¢ € {b,w} and

u e C(X?). Then
/ud,u¢— Z ¢c' w) dfig.

e{b,w}

1 1
<~ + =5 o

for each n € N.
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Proof. We denote a function v € B(S?) by

o(z) = u(r) ifze i‘nte(XCO),
0 otherwise.

We choose a pointwise increasing sequence of continuous non-negative functions 7; €
C(S5?%), i € N, such that ,liin 7i(2) = Lipe(xoy for all z € S%. Then {v7;}ien is a bounded
1—+00

sequence of continuous functions on S?, convergent pointwise to v.
Fix n € N. Since uy(C) = 0 by [Lil7, Proposition 5.39], then by (7.6), Proposi-
tion 3101 (i) and (ii), and the Dominated Convergence Theorem, we get

)3 / =3 [ () () ) dit)

e{b,} e{b,} ’X”EX"
XnCXo
= Y dm (e5%0m ) ((F"1x0) ™ () ()
¢e{bw} inte(X Xnexn
XnCXO
- Y lm / £2(07) () djig(2)
c’;’;m} 1re0 Jinte(x0) ¢
= i L£%vr) dpg = i id(Lz)"
dm J Fam) dug = Hm [ vrd(£5)" (o)
= lim sdpg = dpg = dpe.
i—i—l—oo SQUT He /Szv He /X?U He
The proof is now complete. 0J

Lemma 7.17. Let f, C, d satisfy the Assumptions. Assume in addition that f(C) C C.
Given an abstract modulus of continuity g. Then for each o € (0,1], K € (0,+00), and
91 € (0,400), there exist constants dy € (0,400) and N € N with the following property:

For all ¢ € {b,w}, uy € CF®°(XY,d), up € C;F(X),d), and ¢ € C**(S?d), if
[Pl o isea < K, max{|[ugllcox), [[uwllcocxg)} > 01, and fxguh dptg + [xouwdpg = 0
where (g denotes the unique equilibrium state for f and ¢, then

(1)

Proof. Fix arbitrary constants a € (0,1}, K € (0,400), and §; € (0,400). Choose
¢ > 0 small enough such that g(€) < &. Let ng € N be the smallest number such that
fro (inte(X[?)) = 5% = fro (inte(Xg))

By Lemma (iv), there exists a number N € N depending only on f, C, d, g, and
61 such that N > 2ng and for each z € S%, we have UN™"(2) C By(z,€) (see (3.14)).

Fix arbitrary ¢ € {b,w}, ¢ € C%*(S%d) with [[¢]poars24 < K, and functions
wy € CF*(Xy,d) and uyp € CF>(XY,d) with max{||uy||coxo), [[tn|lcoxg)} > 01 and
fxgub dpg + fxgum dpy = 0. Without loss of generality, we assume that fxgub dpg <0

N N
290 () + £87 < max{ Jusllcocg). lumlloogxg) } — B2

¢7c7m

CO(X?)



102 ZHIQIANG LI, TTANYI ZHENG

and on U Aty > 0. So we can choose points y; € X¢ and y € X2 in such a way that
up(y1) < 0 and uy(y2) > 0.
We denote
M = maX{||“b||c°(xg)> ||Um||00(xg)}-
We fix a point € X?. Since fV(UN"(y;) N XY) = 52, there exists y € [~V (2) N X}
such that y € UN="0(y;) C By(y1,¢€). Since M > 4y,
) )
wp(y) < ue(y1) +g(€) < 51 <M - 51
Choose XY € X such that y € XY C X. Denote wy~ = (f"|xn~)""(z) for each
XN e XN So by Lemma [T.T1], we have

L5 (o) (@) + L5 (un) ()

= Uh(y)esNa(y) + Z Ub(wXN)esN(g(wa) + Z um(wXN)eSN‘g(wXN)

XNexXM\{x}} XNexN
xNcxp XNCxXy
B ~ ~
< (M — 51) exp(Svo(y)) + M Z exp (Snyp(wxx))
XNeXP\{XN}
~ ) ~
=M Z exp(SNgb(wXN)) — Elexp(SN¢(y))

XNexXN
0 ~
= M — - exp(Syo(y)).

Similarly, there exists 2 € f~(z) N XY such that z € UN™(y,) C By(ys, €) and
5 ~
50 () (@) + L5 (u)(2) = =M + T exp(Sxo(2)).
Hence we get

g + 250,

,fo

< M~ L int{exp(Sva(w) [w € 57).

CO(X?)
By (7.22) in Lemma with T := 1, the definition of M above, and (28], we have

N N
st + 250, )

< maX{HubHcO(Xg)a ||Um||C°(X%)} — 02

Co(x2)
with
5y = L exp(~N(CuyK + flog(des f))),
where (3 is a constant from Lemma depending only on f, C, d, and a. Therefore
the constant 9, depends only on f, C, d, «, g, K, and ;. O

Theorem 7.18. Let f: S? — S? be an expanding Thurston map with a Jordan curve
C C S?% satisfying f(C) C C and post f C C. Let d be a visual metric on S* for f with
expansion factor A > 1 and o € (0,1] be a constant. Let H, Hy, and H, be bounded
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subsets of C%*(S?,d), C%*(X{,d), and C**(X3,d), respectively (with respect to Holder
norms). Then for all ¢ € {b,vo}, ¢ € H, uy € Hy, and uy € Hy, we have

(7.49) lim Hﬁgfib(m)jtﬁw (Um)’

n—-+o0o ¢7C7m

=0,
Co(x?)

where the pair of functions w, € C%* (X[?, d) and Ty, € CO (X‘g, d) are given by

Up ‘= Up —/ ubdu¢—/ U dity and Uy = Uy —/ uhd,ud)—/ Up dftg
X0 X9 X0 X9

b o b

with p1y denoting the unique equilibrium state for f and ¢.
Moreover, the convergence in (7.49) is uniform in ¢ € H, uy € Hy, and uy € Hy.

Proof. Without loss of generality, we assume that H # (), Hy, # (), and H,, # (). Define
constants K = sup{||¢]|co,a(52,d) |¢p € H} €[0,400) and K, = SUP{HUcHCO,a(Xg,d) | uc €

H.} € [0,400) for ¢ € {b,1}. Define for each n € Ny,

an = sup{”ﬁgib(ﬂb) + LW (am)‘ ce{b,w}, ¢ € H, uy € Hy, uy € Hm}.

@,¢,10

COX?)

Note that by Definition [7.2] ag < 2K, + 2K, < 400.
By (C8) in Lemma [[.3] and (Z.21)) in Lemma [I.IT], for all n € Ny, ¢ € H, ¢ € {b, 10},
vy € C(XP), and v, € C(X2), we have

Z £$7c7c/ (‘Cgvclvb(vb) _I_ £$,c’,m (,Um)>

e{b,w}

< max{ Hﬁgc)aa(”b) + L8 ()

(n+1) (n+1)
Hﬁ&cvb (vs) + E&cvm (Um)’ CO(X0,d)

CO(X?.d)

S {b,m}}.

CO(X9,d)

So {an }nen, is a non-increasing sequence of non-negative real numbers.
Suppose now that lim a, = a, > 0. By Lemma [T11] (7.34) in Lemma [[.I3] with

n—-+00
a = 1and b = 0, (C40), (C37), and (2), we get that E%"c)b(ﬂb) + Eglc)m(ﬂm) €
CS(K”K“’)(XP,d), for each ¢ € {b,w} and each pair of u, € Hy, and u, € H,, with
an abstract modulus of continuity g given by g(t) == 2(Co(Ky + Ky) + 2(Kp + Ky ) A)t°,
t € [0,400), where the constant A > 1 is given by

20, CoT o
A= (1+2T) = Ao_a exp<1_oﬁ(diamd(52)) )

and T = (259 + 1)C13K exp(2s9C14K). Here the constant Cy > 1 depending only on f,
d, and C comes from Lemma [3.22] and C3 > 1, Ci4 > 0 are constants from Lemma
depending only on f, C, d, and a. So g and A both depend only on f, C, d, a, H, Hy,
and Hy. By Lemma [7.16]

> /(cﬁ;fb(nb)+£g3m(am)) d%:/ ﬂbdu¢+/ Ty dpts = 0.
X0 s s Xg Xg
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By (7.8) in Lemma [7.3] (7.21)) in Lemma [T.11] and applying Lemma [.IT7 with f, C, d, g,
a, K, and 0, := % > 0, we find constants NV € N and d, > 0 such that

L @) + L5 ()

o

¢b,c,¢’

£ (ﬁf{f,,b(w n Lgf,’m(am))

Co(X9) ¢’e{b,m} oo (x?)
() (= () (= '
<ma{ € w) + £8) @), [¢ € o} | <
<an - 527

for each n € Ny, each ¢ € {b,w}, each ¢ € H, and each pair u, € Hy and u, € Hy
satisfying

(7.50) max{Hcgjg,( o)+ LD (@)

¢,¢’ 1o

¢ € {b,m}} > —

Since lim a, = a,, we can fix m > 1 large enough so that a,, < a, + %2. Then for
n—-+o0o

each ¢ € {b, 1w}, each ¢ € H, and each pair u, € Hy, and uy, € H,, satisfying (C.50) with
n = m, we have

Co(x9)

)
S — 52 < Ay — —2
Co(x?) 2

On the other hand, by (Z.21]) in Lemma [7.IT], for all ¢ € H, uy € Hy, and uy, € H,, with

(m) (= (m) [ / Ay
max{“ﬁ&c,ﬁ(uh) +£q~57c,7m(um) = {b,m}} < 3

T COR= Y

¢7c7m

Co(x9)
the following holds for each ¢ € {b, }:

a
£(N +m) + £(N +m) ‘ &
H (1) () cox9) 2
Thus ayym < max{a* — 7, 7} < a,, contradicting the fact that {a,}nen, is a non-
increasing sequence and the assumption that lim a, = a, > 0. This proves the uniform
n—-+0o
convergence in ([T.49). O

Theorem 7.19. Let f: S? — S? be an expanding Thurston map with a Jordan curve
C C S? satisfying f(C) C C and post f C C. Let d be a visual metric on S?* for f with
expansion factor A > 1. Let a € (0,1] be a constant and H be a bounded subsets of
C%%(S2,d). Then there exists a constant p; € (0,1) depending on f, C, d, o, and H such
that the following property is satisfied:

For all ¢ € H, n € Ny, ¢ € {b,w}, up € C**(X{,d), and u, € C**(X3,d), we have
(t)|

where W, € C%*(X{,d) and T, € C**(X,d) are given by

Uy ::ub—/ ubdu¢—/ Updiy and Uy ::um—/ ubdu¢—/ Uy At
X9 X3 X X9

b

(7.51) Hﬁgib(ﬂb) 4t

¢7c7m

3
CO(X?) = bn) max{”“"”COva(Xm ; ||um||00’a(xr%7d)},
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with py denoting the unique equilibrium state for f and ¢. In particular,

5 + £ )

/ Up dﬂ¢+/ Uy d,u¢
X X3

Proof. Without loss of generality, we assume that H # (). Define a constant
(7.53) K = sup{||¢||co,a(527d) }gb € H} € [0,400).
Denote, for each ¢ € {b,w},

1= {0 € O (X0.) | folconirog <3}

The equation ([Z.52) follows immediately from the equation (Z.51), the triangle inequa-
lity, and the fact that ESZ h(]lXS) + Egzm(]lxg) = lyo by (Z8) and Lemma [ZTTl So it

suffices to establish (T.51]).
We first consider the special case when u, € Hy and uy, € Hy.

By (C34)) in Lemma [( 13 with s .= 1, (T.20)) in Lemma [[.T1], and (Z53)), for all j € N,
ce{b,w}, ¢ € H, u, € Hy, and u, € Hy, we have

OO 1D DL MR PED Y 1]

¢ e{b,w} a, (X2,d) e{b,w} ¢/ €{b,w}

(7.54) <oy A0 Y elleogxn < Cir,
ce{b,w}

CO(X?)

(7.52) <

+ 607 max{ [[uell o s » 1w llonocg.n -

Co(x0)

where the constant C'7 is given by C7 := 6Cy+12A,, the constant Ay := Ay (f, C,d, K, a) >
2 defined in (Z40) from Lemma depends only on f, C, d, H, and «, and the constant
Cp > 1 from Lemma depends only on f, C, and d. Thus C77 > 1 depends only on f,
C,d,and H.

So by (7.8) in Lemma [[.3, (7.34) in Lemma [[.I3 with s := 1, (Z54)), and (Z.20) in
Lemma [T.11], we get that for all k € N,

(7. 55)
ST e+ £20)
)E >+£ e () o (X0d) — fe{zbm} s Pl ) ¥ 50 () a, (X0,d)
C . :
<y (A;k £ )+ L9, )| + 40L®) (|29, (@) + £Y), (um)‘))
e{b,w} T
26'0017 ) _
- Aak + AO Z HE [ [J (Um> CO(XO,)'
e{b,w} c
By Theorem [T.I8] we can choose Ny € N with the property that
2GoChr 1 O) (o G) 1
(7.56) o <s and (14 Ao)Hﬁ&w(ub) L2 @) e < §
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for all j € N with j > Ny, ¢ € {b,t0}, ¢ € H, uy € Hy, and uy, € Hy. We fix Ny € N to
be the smallest integer with this property. So Ny depends only on f, C, d, o, and H.

For each m € N, each ¢ € {b,w}, each ¢ € H, and each pair of functions u, € Hy, and
Uy € Hy, we denote

(7.57) Vi _£<2Ngm>( )+£<2N0m (T ).

Then by (7.55) and (7.56)), the function v, € C**(X?, d) satisfies

3
||Umvc||CO’Q(X9,d) S é

S0 2v,,, € H.. We also note that by Lemma [7.16],
(2Nom)
S [ymetne= 3 % [ L@ = 3 wedu =0
ce{b,w} ce{b,w} 'e{b,w} e{b,w}

Next, we prove by induction that for each m € N, each ¢ € H, and each pair of
functions up, € Hy and uy, € Hy, we have

]_ m
(7.58) maX{||Um7b||CO,a(X87d)7 ||’Um,\‘0||00,a(Xr%7d)} < 3(§> .

We have already shown that (7.58) holds for m = 1.
Assume that (T58) holds for m = j for some j € N, then 2/v;, € Hy and 270; 4 € Hy.
By (7.8) in Lemma [T.3] for each ¢ € {b, 0}, we have

: _ ,(2N0) (55 (2N0) (9
2vj e = L5 (2v0) + L5 (270jm)-

Thus HQjUj""LCHCO)a(XP,d) <%<3 So }}Uj"‘l’cHCO)a(Xﬁ),d) < (3)
The induction is now complete.

Then by (7.8) in Lemma [(3] (T2I)) in Lemma [[11] (Z.57), and (58], the following
holds for all j € N, m € Ny, ¢ € {b,0}, ¢ € H, up € Hy, and uy, € Hy:

> L9 (£8 @) + £27 (@)

e{b,w}
; Iym
¢ € {b, 1} §3(§> .

ﬁ(]+2NOm) £ (j+2Nom)
H () + (@) CO(X9)

,C,10

CO(XY)

< max{ H£(2N°m (Tp) + £(2N°m (TUr)

CO(XY)

Hence for each n € Ny,

(759 ISRCARYSNCSI

1\ Lz
o) <on
cox9) — T\2 ="

1

p1i=2 o

where the constant

depends only on f, C, d, o, and H.
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Finally, we consider the general case. For each pair of functions w, € C% (X[?, d) and
Wy € OO (X‘g, d), we denote

M = maX{HwbHcOA(XE,d)v meHcO»a(xg,d)}a

Wy ‘= wb—/ whdu¢—/ Wy A, Wy = wm—/ wbdu¢—/ Wy Aty
X9 X9 X X9

b o

Let up = J‘l/[wb and uy = J‘l/[wm Then clearly uy, € Hy, up € Hy, Uy = %Eb, and
Up = 77Ww. Therefore, by (T53), for each n € Ny, each ¢ € H, and each ¢ € {b, w},
< 6pf.

falGr) £ GE)
€5 (32) + 263 oy =

Now (Z.51]) follows. This completes the proof. O

Remark 7.20. For ¢ € C%%(S?,d), the existence of the spectral gap for the split Ruelle
operator Lz on C%* (X0,d) x C%(X?,d) follows immediately from (714) in Lemma[7.7],
Theorem [.T9, and Lemma [T.T3] (ii).

Finally, we establish the following lemma that will be used in Section [8

Lemma 7.21. Let f, C, d, a, ¢, so satisfy the Assumptions. Assume in addition f(C) C
C. Then for alln € N and s € C satisfying |R(s)| < 2s¢ and |3(s)| > 1, we have

[S(s)]
o ], < 240
and more generally,
7.61 £ £ m || [S(s)] <(3 A
( ' ) H< %’C’b(ub) + %c,m(um)) COe(X0,d) _( mt ) 0

forallm €N, ¢ € {b,w}, uy € CO*((X¢,d),C), and u, € C**((X3,d),C) satisfying

(7.62) <1 and < 1.

ol o xo [

Here Ag = Ao(f C,d,|o|, (52.d) ) > 2C,y > 2 is a constant from Lemma[7.13 depending
only on f, C, d, \(M (52.d) and a, and Co > 1 is a constant depending only on f, C, and
d from Lemma[3

Proof. Fix n,m € N, ¢ € {b,w}, and s = a + ib with a,b € R satisfying |a| < 2s, and
bl > 1. Choose arbitrary u, € C%*((X¢,d),C) and u, € C*((X2,d),C) satisfying
(T62). We denote M = HE%)C up) + £(¢>c (U) Corxs) By (Z21) in Lemma [Z.11] we
have M < 1. c

We then observe that for each Hélder continuous function v € Coa((X ,dp),C) on a
compact metric space (X, dp), we have [v™[, ¢ ;) < m||v]|CO V]4, (x.dp)- Thus we get

o
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from (734)) in Lemma [7.13] (7.20) in Lemma [T.11] (7.62]), and the observation above that

H(ﬁgcb( )+£¢,, (u“’)>m‘ :

CO(X?,d)

— My m) (9 (o) + £2 (1))

a, (X¢,d)
mM™! (n)
< R P
=1+ o] ‘Esqﬁ,cb( o)+ L] ¢,cm(u‘“) o, (X0.d)
Co b
<1+ mw Z ||UC’||(10’Q(X§,,d) +mdg Hﬁaqﬁcc /D‘ CO(X9)
ce{b,w} ¢ c{b,w}

<1+ 2mC’0 + mA0(||ubH00(Xg) + ||’UJmHCO(X‘%)) < (3m + 1)A0,

where Cy > 1 is a constant depending only on f, C, and d from Lemma [3.22 and the last
inequality follows from the fact that Ay > 2Cy > 2 (see Lemma [T.13)).
The inequality (7.6I)) is now established, and (7.60) follows from (7.13]) in Lemma [7.7]

and (Z.GT). O

8. BOUND THE ZETA FUNCTION WITH THE OPERATOR NORM

In this section, we bound the dynamical zeta function (, o, using some bounds of
the operator norm of I_g4, for an expanding Thurston map f with some forward invariant
Jordan curve C and an eventually positive real-valued Holder continuous potential ¢.

Subsection B.J] focuses on Proposition [8.I] which provides a bound of the dynamical
zeta function (,,  gor, for the symbolic system (ZL, O’AA) asscociated to f in terms of
the operator norms of L” ,, n € N and s € C in some vertical strip with [3(s)| large
enough. The idea of the proof originated from D. Ruelle [Rue90]. In Subsection 82 we
establish in Theorem an exponential decay bound on the operator norm }H]Lﬁsd)ma of
L".4, n € N, assuming the bound stated in Theorem B.2 Theorem will be proved at
the end of Subsection Combining the bounds in Proposition 81] and Theorem [R.3],
we give a proof of Theorem in Subsection B3] Finally in Subsection 8.4 we deduce
Theorem from Theorem [[3] following the ideas from [PoSh98| using basic complex
analysis.

8.1. Ruelle’s estimate.

Proposition 8.1. Let f, C, d, A, «, ¢, sy satisfy the Assumptions. We assume in
addition that f(C) C C and no 1- tzle in Xl(f C) joins opposite sides of C. Let (ZA ,O’AA)
be the one-sided subshift of finite type associated to f and C defined in Proposition [3.38
and let m,: ¥} — S? be defined in (3.33).

Then for each 6 > 0 there exists a constant Dy > 0 such that for all integers n > 2 and
k € N, we have
(8.1)

St max 129 ()| o xo.g < DslS(S)A exp(k(8 + P(f, —R(5)6)))

XkeXE(£,0)
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2 )= S Y £ (L) ()

ce{b,w} X1eX1(f,C)
xXlcxy?

< D)) 3 I, (7 x5+ PU ~R()8))”

for any choice of a point xx1 € inte(X") for each X' € X(f,C), and for all s € C with
1(s)| > 250 + 1 and |R(s) — so| < so, where ZC(,Z)A’%OM (s) is defined in (3.30).

Proof. Fix the integer n > 2.

We first choose zx» € X™ for each n-tile X™ € X" in the following way. If X" C
f7(X™), then let xx» be the unique point in X"NP; g (see Lemma 320 and Lemma B.21));
otherwise X™ must be a black n-tile contained in the white 0-tile, or a white n-tile contai-
ned in the black 0-tile, in which case we choose an arbitrary point zx» € inte(X™). Next,
for each i € Ny with i < n—1, and each X* € X*, we fix an arbitrary point zx: € inte(X?).

By ([7.6]) and our construction, we get that for all s € C, ¢ € {b,t0}, and X™ € X" with
X" C XY,

exp(—sS,p(rxn)) if X™ C fr(X"),
0 otherwise.

(8.3) LY (L) () = {

It is easy to check that by (83]), the function Zc(rt:)&,f gor, (8) defined in (B.36]) satisfies

(8.4) 28 ()= 3 > L (e ().

ce{b,} X"EX"
xncxy?

Thus by the triangle inequality, we get
(8.5)

ZéZA _¢om Z Z " s¢cX1 (Lx1)(zx1)

ce{b,w} Xlex!?
xtexy?

S £ () @y = Y LY (L) (wx0m)

xXm— 1€Xm 1 XmeXxm
Xm=1CxP Xmexy

< Yo e () axms) = D0 L (L) (xm).

m=2ce{b,w} xXm-1lcxm-1 XmeXm
Xm-Tcx? xmexm-t

m=2 ce{b,w}
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Note that for all s € C, 2 <m < n, ¢ € {b,w}, and X™ ! € X" ! with X1 C X0,
by (L),

E(—ZmX’" 1(Lxm1) (@xm—1) = E : exp (—sSn¢ ((f"[xn) " (wxm-1)))
XneXn
Xnngfl

(8.6) = Z Z exp (—s5,0 ((f"x») " (zxm-1)))

XWLEX’HL X’!Lexn
xXmcxm—1 X”CX’"

— Z £78¢CX77L(]]'Xm)(me71)'
Xmexm
Xmngfl

Hence by (8.3), (R.6), and (7.9]), we get
‘Z£ZA7—¢°7TA Z Z ‘Cfsqﬁch ]le)(xXl)

ce{b,w} XleX!?
X'cx?

Z S > Y e () (@) = £, (L) ()|
m=2 ce{b,

}Xm lexm 1 XmeXm
xm— 1CX0 XmCXm 1

Z Z HE(—QMX’" (L) ‘‘c‘m(X?,d)d(ﬂﬁxmf1 ,Txm)

=2 {[] m} xXm— 1€X'm 1 Xxmexm
xm— 1CX0 XmCXm 1

Note that by (7.9]),

IA
3

3

L1 xm(Lxm) € CO*((X?,d),C)
forse C,meN, ¢ce {b,w}, X™ € X™ and that by Lemma B.15 (ii),
d(l’mel,flem) S diamd(Xm_l) S CA_m+1.

Here C' > 1 is a constant from Lemma [B.15 depending only on f, C, and d. So by (7.8
in Lemma [(.3] and (7ZI5) in Lemma [7.7]

SR T DD D AREN

ce{b,w} XleX!?
X'cx?

S Z Z ‘H]Lﬁsqﬁmm < max H’C—sqb,c’XM(ﬂXm HC’OQ(XO d>CaAa(1_m).

b.1o
m—2 Xmexm </&{bw}

We now give an upper bound for ) = max HE
xmexm ¢ €{b,w}
Fix an arbitrary point y € C \ post f.
Consider arbitrary s € C with |[R(s) — so| < s, m € N, X{* € X', X € X[,
Xm e Xm zy, 1y € X, 1, 2l € XU, and ¢, ¢’ € {b,w} with ¢ # ¢/. By (78], Lemma[3.22]

—s¢,c/, X™ (]lX’”) Hcova(xg )
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Lemma .15 (ii), we have

(8.8) L7 oy (Lxp) (o) = 0,

and

= |exp(=sSno ((f"]x) " (@0)))|

() SRRSO ) )
¢ exp(=R(s)Smo((f™x7) "1 ()))

< exp(—R(s)Smo((f™ sz)_l(y))) exp(R(s)C1 (diamgy(XP))")

< exp(—R(5) 9,0 ((/"x7)" (1)) exp(R(s)C°Ch),

where C7 > 0 is a constant from Lemma [3.24] depending only on f, C, d, ¢, and «.
Hence by (8.8) and (89]), we get

(8.10) £ 0 ()|, < eD(=R()S o (/7 x) " (1)) exp (R()CCh)
By ([.4),
(8.11) L7 o (L) (o) = £ o e (L) (2) = 0.
By (Z6) and Lemma [Tl with T = 2s0 |], (52 )
‘C(j:qﬁ,c’,X:P(]lX?)(x )
L3 o e (Lxp) ()

200 ey (L) )

(8.9) = exp(—R(s)Smo((f"

CO(XY)

1—

= |1~ exp (=S (£ ) () — S ((F7xg) ™ (@)))|

< Cho |5¢|a7(52,d) d(ze, z)" = Crols| 4], ,(S2,d) d(ze, 25)",

where the constant Cyg = C1o(f,C,d,a, T) > 1 depends only on f, C, d, a, and ¢ in our
context.

Thus by (89),
L0530 (L) () = £73) o x (Lxp ) )|
L0 e xn (Lxy) (o)
L o (L) (2
< A1 sld e, ) exp(—R(5)Smd((F"x5) " ))):
where we define the constant

(812) CH = max{Q, 4010 ‘(b‘a, (SQ,d)} exp (2500‘101)

’EET;,c',XgL (]lXC’? ) (xé,) }

depending only on f, C, d, a;, and ¢.
So we get

(8.13) ‘ﬁ(jd)),c/,xgy(ﬂxc’?) }m (X0,d) <47'Cy s eXP(—%(S)Sm¢((fm|X;7)_1(y)))-
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Thus by (8I1) and (8I3), we have
B10)  [E%nn (L), g < 47 Culs]exp(—R(5)S,6 (7 xm) ).

Hence by (8I0) and [8I4), for all m € N, X™ € X" s € C, and ¢’ € {b,w} satisfying

|S(s)] > 250+ 1 and |R(s) — so| < so,
we have
(815)  [1£805 0 xn (L)l o xg 4y < CrlS(5) [ exp(=R(5)Smd (")~ )

So by (8I7) and the fact that y € C, we get

e Ol

(8.16) <CulSs) > exp(=R(s)Smo((f"xm) " (1))

X’!?L exm

We construct a sequence of continuous functions p,,: R — R, m € N, as

(8.17) P(a) = (£7(Ls2) (1) ™.

By Corollary B30, the function a + py,(a) — eF7%%) converges to 0 as m tends to
+00, uniformly in a € [0,2s¢]. Recall that a — P(f, —a¢) is continuous in a € R (see
for example, [PrU10, Theorem 3.6.1]). Thus by (8I6]), there exists a constant C2 > 0
depending only on f, C, d, a, ¢, and ¢ such that for all m € N and s € C with |J(s)| >
2s0 4+ 1 and |R(s) — so| < so,

(8.18) mz cg?ﬁ}}|5_s¢cfxm(ﬂXm HCOa(XO d)

< 2011 |3(8) | (pm(R(5)))™ < Cha| () |emCHPU=RE)),
Combining (R1) with the above inequality, we get for all s € C with |(s)| > 2s¢ + 1
and [R(s) — sol < 5o

ZéZ)A,—@WA Z Z ‘C(sqﬁch ]1X1>(xXl>

ce{b,w} Xlex!
xtcx9

< Dy|3(s) |ZH\L3¢ Il (5 506+ P(7, ~R(s)0)) "

where Ds == C*C15A* > C15 > 0 is a constant depending only on f, C, d, ¢, «, and 9.
Inequality (81) now follows from (8I8) and DsA~* > Cis. O
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8.2. Operator norm. The following theorem is one of the main estimates we need to
prove in this paper.

Theorem 8.2. Let f: S? — 52 be an expanding Thurston map with a Jordan curve
C C S?% satisfying f(C) C C and post f C C. Let d be a visual metric on S* for f with
expansion factor A > 1, and ¢ € C%*(S?,d) be an eventually positive real-valued Holder
continuous function with an exponent o € (0, 1] that satisfies the a-strong non-integrability
condition. Let so € R be the unique positive real number satisfying P(f, —sop) = 0.

Then there exist constants 1 € N, ag € (0, so, by € (259 + 1,4+00), and p € (0,1) such
that for each ¢ € {b,w}, each n € N, each s € C with |R(s) — so| < ag and |I(s)| > bo,
and each pair of functions uy € C**((X¢,d),C) and u, € C*((X3,d),C) satisfying

||ub||c“0(‘i(x0 o <1 and ||um||c‘so(i x0.9 < 1, we have

(8.19) /X O

Here j1_s,4 denotes the unique equilibrium state for the map f and the potential —sy@.

2
E(jsaz’c’b(uw + ﬁ(jsaz,c,m<um)) dlufsmﬁ < P".

We will prove the above theorem at the end of Section [0 Assuming Theorem [R.2] we
can establish the following theorem.

Theorem 8.3. Let f: S* — S? be an expanding Thurston map with a Jordan curve
C C S?% satisfying f(C) C C and post f C C. Let d be a visual metric on S* for f with
expansion factor A > 1, and ¢ € C**(S?,d) be an eventually positive real-valued Holder
continuous function with an exponent o € (0, 1] that satisfies the a-strong non-integrability
condition. Let sg € R be the unique positive real number satisfying P(f, —so¢) = 0.

Then there exists a constant D' = D'(f,C,d,«, ) > 0 such that for each € > 0, there
exist constants . € (0, sg), be > 259+ 1, and p. € (0,1) with the following property:

For each n € N and all s € C satisfying |R(s) — so| < dc and |3(s)| > be, we have

(8.20) L2l < DIS(s)'pt

Proof. Fix an arbitrary number € > 0. Let ¢ € N, ag € (0, so], by € [25¢9 + 1,+00), and
p € (0,1) be constants from Theorem [B.2] depending only on f,C, d, a, and ¢.
We choose 1y € N to be the smallest integer satlsfymg = <€ L 2 2 and < € N.
Denote

(8.21) v o= —logmax{p;%, pi, A7} >0,

where p; = pl(f,C,d,oz,H) € (0,1), with H = {%}t eR, |t — s < ao} a bounded
subset of C%%(S2,d), is a constant from Theorem depending only on f, C, d, and «
in our context here.

We define
- T
(8.22) pe = exp( 32L0> € (0,1),
and

(8.23) b := max{e"?, (2145)*°, 259 + 1} > e.
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Here Ay = Ao( f,C.d, |8, (52.d) a) > 2 is a constant from Lemma [7.13] depending only
on f,C,d, |9, (52.d)° anda
Moreover, note that by B3.27),

H_Aa?? - _30¢HCO(52)
< la = soll[¢llcogsz) + [P(f, —ad) — P(f, =s09)| + 2[| log u_ap — 10g U_sy4||co(s2)-

Since the function t — P(f,t¢) is continuous (see for example, [PrUI0, Theorem 3.6.1}),
P(f,—so¢) = 0, and the map t — wuyy is continuous in C%*(S5?% d) equipped with the
uniform norm || - [|co(s2) by Corollary 3.29, we can choose . € (0, ag) sufficiently small so
that if a € [sg — d¢, So + 0¢], then

— -— . N I
(8.24) |P(f, —ag)| < —logp. and H—agb — _50(75“00(52) < logmln{p %, py 2}.

Fix an arbitrary number s = a + ib € C with a,b € R satisfying |a — so| < 6

and |b| > b., and fix an arbitrary pair of complex-valued Holder continuous functi-
0,a 0 0,a 0 - (6]

ons up, € C ((Xb,d),(C) and uy, € C ((Xm,d),C) satisfying Hu[’HCO)Q(X(?,d < 1 and

)
b
el g gy < 1.

We denote by m € N the smallest integer satisfying
(8.25) muyy > 2log|b| > 0.

Then m > 2 by (823).
We first note that by (7.0), the Cauchy—Schwartz inequality, Lemma [.11], (7.52) in

Theorem [.19, Theorem B2, (Z6]) in Lemma [I.2T], and (824), and by denotlng Ly =
}E(mbo/ b( ) »C(mLOI (Um) ’

2
(3 e (16 )+ £22) () )
ce{b,w}

(X X (e s i) (7o) @) )

e{b,w} xex ™0

2

XeXx§,
(meo)  (_muo|—ad——sodll (meo) 2
( Z E_a;c c/( 0 0 00(52))(1')) ( Z E:SK;W(LC,)(:L'))
e{b,w} e{b,w}
< €mboll%_%”00(sz)( O max } + Z / L dp sofi))
“eibm) cde{b,w}

Lo .
< 4240p7" |b] + 2p%™
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Combining with (8.25)), (821]), and the fact that 1o > 2 and Ay > 2, we get

>o ot ([t () + £ (uw))

—agp,c,c’
_1
L
0,

¢ e{b,w} CO(X?)

1
(8.26) < (42A0|b|‘2+1 +2[b “) < TAb

for each ¢ € {b,w}.

Thus by (1), (C14), (Z8), and (B.26), we get that for each ¢ € {b,w},

[ (1220, ) )| Do) (L) )+ £ ()

CO(X?)

¢'e{b,w} CO(X?)
(5.27) >o el (|t )+ £ (w)|)|
¢e{b,w} Co(Xd)
< TAp

By (1D, (ZI4), (Z34) in Lemma [LI3 Lemma 2T, (£20), (25, and (E2I), we

have for each ¢ € {b,w},

1 2muig
<]LA’<?> (ub,um)) L(X0.d)
1
=il 2 £l (L) () + £ ()
By e a0+ Ecalt )]
C’0 (meo) (meo) (6]
(828) S /E{b m} AamLO ‘C:;(/bvc/vb( ) E —5¢,¢ 10 (um)‘ CO’O‘(X?/,d)
¢
A HE(mLO < mLo £ (meo) D ‘
0 o 206|724+ 7A[b "0 < 1442
< SAOAamLo —|—A0 7140‘() o) < 7A0|b‘ + 7 0‘ 0 < 0 0,

where Cy > 1 is a constant depending only on f, C, and d from Lemma | and
Ay > 2C,) > 2 (see Lemma [[.T3)).

Hence for each n € N, by choosing k € Ny and r € {0,1,...,2m — 1} with n =
2mugk + 1, we get from (8.27), (8.28)), Definition [.6] and (7.60) in Lemma [7.2]] that since
|b| > b and m > 2,

0] B\ * [t]
n 2meok+r 2mug r
e, <oz |17 < wi( Jlezzel) 7 e
1 1\ k
(8.29) §4A0|b\<7A0|b_G+14A2\b_6> < 4Ao[b|" "0

ok
<4A |b‘ +2L0 2L0+ 2mL0 < 4A ‘b|1+2L0

b‘ 4mL
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n log|b|

§4A0|b|1+66_m0§ < 4Ao|b|1+5pfn,
where the last inequality follows from (822) and the fact that m is the smallest integer

satisfying (8:25).

We now turn the upper bound for

H]L"N in (8:29) into a bound for ‘}}E’Zs¢}}‘a.
By (15), (718), (7.25) in Lemma .12 and Corollary [T.15] we get

HZCE{[LIU} 'C(Z;(;ﬁ,c c C)HCO’Q(X?/7CZ)
=sup
max{ |[vel| o (xo.q) | ¢ € {0,100} }

HZCE{[MU} L%,c’,c (Uc/u,a(;)) HCOvO‘(X?,,d) }

maX{”“c”cOva(X&d) |ce{b,w}}

L2

—ao |l co.a (52,4 SUp{

max{ ||v./u_, - ¢ €{b,m
SenP(f,—aaﬁ) ||u,a¢||00a 52 4 L2 sup {H C/ d)HCO D } { }}
’ ( ) ) _8¢ o maX{||vc||CO,a(X97d) } ¢ 6 {b7 m}}
n —a n 1
<ePmad) ||“—a¢||cova(52,d) ]L% U_gg 11002 (52,d)
1
nP(f,—a n
<eI Nlu_agl ooz, |15 am(H ltagll o s2.a))

n 15 2
SH’L%HLQZC (1 + ||u—a¢||cova(S2,d)) eXp(nP(f, —aﬁb)),

where the suprema are taken over all v, € C**((X{,d),C), v, € C**((X3,d),C), and
¢’ € {b,w} with [Jvg||cox0)|vwl[coxg) # 0. Here the constant Cy5 = C15(f,C, d, o, T, K),
with 7" := 25y and K = |gz5| ‘(52,0 > 0, is defined in (Z.20) in Lemma [7.T2 and depends
only on f, C, d, v, and ||, (52,4) I our context.

Combining the above mequahty with (829), ®823), 824), and (24) in Lemma [[12]
we get that if a € (so — dc, So + 0.) and |b] > b, then

12 ll,, < 440lbl™ 2" pme* = (1 + ||“*a¢>’|00’a(52,d))2 < D'|b|"pl,

where D’ = 44,e*"15 (SWL + 2)2(62015)2 > 1, which depends only on f, C, d,
a, and ¢. O

8.3. Proof of Theorem [I.5. Using Proposition R.1] and Theorem B3, we can get the
following bound for the zeta function (5, | gor, (c.f. (B3T)).

Proposition 8.4. Let f, C, d, A, «a, ¢, sg satisfy the Assumptions. We assume in
addition that ¢ satisfies the a-strong non-integrability condition, and that f(C) C C and
no 1-tile in X1(f,C) joins opposite sides of C. Then for each € > 0 there exist constants
C. >0 and a. € (0, sq) such that
+oo

I
> 2 ger(5)

n=1

(8.30) < OIS ()2
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for all s € C with |R(s) — so| < e and |S(s)| > be, where be > 2sg + 1 is a constant
depending only on f,C,d, a, ¢, and € defined in Theorem [8.3.

Recall Z _gom, (8) defined in (B.36).

Proof. Let § = iﬁ’log(A"l) > 0.

Since t — P(f, —t¢) is continuous on R (see for example, [PrUL0, Theorem 3.6.1]), we
fix @ € (0,0:) C (0, so) such that |P(f, —t¢)| < 5 log(A*) for each t € R with [t —so| < @,
where 0. € (0, sg) is a constant defined in Theorem depending only on f, C, d, «a, ¢,
and e.

Fix an arbitrary point zx1 € inte(X') for each X' € X!. By Lemma [7.3, Lemma [7.7,

and (8.I)) in Proposition BT for each n > 2 and each s € C with |R(s) — sg| < @, we have

SN £ () (ax)

ce{b,w} xlex!
Xtcxy?

(8.31) < > Y

ce{b,w} Xlex!
xtex?

< H‘L?sd}ma Z Cg}%ﬁ}“ﬁf&bc’ X1 ]le HCOa(Xo d)
ce{b,w} xlex!
xXtcxy?

< Al DslS ()| A~ exp(8 + P(f, —R(s))),

Z E—sqﬁcc’( —s6, c’Xl(]]‘Xl>)(xX1>

e{b,w}

where Ds > 0 is a constant depending only on f, C, d, a, ¢, and ¢ from Proposition Rl
Hence by ([B36), Proposition 81l (831]), Theorem B3] and the choices of § and a,
above, we get that for each s € C with |R(s) — so| < @, and |(s)| > b,

+o0
Z% Zc(rZA C ‘ Z < > ) ﬁEZL,c,p(l)o)(xXl)
=2

= ce{b,w} Xlex!?
X1cxy?

120 )= > > LM () (z)

ce{b,w} XleX!

)

X1CX0
400 .
< 4 (Il posea + pis(el S sy o)
m=2
+o0 D/ n
Cx 2+e€ il e A e
<IS(s)] nz; ”Démz:lpg A
€ DD5 ¢
<D'Ds|3(s \2+Z P T IS

n=2
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where the constant p, == max{pe, A_%a} < 1 depends only on f, C, d, «, ¢, and €. Here
constants D’ € (0, sq) and p. € (0,1) are from Theorem R3] depending only on f, C, d, «,
¢, and e.

Therefore, by ([3.36) and Proposition (i), we have

400 1 ) ) +o0 1
Z EZUAN—(f’OWA (s)] < ZJAA,—quM (S)’ + Z n

n=1 n=

28 (5)] < CUS(s)

OAp>» —poma

for all s € C with |R(s) — so| < @ and |3(s)| > b, where the constant

Ce = D'Ds(1 — p.) ™" + 2deg f exp(2so/|¢l co(s2))
depends only on f, C, d, a, ¢, and e. O

It follows immediately from the above proposition that (,, ¢, (s) has a non-vanishing
holomorphic extension across the vertical line R(s) = s¢ for high frequency. In order to
verify Theorem [[L5] we just need to establish the holomorphic extension for low frequency.

Proof of Theorem[1.4. In this proof, for s € C and r € R, B(s,r) denotes the open ball
in C.
For an arbitrary number ¢ € R, by Proposition .44 (i), we have

(8.32) P(oa,,—tpom,) =0 ifand only if ¢ = s.

Fix an arbitrary number 6 € (0,1). By [PP90, Theorem 4.5, Propositions 4.6, 4.7,
and 4.8] and the discussion preceding them in [PP90], the exponential of the topological
pressure exp(P(o4,,-)) as a function on C*™' (¥, dy) can be extended to a new function
(still denoted by exp(P(c4,,-))) with the following properties:

(1) The domain dom(exp(P(ca,,"))) of exp(P(c4,,-)) is an nonempty open subset of
(24,0 ds), C).

(2) The function s — exp(P(oa,,—s¢ o m,)) is a holomorphic map from an open
neighborhood U C C of s to C if —s¢ o7, € dom(exp(P(c4,,"))) -

(3) If ¥ € dom(exp(P(oa,,-))) and n =1 + c+ 2miM + u — uw o o4, for some ¢ € C,
M e C(Z},,Z), and u € C*'((X} ,dy),C), then n € dom(exp(P(04,,-))) and
exp(P(0a,,n)) = e exp(P(04,,¥)).

We first show that sq is not an accumulation point of zeros of the function s — 1 —
exp(P(c4,,—s¢ o ms)). We argue by contradiction and assume otherwise. Then by
Property (2) above, exp(P(c4,,—s¢ om,)) = 1 for all s in a neighborhood of sqg. This
contradicts with (8:32]).

Thus by [PP90, Theorem 5.5 (ii) and Theorem 5.6 (b), (c¢)], we can choose ¥y > 0 small
enough such that (,, | _gor,(s) has a non-vanishing holomorphic extension
(8.33)

exp(?f LS (exp(—sST% (60 78) () — exp(nP(0a,, —s6 0 m)))

n=l " z€P n
A

CoAA,%om (3) - 1-— exp(P(UAA, —s¢ o WA))
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to B(so0, %) \ {s0}, and (s, gor, (s) has a pole at s = so. Moreover, the numerator on
the right-hand side of (8.33)) is a non-vanishing holomorphic function on B(sq, Jy).

Next, we show that (,,  _¢or,(s) has a simple pole at s = so. It suffices to show that
1 — exp(P(0a,,—s¢ om,)) has a simple zero at s = so. Indeed, since ¢ is eventually
positive, we fix m € N such that S/ ¢ is strictly positive on S? (see Definition B.32). By
Proposition 3.44] (i), Theorem (ii), and the fact that the equilibrium state p_, for f
and —t¢ is an f-invariant probability measure (see Theorem (i) and Subsection B.1]),
we have for t € R,

d d _ oy d
(1 —exp(P(oa,, —t¢ o ms))) = (1 — e"I79) = —ePUT—P(f, —t9)
P : eP(fv_t¢)
(5.3) el LT [st6dui>0

Hence by (8.34) and Property (2) above, we get that (,, , _gor,(s) has a simple pole at
S = 5.

We now show that for each b € R\ {0}, there exists ¢, > 0 such that (5,  _gor,(s) has
a non-vanishing holomorphic extension to B(sg + ib, ¥;).

By [PP90, Theorem 5.5 (ii) and Theorem 5.6, and the fact that dom(exp(P(ca4,,)))
is open and exp(P(oa4,,-)) is continuous on dom(exp(P(c4,,-))) (see Properties (2) and
(3) above), we get that for each b € [—Ze,ge} \ {0}, we can always choose ¥, > 0 such
that (5, —¢or, () has a non-vanishing holomorphic extension to B(sg + ib, ;) unless the
following two conditions are both satisfied:

(i) —=(so+ib)pomy = —sgpomy +ic+2miM +u—uooa, € dom(exp(P(o4,,-))) for
some c € C, M € C(Z} ,Z) and u € C*'((Z},,dy),C).
(ii)) 1 —exp(P(oa,,—(so+ib)pom,)) = 0.

We will show that conditions (i) and (ii) cannot be both satisfied. We argue by contra-
diction and assume that conditions (i) and (ii) are both satisfied. Then by Property (3)
above, ¢ = 0 (mod 27). Thus by taking the imaginary part of both sides of the identity
in condition (i), we get that pomr, = KM +7—7To0,4, for some K € R, M € C’(ZL,Z),
and 7 € C%! ((ZIA, dg),@). Then by Theorem [6.4, ¢ is co-homologous to a constant in
C(S? R), a contradiction, establishing statement (i) in Theorem

To verify statement (ii) in Theorem [[5], we assume in addition that ¢ satisfies the
a-strong non-integrability condition.

Fix an arbitrary € > 0. Let Cc > 0 and a. € (0, s0) be constants from Proposition 8.4]
and b, > 2s9+ 1 be a constant from Theorem R3] all of which depend only on f, C, d, «,
¢, and €. The inequality (L.7)) follows immediately from (8.30) in Proposition [R4]

Therefore, by the compactness of [—ge,ge}, we can choose € € (0,a.) C (0,s¢) small
enough such that (;,  gor,(s) extends to a non-vanishing holomorphic function on the
closed half-plane {s € C|R(s) > so — €y} except for a simple pole at s = 5. O

8.4. Proof of Theorem Following the ideas from [PoSh9§|, we convert the bounds
of the zeta function for an expanding Thurston map from Theorem to a bound of its
logarithmic derivative.
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We first record a standard result from complex analysis (see [EE85, Theorem 4.2]) as
in [PoSh98| Section 2].

Lemma 8.5. Given 2z € C, R >0, and 6 > 0. Let F: A — C is a holomorphic function
on the closed disk A == {s € C||s—z| < R(146)*}. Assume that F satisfies the following
two conditions:

(i) F'(s) has no zeros on the subset
{seC|ls—z <R(1+0)*R(s)>R(z) — R(1+4)} CA.
(ii) There exists a constant U > 0 depending only on z, R, 6, and F such that
log|F'(s)| < U + log|F(2)]
for all s € A with |s — z| < R(1+6)3.
Then for each s € A with |s — z| < R, we have
F'(s)| _ 249 (‘ F'(z2) N (24 (1+6)72)(1+96) U).

F(s)| = ¢ F(2) R)?

We will also need a version of the well-known Phragmén—Lindelof theorem recorded
below. See [Ti39) Section 5.65] for the statement and proof of this theorem.

Theorem 8.6 (The Phragmén—Lindel6f Theorem). Given real numbers §; < dy. Let
h(s) be a holomorphic function on the strip {s € C|o, < R(s) < d2}. Assume that the
following conditions are satisfied:

(i) For each o > 0, there exist real numbers C, > 0 and T, > 0 such that
|h(6 +it)| < Cpel
for all 6,t € R with 6y < 6 < dy and |t| > T,.
(ii) There exist real numbers Cy > 0, Ty > 0, and ky, ks € R such that
\h(01 +it)] < Colt|™  and  |h(dy +it)| < Colt|™
for allt € R with |t| > Tj.
Then there exist real numbers D > 0 and T > 0 such that
|h(§ +it)| < CJ¢*®
for all 6,t € R with §; < § < 69 and |t| > T, where k(J) is the linear function of 6 which
takes values ky, ko for 6 = 01, o, respectively.

Assuming Theorem [[.3] we establish Theorem [0l as follows.

Proof of Theorem[1.6. We choose Ny € N as in Remark [[L4l Note that P(fi, —sOSZ-fng) =
iP(f,—so¢) = 0 for each i € N (see for example, [Wal82, Theorem 9.8]). We observe that
by Lemma [3.17] it suffices to prove the case n = Ny = 1. In this case, F' = f, & = ¢,
and there exists a Jordan curve C C S? satisfying f(C) C C, post f C C, and no 1-tile in
X!(f,C) joins opposite sides of C.

Let C, a. € (0,5s0), and b, > 2s9 + 1 be constants from Theorem depending only
on f,C, d, a, ¢, and e. We fix € := 1 throughout this proof.
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Define R := %, = b+ %, and § = (%)% — 1. Note that R(1+6)® =
Fix an arbitrary z € C with R(2) = so + % and [I(z)| > 3. The closed disk

A= {seClls—2 RO+07} = {secC|ls—2 < L}

is a subset of {s € C||R(s)—so| < ac, |S(s)| > bc}. Thus by Theorem [[3] inequality (L5
holds for all s € A, and the zeta function (y _4 has no zeros in A.
For each s € A, by (L3) in Theorem [[3 and the fact that [3(2)| > 8 = b + %,

ac\3
og ¢y, o(5)] — log|¢s, s(2)]| < 20 (I8 + 5 ) < 2CISEF = U.
Claim. For each a € R with a > s¢, there exists a real number (a) > 0 depending
only on f, C, d, ¢, and a such that
(p _gla+it)
Cr-ola +it)

' < K(a)

for all t € R.

To establish the claim, we first fix an arbitrary a € R with a > sg. By Corollary B.34],
the topological pressure P(f, —a¢) < 0. It follows from Proposition B:31] that there exist
numbers N, € N and 7, € (0,1) such that for each integer n € N with n > N,

Z exp(—aSyo(z)) < 77
Z‘EPlyfn

Since the zeta function (y converges uniformly and absolutely to a non-vanishing ho-
lomorphic function on {s € C|R(s) > “52} (see Proposition B.44), we get from (B37),
Theorem B.I9 (ii), and (B10) that

Cf ¢> a—+ lt ' I . ‘
VPR (Spod(z)) exp(—(a + it) S, d(z
Cf ¢ a+1t Z xE;fn ¢ p( ( ) (b( ))
< [[¢llcogse) Z > exp(—aS,¢(x))
n=1 xEPl,fn
+oo Ng
< H‘bHCO(SQ)( Z T+ anrd Pl,fn>
n=Ng+1 n=1
< K(a),

for all ¢ € R, where K(a) = ||¢[|cogs2) (2= + Na —I—Z 1(deg f)") is a constant depending
only on f, C, d, ¢, and a. This estabhshes the claim.

Hence by Lemma 8.9 the claim Wlth a = so+ %, and the choices of U, R and 0 above,
we get that for all s € A with $(s) = $(z) and ‘§R — (so+%)| < R =%, we have
(8.35)

4(8)

Cr,-o(8)

240 ac\  2'Ce(24+(1+6)7H)(1+6) 5 5
< . Cx < (%
<= (IC<80+ )+ — 13(2)| ) < CrolS(s)P?,
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where

2490 ac\  2'Ce(24+(1+6)7H)(1+6)
Co =5 (’C (0 5) R3? )
is a constant depending only on f, C, d, o, and ¢. Recall that the only restriction on

3(2) is that |S(z)| > 8. Thus (B35) holds for all s € C with |R(s) — (so+ %)| < % and

S(s)| = 8.
By Theorem [[3] A(s) = G T 8_180 is holomorphic on {s € C||R(s) — so| <

a.}. Applying the Phragmén-Lindelof theorem (Theorem B.G]) to h(s) on the strip {s €
Clo < R(s) < 6o} with §; == s — % and Jy = so + ==. It follows from (8.35]) that

12 200

condition (i) of Theorem holds. On the other hand, (835]) and the claim above
guarantees condition (ii) of Theorem RG]l with k; := 3 and ky := 0. Hence by Theorem [B.0],

there exist constants D > 0 and b > 25y + 1 depending only on f, C, d, o, and ¢ such
that

C}y —¢ (s)

|h(s)] < D|S(s)|2

for all s € C with [R(s) — so| < 55 and [S(s)| > .

Therefore inequality (L)) holds for all s € C with [R(s) —so| < 515 = @ and |3(s)| > b,
where a € (0,0), b > 2s9 + 1, and D := D + 1 are constants depending only on f, C, d,

a, and ¢. O]

9. THE DOLGOPYAT CANCELLATION ESTIMATE

We adapt the arguments of D. Dolgopyat [Dol98] in our metric-topological setting
aiming to prove Theorem at the end of this section. In Subsection 0.1 we first give
a formulation of the a-strong non-integrability condition, o € (0, 1], for our setting and
then show its independence on the choice of the Jordan curve C. In Subsection 0.2, a
consequence of the a-strong non-integrability condition that we will use in the remaining
part of this section is formulated in Proposition We remark that it is crucial for
the arguments in Subsection to have the same exponent « € (0, 1] in both the lower
bound and the upper bound in (@:25). The definition of the Dolgopyat operator M 4
in our context is given in Definition after important constants in the construction are
carefully chosen. In Subsection [0.3] we adapt the cancellation arguments of D. Dolgopyat
to establish the /2.-bound in Theorem [B.2]

9.1. Strong non-integrability.

Definition 9.1 (Strong non-integrability condition). Let f: S? — S? be an expanding
Thurston map and d be a visual metric on S? for f. Given « € (0,1]. Let ¢ € C%*(S?,d)
be a real-valued Holder continuous function with an exponent a.

(1) We say that ¢ satisfies the (C, a)-strong non-integrability condition (with respect
to f and d), for a Jordan curve C C S? with post f C C, if there exist numbers
No, My € N, e € (0,1), and My-tiles Y € X20(f,C), VMo € XMo(f,C) such that
for each ¢ € {b,1}, each integer M > My, and each M-tile X € X*(f,C) with
X C YMo_ there exist two points z1(X), z2(X) € X with the following properties:
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(1) min{d(z, (X), S\ X), d(z2(X), 5\ X), d(1(X), 72(X))} > € diamg(X), and
(ii) for each integer N > Ny, there exist two (N + My)-tiles X \*0, X 5o €
XN+Mo(f.C) such that Y M0 = f¥(XNFM0) = fN (XNM0) and that

[Sxo(a(z1(X))) = Svdl@(@1(X))) = Snolala(X))) + Snle(z2(X)) o
d(a1(X), 22(X))* T

-1 -1
N+MO> and Gy = (fN N+MO> .
o1 ¢,2

(2) We say that ¢ satisfies the a-strong non-integrability condition (with respect to f
and d) if ¢ satisfies the (C, «)-strong non-integrability condition with respect to f
and d for some Jordan curve C C S? with post f C C.

(3) We say that ¢ satisfies the strong non-integrability condition (with respect to f
and d) if ¢ satisfies the o/-strong non-integrability condition with respect to f and
d for some o € (0, a.

For given f, d, and « as in Definition @] if ¢ € C%%(S?,d) satisfies the (C, a)-strong
non-integrability condition for some Jordan curve C C S? with post f C C, then we fix
the choices of Ny, My, ¢, YbMO, Y Mo 21(X), zo(X), XéYlJ’MO, XﬁI’M‘) as in Definition [0.1]
and say that something depends only on f, d, «, and ¢ even if it also depends on some
of these choices.

We will see in the next lemma that the strong non-integrability condition is independent
of the Jordan curve C.

(9.1)

where we write ¢ = ( N

Lemma 9.2. Let f, d, « satisfies the Assumptions. Let C and C be Jordan curves on S?
with post f CCN C. Let ¢ € C*(S? d) be a real-valued Holder continuous function with
an exponent o. Given arbitrary integers n, n € N. Let F' = ™ and F = f™ be iterates
of f. Then ® = SI¢ satisfies the (C,a)- -strong non-integrability condition with respect to
F and d if and only if ® = qub satisfies the (C «)-strong non-integrability condition with
respect to F and d.

In particular, if ¢ satisfies the a-strong non-integrability condition with respect to f and
d, then it satisfies the (C,«)-strong non-integrability condition with respect to f and d.

Proof. Let A > 1 be the expansion factor of the visual metric d for f. Note that post f =
post F' = post ﬁ, and that it follows immediately from Lemma that d is a visual
metric for both F and F.

By Lemma B.17] (ii) and (v), there exist numbers Cy € (0,1) and | € N such that for
cach i € Ny, each X € X™(F,C), there exists X € X mnHl(F C) such that X C X and
diamg(X) > Cyo diamy(X).

By symmetry, it suffices to show the forward implication in the first statement of
Lemma

We assume that & satisfies the (C, «)-strong non-integrability condition with respect
to F' and d. We use the choices of numbers Ny, My, ¢, tiles Y[,MO € Xé‘/IO(F, C), Y Mo ¢
XMo(F,C), XchJrMO X5 e XN+Mo(F, C), points 21(X), 22(X), and functions ¢, ¢ as
in Definition 0] (Wlth f and ¢ replaced by F' and ®, respectively).
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It follows from Lemma (ii) and (v) again that we can choose an integer M, € N
large enough such that the following statements hold:

(1) [*2] +1 2 M.
(2) There exist ]\/J\O—AtilAes }Afbﬁo € Xév[‘)(l/?’\, C) and }7‘;‘70 € X{‘?‘)(ﬁ, C) such that }7[]]\7[0 -
inte(Y;") and Y, M C inte(Y}0).
We define the following constants:

~ 1 2 |¢| ,(52,d) CoC?
02 o[ toms =T = |
(9.3) £ :=cCy € (0,¢).

For each ¢ € {b,w}, each integer M > My, and each M-tile X € XM(F C) with
X C VM, we denote M = ]_J‘i"-‘ +1 > My, and choose an M-tile X € XM(F,C) with

(9.4) XCcX and diamg(X) > Cho diamy(X).
Define, for each i € {1, 2},
(9.5) 7i(X) = z;(X).

We need to verify Properties (i) and (ii) in Definition for the (C, a)-strong non-
integrability condition of d Wlth respect to F and d.
Fix arbitrary ¢ € {b,w}, M € N, and X € XM(F,C) with M > M, and X C YD,

Property (1). By (0.4), [@.3), (O.3), and Property (i) for the (C, «)-strong non-integrability
condition of ® with respect to F' and d, we get

d(71(X), 72(X)) S A1 (X)), 72(X))
diamg(X) Oy diamg(X)

> eCy =,

and for each i € {1, 2},

d(@;(X )SQ\X)> (i(X>752\X)>€C _ =
diamg(X)  Cyprdiamg(X) — 7

Property (ii). Fix an arbitrary integer N > N,. Choose an integer N > N, large
enough so that Nn > Nn.
By Proposition BT (i) and (vii), for each i € {1,2}, since F¥ maps X NHFMo injectively

onto Y and )A/CAA/IO C inte(Y,*), we have
(V) & XMmR(,0),

-1
where ¢; = (FN XN.+MO> . Define, for each i € {1, 2},

o~

)A(clzﬂ\% — an—N”ﬁ (9’ (}?CJ\A/[O)) c Xﬁﬁﬂ\%ﬁ(f’ 5) _ Xzfurﬁo(ﬁ’ ),

. 1 - -1 _ R
and write ¢ = (FN‘XJQH%) = <an‘Xﬁ+ﬁO> . Note that fN"=Niog =3,



PRIME ORBIT THEOREMS FOR EXPANDING THURSTON MAPS 125

By (@.4)), ([@.3), Properties (i) and (ii) for the (C, a)-strong non-integrability condition
of ® with respect to F' and d, Lemma [3:22] Lemma [B.17 (ii), (0.2)), and (©.3]), we have

SEB@(@(X))) - SEB@(@1(X)) - SEBE (3:(X)) + SEBG(32(X)))|
A3 (%), 72(X))”
L 6@ (@1(X)) — S50 (@1(X)) — 5% 6@ (02(X))) + 556G (@2(X)))|
B (a1 (X), 22(X))e
_ [haotaa0) - sfuotaenx)) - skl
- A (%), (X))

S (@ (X)) = ST (si(wa(X)))
d(x1(X), 22(X))

i (2(X))) + 5, 0((w2(X)))|

«

-
ie{1,2}
§ 55D (61 (21(X))) = SED(a(1 (X)) = SE@(si(22(X))) + SE(s2(w3(X)))|
= (w1 (X), 25(X))°

¥ w\ 2 G d((FY" N7 0 6) (@1(X)), (F¥" 5 0 ) (X))

ie{1,2} - A “ Ea(diamd(X))a
S |4, ( szd aC'o diam, (a ( J;z'vn-ﬁa; 93 (X))

ie{1,2y e*(diamg(X))

2 |<b|0l7 (52,d) OO CO‘A_Q(MTH‘NH—(Nn—ZVﬁ))
=c7 1 - A—a ’ 5QC—QA—aMn

2 |¢‘a 5 COCQQ _ -
= (1 iSAC?a)ea AT > e —e(1— Cy) = ¢,

where C' > 1 is a constant from Lemma and Cy > 1 is a constant from Lemma [3.22]
both of which depend only on f, C, and d.

The first statement of Lemma is now established. The second statement is a special
case of the first statement. O

Proposition 9.3. Let f, d, o satisfy the Assumptions. Let ¢ € C%*(S?,d) be a real-
valued Holder continuous function with an exponent o. If ¢ satisfies the a-strong non-
integrability condition (in the sense of Definition[91]), then ¢ is non-locally integrable (in
the sense of Definition [6.3).

Proof. We argue by contradiction and assume that ¢ is locally integrable and satisfies the
a-strong non-integrability condition.

Let A > 1 be the expansion factor of d for f. We first fix a Jordan curve C C S?
containing post f. Then we fix Ny, My, YBMO, and Y, as in Definition We choose
M = M, and consider an arbitrary M-tile X € XM (f,C) with X C Y. We fix
x1(X), 22(X) € X satisfying Properties (i) and (ii) in Definition @11 (1). By Theorem
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¢ = K+ fof—p for some constant K € C and some Holder continuous function
B e 0% ((S%,d),C).
Then by Property (ii) in Definition 0.1 (1), for each N > Np,

|8(s1(z1(X))) — Bl2(z1(X))) — Bla(z2(X))) + Bl (z2(X)))]
d(z1(X), z2(X))*
—1 -1
where ¢ = ( N N1+MO> and ¢ = < il X(JV;MO) . Combining the above with Pro-
perty (i) in Definition 0.1 and Proposition BIT (i), we get
218, (52.d) (max{diamd(YN+M0) }YNJFMO € XN+Mo(f, C)})a

>e>0,

- >e>0.
e*(diamg(X))> -
Thus by Lemma B.I8I (ii), 2|5], (52,4 % > elte > 0, where C' > 1 is a constant
from Lemma [3.15] depending only on f, C, and d. This is impossible since N > Nj is
arbitrary. 0

9.2. Dolgopyat operator. We now fix an expanding Thurston map f: S? — 52, a
visual metric d on S? for f with expansion factor A > 1, a Jordan curve C C S? with
f(C) € C and post f C C, and an eventually positive real-valued Holder continuous
function ¢ € C%(S? d) that satisfies the (C,a)-strong non-integrability condition. We
use the notations from Definition below.

We set the following constants that will be repeatedly used in this section. We will see
that all these constants defined below from ([@.6]) to (©.12]) depend only on f, C, d, «, and

o.

1
(9.6) mo = ax{ {a log, (8C1e*~ 1)—‘, ﬂogA(lOs_lCQﬂ} > 1.
1
(9.7) 5o = {2 o3 002}6(0,1).
o C(]T(] 2A0 ‘ —Soqb‘ , (S2,d)
(9.8) bo = max{Qso +1, T Aa T A-a :
(9.9) A = max{3C10Ty, 4}
(9.10) € = { 5o, A—MO} 0,1).
2
(9.11) N, = { [ logA<max{210A w, 4 A, 4010})H.
0
do€ > Aee® _
— : —12 0¢1 1 —2amop—1 aNy
(9.12) n = mm{? , <1280AC’2) ; 24001002]\ (LIP4(f)) }

Here the constants My € N, Ny € N, and ¢ € (0,1) depending only on f, d, C, and
¢ are from Definition @.I} the constant sq is the unique positive real number satisfying
P(f, —sop) = 0; the constant C' > 1 depending only on f, d, and C is from Lemma 315}
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the constant Cy > 1 depending only on f, d, and C is from Lemma [3.22} the con-
stant C7 > 0 depending only on f, d, C, ¢, and « is from Lemma [3.24} the constant
Ag > 2 depending only on f, C, d, \¢\a’(527d), and « is from Lemma [T 13} the constant
Cio = Cyo(f,C,d, a, Ty) > 1 depending only on f, C, d, a, and ¢ is defined in (T2 from
Lemma [T} and the constant Ty > 0 depending only on f, C, d, ¢, and « is defined in
(737), and according to Lemma satisfies

(9.13) sup{‘cfzrzb‘a’(SQ’d) la € R, |a] <25} < T
We denote for each b € R with [b] > 1,
(9.14) ¢ = {X eX"O(f,0)| X CY MUY},
where we write
1 Cb|
1 b) = |—1 — |-
(9.15) ) = | 1o (I

Note that by ([@.10),

1
m(b) > log, P Mo,
1
and if X € @, then diamy(X) < (%)é by Lemma (ii).
For each X € &, we now fix choices of tiles X;(X), X(X) € Xm®+mo(f C) and
X)(X), X5(X) € Xmb)l+2mo( f C) in such a way that for each i € {1,2},

(9.16) £(X) € X(X) € X,(X).

By Property (i) in Definition @] ([@.6]), and Lemma B.I5] (ii) and (v), it is easy to see
that the constant mg we defined in (9.6]) is large enough so that the following inequalities
hold:

(9.17) d(X,(X), 2\ X) > 1%0‘1/\‘”(”),
(9.18) diamg(X;(X)) < %C—lA—m(b)’
(9.19) d(XH(X), 5%\ X,(X)) > %C—lA—m(b)—mo’
(9.20) diam(X(X)) < 1‘100—1 A—m(b)=mo
for i € {1,2}, and that
(9-21) d(%1(X), %5(X)) = —C A0,

10

For each X € €, and each i € {1,2}, we define a function v; x: S* — R by
d(x, 5%\ X;(X))*

(9:22) Yix() d(z, X1(X))* +d(x, 5%\ X;(X))e
for € S?. Note that

(9.23) ix(z)=1ifz e X(X), and x(z)=0ifz¢ X;(X).
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Definition 9.4. We say that a subset J C {1,2} x {1,2} x &, has full projection if
m3(J) = €, where m3: {1,2} x {1,2} x €, — &, is the projection 73(j,7, X) = X. We
write F for the collection of all subsets of {1,2} x {1,2} x &, that have full projections.

For a subset J C {1,2} x {1,2} x €, we define a function 8;: S — R as
(9.24)
(1-n X 2 ¢ix(fM@) if 2 € inte(X)TH0) Uinte (XN H0),

1€{1,2} Xeg,
{1,i,X}eJ

Brlx) = 1—n > > ix (fN1 (l’)) ifz e inte(XévzlJ’Mo) U inte(XglfMo),
ic{l2) Xeg, ’ ’
{2,i,X}eJ

1 otherwise,

for x € S2.
The only properties of potentials that satisfy a-strong non-integrability used in this
section are summarized in the following proposition.

Proposition 9.5. Let f, C, d, «, ¢ satisfy the Assumptions. We assume in addition that
f(C) C C and that ¢ satisfies the a-strong non-integrability condition. Let b € R with
|b| > 1. Using the notation above, the following statement holds:

For each ¢ € {b,w}, each X € &, each x € X|(X), and each y € X5,(X),
(9.25)
Sod(z,y)" < |Sn,0(11(w)) — Swyd(7(@)) — Swyd(11(y)) + Sn B(72(y))] < g 'z, )",

1 —1
where we write T = <fN1‘XN1+I\/IO) and Ty = (fN1 ‘XN1+M0> )
1 02

Proof. We first observe that the second inequality in (0.25) follows immediately from the
triangle inequality, Lemma [3.24] and (9.7)).

It suffices to prove the first inequality in ([@.25). Fix arbitrary ¢ € {b,10}, X € &,
r € X)(X), and y € X¥,(X). By ([@.I6), (021I), Lemma B3T3 (ii), Lemma 324, (@.19), we
get

[Sn, ¢(11(2)) = Sny O(72(2)) — Sn, (11 (y)) + S, (72(y))]

d(z,y)*
> [Sn,d(11(2)) — Snyd(72(2)) — SNy d(T1(y)) + Sy d(72(y))| . d(%1(X), Xa(X))®
- d(z1(X), zo(X))" (diamg( X))
( 201 (dlamd(:{ll (X))a + 201 (dlamd(%é (X))a) 1O_Q€QC—QA—am(b)
> |e— ‘ :
B (diamg (X)) (diamg(X))>
> 40110_a600—aA—am(b)—am0 10—OC€QC—QA—am(b)
=\ C-a\—am(b) O\ —am(b)
€1+o¢
= 5 =

where the last two inequalities follow from (©@.6]) and (@.7). O
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Lemma 9.6. Let f, C, d, A, a, ¢, so satisfy the Assumptions. We assume in addition
that f(C) C C and that ¢ satisfies the a-strong non-integrability condition. We use the
notation in this section.

Given b € R with |b| > 2sg+ 1. Then for each X € €, and each i € {1,2}, the function
i x: S* = R defined in (9.22) is Holder with an exponent o and

(9.26) |01, x o, 52,4y < 207 CAXPOF2mo),

Moreover, for each subset J C {1,2} x {1,2} x &, the function 8;: S* — R defined in
(9-29) satisfies

1
(9.27) 125J(:L’)21—77>§
for x € S?. In addition, 3; € C**(S?% d) with 1814, (s2.a) < Lg, where
(9.28) Ly = 40e~“CAm®+2mo) (TP, (f))*Ny

is a constant depending only on f, C, d, o, ¢, and b. Here C > 1 is a constant from
Lemma [313 depending only on f, C, and d.

Proof. We will first establish (@.26). Consider distinct points z,y € S2.
If 2,y € S2\ X;(X), then Lext®)vix®) _

If z € S\ X;(X) and y € X;(X (d(x)y)then by (@.19),
|¥ix (2) — Pix ()l :d(y, S\ Xi(X)) 1
d(l’, y)a d(l’, y)a d(y> }:/( ))a + d(y> 52 \ }:(X))a

1 20
< _CaAa (m(b)+mo) _CAa(m(b)+2mo) )
T A(X(X), SP\ X(X))r T e R
Similarly, if y € $2\ X;(X) and 2 € X;(X), then LeXEtexOl < 9gz—agpalm®)+2m),
If z,y € X;(X), then by (0.18), (0.16), and (@.19),
Vi x (z) — i x(y)]
d(z, y)~

< d(x, 5%\ X(X))*|d(z, X(X))* — d(y, X)(X))"]
~d(z, y)*(d(z, X(X))> 4+ d(z, 57\ Xi(X))*)(d(y, X (X))> + d(y, S\ X;(X))*)

N |d(x, 5%\ Xi(X))* —d(y, S* \ Xi(X))*|d(x, X(X))

d(z, y)*(d(z, Xi(X))* + d(z, 5 \ Xi(X))*)(d(y, Xi(X))> + d(y, 5? \ Xi(X))*)

Lz, SN\ Xi(X))d(w, y)* + d(z, y)*d(z, 35'(X))°‘
- d(z, )“d(%’( ), 5%\ X(X))%

maaC’ ap—em(b) 4 150 C—a A—am(b)
<

(HC1A-mBImo) ™

Hence |¢i7X|a, (52.d) < 205_‘10A°‘(m(b)+2m0), establishing (9.20)).

In order to establish ([@.27), we only need to observe that for each j € {1,2}, and
each X € inte(X[f?+M°) U inte(XﬁEJ’Mo), at most one term in the summations in (9.24])

< QOE_QCAa(m(b)+2mO).
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is nonzero. Indeed, we note that for each pair of distinct tiles X, Xy € &, X;,(X1) N
X, (Xs) = 0 for all iy, € {1,2} by (@IT), and X;(X;) N Xo(X;) = 0 by (@21)). Hence by
([@.23), at most one term in the summations in ([9.24) is nonzero, and (9.27) follows from

[@.12).

We now show the continuity of 5. Note that for each ¢ € {1,2} and each X € &, by
([@17), (@23), and the continuity of 1; x, we have

Pix (f(OXGT)) = wix (V) = {0}

for ¢ € {b,w} and j € {1,2}. Tt follows immediately from (@.24)) that $; is continuous.

Finally, for arbitrary z,y € S? with z # y, we will establish % < Lg by

considering the following two cases.

Case 1. z,y € XM+ for some XM+mb) ¢ XNi+m(b) If
XN g | XM | e {b,w}, j € {1,2}},
then B;(z) — Bs(y) =1—-1=0. If
XN | XM | e {b,w}, j € {1,2}},

then by (@.23),
1- ix. (M (x) ) — (1- . (f
wJ(x)—ﬁJ(y)\:( 1, 2 (@) = (1= 3 v (1760)
d(x7y)a d(x’y)a

<2n |¢2 Xula, (52,d) (LIPd(f>)aNl < Lﬁv

where we denote X, = f™M (XN1+’” b)).

Case 2. card({z,y} N XMTm®)) <1 for all XN1+mb) ¢ XN+mb) We assume, without

loss of generality, that 3;(x) — 3,(y) # 0. Then by (@.23) and @.17), d(f™ (z), [N (y)) >
SCIAT™). Thus d(z,y) > 50 A~ (LIP,(f))~™. Hence by ([@27), 2X0=Bs0)l <

dzy)  —

10e—eC A0 J(LIP4(f))*Nin < Lg. 0

Definition 9.7. Let f, C, d, a, ¢ satisfy the Assumptions. We assume in addition that
f(C) C C and that ¢ satisfies the a-strong non-integrability condition. Let a,b € R satisfy
|b| > 1. Denote s := a+ib. For each subset J C {1,2} x{1,2} x &, the Dolgopyat operator
M6 on C%((XP,d),C) x C**((X2,d),C) is defined by

(9.29) M s6(up, Un) = L%JFMO (ubﬁJ\xg, Unf3s|x0)
for uy € C%*((XY?,d),C) and u, € C**((X2,d),C).

Here €, is defined in (@14)), 35 is defined in ([@24), My € N is a constant from De-
finition @] and N is given in (@II)). Note that in (@.29), since 8; € C%*(S?%, d) (see
Lemma [0.6]), we have u.f;|xo € C’O"’((Xco,d),C) for ¢ € {b,0}.
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9.3. Cancellation argument.

Lemma 9.8. Let f, C, d satisfy the Assumptions. Let ¢ € C**(S% d) be a real-valued
Hélder continuous function with an exponent o € (0,1]. Then there exists a constant

C,, = 1 depending only on f, d, and ¢ such that for all integers m,n € Ny, and tiles
X" e X™(f,C), X"t e X™t(f C) satisfying X C X", we have
(9.30) LX) < 2 explm(lglleniss + PUF. 9))).

o (X ’
where p, is the unique equilibrium state for the map f and the potential ¢, and P(f,p)
denotes the topological pressure for f and .

Proof. By Theorem 5.16, Corollary 5.18, and Theorem 1.1 in [Lil8§], the unique equilibrium
state (1, is a Gibbs state with respect to f, C, and ¢ as defined in Definition 5.3 in [Lil§].
More precisely, there exist constants P,, € R and C),, > 1 such that for each n € Ny,
each n-tile X™ € X", and each z € X", we have

1 < pp(X")
Cu, ~ exp(Snap(:)s) — nPW)

We fix arbitrary integers m,n € Ny, and tiles X" € X", X™t" ¢ X™" gatisfying
X™m+n C X" Choose an arbitrary point x € X™*". Then

p¢(X") < (2 eXp(SnQO(I) - npﬂw)
o) = e (S o) — (n 4 m)E)
Inequality (@.30) follows immediately from the fact that P,, = P(f,¢) (see [Lil8|

<C

— THer

< Oy, exp(m(llelleogs2) + P(f,)))-

Theorem 5.16 and Proposition 5.17]). O
Lemma 9.9. For all z, 2y € C\ {0}, the following inequalities hold:
(9.31) |Arg(z122)] < [Arg(z1)] + [Arg(22)],

1 1 2 .
(9.32) 21+ 22l < |1l + || = = (Arg(2) min{lzal, |2},

16 29

21 2|Zl — 22|

9.33 Arg(2)] = .
939 S 1= minglal, T

Proof. Inequality (9.37]) follows immediately from the definition of Arg (see Section [2]).
We then verify (9.32). Without loss of generality, we assume that |z;| < |z| and

0= Arg(z—;) > 0. Using the labeling in Figure 0.1}, we let (ﬁ = 2o and QC' = z;. Then

0
|21 + 20| =|OA| + |AC| < |z5| 4+ |BC| < |2a| + |21] cos(§)

6 o 62
<ol + 12 (1= 5 + ) < Jal + (1 55 )l

Inequality (0.33)) follows immediately from the following observation in elementary Eu-
clidean plane geometry. As seen in Figure [0.2] assume A = z; and B = z,. Then
|21 — 20| = |AB| > |AC| > 1|OA|LAOC = %\zl\‘Arg(i—;)‘. O
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FIGURE 9.1. Proof of (0.32) of Lemma [0.9

B A

FIGURE 9.2. Proof of (0.33) of Lemma 0.9l

Lemma 9.10. Let f, C, d, a, ¢, sg satisfy the Assumptions. We assume in addition that
f(C) C C and that ¢ satisfies the a-strong non-integrability condition. Given b € R with
b| > 259+ 1. Given ¢ € {b,w} and he € Kap(X?,d). For each m > m(b) — My and each
m-tile X™ € X™(f,C) with X™ C X?, we have

sup{h(z) |z € X"} <2inf{h(z) |z € X™}.
Recall that the cone K (XCO, d) is defined in Definition [7.9l

Proof. Consider arbitrary x,2’ € X™. By Definition [[.9] Lemma (i), (@I3), and
.10,

|he(x) — he(2)| SA[D|(he(2) 4 he(2”))d(z, 2')*
SA[D|(he(w) + he(2"))(diamg(X™))"
<A|b|(he(z) + he(a'))CAMo—am(b)
<A|b||b|A“M°(hc(x) he(z'))

1 /
Sz(hc(ﬁ) + he(z')),

where C' > 1 is a constant from Lemma .15 depending only on f, C, and d. The lemma
follows immediately. OJ
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Lemma 9.11. Let f, C, d, «, ¢, so satisfy the Assumptions. We assume in addition
that f(C) C C and that ¢ satisfies the a-strong non-integrability condition. Given b € R,
meN, ¢ e {b,w}, uc € CO*((X?,d),C), and he € Kap (X0, d) such that |b] > 2s9+ 1,
m 2 Ni+m(b), [uc(y)| < he(y), and [uc(y) —uc(y’)| < Alb|(he(y)+he(y))d(y, y')* whenever
v,y € X2 Then for each X™ € X™(f,C) with X™ C X?, at least one of the following
statements holds:

(1) Juc(z)| < 2he(x) for allz € X™.
(2) |uc(z)| > he(z) for all z € X™.

Proof. Assume that |uc(zo)| < the(zo) for some zo € X™. Then by Lemma (ii),

Lemma [0.10, and (@.I5), for each z € X™,

|ue(2)] <[uc(z) — ue(zo)| + ihc(xo) < Ab|(he(x) + he(zo)) (diama(X™))" + %hc(xo)
§(2A|b|CA‘aN1‘“m(b) + i) sup{he(y) |y € X"}

§(4A€1A_QN1 + %)hc(x) < th(a:),

where C' > 1 is a constant from Lemma [3.I5 The last inequality follows from (9.I1)) and
the fact that €; € (0,1) (see (@.I0)). O

Lemma 9.12. Let f, C, d, «, ¢, so satisfy the Assumptions. We assume in addition
that f(C) C C and that ¢ satisfies the a-strong non-integrability condition. Fiz arbi-
trary s = a + ib with a,b € R satisfying |a — so| < so and |b| > by. Given arbitrary
ho € Kapy (X0,d), b € Kapy (X0,d), up € CO((XD,d),C), and um € CO2((X2,d),C)
satisfying the property that for each ¢ € {b,w}, we have |u(y)| < h(y) and |u(y) —
u(y")| < Afpl(he(y) + he(y")d(y, y')* whenever y,y' € X?.

Define the functions Q.;: YM — R for j € {1,2} and ¢ € {b,w} by

C
2 u§(c7k)(7k(x))esN1f?b(m(m))
ke{l,2}

_2nh<(c7j)(7j($))€sN1%(Tj(m))+ > hc(c,k)(Tk(x))esf\’l%(%(x))’
ke{1,2}

Qcj(z) =

-1
for x € YMo_ where we write 7, = (le‘XN1+JWO) for k € {1,2}, and we set s(c,j) €
¢,k

{b,w} in such a way that 7;(Y M) C X?(c’j) for j € {1,2}.
Then for each ¢ € {b,w} and each X € &, with X C YMo we have

min{HQc,jHCO(xi(X)) ije {1,2}} <1.

Proof. Fix arbitrary ¢ € {b,1wv} and X € €, with X C Y. For typographic reason, we
denote in this proof

(9.34) (i, ) = ugey(m(x)), h(i,x) == hee)(Ti(2)), e(i,x) = SNy —50(7i(@))
fori € {1,2} and z € X.
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If u(j, )| < 3h(j,-) on X, for some j € {1,2}, then 1Qcjll o, (xy) < 1Horalli e {1,2}.
Thus, by Lemma [0.11] we can assume that

(9.35) u(k, )| > %h(kz,z) for all z € X and k € {1,2}.
We define a function ©: X — (—n, 7] by setting
_ u(l, z)e(l, z)
(9.36) O(z) = Arg(u(Q,a:)e(Q,x)
for z € X.
We first claim that for all z,y € X, we have
u(l,z)/u(2, x) N T
: A <164 A7 < —
30 s (e | < e <
and
(9.38) 16| = SN, 0(11(x)) + S, @(72(2)) + Sn d(11(y)) — v d(72(y))] < 16

Indeed, by (@.31)) and (@.33) in Lemma @9} (3:34), (@.37), Lemma[B.15] (ii), Lemma [@.10,

(@.14), and (@15,
w5 )| < (i)l + ()|
3 ‘2|U(]}{E) —u(j,y)|
inf{|u(j, 2)| |z € X}

Jje{1,2}

2A|b|(h(j; %) + (4. y)) §
< X G AT e x) )

sup{h(j,2)[2 € X} N —am
<4A Aalam()
b 6%22} inf{h(y, 2 )|z€X}C

< 16Ap| AN < T
| ||b| o
where C' > 1 is a constant from Lemma The last inequality follows from the fact
that Ny > [Llog, (2A4)] (see ([@1I)) and the fact that e; € (0,1) (see ([@I0)). We have
now verified (0.37). To show (9.38)), we note that by Lemma (ii), (@.14), (@.15)), and
@.1a,

bl —Sw, 6(11.(2)) + Sny $(7()) + Sn$(71(y)) — Snd(7a(y))]
< |b]oy td(z, y)* < [b|6y ! (diamg (X)) < [b|dy L COAT™) < 57lep < 116.

The claim is now verified.

We will choose iy € {1,2}, by separate discussions in the following two cases, in such a
way that

(9.39) O(z)| > 1697 for all z € X;,(X).
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Case 1. |O(y)| > § for some y € X. Then by (9.3I)) in Lemma 0.9 (9.34), ([©.34]),
(@37), [@38), and the fact that n € (0,27'?) (see (X12)), for each z € X,

(w1, 9)e(1.9)) (u(2, )el(2,9))
O] 219w - Arg((uu,z)ea,x>>/<u<2,x>e<2,x>>)’
T g (P19 2N ||y, ((eRy)/e2,y)
= Ag(ua,x>/u<2,x>) Ag(e(lm/e(m))‘
1716 168 o

We can choose ig = 1 in this case.

Case 2. |O(z)| < § for all z € X. Then by (@.31)) in Lemma 0.9, (9.34), (9.38)), (.37,

@38), [b] > by > 1 (see ([@.8)), ©.29), (O.14)), and (O.I5), for each x € X;(X) and each
Yy e %Q(X),

1O(z) — O(y)]
_ A (u(l,z)e(l,x))/(u(2,x)e(2, x)
=2 g((u(l,we(l,y))/ 2,y) )‘
. e(l,x)/e(2,x) : u(2,y)/u(l,y)
- Ag(ea,m/e@,y))' Ag( @, 2)/ull, >)‘
> |b]|=Sn, ¢(11(x)) + Sn, d(72(2)) + Sny ¢ (11 (y)) — Sn, D(72(y))] — 16Ae, AN
> |b|50 (z,y)" — 164t A=*N > |b] 0o (107 CTTAT™ ) — 16Ae; AN
—aN; do€r
> 50]_0—1\0 €1 — 16A€1A Z 20/\02’

where the last inequality follows from the observation that 16AA=*M < 205\(’02 since

N > [Llog, (w)-‘ (see (Q.I10)).

We now claim that at least one of the following statements holds:

(1) |O(z)] > &L, for all z € X1(X).

(2) 1O(y)| > g% for all y € Xa(X).

Indeed, assume that statement (1) fails, then there exists zo € X;(X) such that

1O (x0)] < 83?\%2. Hence for all y € X5(X),

do€r do€1 do€1

> — — > — ,
)| 2 [6(y) — O(w0)| — [O(a)] = 5oobs — L > L

The claim is now verified.

Thus we can fix ip € {1,2} such that [O(z)] > 2d . > 16n2 (see (@12)) for all
x € X;,(X) in this case.
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By Lemma [3.24] ([0.34]), Lemma 0.0l Lemma 315 (ii), (©.14]), and ([@.15]), for arbitrary
T,y € xlO(X) andj S {172}a

h(j, x) exp(Sn, —ad (;(z)))

i M)
h(j.y) exp(Sn,—ad(7;(y)))

‘ ) | Sy ~ad(r; (@)~ S, ~ad(r; W)
~h(d,y)

— d(z,y)®
SQGXP<CM_“¢hJ§@H‘_AZa)
o CaA—am(b)
(9.40) §2exp<0d—a¢b4yd)1__Aﬂx)

1—A-=@

where the last inequality follows from (0.8), (O.13)), the condition that |b| > by, and the

fact that €; € (0,1) (see ([@.I0)).
We fix ko € {1,2} such that

(9.41) inf{h(j, 2)e(j,2) |z € Xiy(X), j € {1,2}} = inf{h(ko, )e(ko, z) | 2 € Xsy (X)}.

Hence by ([0.32) in Lemma[0.9] (0.36)), (9.34)), (9.39)), (9.41)), (7.14]), and (9.40)), for each
x € X,;,(X), we have

lu(l,z)e(1, z) +u(2, x)e(2, z)|

€1 - 1
S 26Xp<m00‘_a'¢}a7 (527d)7) S 87

@2

<= i (lulk, D)} + Y Ju 2)elsio)
Je{1,2}

@2 —— —

<) iy (bl e D) 4 Y ey )
Jje{1,2}
< —16n inf{h(ko, y)eSM—ad(Tiy (1) ’y € 362-0()()} + Z h(j, z)eSm (i (@)
je{1,2}
< _th(k07x>€SN1j‘;‘g)(Tko(w)) + Z h(j, x>€SN1:t\l_(;5(Tj(x)).
je{1,2}
Therefore, we conclude that [|Qc x,[lco(;, (x)) < 1- O

Proposition 9.13. Let f, C, d, «, ¢, sg satisfy the Assumptions. We assume in addition
that f(C) C C and that ¢ satisfies the a-strong non-integrability condition. We use the
notation in this section.

There exist numbers ag € (0, s9) and p € (0,1) such that for all s .= a+1ib with a,b € R
satisfying |a— so| < ag and |b| > by, there exists a subset E, C F of the set F of all subsets
of {1,2} x {1, 2} x & with full projection such that the following statements are satisfied:

(i) The cone Kap, (X[?,d) X Kap, (X,%,d) is invariant under My g4 for all J € F,
1.€.,

(942) MJ,,S,¢(KA|I,| (X[?,d) X KA\b\ (Xg,d)) - KA\b\ (Xf?,d) X KA|b| (X‘g,d)
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(ii) For all J € F, hy € Kap(XP,d), and hy € Kap (X2, d), we have

(9.43) 3 /X My, g )P s < S /X LR

ce{b,w} ce{b,w}

(ili) Given arbitrary hy € Kap(X¢,d), hw € Kap(X9.d), up € C**((X0,d),C),
and Uy, € Co’a((X,%,d),C) satisfying the property that for each ¢ € {b, 1o}, we
have |uc(y)| < he(y) and |uc(y) — uc(y')] < A[p|(h(y) + he(y))d(y, y')* whenever
y, v € XO. Then the following statement is true:

There exists J € E; such that

(9.44) 7 (L2 (g, ) ) ()] < (M, ) ()

and

(9.45)

e (]L%JFMO (up, um)> () — 7. (L%MU (up, um)> (ZL’,)‘
SAJb|(e(My—s,6(ho, b)) (@) + (M, 5.6 (ho, b)) (27))d(, )"
for each ¢ € {b,rw} and all z, 2’ € X7.

Proof. For typographical convenience, we write ¢ := N; + Mj in this proof.
We fix an arbitrary number s = a+ib with a, b € R satisfying |a — so| < s and |b|] > by.

(i) Without loss of generality, it suffices to show that for each J € F,
o (M6 (K (X5, d) < Koy (X, d))) © Kapy (X, ).

Fix J € F, functions hy € K ap (X[?, d), heo € Kap) (Xg, d), and points z, 2’ € X{ with
x # o', For each X* € Xi, denote yx. = (f*|x.) " (z) and vy, = (f*]x.) " (2).
Then by Definition 0.7 (7.I4]) in Lemma [7.7] Definition [(.2] and (7.10),

|7 (M5, (P, o)) () = 6 (M5, (B, o)) ()

— ‘L(b) (hoBlxo) (x) + £ (hwoBilxg) (2)

%7[,7[, —agp,b, o
- E%M(hbﬁjug)(:c’) =LY (wbBilxy) (@)

< Z Z ‘hc(yXL)ﬁJ(yXL)eSrw(yXL)_hc(ygp)5J(ygp)esra¢(ygﬂ)

ce{b,w} X+ €X!
xexy

< Z Z |he(yx) Ba(yxe) = he(y'x.) B (Yx.)

ce{b,w} X*eX!
xcx?

+ Z Z he(yx:)B1(yx-) eSiadlyxe) _ Si-ad(y.)

ce{b,m} X*€X}
Xrcx?

6&%(%“)
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Z Z he(yx.)

ce{b,w} X eXi
x+cx?

+ Z Z |he(yxe) = he(yx.)

ce{b,m} X eXy
XLQXE)

+ Z Z hC(yXL)ﬁJ(yS(L)QSrW(yXL)

ce{b,m} X eX
Xrcx?

Si—a(yx) | Si-ad(yx.)—Si—ad(yx:)

Bi(yx:) — Br(yx.)|e

Br(yx.)e™ 4 x)

1 _ eSL%(ylxb)_SL:‘;a)(yXL) .

By Lemma B.24] Lemma [0.6] Lemma B.22] and Lemma [T the right-hand side of the
last inequality is

ToCo(di
§exp< . 0(11_arjr\1i )( Z Z he(yx.)LgCyA™d(x, 2') e ~ad(x)

ce{b,w} X eXy
XLQX?

+ Y Y A|b\(hc(yxb)esfa@<y>ﬂ>+hc(yga)eSL?@(ykL))CgA—Md(x,x’)a>

ce{b,w} X eXt
xrcx?

‘I'ClOTO Z »C Tadibic c6J|XO)()

ce{b,w}

where C > 1 is a constant from Lemma [3.22] depending only on f, C, and d; Lg is a
constant defined in (0.28) in Lemma 0.6} 7o > 0 is a constant defined in (7.37) giving an

upper bound of} aqb} (s2.4) by Lemmal[7.12| (c.f. (7.30)); and Cyg = C1o(f,C,d, o, Tp) > 1
is a constant defined in (IEI) in Lemma [[1l Both Ty and Cjy depend only on f, C, d,
¢, and o. Thus by (7.2), (227) and ([@.28) in Lemma [0.6] Definition @07, (@.15)), and the

calculation above, we get
|76 (M5, (o, P )) () — 16 (M5, (o, P ) ) (2)

|
Ab|(my (M.g,—s,6 (hos A ) ) (@) + 76 (Mg, —5,6 (ho, A ) ) (27))d (2, ')
Cho CioTo

<Y (p 4 AB)A +
AL =y Lo+ APD LD
Clo 40€—CM 2am0+1 C|b| aNl —Cl{(N1+M0) CIOTO
1_U<A|b‘ CA S LIPY()™ 4 1) A +
< 1.

The last inequality follows from the observations that €% < 1 (see (@.9)), that

A—a(N1+M0) < ]‘ < 11 - /)7
—4Cy — 3 Cyo
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(see (@.11]) and M)) and that by (@.12)) ,
1

aClOC Ny —aNi—aM
A alN1—aMy+2amg+1 LIP alNy < =
e (LIPy(f))*" <

(ii) Fix J € F and two functions hy € K p (X[?, d), he € Kap (Xg, d).
We first establish that
(9.46)

(e(Maee ) (@) < (L5 (0,05) ) @) - (L ((Bulg), (Br1x)”) ) )

for ¢ € {b,tv} and z € X?. Indeed, fix arbitrary ¢ € {b,wv} and z € X?. For each
Xt e X, denote yx. = (f‘|x.)"!(z). Then by Definition 0.7, (ZI14)) in Lemma [7.7], and
the Cauchy—Schwartz inequality, we have

(e (M s, (ho, o)) ()

( S LY (heBalx)( ) ( > D (heBrexp(S —Aa?b))(y)o))2

e{b,w} Cefbm) X'eX
XtCXO
- c

<Z > (hZexp(S yx>( SN (Bexp(s ;\a?ﬁ))(yXL))

def{bw} X eXt ¢e{b,w} X+eX:
ngxg XLQXS

= (L (2. 12) ) (@) - me (L, ((B01x9)”s (Bolxe)?) ) @)

e~

We will focus on the case when the potential is —sp¢ for now, and only consider the
general case at the end of the proof of statement (ii).
Next, we define a set

(9.47) = |J MEix

(45, X)ed

We claim that for each ¢ € {b,w} and each x € W; N X?, we have

(9.48) <L7?¢((5J|X8>27 (5J|Xg)2>>(95) <1- UGXP<—LH%HCO(S2)>'

Indeed, we first fix arbitrary ¢ € {b,1w} and x € W; N X?. Let X € €, denote the unique
m(b)-tile in €, with z € fM(X). By (TI4) in Lemma [T, Definition [7.2] and (@0.24)),

me(L (Bs1xp)", (Bs1x)*) ) @)
= 3 £ (Bil))@ = XD By exn(S sedlyx))

¢’€{b,} ¢e{b,p} X*€X!
XLQX?,

< 3 () @) — e x (£ () exp (S =s00(3))

ce{b,iw}
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<1- neXp<_LH:;0/¢HCO(32)>’

where iy, jx € {1,2} are chosen in such a way that (jx,ix,X) € J (due to the fact that

J € F has full projection (see Definition [@.4])), and we denote yx. = (f*|x.)"!(x) for

X' € X, and write y. =y~ +m. The last inequality follows from (Z.2I)) in Lemma [Z.1T]
¢IX

@.23), and ([@.47). The claim is now verified.

Next, we claim that for each ¢ € {b, w0},

(9.49) me(Lis, (02 12)) € Kap(X0,d).
Indeed, by (Z14)) in Lemma [Z.7) Lemma [710, and Lemma [Z.I3] (i), for all 2,y € X?°,
me(L, (08, 12) ) (@) = me(L (2 02) ) )

< 3 |e L)@ - £ L 02) )|

—80¢7C7C/
ce{b,w}

2A10| ‘%‘a,(sad) a ()
R = i LCXVLD DN DI (1O

de{bw} ze{z,y}

< PG,y 30w, (2.82)) (2),

z€{z,y}

where Ay = Ag (f, C,d,[¢l, (52.d) - a) > 21is a constant from Lemma[7.I3depending only on
f,C,d, |9l (52,4 and a; and C' > 1 is a constant from Lemma [3.I5] depending only on f,

Ao|“s0d
C, and d. The last inequality follows from — 22— < 1 (see (@.I1)) and L R <

e FMg) = 7 T-A-@

1bo < $Aby < LA|b] (see ([@8) and ([@.9)). The claim now follows immediately.

We now combine (9.49), Lemma [0.10, Lemma 0.8 (9.47)), and |b| > by > 255 + 1 (see
([@.8)) to deduce that for each ¢ € {b,w}, we have

©50) [ m(U () ) dnes 3 [ m (L (800)) die
X? Xeg, fMO(X)

xcyMo
M L 2 2
: X€Z€ Honolf O(X))xefsﬁﬁx>{”°<m—’s?¢(hb’hm))(x)}
XQYCMO
< Y () 2 inf Lw (L, (0302)) )
Xeg, z€fMo(X) o
XQYCMO
<Ou Y (M@, ) e (L (2)) @)
Xed, e fHo (x;J,X (X)

xcyMo
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<C | L'~ h2,h2 dp_g
S Casg Z /fMo(x;J’X(X)) 7T< (b )) H—so¢

Xew,

XQYCMO

S C118/ T <1LL (hg> h2 )) d,u—smtn
wnXx?

where i; x € {1,2} can be set in such a way that either (1,i;x,X) € Jor (2,i;x,X) € J
due to the assumption that J € F has full projection, and the constant C'ig can be chosen
as

(9.51) Cig = 20;2173@ eXp(2m0(||—sogz5||CO(Sz) + P(f, —smb))) > 1

which depends only on f, C, d, and ¢. Here the constant Cu—so , > 1is from Lemma [9.8]
depending only on f, d, and ¢.
We now observe that by (7.14]) in Lemma [7.7] and Lemma [7.16]

(9.52) > / me(Li, (B 12) ) dises = > / he ditsos.

ce{b,w} ce{b,w}

Combining (0.52), (9.46), Lemma [.11], (9.27) in Lemma [0.6] ([0.48), and (©.50), we get
(9.53)

> /hdﬂ w0 = D / e (M, (s o)) | gt

ce{b,m} ce{b,w}

- Z /Xoﬂ-c< i?()/qﬁ(h h2 )d,u —=so¢ Z / }7’& M] —s0,0 h[,, ))‘2du_80¢

ce{b,w} ¢ ce{b,w}

1L‘_~O¢(h§, hzm)) <1 - 7Tc<1L — <(5J|Xﬂ) ; (5J|Xg)2))> dfi-see
> 3 [ i) (- (v () (h)))) e

ce{b,w}

vV
T
2
—~

o) )
ce{b,w} w,Nx?
ZCi <_LH SO‘Z’HCOW ) /”c ]LL hﬁﬁ)) Ao
' ce{b,w}
Zcie <_LH SO(bHCO(Sz Z /h2d,u S0
' ce{b,iw}

We now consider the general case where the potential is :S’Zf) Fix ¢ € {b,0} and
an arbitrary point * € X9. For each X* € X!, denote yx. = (f*|x.)"*(z). Then by

(48]
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Definition [9.7] and (M) in Lemma [7.7],
Ter (Mg, .6 (Pios g Z Z he(yx) B (yx) exp (S, —ad(yx.))

ce{b,r} X*eX,
XLQX?

ST 3T helyx)Bilyx) exp(S,=sod(yx)) exp(|S.—ad(yxe) — S, —sod(yx:)
ce{b,w} X €X,
xrcxy?

)

< 7o (My-sq.6(ho, o)) () a=soll6llcogsa, +PU~00)~P(f,s06) 2l 10g u-as—logu—sgollcogs) )

Since the function t — P(f,t¢) is continuous (see for example, [PrUL0, Theorem 3.6.1])
and the map ¢ — w,, is continuous in C%*(S?, d) equipped with the uniform norm || || co(sz)
by Corollary B:29, we can choose ag € (0, sg) small enough, depending only on f, C, d, a,
and ¢ such that if s = a + ib with a,b € R satisfies |a — so| < ap and |b] > 255 + 1, then

exp(1(]a — sol [dllcase) + 1P(F. ~a) — P(, —s00)| + 2] 10g_as — logt_syslcn(s)))

— 1

nexp(—t||—sodllcogs2)) \ 2

<(1+ ;
Cis

and consequently

054) (Mo salhotn))e) < (14 ST ANN L, )

Therefore, if s = a + ib with a,b € R satisfies |a — so| < ag and [b] > by > 259 + 1 (see

[@.8)), we get from (Q.54) and (@.53)) that
O LR

ce{b,w}
ﬁeXp(—LH—30¢||CO(s2 2
< (1+ 8 Z |7Tc M 50,6 (o, hw) )= dfi—spe
18
ce{b,nw}
) _—
n° exp(—2t[| =50 || co 52
< (1 - TopC2—sdllonsn) ) [ i
Cis
ce{b,nw}

We finish the proof of (ii) by choosing

n? exp(—2t/|—so¢|cocsz))
Cy

p=1- € (0,1),

which depends only on f, C, d, «, and ¢.

(iii) Given arbitrary hy, hy, up, and uy, satisfying the hypotheses in (iii), we construct
a subset J C {1,2} x {1,2} x &, as follows:
For each X € &,

1) if HQCXJHC()(XI(X)) < 1, then include (1,1, X) in J, otherwise
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(2) if HQCX72HCO(%1(X)) < 1, then include (2,1, X) in J, otherwise
(3) if HQCXJHC()(%Q(X)) < 1, then include (1,2, X) in J, otherwise
(4) if HQCX72HCO(%2(X)) < 1, then include (2,2, X) in J,

where we denote ¢y € {b, v} with the property that X C Y. Here functions Q. ;: Y™ —
R, ¢ € {b,10} and j € {1,2}, are defined in Lemma [0.121

By Lemma [0.T2] at least one of the four cases above occurs for each X € €. Thus the
set J constructed above has full projection (c.f. Definition [0.4]).

We finally set & = [J{J}, where the union ranges over all hy, hy, up, and uy, satisfying
the hypotheses in (iii).

We now fix such hy, hy, tp, Uy, and the corresponding J constructed above. Then for
each ¢ € {b, 1w} and each z € X?, we will establish (.44) as follows:

() Ifzg U fHMX(X)UXyX)), then by (@23) and @.24), B5(y) = 1 for all

Xeg,

y € f~WNi+Mo) (). Thus (9.44) holds for z by Definition 0.7, (Z14)) in Lemma [7.7,
and Definition

(2) If z € fM(X;(X)) for some X € €, and i € {1,2}, then one of the following two
cases OCCurs:

(a) (1,4,X) ¢ J and (2,i,X) ¢ J. Then by @24), B;(y) = 1 for all y €
f~(NiF+Mo) (). Thus (@.44) holds for x by Definition 0.7, (7.I4)) in Lemma [7.7,
and Definition [T.2]

(b) (4,4, X) € J for some j € {1,2}. Then by the construction of J, we have

(4,4, X) € J if and only if (j',7') = (j,7). We denote the inverse branches
1 —
T = <fN1}XN1+MO) for k € {1,2}. Write z = <fN1+MO‘XN1+MO> ($>
¢,k c,J

Then f;(y) = 1 for each y € f~MFM)(g) \ 75(X;(X)) = f~MFMO) () \
{z}. In particular, /BL](T]'* (le(z))) = 1, where j, € {1,2} and j, # j. By
Lemma 012 we get Q.;(fV(2)) <1, ie.,

5 (iene™ ) ()

ke{1,2}

< —2phg(egy(2)eSM @ 4 N <h<<c,k>€SN1%> (7 (S (2)))

ke{1,2}

< <5Jh<(c,j)eSN1%> (2) + <5Jh<(c,j*)€s’“%) (7. (F (2)),

where (¢, k) is defined as in the statement of Lemma[@.12] Hence (9.44]) holds
for « by Definition 0.7 (7.14]) in Lemma [7.7] and Definition
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We are going to establish (0.45) now. By (.14 in Lemma [7.7, (7.35) in Lemma [7.T3]
Definition [7.2] and ([@.27), for all ¢ € {b,t0} and z,2’ € X? with x # 2/,

L e <IL%+MO (up, um)> () — m, (L%’Ma (up, um)> (x/)‘

d(x,z")®
Z ‘ “shc,c! uc ‘C(—Ls¢cc’(ucl)(x/)

ce{b,w}

<4 3 ((% S 28, )6)) e, (o)

e{b,w} ze{z,x'}

() XX £ Choil) )

de{b,w} ze{z,z'}

< (2/’30A+2)|b| S Myl b)) (2)

ze{z, '}

SABL Y (Mg (e b)) (2),

ze{z,x'}
where the last inequality follows from 24¢ < 1 (see (O.IT)) and A > 4 (see (@.9)). O

Proof of Theorem [82. We set v := N+ M), where Ny € Z is defined in (O.11]) and M, € N
is a constant from Definition @11 We take the constants ag € (0, s9) and p € (0,1) from
Proposition 0.13] and by as defined in (9.8)).
Fix arbitrary s := a+1ib with a,b € R satisfying |a — s¢| < ag and |b| > by. Fix arbitrary
up € C**((X¢,d),C) and uy € C**((X3,d), C) satistying
1

(9.55)

< and <1.

|| m||cOa(XO d)
We recall the constant A € R defined in (©.9) and the subset & C F constructed in
Proposition
We will construct sequences {hg s} 2%, in Kap (X9, d), {horti2, in Kap (X9, d),

{up s} 125 in C¥((X0,d), C), {uw i}l in CO*((X9,d),C), and {J;}/ 25 in & recursively
so that the following properties are satisfied for each k£ € Ny, each ¢ € {b,1}, and all
z, 2’ € X

(1) uep =7, <L%(ub,um)>.

(2) uer(@)| < hep(z) and Juep(r) — uer(z ’)| < AJp|(he(x) + hep(z'))d(z, 2')*.

(3) X fxoh'kdlu w0 <P D fXO o k— 1 dpsoe-

ce{b,w} de{b,w}

(4) 7 (Lg@(ub,k, um,k)) () < 7e(My, —op(hog, hrg)) () and

e (L o ) ) (2) = e (L (1t ) ) ()
§A|b‘ (ﬂ'C (MJk,fs,(j)(hb,ka hm,k)) (LL’) + . (MJk,fs,qﬁ(hb,ka hm,k)) (LL’/)>d(LL’, fL’/)a.

||ub||CO o XO d)
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We first set h,_q = %, heo = ||uc||[cb}(),a(x9’d) € [0,1], and u.p = u, for each ¢ € {b,w}.
Then clearly Properties (1), (2), and (3) are satisfied for & = 0. By Property (2) for
k = 0, we can choose jy, € & according to Proposition (iii) such that Property (4)
holds for k£ = 0.

We continue our construction recursively as follows. Assume that we have chosen
up; € C¥((XP,d),C), uw,; € CO((X2,d),C), hy; € Kapy(X¢,d), hwy € Kap(X2,d),
and J; € & for some i € Ny. Then we define, for each ¢ € {b, w},

Uei+1 = T (Ebjgz’(ub,i, Umz)> and hc,z'+1 = Wc(MJi,—s,qb(hb,h hm,i))-

Then for each ¢ € {b,w}, by (TI0) we get ucip1 € C**((X?,d),C), and by (0.42) in
Proposition we have h¢ip1 € Kap (XCO, d). Property (1) for & = i + 1 follows from
Property (1) for kK = i. Property (2) for k = i + 1 follows from Property (4) for k = i.
Property (3) for k = i+ 1 follows from Proposition @.13 (ii). By Property (2) for k =i+1
and Proposition (iii), we can choose J;11 € & such that Property (4) for k =i+ 1
holds. This completes the recursive construction and the verification of Properties (1)
through (4) for all k € N.
By (7I4) in Lemma [T7], Properties (1), (2), (3), and Theorem (iii), we have

2 2
(ne) (ne) o ne
/X9 E:;ﬁ,c,b(ub)_‘_ﬁjg:ﬁ,c,m(um)‘ du_sw—/xg e <1L;s?b(ub,um))‘ 5o

= /Xo|uc7n|2 dILL_SO(z) < /Xoh?’" d,u_80¢ <p" (/Xohg’o d,u_80¢ + /XO h12n,0 d:u—smﬁ) <p"
c c b ]

for all ¢ € {b,w} and n € N. O

10. EXAMPLES AND GENERICITY OF STRONGLY NON-INTEGRABLE POTENTIALS

In this section, we try to discuss on how general the strong non-integrability condition
is. We show in Subsection [I0.I] that for the Lattés maps, in the class of continuously
differentiable real-valued potentials, the weaker condition of non-local integrability implies
the (stronger) 1-strong non-integrability for some visual metric d for f. This leads to a
characterization of the Prime Orbit Theorems in this context, i.e., Theorem[I.12], proved at
the end of Subsection [I0.1l The proof relies on the geometric properties of various metrics
in this context, and does not generalize to other rational expanding Thurston maps.
However, we are able to show the genericity of the a-strong non-integrability condition
in the set C%*(S52,d) of real-valued Holder continuous functions with an exponent a on
S? equipped with a visual metric d. See Theorem [[LI0 for the precise statement. A
constructive proof of Theorem is given at the end of Subsection [[0.2] relying on
Theorem that gives a construction of a potential ¢ that satisfies the a-strong non-
integrability condition arbitrarily close to a given 1) € C%*(S? d).

10.1. Examples for Lattes maps. In order to carry out the cancellation argument in
Section [@ it is crucial to have both the lower bound and the upper bound in (Q.25). As
seen in the proof of Proposition[@.5], the upper bound in ([@.25]) is guaranteed automatically
by the Holder continuity of the potential ¢ with the right exponent «. If we could assume
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in addition that the identity map on S? is a bi-Lipschitz equivalence (or more generally,
snowflake equivalence) from a visual metric d to the Euclidean metric on S?, and the
temporal distance ¢f ', is nonconstant and continuously differentiable, then we could
expect a lower bound Wlth the same exponent as that in the upper bound in ([@.25]) near
the same point. R R

However, for a rational expanding Thurston map f: C — C defined on the Riemann
sphere C, the chordal metric o (see Remark for the definition), which is bi-Lipschitz
equivalent to the Euclidean metric away from the infinity, is never a Visual metric for
f (see [BM17, Lemma 8.12]). In fact, (5% d) is snowflake equivalent to (C,o) if and
only if f is topologically conjugate to a Lattes map (see [BM17, Theorem 18.1 (iii)] and
Definition 0.1l below).

Recall that we call two metric spaces (X1, d;) and (X5, dy) are bi-Lipschitz, snowflake, or
quasisymmetrically equivalent if there exists a homeomorphism from (X7, d;) to (X, ds)
with the corresponding property.

We recall a version of the definition of Lattes maps.

Definition 10.1. Let f: C — C be a rational Thurston map on the Riemann sphere C.
If f is expanding and the orbifold Oy = (52, ay) associated to f is parabolic, then it is
called a Lattés map.

See [BM17, Chapter 3] and [Mil06] for other equivalent definitions and more properties
of Lattes maps.

The special phenomenon mentioned above is not common in the study of Prime Orbit
Theorems for smooth dynamical systems, as we are endeavoring out of Riemannian setting
into general self-similar metric spaces. We content ourselves with the smooth examples
of strongly non-integrable potentals for Lattes maps in Proposition [[0.3] below.

Remark 10.2. For a Lattes map f: C— ((A:, the universal orbifold covering map ©: C —
C of the orbifold Oy = ((C, Q f) associated to f is holomorphic (see [BM17, Theorem A.26,
Definition A.27, and Corollary A.29]). Let dy be the Euclidean metric on C. Then the
canonical orbifold metric wy of f is the pushforward of dy by ©, more presicely,

wi(p, q) = nf{do(z,w) |z € ©7(p), w € ©7 ()}

forp,q € C (see Section 2.5 and Appendices A.9 and A.10 in [BM17] for more details on the
canonical orbifold metric). Let o be the chordal metric on C as recalled in Remark .16l

By [BM17, Proposition 8.5], wy is a visual metric for f. By [BM17, Lemma A.34], (@, wf)
and (((A:,a) are bi-Lipschitz equivalent, i.e., there exists a bi-Lipschitz homeomorphism
h: C — C from (@, wf) to (@, a). Moreover, by the discussion in [BM17, Appendix A.10],
h cannot be the identity map.

Proposition 10.3. Let f: C — C be a Lattés map, and d == wy be the canonical orbifold
metric of f on C (as recalled in Remark[10.2). Let ¢: C — R be a continuously diffe-

rentiable real-valued function on the Riemann sphere C. Then o € C’O’l(@,d), and the
following statements are equivalent:
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(i) ¢ is not co-homologous to a constant in C(@, (C), i.e., there are no constant K € C
and function B € C’(((A:,(C) with = K+ o f—pf.
(i) ¢ is non-locally integrable with respect to f and d (in the sense of Definition[6.3).
(iii) ¢ satisfies the 1-strong non-integrability condition with respect to f and d (in the
sense of Definition [91)).

Proof. We denote the Euclidean metric on C by dy. Let ¢ be the chordal metric on C
as recalled in Remark B.I6 By [BMI17, Proposition 8.5], the canonical orbifold metric
d = wy is a visual metric for f. Let A > 1 be the expansion factor of d for f.

Let Oy = (5%, ay) be the orbifold associated to f (see Subsection [6.2). Since f has no

periodic critical points, af(z) < +oo for all z € C (see Definition [6.0)).
By inequality (A.43) in [BM17, Appendix A.10],
(21, 22)

(10.1) sup {m

By (I0.0)) and the assumption that ¢ is continuously differentiable, we get ¢ € C'%! (@, 0) C
Cco! ((@, d).

We establish the equivalence of statements (i) through (iii) as follows.

(i) <= (ii). The equivalence follows immediately from Theorem

(ii) <= (iii). The backward implication follows from Proposition 0.3l To show
the forward implication, we assume that ¢ is non-locally integrable. We observe from
Lemma 317, Theorem 6.4, and Lemma that by replacing f with an iterate of f
if necessary, we can assume without loss of generality that there exists a Jordan curve
C C S? such that post f C C, f(C) € C, and that there exist § = {£_i}ien, € X and
n={n-itien, € g ¢, X' € XM(f,C), and ug,vo € X' with X' C f(&) = f(no), and

(10.2) &L (o, v) # 0.

By the continuity of gbgg (see Lemma and Definition [6.2]), we can assume that ug, vy €
inte(X'). Without loss of generality, we can assume that co ¢ X'. We use the usual
coordinate z = (z,y) € R? on X!. We fix a constant Cyy > 1 depending only on f and C
such that

(103) 02_210'(21, Zg) S do(Zl, Zg) S ngd(Zl, ZQ) for all 21, %9 € Xl.

Recall that ay =1 for all z € C \ post f (see Definition [6.6]). By Proposition A.33 and
the discussion proceeding it in [BM17, Appendix A.10], the following statements hold:

21,20 € C, 21 # 22} < +o00.

(1) The canonical orbifold metric d is a singular conformal metric with a conformal

factor p that is continuous everywhere except at the points in supp(ay) C post f.

(2) d(z1, 29) = inf fﬁ/p do, where the infimum is taken over all o-rectifiable paths 7 in
B!

~

C joining z; and z,.

(3) For each z € C \ supp(ay), there exists a neighborhood U, C C containing z and
a constant C, > 1 such that C;! < p(u) < C, for all u € U,.
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Choose connected open sets V and U such that ug,vo € V CV CU C U C inte(Xl).
By compactness and statement (3) above, there exists a constant Cy3 > 1 such that

(10.4) Cyt < p(z) < Cos for all 2 € U.

Thus by (I0.3), (I0.0]), and a simple covering argument using statement (2) above, ine-
quality (I0.4]), and the fact that V' C U, there exists a constant Cyy > 1 depending only
on f, C, d, ¢, and the choices of U and V such that

(105) C2_41d(21, ZQ) S do(zl, ZQ) S Cg4d(21, 22) for all 21, %9 € V
We denote, for each i € N,

(10'6) Ti = (f|fl—i)_lo. ’ -o(f|£_1)_1o(f|50)_1 and 7-', = (f|771—i)_10. ’ 'o(f|77—1)_1o(f|770)_1

We define a function ®: X' — R by ®(z) = ¢5 n(uo, z) for z € X' (see Definition
and Lemma [6.T]).

Claim. ® is continuously differentiable on V.
By Definition[6.2] it suffices to show that the function D(+) = A(J;g(uo, -) is continuously

+o00
differentiable on V. By Lemma [6.1] the function D(z) = > ((¢ o 7;)(up) — (p o 73)(2)) is
i=0
the uniform limit of a series of continuous functions on V. Since V' C inte(X*), by (10.6)
and Proposition B.I1] (i), the function ¢ o 7; is differentiable on V' for each i € N.

We fix an arbitrary integer i € N. For each pair of distinct points zy, 2o € inte(X?!),
we choose the maximal integer m € N with the property that there exist two m-tiles
X X e X™(f,C) such that 2y € XJ", 29 € X', and X" N X" # (). Then by
Proposition B.11] (i) and Lemma (i) and (ii),

[(9om)(z1) = (Pom)(=)| _ 10l co. & gy diama(7: (X" U X3"))
d(Zl, ZQ) - C—lA—(m—l—l
20 A~ (m+9) »
<lélleor@a goipomn < 207 1ellon @ A

where C' > 1 is a constant from Lemma [3.15 depending only on f, C, and d. Thus by

(@a.3),
sup{ '%@ or)(2)||z € v} < Sup{ [(po Ti)(zzz; ig:)o 7)(2)]

oT;)\21) — O T;)\Z i
|(¢ )( 1) (¢ )( 2)| 21,29 € Vv, 2 7& 22} < 202402 ||¢||C’0’1(@ 2 Al )
d(Zl,ZQ) ’

Hence g 9D exists and is continuous on V. Similarly, o D exists and is continuous on
V. Therefore D is continuously differentiable on V/, estabhshmg the claim.

By the claim, (I0.2]), and the simple observation that gbgzg(uo,uo) = 0, there exist
numbers My € N, ¢ € (0,1), and Cps > 1, and My-tiles Y, € X(f,C) and Y Mo €
XMo(f C) such that Cos > Cyy, Y[,MO UYM C V Cinte(X!), and at least one of the
following two inequalities holds:

21, %2 € V, 21 ;é Z2}

< Oy SUP{
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a) inf{}a%é(z)‘ }z € h_l(YbMO UYMo)} > 2Cys¢, or
b) inf{[Z®(2)| |z € A7 (Y UY)} > 205,

We assume now that inequality (a) holds, and remark that the proof in the other case
is similar.

Without loss of generality, we can assume that e € (0, (2CC)72).

Then by Lemma B.15] (v), for each ¢ € {b, 10}, each integer M > M, and each M-tile
X € XM(f,C) with X C YMo_ there exists a point u;(X) = (z1(X),y0(X)) € X such
that By(ui(X), C7'A™M) C X. We choose z5(X) € R such that |z;(X) — z2(X)| =
(4Co5C) LA™ Then by (I0.5) and Cys > Cay, we get

us(X) = (22(X), yo(X)) €Byy (u1(X), (2C5C)TA™M)
(10.7) C By(wi(X),(2C)"A™™) C By(wi(X),C'A™M) C X.

In particular, the entire horizontal line segment connecting u;(X) and us(X) is contained

in inte(X). By (I0.7), Lemma (i), (I0H), and Cos > Coy, we get
(10.8) min{d(u;(X),C\ X), d(us(X),C\ X), d(u(X), us(X))}
> min{(20)'A™Y, CLN(4CxC) AT} > e diamy(X).
On the other hand, by (I0.A]), Co; > Cyy, Definition 6.2 inequality (a) above, and the

mean value theorem,

06, (11X, (O] |0, ((X). wa(XD] _ 12(n(X)) = @(w(O))] |
d(u1(X), u2(X)) Czsdo(ul() (X)) Cosla(X) —a2(X)| —

We choose

2028_2 ‘(Ml,((a,d) Co
|
where Cy > 1 is a constant depending only on f, C, and d from Lemma [3.22]

Fix arbitrary N > Np. Define X \*" := 7y(Y,M) and X, = 74 (Y M) (cf.
(I0d)). Note that ¢; = TN|YCMO and ¢ = T]/V‘YCJWO.

Then by Definition [6.2, Lemma 6.1 (I0.8)), Lemma B.24] Proposition B.11] (i), and
Lemma (i) and (i),

[Sn (i (ua (X)) — Sno(ea(ua(X))) — Sno(a(ua(X))) + Sn(sa(ua(X)))]
d(uy (X), uz(X))

}cbg p (w1 (X)), uz(X))] [Sn-N (70 (U1 (X))) = Sn-nd(Tn(ua(X)))]

(10.9) No = [logA

— lim sup

d(u1(X), ua(X)) n—-+oo e diamgy(X)
— limsup [Sn-n O (T, (ur(X))) = Sn-n (7, (u2(X)))]
n—+00 e diamg(X)

[Pl@a) Cod(ry (un (X)), T (us(X)) + d(riy (ua (X)), Ty (u2(X)))

> 9 —
= 1—-A-? e diamgy(X)




150 ZHIQIANG LI, TTANYI ZHENG

19l o diamg(ry (X)) + diamy(ry (X))

> 2¢

1—A-1 e diamy(X)
ca C —(M+N) 2C%e9l; @0 C
> 90 |¢|1,((C,d) 0 2CA > 90 |¢|1,(<C,d) OA_NO >
1—A-1 eC—TA—M 1—At

where the last inequality follows from (10.9).
Therefore ¢ satisfies the 1-strong non-integrability condition with respect to f and
d. O

Proof of Theorem[L.14. By Proposition [0.3, ¢ € C% (@, d). So the existence and uni-
queness of sy > 0 follows from Corollary B3.34l

The implication (i) = (iii) follows from Proposition [0.3] and Theorem [[L7. The
implication (iii) == (ii) is trivial. The implication (ii) == (i) follows immediately by a
contradiction argument using Theorem and Corollary [6.5] 0

10.2. Genericity of strongly non-integrable potentials. We recall some concepts
related to the expansion of expanding Thurston maps from a combinatorial point of view.

Suppose f: S? — S? be a Thurston map and C C S? is a Jordan curve with post f C C.
For each n € Ny, we denote by D, (f,C) the minimal number of n-tiles required to form
a connected set joining opposite sides of C; more precisely,

(10.10) D,(f.C) = min{N eN ‘ there exist Xy, X, ..., Xy € X"(f,C) such that

N
U X is connected and joins opposite sides of C}.
j=1

See [BM17, Section 5.7] for more properties of D, (f,C). M. Bonk and D. Meyer showed
in [BM17, Proposition 16.1] that the limit

(10.11) Ao(f) = nl_lﬂloo D, (f, C)l/n

exists and is independent of C. We have Ag(f) € (1,+00). The constant Ay(f) is called
the combinatorial expansion factor of f.

The combinatorial expansion factor Ag(f) serves as a sharp upper bound of the expan-
sion factors of visual metrics of f; more precisely, for an expanding Thurston map f, the
following statements are true:

(i) If A is the expansion factor of a visual metric for f, then A € (1, Ao(f)].

(ii) Conversely, if A € (1, Ag(f)), then there exists a visual metric for f with expansion
factor A.

See [BM17, Theorem 16.3] for more details.

Lemma 10.4. Let f and C satisfy the Assumptions. We assume in addition that f(C) C
C. Then there exist two sequences of 1-tiles {§ i }tieny, {€ s tieny € X5 ¢ such that f(&) =

f(&) and & = & # € for all i, i’ € N,.
Recall that ¢ . is defined in (6.2)).
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Proof. We first claim that if the white O-tile X2 € X° does not contain a white 1-tile,
then there exists a black 1-tile X} € X{ such that X} = X{.

Indeed, note that for each 1-edge e* € E', there exists a unique black 1-tile X, € Xj
and a unique white 1-tile X, € X} such that X, N X, = e!. Suppose that X2 is a union

k k
X0 = U X of k distinct black 1-tiles X; € X¢, i€ {1,2,...,k}, then U oX; € XY =

i=1 =1
C. Since each of C and 0X;, i € {1,2,...,k}, is a Jordan curve and 0X; # 0X; for
1 <j < j <k, we conclude that k = 1, establishing the claim.

Similar statement holds if we exchange black and white.

Next, we observe that if the white 0-tile X2 is also a white 1-tile or the black 0-tile X}
is also a black 1-tile, then f cannot be expanding.

Hence it suffices to construct the sequences {£ ;}ien, and {£', }ien, in the following
two cases:

Case 1. Either X2 = X! for some black 1-tile X} € X} or X{ = X for some white
1-tile X! € X! . Without loss of generality, we assume the former holds. Since deg f > 2,
we can choose a black 1-tile V' € X{ and a white 1-tile Y} € X}, such that Y, UY} C X¢.
Then we define & ; = Y|! for all i € Ny, ¢, = X} if i’ € Ny is even, and &', = Y if
7 € Ny is odd.

Case 2. There exist black 1-tiles X}, V' € X{ and white 1-tiles X\, Y} € X, such that
XPuXy C X2 and Y! UY,! C X?. Then we define £ ; == Y|! for all i € Ny, & = X, and
¢, =X, for all/ € N,

It is trivial to check that in both cases, {{ i}ien,, {€ s bien, € X5 ¢, f(60) = f(&), and
Ei=6 # fl_zz for all 4,4" € Nj. 0

Theorem 10.5. Let f: S? — S? be an expanding Thurston map with a Jordan curve
C C S?% satisfying post f € C and f(C) C C. Let d be a visual metric on S* for f with
expansion factor A > 1. Given o € (0,1].

We assume in addition that A* < Ao(f). Then there exists a constant Cor > 0 such
that for each € > 0 and each real-valued Holder continuous function o € C%%(S% d)
with an exponent «, there exist integers Ny, My € N, My-tiles YhMO € Xéw‘)(f, C), YMo ¢
XMo(f.C), and a real-valued Hélder continuous function ¢ € C**(S? d) such that for
each ¢ € {b,w}, each integer M > My, and each M-tile X € XM(f C) with X C Y Mo,
there ezist two points x1(X), o(X) € X with the following properties:

(i) min{d(x1(X),S?\ X), d(z2(X),S?\ X), d(21(X), 22(X))} > e diamgy(X).
(ii) for each integer N' > Ny, there exist two (N’ + My)-tiles XivlurMO, XingMO €
XN HMo(f,C) such that YMo = fN'(XNTM0) = N (X5 and that
(10.12)
[Sndlca(@1(X))) = Swdlea(1(X))) — Swd(a(z2(X))) + Swd(z(X)))] o
d(a1 (X), 25(X))” 0

!

—1
where we write ¢ = (fN/}XN%Mo) and ¢ == (fN
c,1

N’+MO>
Xc,2

(i) 116 — Pl < Core.
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Proof. Denote
(1013) 026 = 4C“A* > 1.

Here C' > 1 is a constant from Lemma depending only on f, C, and d.
Since A* < Ao(f) = lir}rq D, (f,C)Y" (see (I0.I1)), we can fix N € N large enough
n—-+0oo

such that the following statements are satisfied:
e 3 < BCQGC < AN < DN(f, C) — 1.
e There exist uf, u2, ul, u2 € VY such that for all ¢ € {b,w},
(10.14) W () U (u2) Cinte(X?)  and W' (u)) N (u2) = 0.

We denote Dy := Dy (f,C) in the remaining part of this proof.
It suffices to establish the theorem for € > 0 sufficiently small. Fix arbitrary

(10.15) g€ (0,C7°A7*N) C (0,1).
We define the following constants
aN
10.1 = 1
(10.17) Cor =1+ C2GC<4(1 —p) A (1 - A“*N)_l),
1 2025_1_&(”%0”00@(52 gt eCar)Co
10.1 Ny = |—1 : .
( 0 8) 0 ’Va Ogx 1— A—a —‘

Here Cjy > 1 is a constant depending only on f, C, and d from Lemma

Choose two sequences of 1-tiles § = {€ ;}ien, € Xy ¢ and & = {', }ien, € X7 asin
Lemma [[0.4] such that f(&) = f(&)) and &; = & # &', for all i,7" € Ny. We denote, for
each j € N,
(10.19)

-1 - — -1 -1 -1
7= (fla,) oo (flen) ™ o (fle) ™ and 7= (flg ) oo (fle,) o (fleg)
Since f is expanding Thurston map, we have f(&y) 2 &. Thus we can fix a constant

1 2C5%
10.20 My > —1 —_—
large enough such that we can choose Y € X and Y;Mo € XMo with Yo nyMo £ )
and
(10.21) Y Mo u vy Cinte(f(&)) \ &-

We fix such V" € X and Y Mo € XMo. See Figure 0.1l
We want to construct, for each n € Ny and each (n + N)-vertex v € V"™V a non-
negative bump function Y, ,,: S? — [0, +00) that satisfies the following properties:
(a) YTyn(v) = CosA™"e and T, (x) = 0 if z € S2\ WV (v).
(b) [[Tynllcocsz) = CosA™"e.
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Y‘éwo T
— Y, Mo
f/ i
, YbMO
I
H
. YJ\/[Q
Lo f(&) = ‘
LK € X Mot L X € XMot2N X € XMo+3N
% -7 7
(%) - —
(%1
N \\\\\ =

F1GURE 10.1. Constructions for the proof of Theorem [10.5]

(c) For each m € N, each X € X"*™N ' and each pair of points z,y € X,
(10.22) T on() = Ton(y)] < CosA™"e(Dy — 1)~ "0,

Fix arbitrary n € Ny and v € V"V,
In order to construct such Y, ,, we first need to construct a collection of sets whose

boundaries serve as level sets of T, ,. More precisely, we will construct a collection of
closed subsets {Us};.; of W™ (v) indexed by

(10.23) I=J{0.1,...,Dy - 1}*

keN
that satisfy the following properties:
(1) U; is either {v} or a nonempty union of (n + (k + 1)N)-tiles if the length of
i€lisk eN, ie,i¢€{0,1,...,Dy — 1}*. Moreover, U; = {v} if and only if
i = (i1,da,...,0) = (0,0,...,0).
(2) S%\ % is a finite disjoint union of simply connected open sets for each i € I.
(3) U(il,iz ..... iK) — U(il,ig,...,ik,O) for each k € N and each 5 = (’il,’ig, R ,’Lk) el.
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(4) U; Cint U; € U; € WHN(v) for all 4,5 € I with 7 < j.
Here we say i < j, for i = (iy,42,...,ix) € I and j = (j1,J2,...,7x) € I, if one of the
following statements is satisfied:
o k <k i=yforalll € Nwith! <k, and jy # 0 for some I’ € Nwith k <’ <Fk'.
e There exists I’ € N with I’ < min{k, £’} such that iy < jy and iy = j; for all l € N

with [ < I’
We say 1 < j for 7,5 € I if either i < j or i = j.
We denote
!
(10.24) In:=0, and I, == U{l, ...,Dy —1}* for each [ € N,
k=1

We construct Us recursively on the length of 7 € I.
We set Uyg) = {v}. Fori = (i1), iy € {1,..., Dy — 1}, we define a connected closed set

U(il) = U{Xll

there exist X1, Xo,...,X;, € X"V

11
such that U X,, is connected and v € Xl}.

m=1

Note that U,y € W™ (v) for 4 € {1,2,..., Dy — 1} since otherwise there would exist

X1, Xo, ..., X;, € X""2N guch that the union Llj fPN(X,,) of N-tiles f*V(X,,) € XV

m=1
(see Proposition BTl (i)), m € {1,2,...,41}, is connected and joins opposite sides of C
which is impossible due to the definition of Dy (see (I0.I0)). Then Properties (1), (2),
and (4) hold for 4,5 € {0,1,..., Dy — 1} by our construction.

Assume that we have constructed U; C W™ (v) for each i € I, for some [ € N, that
Property (3) is satisfied for each ¢ € I;_;, and that Properties (1), (2), and (4) are satisfied
for all 4,7 € I,.

Fix arbitrary i = (iy,4,...,%) € {0,1,...,Dy — 1} and 4,41 € {1,2,..., Dy — 1}.
Denote j = (i1, 1g,...,4;,441). We set Uiy is,....i,0) = U;. We define a connected closed

set
Uj .—UZ-U| l{le ) eX (+2)

there exist X, Xo,..., X

141

U1
such that U X, is connected and U; N X, # (Z)}.
m=1
CZ(IZm 1. U; g mt U(il,iz,...,il,l,l—l—il) lf il 7é DN — ]_, and U; g W”+N(U) lf 'él = DN — 1.
We first establish Claim 1 in the case iy # Dy — 1. Denote i == (i1, s, ...,4_1,1 +14).
By Property (1) of {Us};¢;,, U and Uy are unions of (n 4 (I+1)N)-tiles. By Property (4)
of {Ustier,, Uy C intUy, so OU; N OU; = (. We argue by contradiction and assume
that U; ¢ int Uy. Then there exist X1, Xo,...,X;,, € X" (2N guch that the union

141
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X e XMotN
FIGURE 10.2. Level sets BU(Z-l), 11 € {1, 2,....,Dy — 1}, of TU1(X)71\/10+N'

WJ\/IO+2N(,U1 (X))

FIGURE 10.3. Level sets OU(4,,), i2 € {1,2,..., Dy — 1}, of Ty (x), Mo4N-
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141
K = |J X,, is a connected set that intersects both OU; and 0Uy nontrivially. Then K
m=1

cannot be a subset of a single (n+ ({4 1)N)-flower (of an (n+(I+1)N)-vertex). Since each
connected component of the preimage of a 0-flower under f"*(+DN is an (n + (I + 1)N)-
flower, we observe that f"*(+1U¥ (K cannot be a subset of a single 0-flower (of a 0-vertex),
or equivalently (see [BMI7, Lemma 5.33]), f"+(+YN(K) joins opposite sides of C. Since

1
frrEON(K) = (J frrUON(X,) s connected, { frTEFON(X) [ moe {1,2, .. i) C

m=1

X/ (see Proposition B.11] (i) , and 4,41 < Dy — 1, we get a contradiction to the definition

of Dy (see (I0I0)).

Claim 1 is now proved in the case 7; # Dy — 1. The argument for the proof of the case
iy = Dy — 1 is similar and we omit it here.

By Claim 1 and Property (4) of {Us};c;,, we have U; € W™V (v).

Then Properties (1) and (2) hold for each i € {0,1,..., Dy — 1}!*1 Property (3) holds
for each 7 € {0,1,..., Dy — 1}!. In order to verify Property (4) of {Uitier,, - it suffices to
observe that by Claim 1 and our construction, for all j € I; and iy, 4, . .., %, {141, i1 €
{0,1,...,Dy — 1} with 1 < 44y < i) 4 and ¢ = (i1, %9,...,%) < j, we have

Ug Q int Uz_l Q Uz_l Q int UZ_Q Q UZ_Q Q int U;,
where il = (1,49, . ..,4,7941) and i2 = (i, 49, . . . , i, i141)-

The construction of {U;};.; and the verification of Properties (1) through (4) is now
complete.

We can now construct the bump function Y, ,,: S? — [0, +00) and verify that it satisfies
Properties (a) through (c) of the bump functions.
We define

(10.25) Ty n(v) = CoeA™"e and T, n(z) =0ifx € S%\ Uy -1)-
Property (a) of the bump functions follows from Property (4) of {U;};¢;.
We denote, for each k € N,
];; = {(il,ig,...,ik) S [k|7'k # O,il 7A Dy —1 for1 <l< ]{7}
Define I* .= | I}.

keN
For arbitrary k € N and 7 = (i1, 4s, . .., i) € I}, we define a subset A: of W™V (v) by

(10.26) Az = Uiy ig,in—rsin) \ Ulinsizseoiinrin—1,Dx—1)-

In particular A,y = Ugu,y \ UG —1,0y—1) for i € {1,2,..., Dy — 1}. We note that by
Property (4) of {U;}i¢s,

(10.27) A;NA; =0 foralli,jeI" withi#j.
Thus we define, for each k € N and each i = (iy, iy, . ..,%) € I},
k
i
10.2 T = O\ e 1— ) —>~L—
o2 )= G E( 2 Dy - 1)))
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for each x € A;.
With abuse of notation, for each 7 € I*, we write T, ,(4;) =T, ,(z) for any = € A;.
So far we have defined T, ,, on

(10.29) = {v} U (S*\ Upy-1)) U | 45
iel*
Claim 2. The set i contains all vertices, i.e., |J V¥ C 4.
keNp

In order to establish Claim 2, it suffices to show that z € 4 for each x € V*m+hN A
Upy-1) \{v} and each m € N. We fix an arbitrary integer m € N and an arbitrary vertex
x € VrHmtON A g0\ {v}. We choose a sequence {ij}ren in {0,1,...,Dy — 2}
recursively as follows:

Let i; be the largest integer in {0,1,..., Dy — 2} with = ¢ Uj;,). Assume that we have
chosen {iy}:_; in {0,1,..., Dy — 2} for some | € N with the property that ¢ Uy, 4, i)
and @ € U, i,,...0, 1,144, then by Properties (3) and (4) of {U;};¢;, we can choose 4,11
to be the largest integer in {0,1,..., Dy — 1} with o & Ug, 4,5, ,)- Assume that i, =
Dy — 1. Thus (’il,’ig, ey b1, 1+ ’Ll) € I and x € U(i17i27,,,7i17171+il) \ U(i1,i2,...,il,DN—1) =
Ay in,it_1,14i)-

So we can assume, without loss of generality, that i, # Dy — 1 for all £ € N, i.e.,
{ir |k € N} € {0,1,..., Dy — 2} can be constructed above. Then x € U, jg....im_1,14im)-
Since both U, i,..im_1,14im) a0d Ug, s,y are unions of (n 4 (m + 1)N)-tiles (see
Property (1) of {U;};c;), we can see that @ & Uy, 4y, i..Dy—1) Since otherwise there

Dy—1
would exist Xp, Xo,...,Xpy_1 € X"TM+2N guch that the union K = ]EJ X, is

k=1
connected and have nontrivial intersections with Uy, 4,,..,) and {z}, and consequently
K N oWwnHm+DN (o) £ (). This is impossible since f"*"+DUN(K), as a union of N-tiles
frrm+ON (X)) (see Proposition BI (i), [ € {1,2,..., Dy — 1}, cannot join opposite
sides of C due to the definition of Dy in (I0I0). Hence (i1,42,...,%m_1,1 + im) € I* and
T € Uiy g, ime1a4im) \ Ulinsizsoim,Dn—1) = A(irizyoosim—1,14+im)- Claim 2 is now established.

Claim 3. For the function T, ,, defined on 4, inequality (I0.22) holds for each m € N,
each X € X"tV and each pair of points =,y € X N L

Fix arbitrary m € N, X € X"V and x,y € X N 4. Inequality (I0.22) holds for
x,y € X N4 trivially if m = 1 by (I0.25) and (I0.28). So without loss of generality, we
can assume m > 2. We choose a sequence {ij}ren in {0,1,..., Dy — 1} recursively as
follows:

Let 41 be the largest integer in {0,1,..., Dy —1} with X & Uy;,). Assume that we have
chosen {ij},_; for some | € N with the property that X ¢ Uiy is,....in), then by Proper-
ties (3) and (4) of {U;};c;, we can choose 7,41 to be the largest integer in {0,1,..., Dy—1}
with X g U(i17i27---7il+1)‘

We establish Claim 3 by considering the following two cases:

Case 1. iy = Dy — 1 for some integer k € [1,m — 1]. Without loss of generality,
we assume that k is the smallest such integer. Recall that m > 2. If k = 1, then

by Property (1) of {Us}ie;, X C (S*\ intUppy-1y) € (52 \ Upy-1)) U Apy-1), and
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consequently Y(z) =0 = T(y) by (I0.25) and ([I0.28). If & > 2, then (iy,42, ... 00,1+
ik—1), (1,92, .., ik—1, Dy — 1) € I*, and

X C Uiy ig,mipattin—) N Uiy i, iy 1.Dn—1) © Al inig a1 tie—1) Y Al o ig_1.Dy—1)

by our choice of ¢y, the fact that both Ug, 4y iy »14i 1) a0d UG o, ig 1, Dy—1) aT€
unions of (n+ (k+1)N)-tiles (by Property (1) of {Us}:¢), and (I0.26). Hence by (T0.28),
Tv,n(x) = C26A_Om5(1 - 23?21 ([)1\:711)3) = Tv,ﬂ(?/)’

Case 2. i < Dy — 2 for all integer k& € [1,m — 1]. Then by our choice of i,,_; and
Properties (1) and (4) of {U;}ics,

(10.30) X C Uiy in,im—zdtim—1) N UGy o i) € Uliying.im—zdtim—1) \ Uj

J

for each j € I with j < (i1, %9, ..., im_1)-
Note that by (I0.26) and Property (4) of {Us};c;,

(10.31) A; CUsforalli € I" and j € I with 7 < j.
By (I0.25) and (I0.28),
(10.32) Yo, u(A7) > Ty n(A5) for all i,j € I with i < 7.

Thus by (10.30), (I0.3T)), and (I0.32),
Yo n(2) = Yo n(y)| <inf{Tyn(4;)|j €1, 7€ "1 <j< (i1 in, ... 0m-1)}
—inf{T, ,(A4;) i € I*,i < (1,42, im_2, 1 +im_1)}
<A™ "e(Dy — 1)~ Y,
where the last identity follows easily from (I0.28) and the definition of I* by separate

explicit calculations depending on %,,_; = 0 or not.
Claim 3 is now established.

Claim 4. The function T, , is continuous on &l.

Fix arbitrary z,y € 4 and m € N with x # y and y € U™ () (c.f. (314)). Then
there exist X, Xy € X"tV guch that x € X, vy € X,, and X; N X, # 0. It follows
immediately from Definition B.8 (iii) that there exists an (n + mN)-vertex z in X; N Xo.
Then by Claim 2 and Claim 3,

|Tv,n($> - Tv,n(y)l SlTv,n(x) - Tv,n(z)l + |Tv,n(z) - Tv,n(y)|
SQCQGA_O”LE(DN — 1)—(m—1)‘

Hence Claim 4 follows from Lemma (iv) and the fact that Dy —1 > 1.

Since we have defined T,,, continuously on a dense subset  of S? by Claim 2 and
Claim 4, we can now extend Y,,,, continuously to S?. Property (b) of the bump functions
follows immediately from ([0.25) and (I0.28)). Property (c) of the bump functions follows
from Claim 3.

Recall ug, uZ, upy, uz € VY defined above.
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For each n € Ny, each n-tile X € X" and each ¢ € {1,2}, we define a point

ey )T ()i X e X,
) wd)= {(f"|X)_1(u,Z) if X € ng.

Fix an arbitrary real-valued Holder continuous function ¢ € C%%(S?, d) with an expo-
nent .

We are going to construct ¢ € C%%(S52% d) for the given ¢ by defining their difference
T € C%*(S?,d) supported on the (disjoint) backward orbits of Y UY,Mo along {€_;}ien,
as the sum of a collection of non-negative bump functions constructed above.

We construct ¢,, € C%*(S?,d) recursively on m € Ny.

Set g = .

Assume that ¢; € C%*(S52% d) has been constructed for some i € Ny, we define a number
dx € {0,1}, for each X € XMOJF(“rl with X C VM uyMo by

(10.34) P if [(90) ¢ (01(X), v2(X))] < 2ed(v1(X), v2(X))*,
0 otherwise.
We define
(10.35) Pt =0t Y > Ox (0 Mot )N+
JEN xeXMo+(i+1)N
XCY]VIOLJYIVIO

and finally define the non-negative bump function Y: S% — [0, 1) by

(1036) T = Z Z Z 5XT01(Tj(X)),M0+mN+j‘

JEN meN xexMo+mN

xcyMouyo
Here the function 7; is defined in (I0.19). It follows immediately from Property (b) of the
bump functions that the series in (I0.35]) and (I0.36]) converge uniformly and absolutely.

We set ¢ := p+ T.

For each ¢ € {b, 0}, each integer M > My, and each M-tile X € XM with X C Yo,
we choose an arbitrary (M+ [2=M2] N)-tile X’ with X’ C X and define z;(X) = v;(X’)
for each i € {1,2}.

Now we discuss some properties of the supports of the terms in the series defining T in
(I036]). See Figure M0l

Fix arbitrary integers m,j € N, by Property (a) of the bump functions, (I0.33)), and
properties of uf,ul € V¥ we have

(10.37) SUpP Yo, () (X)), Mo+mN+ CI/VMOJr (mADN+ (’Ul (Tj(X)))
Cinte (Tj(X)) C 75 (YbMO U Ytéwo),

for each (My 4+ mN)-tile X € XMo+mN with X C Y, uY,Mo. Consequently, by (I0.37)
and the fact that 7, (Y[,MO U Y,IJ,‘/IO) and 7, (YhMO U Yé”o) are disjoint for distinct ji,jo € N
(c.f. Figure [[0.1]), we have

(10.38) Supp Tvl(le (X1)), Mo+mN+j; [1Supp Tvl(sz (X2)), Mo+mN+j2 — 0
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for each pair of integers ji,j» € N and each pair of (My + mN)-tiles X, X, € XMotm¥
with Xl U X2 g Y'E]MO U Y‘,éwo and (jlaXl) 7é (jQ,XQ).
We are now ready to verify Property (iii) in Theorem [I0.5

Property (iii). By (I0.38)), Property (b) of the bump functions, and (I0.20),

I lleogszy < sup{ I oy e, x0). Mormu+illoos?) | € N, X € XMormN -y €y Moyy oy

meN
< A—Oc(M()-i-mN) < AA—OCMO < E
_2026 E—l_A—aN —2
meN

Fix z,y € S? with = # y.
Note that suppY C | 75 (YhMO U Y, M) and that this union is a disjoint union. We
jeN

bound X&) -TwW) by considering the following cases:
y)*

d(z,
Case 1. © ¢ supp Y and y ¢ supp Y. Then T(z) — Y(y) = 0.
Case 2. {z,y}NT; (YhMOUY‘.éV[O) 0 and {x,y} € 75(f(&)\ &) for some j € N. Without

loss of generality, we can assume that j is the smallest such integer. Then by (I0.21]),
Lemma [B.15] (i), and Property (b) of the bump functions,

1
—|T(z) = T(y
Tl T = ()
ZN Sup{||TU1(Tj(X))vM0+mN+jHCO(S2) ‘X e XM, X ¢ YbMO U Yréwo}
me
= CoA—o(Mot))
CosA™ aN C: (30026)_1 9
aAa(Mo—i-] C A a(Mo+mN+j) e < C 26 <C 26 —_—
=C % I—AN“ =" 131 © T3

The last inequality follows from our choice of N at the beginning of this proof.

Case 3. {z,y} N1 (Y UY,M0) #£ 0 and {x,y} C 75(f(&) \ &) for some j € N. Note
that such j is unique. Then by (I0.36]) and our constructions of beo’y‘é\/Io € XMo and
§ € ¥} o, we get that for each z € {z,y},

(10.39) T() =Y Y 6xLuntryx) Mosmn+i(2).

meN xexXMo+mN
xcyMouyo

Since f is an expanding Thurston map, we can define an integer

my = max{k € Z ‘ there exist X, Xy € XMotEN*I guch that
X EXl, Yy GXQ, and XlﬂXQ #@}
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If my <0, then by (I0.39), (I0.37), Property (b) of the bump functions, Lemmal[3.15] (i),
and (I0.I7), we have

1
T T~ Tw)
> SUp{ (| Vo, (7, (), Mo+l 002y | X € XMotmV x C y Moy y b}
meN d(at, y)a
< (C—lA—(M0+N+j))_O‘ Z 026A—a(Mo+mN+j)€ < 0260(1 . A—aN)—lg < (Cyr — 1)e.
meN

If my > 1, then y € UMotmN+i(g) and y ¢ UMo+Hm+DN+i(g) (cf. (314)). Choose
X1, Xy € XMotmuiN+4j guch that o € Xp, y € Xy, and X; N Xy = ). For each i € {1,2}
and each m € N with 1 < m < my, we denote the unique (My + mN + j)-tile containing
X; by Y. Then by (I0.39), (I0.37), Properties (b) and (c) of the bump functions,
Lemma [3.15] (i), (I0.I6), and (I0.I7),

|T(x) = T(y)| Ox | o (7)), MotmN+5 () = Loy (75 (x)), MotmN+5(Y)]
ey 3y Affuem 0

Cdlry) T A A d(z, y)

xcyMouyo

Z sup{||TU1(TJ X)), M0+mN+]||CO(S2 ‘X € XM0+mN X C YMO YMO}

= d(z,y)~
mi1—1
n 12 Z 1)1 (Vi) MO+mN+j(93) - Tvl(Y,%),Mg—i-mN-i-j(y”
d(z,y)*
m=1 ie{1,2}

-1
Z Cog A~ (MotmN+j) o 4 Z 4C56 A~ M0+mN+j)€(DN_]_)—(m1—m—1)

m=m1 m=1
- C'—aA—a(Mo+(mi1+1)N+j)

S CgﬁC(AaN(l — A_QN)_ + 4(1 - p)_ )8 = (027 - 1)8

To summarize, we have shown that [|¢ — ¢[|coa(s2g < (2 +1+ 0y —1)e = Coe,
establishing Property (iii) in Theorem [10.5

Finally, we are going to verify Properties (i) and (ii) in Theorem

Fix arbitrary ¢ € {b,tv}, M € N with M > M, and X, € XM with X, C Y.
Denote mg = [MM] M == My + mgN € [M,M + N), and fix X’ € XM with
l’l(X()) = ’Ul(X/) € VM,+N and I’Q(XQ) = ’UQ(X/) € VM/+N.

Property (i). Fix arbitrary i € {1,2}. Since WMI+N(SCZ-(X0)) C inte(X’) C inte(Xy)

and W +N(a:1(X0)) N WMI+N(x2(X0)) = ( (which follows from (I0.I4)), we get from
Lemma 310 (i) and (ii) that

d(z:(X0), S?\ Xg) > CTIA~MFN) > C=IN-M=2N > 02 A2 djam (X)),
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and similarly,
d(z1(Xo), 22(Xg)) > CTIA=MHN) > C=IA=M=2N > 0=2A=2N diam, (X,).
Property (i) in Theorem now follows from (I0.15]).
Property (ii). We first show
(10.40) )qsg;g,(:cl(xo), xQ(XO))) > 9ed(21(Xo), 22(Xo))®

Indeed, observe that by our construction and (I0.37), for each integer m > my, the sets

U U supp Yo, (7 (X)), Mo+mN+j S U U inte(7; (X))

JEN XeXMo+mN JEN xeXMo+mN
xcyMouyyo xcyouyyo

are disjoint from the backward orbits of vy (X') € VMot(mo+N and ,(X') € VMot(mo+)N
under ¢ and ¢&’. Thus by (I[0.35),

048 (@1 (Xo), 22(X0))| = [@£E (01 (X7, ea(X))]
f.C

+o0
= <§DMO+Z Z Z 5XTU1(Tj(X)),M0+mN+j)’ (Ul(X/)aU2(X/))

!
jEN m=mo+1 xeXMo+mN 6€
xcyMouy,'o

= (o) L& (01 (X, 1a(X))].
We observe that for each j € N, the sets

U U supp Yo, (+; (X)), Mo+moN+j & U U inte(7; (X))

JEN XexMotmoN\{X"} JEN XexXMotmoN\{X'}

xcyMouypf xcyMouyp

are disjoint from the backward orbits of v (X") and vo(X”’) under £ and & (by (I0.37) and
our choices of € and ¢ from Lemma [[0.4]). See Figure I0.1l Thus for each X € XMotmoN
with X C Y, UYM and X # X', we have

(10.41) (Lorty O ot} (01 (X7), 1(X1)) = 0.
By our construction in (I0.34) and (I0.35), if
[(Pma- )6 (01 (X7),02(X) | 2 26d(02(X), 02 X)),
then §x» = 0, and consequently, by (I0.35) and (I0.41]), we have
()6 (01(X"), 02(X))| = | (gL &1 (X), 13(X)]| 2 22(01(X), 02(X))"
On the other hand, if

(o 1)EE (01 (X7), 02(X))| < 22d(0n (X, (X)),
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then §x, = 1 (see ([0.34))), and consequently, by (I0.35), (I0.41]), Property (a) of the
bump functions, Lemma 317 (ii), and (I0.13]), we get

(Pmo) & (01 (X, (X))

> 30 (T o a6 (01 (X, 12(X) | = | (gL & (01 (X), 02(X7))

JEN
> 37 Yy, s (0 (5 (X)) = 2201 (X7), v2(X))
JEN
= Cop AN e — 2ed(vy (X), v2( X))
JEN
A—ag —ar - NN o ! ANYe!
> - A_QCQGC (diamg(X"))* — 2ed(v1(X'), vo( X))

> 2ed(v1(X"), va(X")).
Hence we have proved (I0.40). Now we are going to establish (I0.12).
Fix arbitrary N’ > Nj. Define X\ ™ == 7, (VM) and X2, ™0 == 74, (VM) (c.f.
(I019)). Note that ¢; = TN/|YMO and ¢ = TN/|YMO

Then by Lemma [3.24] Lemma (i) and (ii), Proposition B.I1l (i), and Properties (i)
and (iii) in Theorem m

|Snid(s1(71(Xo))) — Snrd(sa(w1(Xo))) — Snrd(s1(w2(Xo))) + Snrd(sa(z2(Xo)))|
d(z1(Xo), v2(Xo))”

\% ¢ (11(Xo)), 22(X0))| |Sn—n @ (T (v1(X"))) = Snv @ (T (v2(X7)))]

— lim sup

d(l’l(X()) I’Q(XQ))O‘ n——4o00 5a(diamd(X0))°‘
, X/ _ A / X/
e [Sv (X)) = S,y b (12X
s 400 e (diamg(Xp))®
g e Co dlmo (X)), 7 (X)) + d{rhy (0, (X)), Tho (X))
- 1—A« e(diamg(Xp))®
oo (01, (52,0 Co (diamg (7 (X)))* + (diama (74, (X))
- 1—A@ 5a(diamd(X0))°‘
- (H(pHCOvO‘(SQ,d) + 56’27> CO 20\~ a(Mo+moN+N")
£ & — 1 — A« ’ co(l—a\—a(Mo+moN)
- 20% (|l @l o sz o) + 8027)COA—aNo ..
1—A« -
The last inequality follows from (I0.I8). Property (ii) in Theorem is now established.
The proof of Theorem is now complete. O

Proof of Theorem 1.1l Note that for each n € N, the map F = f" is an expanding
Thurston map with post F' = post f and with the combinatorial expansion factor Ag(F') =
(Ao(f))™ (by (I0II) and Lemma (vil)), and d is a visual metric for F' with expansion
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factor A" (by Lemma [3.15]). Thus by [BM17, Theorem 15.1] (see also Lemma [3.17) and
Lemma [0.2] it suffices to prove Theorem under the additional assumption of the
existence of a Jordan curve C C S? satisfying post C C and f (C) € C. We fix such a curve
C and consider the cell decomposition induced by the pair (f,C) in this proof.

We first show that S is an open subset of C%%(52,d), for each a € (0, 1].

Fix a € (0,1] and ¢ € 8™ with associated constants Ny, My € N, € € (0,1), and M-
tiles Y € X and Y, Mo € XMo as in Definition For each ¢ € {b, 1w}, each integer
M > My, and each X € XM with X C Y Mo we choose two points z;(X),22(X) € X
associated to ¢ as in Definition

Recall Cy > 1 is a constant depending only on f, C, and d from Lemma [3.22

Claim. Fix an arbitrary ¢ € C%*(S5? d) with

1—A"

(1042) ||¢ - wHCOvQ(Sz,d) < TCYOE.

Then 1 satisfies Properties (i) and (ii) in Definition 0.1l with the constant € for ¢ replaced
by £ for 1, and with the same constants Ny, My € N, My-tiles Y[,MO, Y Mo and points
x1(X), 22(X) as those for ¢.

Indeed, Property (i) in Definition @1l for ¢ follows trivially from that for ¢. To establish
Property (ii) for ¢, we fix arbitrary integer N > Ny, and (N + My)-tiles XC{V1+M°, XC{V;FMO €
XN+Mo that satisfies (@) and Y Mo = fV (XC,NIJ’MO) = fN (X$+MO). Then by (@.1),
Lemma [3.24], and (10.42),

[Snp(6i(21(X))) = Snp(s(1(X))) — Sy (z2(X))) + Snip(sa(w2(X)))
d(r1(X), 12(X))"
S 9ol (x1(X))) = Swéle(z1(X))) = Sné(a(2(X))) + Snd(sa(ra(X)))]
B )

2
= [Sn (¢ — @) (si(21(X))) — Sn (¥ — @) (si(w2(X)))|
i€{1,2}
2 — C
e — |7vb ¢‘a7 (527d) 0 > E
- 1—A@ -2
The claim is now established.
Hence 8% is open in C%*(S?d).
Finally, recall that 1 < A < Ag(f) (see [BM17, Theorem 16.3]). Thus if either o € (0, 1)

or A # Ag(f), then A% < Ag(f), and the density of S* in C**(S5?, d) follows immediately
from Theorem [10.5 O
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