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ABSTRACT. A regularized mesh transformation method is applied to solve a
variational problem allowing a non-smooth minimizer. Since the mesh lines
can be made to match the discontinuity set of the minimizer, the method ef-
ficiently improves the approximating property of the numerical solution. The
error bounds dominated by the error of the energy approximation have been
derived, which verify that the numerical solution obtained by the mesh trans-
formation method is the optimal finite element solution in the sense that the
corresponding error norm is minimized among all admissible mesh distribu-

tions. Numerical experiments are given to show the efficiency of the method.

1. INTRODUCTION

We consider numerical solutions of the problem of minimizing an elastic en-
ergy

E(u; Q) :/QW(:E,U(QJ),Vu(x))dx (1.1)

in a set of admissible deformations
Alug; Q) = {u € WH(Q;R™) : u = ug, on 9}, (1.2)

where (2 C R", for n = 2 or 3, is a connected open set with Lipschitz continuous
boundary 02 and 0y C I has positive (n — 1)-dimensional measure, and
p > n. It is well known that in general the infimum of such a problem may
not be attainable when the energy density is not quasi-convex, and in such cases
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the minimizing sequences may develop finer and finer oscillations and lead to
the Young measures [1, 3, 4, 5, 10]. The highly oscillatory functions are usually
non-smooth, more precisely, they have discontinuous derivatives. Even if the
energy density is convex, the problem can still have non-smooth solutions [6,
7]. In the computation of microstructures, one of the major difficulties for high
precision numerical approximations is the presence of discontinuity, which often
causes severe mesh dependence of numerical solutions [9, 11, 16, 18]. To minimize
the mesh dependence and to improve the numerical approximations, the mesh
distribution is taken into consideration in the minimization process, which enables
the mesh lines to align with the set where the derivatives are discontinuous [14, 15,
16]. The mesh transformation method for the problem of minimizing the elastic
energy F(-;Q) in the admissible deformation set A(ug;(2) can be introduced in

the following way (for more general approach, see [16]). Let
£(Q; Q) = {bijections L : Q — Q | L(9%) = 0Q, L € (W(Q))",
L™t e Wh°(Q))", and det(VL) >0, a.e. in Q}. (1.3)
For u € WLP(Q;R), define u(z) € WH(Q;R) by
u(z) = u(L(z)); € Q. (1.4)

Then, by a change of integral variables z — T = L™!(x), the energy functional
E(u, Q) is transformed to

E(u; Q) = [, W(z,u(z), Vu(z)) dx

(1.5)
= [(W(L(z),u(z), Vu(z) - (VL(Z))™") det(VL(Z)) dz := E(a, L; Q).

Let 73, be a family of regularized triangulations of Q with mesh size h [8], and let

Th(Q) ={L € £(;Q) : L|g is affine VK € 73, }, (1.6)

Ap(ug; ) = {u € (C(Q)™ : u|k is affine VK € 7, and ulpq = ue}.  (1.7)

Instead of minimizing the energy FE(u;€)) in a finite element function space

Ap(up; ) defined on a fixed given mesh as in a standard finite element method,

2



the mesh transformation method leads to the following discrete problem

Find (u, L) € Ap(uo; 2) x Ty(2) such that

(1.8)
E(a, L; Q) = inf @ 1yea, @0 <1, @) E(@, L';Q),

which manages to minimize the energy among all the admissible meshes defined
by L(m,) for all L € £(92;). To avoid highly irregular mesh distributions from
being produced in the minimization process, certain regularity techniques need
to be applied [17]. The simplest way to do so is to modify the elastic energy
functional E(u, L;)) by adding a mesh quality control term

F(L) = a /Q | In(det VL)|" dz, (1.9)

where a« > 0 and r > 1 are parameters, which reflect the strength of the penalty
to the irregularity of the mesh distribution and need to be adjusted accordingly
with the mesh refinement in computation.

In the present paper, we apply the above regularized mesh transformation
method to a typical model problem, which has a non-smooth minimizer [6, 7]. In
section 2, we will introduce the model problem and discuss its solution. In sec-
tion 3, the error estimates for the finite element solutions and the corresponding
stress field are derived, where the error bounds are shown to be dominated by
the error of the elastic energy. Since the mesh transformation method is based
upon the energy minimization principle, the result verifies that the numerical
solution so obtained is the optimal finite element solution in the sense that the
corresponding error norm is minimized among all admissible mesh distributions.
Numerical results are presented in section 4 to show the efficiency of the method.

2. A MODEL PROBLEM AND ITS SOLUTION
Consider a scalar double-well energy density
W:R" R, Fw |F—F)|F—FJ? (2.1)

where F} = (—3,2)/V/13 and F», = —F}, and where F' = Vu is the deformation
gradient. It is easily seen that W > 0 is non-convex, W (F') = 0 if and only if
F = Fy or F5. Let W** be the convex envelope of W, we have [6, 7]

W (F) = (IF]? = 1)2)° + 4(FP — (B - F)?), (2:2)
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where ¢ := max{0, c}.
Let © = (0,1) x (0. g), and let
t=3x—1)+2y)/V13 and f(z,y) = —3t°/128 — 3/3. (2.3)

Let A := ug + Wy () be the set of admissible deformations with uy € W4(Q)
satisfying

uo(0,7) := V13(3 — 2y)3(36y> — T2y + 1745) /843648;
uo(1,9) = (/39 -+ 29) VT3 o
uo(w,0) := 9v13(1 — 2)3(812% — 162z + 1745)/281216;
ug(z, 3) := (92%/104 + 3z)/v/13.
Then the relaxed energy functional
E™(v /W** (Vo(z d:zc—l—/ lv(x 7)|* dx (2.5)
has a unique minimizer u € A given by [6, 7]
folt +1/2) = =3t5/128 —t3/3, t <0,
u(z,y) = (2.6)
H{t+1/2)=13/24 +t, t>0
with the minimum energy
Bt = | WH(Vula))dz + [ futa) = f@) do
= 1161£ (/ W (Vou(x d:c—i—/ lv(x (z)]? dm) ~ 0.10781476743659, (2.7)

and the unique minimizer u is also the unique solution of the Euler-Lagrange
equation

/a(u) -Vudzr + 2/(u — fludz =0, Yve W, (Q), (2.8)

Q
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where the stress field o = o(u) is given by

x—1) 42y = 0. However,
Figure 1 shows the nodal

1s continuous.
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interpolation IT,u of the exact solution u on a 32 x 32 uniform mesh, of which

we notice that the stress field o

the mesh lines obviously cover the discontinuity set of the exact solution w.
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FI1GURE 1. Interpolation of u on a 32 x 32 uniform grid

3. DISCRETE PROBLEM AND ITS ERROR ESTIMATES

Let 73, be a regular triangulation of £ with mesh size & [8]. Let S'(7,) denote

the piecewise linear conforming finite element function space

(3.1)

{v, € C(Q) : vy|xis affine, VK € 7,}.

Sl(Th) .



The set of admissible deformations in the finite element space is

Ay = SMm) N A(ug; Q) = uon + Sy (1), (3.2)
where wgy, is the interpolation of ug in S*(73,) and

S (1) == {vn € S* (1) : v, = 0 on 0N}, (3.3)

Then the discrete problem of the relaxation problem reads

Find u;, € A, such that

' (3.4)
E**(up) = inf,, ca, E**(vp).

(DRP) {
Theorem 3.1. (Carstensen and Plechdc [6]) There exists a unique solution uy, of

the relaxation problem in Ay,. Let u denote its unique solution in A and abbreviate

o = DW**(Vu) and o, = DW**(Vuy,), then the following inequality holds

lo = onlli/s + llu — unll3 < ¢ inf (fju— vallz + Ve = Vurll) - (3.5)

with a mesh-independent constant c.

Remark 3.1. Since the minimizer u of the relaxed problem is in W4(Q2), we have
|lu — Hyull14 — 0 as b — 0. Therefore (3.5) implies that, for the solutions of
the problem (3.4), |lo(u) — on(un)|a/s and [Jju — up||2 converge to zero as h — 0.
Furthermore, it is not difficult to show that there exist constants cq,cy > 0 such
that max{c;|F|* — ¢y, 0} < W**(F), and thus we have

c1||[Vug ||} — cameas(2) < / W* (Vuy,) de < E**(up).
0
On the other hand, by the Poincaré’s inequality [2], ||up|l14 < col|Vun|ls for all

up € Aj, with a domain dependent constant ¢y > 0. Hence, we have
lunllts < e co(E™ (un) + comeas()) < e cp(E™ (Tyu) + comeas(9)),

where E**(IT,u) converges to E**(u) as a result of the continuity of £**(-) and the
convergence of IT,u to u in W*(Q). This shows that |luyl1.4 and |[|[Vu, — Vul|s

are uniformly bounded with respect to h, which is an important fact we will use
in our error estimates.



Theorem 3.1 provides a standard error estimate, where the error bound is
measured by the interpolation error. To justify the validity of the mesh transfor-
mation method, we need to have the error bound to be measured by the error of
the approximate energy. In other words, we want to show that smaller approx-
imate energy error implies smaller error on the finite element solution and the
corresponding stress. The following lemmas are useful in our analysis.

Lemma 3.1. [6] For all F' € R?, denote
§F):=(F*-1); and PF:= (11— FF])F, (3.6)
where 1 represents the unit matriz. Define ¥ : R?> — R? by
Y(F) :=4((|F]* = 1), 1+ 2P)F, VF € R (3.7)
Then X(F) = DW*(F)T, and for all F, E € R?, the following inequality holds
S(F) — S(E)? < S(E(F) + £(E) + 2)(S(F) - S(B) (F— E).  (3.8)
Lemma 3.2. [6] For all F, E € R?, we have
D*W (F)(E, E) = 4¢(F)| B[*+SH(|F|2 - 1)(F- E)? + 8(| B — (F-E)?) > 0, (3.9

Where H(+) is the Heavyside function defined by H(x) = 0 forz <0 and H(z) = 1
for x > 0.

To simplify the notation, we denote Ef* = min,eqa, E**(v,) and E** = EX

min

in the rest of this paper.

Theorem 3.2. Let u and uy solve the relaxation problem and its discrete problem

respectively, and denote o0 = DW**(Vu) and o, = DW**(Vuy,). Let

Q_={xeQ:|Vul <1, |[Vuy| <1},
Q ={reQ:|Vu+6\Vu, —Vu)| > 1, V8 € [0,1]},
Qo = N\{Q-UQ}

Then, the following error estimates hold for a mesh-independent constant c.

Er— B < /(ah — o) (Vun — V) d + [l — ull% (3.10)

Q
2 2 ! 11 *k *x
lo = onllays + llu—wnlls +c (35 —0)GO)dodr < c(E;” — E7), (3.11)
Qo JO
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where G(0) = D*W**(Vu + 0(Vuy, — Vu))(Vu, — Vu, Vuy, — Vu).

Proof. By the definition of E** (see (2.5)), we have
Eyr— E™ = /(W**(Vuh) — W*™(Vu)) dx + /(luh — fI? = |u— f]*) dx
Q Q
1
= / / DW**(Vu + t(Vuy, — Vu))(Vuy, — Vu) dt dx
aJo
+/(uh —u)(up +u—2f)dx
0
1
= / / (DW**(Vu + t(Vup, — Vu)) — DW*™(Vu))(Vuy, — Vu) dt dx
aJo
+/ DW**(Vu)(Vu, — Vu) dx + /(uh —u)(up +u—2f)dx
Q Q
11
= / / / t D*W**(Vu + st(Vuy, — Vu))(Vuy, — Vu, Vuy, — Vu) ds dt dx
aJo Jo

+/ lup, — ul|* d. (3.12)
Q

The last identity holds because the exact solution u satisfies the Euler-Lagrange
equation [6]

/QDW**(Vu)(Vu —Vup) dz +2 /Q(u )= ) da = 0.

For the first term on the right side of (3.12), we have
1l
/ / / t D*W**(Vu + st(Vuy, — Vu))(Vuy, — Vu, Vuy, — Vu) ds dt dx
aJo Jo
1 gt
= / / / D*W**(Vu + 0(Vuy, — Vu))(Vuy, — Vu, Vu, — Vu) df dt dz
aJo Jo
1 1
= / / / D*W**(Vu + 0(Vuy, — Vu))(Vuy, — Vu, Vuy, — Vu) dt df dx
aJo Jo

1
= / / (1 —0)D*W** (Vu + 0(Vuy, — Vu))(Vu, — Vu, Vuy, — Vu) d do
aJo
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_ /Q (o7, — 0)(Vuy, — Vu) — / 0G () db) da. (3.13)

0

Since G(0) > 0 by Lemma 3.2, (3.10) follows from (3.12) and (3.13).

To prove (3.11), we need to have a sharper estimate on fol G(0)db. By (3.6)
and (3.7), denoting &, = £(Vuy,) and € = £(Vu), we have

G(0) = 8|P(Vuy, — Vu)|* + 4(|Vu + 0(Vuy, — Vu)|*> — 1)4 |V, — Vul?

+ 8H(|Vu + 0(Vuy, — Vu)|? — 1)((Vu + 0(Vuy, — Vu)) - (Vuy, — Va))?, (3.14)
and

(o — 0)(Vuy — Vu) = 8|P(Vuy, — Vu)|* + 4(6,Vuy, — EVu) - (Vuy, — V)

= 8|P(Vuy, — Vu)|? + 2(&, + €)|Vu, — Vul> + 2(&, — &) (|Vup|® — |[Vul?).
(3.15)

Since, on Q_, |Vu+ 0(Vuy — Vu)|> — 1 < 0 holds for all § € [0, 1], it follows that
G(Q) = ((Th - 0)(Vuh - VU) = 8|P(Vuh — VU)|2, on Q_,
which leads to

/ ' 0G(60) do = %(ah o) (Vup — Vu), on Q. (3.16)

On the other hand, for all § € [0, 1], we have

|Vu+ 0(Vuy, — Vu)|> — 1 =08, + (1 — 0)¢ + (0> — 0)|Vuy, — Vul> >0, on Q.

1 1 1
In particular, for 8 = 3 this gives §]Vuh — Vul|* < Ef’h + & Thus, direct

calculations lead to

1 1
/ 6G(6) do — / $IP(Vuy — V)20 db
0 0
1
+/ 40(06, + (1 — 0)€ + (62 — 6)|Vup — Vul) [Vu, — Vaul2 do
0

1
+/ W((|Vunl? = [Vul2)? + 220 — D(|Vunl? — [Veul) Vi, — Vuf?
0

+(20 — 1)V, — Vul*) dO



IN

IN

<

5 /(ah —0)(Vuy, — Vu)dz + ||u — up|3
Q

4 2 1
4|IP’(Vuh — VU)|2 + (gfh + §€)|Vuh — VU|2 — §|Vuh — Vu|4
2 1
+(|Vup* — [Vul?)? + g(\VuhP — | Vul?)|Vuy, — Vul* + g]Vuh — Vul*
o, 4 2 2
4|IP’(Vuh — VU)| + (gfh -+ §£)|Vuh — Vu|
% 2 2v2 , 1 B 4
3(|Vuh] |Vul?)* + 3|Vuh Vu|
o, A4 2 2
4\]P’(Vuh — VU)‘ -+ (gfh + §£)|Vuh — Vu]
4 2 212 1 2
+§(|Vuh| — |Vul*)" + (§§h +&)|Vuy, — Vu|

11 5 4
4\]P’(Vuh — VU)P + (th + 55)\Vuh — VU‘Z + §(|Vuh|2 — ’VU‘Z)Q

11

12( n—0)(Vu, — Vu), on €. (3.17)

y (3.16) and (3.17), noticing that

/ 1 G(0)df = (o1, — o) (Vuy, — Vau), (3.18)

we have

/Q[(ah —0)(Vu, — Vu) — /1 0G(0) db] dx

0
1
212 (on, — 0)(Vup, — Vu) dx—i—// ——9 6) df dz.
0

This, combined with (3.12) and (3.13), gives

/ / - _0)G0)dodr < EF — E*. (3.19)
Qo
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In addition, by taking F' = Vu, and E = Vu in (3.8), we obtain

o =l < 4 [ (6 € +2)%((0n — 0)(Tun — V)P d
Q

and accordingly, by the Holder’s inequality,
|lo — UhHi/g < 8[&n + € + 2]|2 /(O‘h —0)(Vuy, — Vu) dz. (3.20)
Q

Since ||&, 4+ £ + 2||2 is uniformly bounded (see Remark 3.1), it follows from (3.19)
and (3.20) that the inequality (3.11) holds for a mesh independent constant ¢ >
max{96|[&, + & + 2|2, 1}. O
Remark 3.2. The error estimate (3.11) in Theorem 3.1 is not so neat because of

the term ¢ [o, fol(% — 0)G(0) df dz. However, for the numerical solutions in our

numerical experiments, it can be verified that the set )y is in fact empty, and
thus the error estimate takes the form

2 2 Kk *ok
|o — Uh||4/3 + lu —unlly < (B — E™). (3.21)
Hence, in our numerical experiments, where E;* is minimized, (3.21) verifies that
the numerical solutions obtained by the mesh transformation method are optimal

in the sense that they have the least error among all admissible mesh distributions

defined by T5(€2) (see (1.6)).

Theorem 3.3. Let u and uy solve the relaxation problem and its discrete problem
respectively, and denote 0 = DW**(Vu) and oy, = DW**(Vuy,). Then there exists
a mesh independent constant ¢ such that

1
lo—onllifs™ < e+ ) (B — E)|Vun = Vul {7, 5 € (0, 1. (3.22)

Proof. By (3.6) and (3.14), denoting &, = &(Vuy) and & = £(Vu), we have by
direct calculation

G(0) < 8|Vuy — Vul? + 4(0&, + (1 — 0)8)|Vuy — Vul?
+8((Vu + 0(Vuy, — Vu))(Vuy, — Vu))?
= 8|Vuy, — Vul? + 4(0&, + (1 — 0)8)|Vuy, — Vul* + 2(|Vug|* — [Vul?)?
+4(20 — 1D)(|Vup|® — |Vul|?)|Vuy, — Vaul|* +2(20 — 1)?|Vuy, — Vaul*

11



< 8|Vuy, — Vul|? +4(&, + &)|Vuy, — Vul?
+2(|Vup|? — [Vul?)? + 4||Vur|? — |Vul?||Vu, — Vul* + 2|V, — Vul*
< 8|Vuy, — Vul|® + 4(&, + &) |Vuy, — Vul?
+4(|Vup|* — [Vul?)? + 4|Vuy, — Vul*
< 8|Vuy, — Vul|® + 4(&, + &) |Vuy, — Vul?
+4(|Vug| + [Vu|)?|Vuy, — Vul* + 4|V, — Vul*
<424 &+ €+ (|Vup| + | Vu))? + | Vuy, — Vul?) |V, — Vul?
Define np,(z) = 4(2+ &, + £+ (|Vun| + |Vul)? + [Vuy, — Vul?). Let p =246 and
246

q = ——. Then, it follows that
1+0

(/Q /01 G(6) df dz)P = /52/01((1 —0)G(0)VP(1 — 0)~YPG(0)V df dx

< (/Q /01(1 —0)G(6) db dx)(/ﬂ /01(1 —0)"YPG(0) df dx)P/1

< (B —E™ —|lu - uhl\%)(/Q () |V, — Val? /01<1 — )97 40 dar)?/e
< (B = B)1+ 3 () Tun = T

< nll5* (1 ) — B[V — V20

This, together with (3.18) and (3.20), gives

lo = ol < (8lign + € +2012)**( / (0= on) (Vi — Vi )dar)**?
Q

= (8l + € + 20 / / G(6) b ).

Since 8||&, + & + 2|27 ||nn |37 is uniformly bounded for A > 0 and § € (0, 1] (see

Remark 3.1), the conclusion of the theorem follows. U

Remark 3.3. Since ||Vuy, — Vul|4 are uniformly bounded (see Remark 3.1), (3.22)
literarily implies that smaller error in the energy approximation leads to smaller

12



error bound in the stress field approximation, which justifies the use of the mesh
transformation method.

Remark 3.4. If u and uy, are both in the space W1*°(Q), which is in fact confirmed
by (2.10) and the numerical experiments, then the error estimate in the stress

field can be rewritten as

1
lo = onll3is™ < el + ) (B = B[V, — Tul;*, (3.23)

which, combined with (3.5), gives a sharper error bound than (3.22).

4. NUMERICAL EXPERIMENTS AND RESULTS

We start with a coarse initial mesh, for instance a 10 x 8 uniform mesh as
shown in Figure 2, whose mesh lines do not cover the discontinuity set of the

minimizer u, and an initial deformation IT,u° (see Figure 3) with

(1 =3x/(3+1)ug(0,y) + 3z ue(z,3/2)/(3+1t), t <0, (4.1)

uo(xa ):
P -2/ Do) + 2 uo(Ly)/B - 1), t20.

where t = 3z — 2y.

15

051

FIGURE 2. The 10 x 8 initial mesh distribution.
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FIGURE 3. The initial deformation .

TABLE 1. Some numerical results obtained by the regularized mesh
transformation method

M x N Ep* Ep — B> F.(L) parameter o
10 x 8 | 0.1079807 | 1.6596 x 10~* | 2.19 x 10~© 1074
20 x 16 | 0.1078393 | 2.4512 x 107° | 3.08 x 10~ 107°
40 x 32| 0.1078199 | 5.1097 x 1076 | 4.36 x 108 1076

80 x 64 | 0.1078160 | 1.2175 x 1076 | 5.78 x 10~? 1077

M x N ||lo—opllaz | llu—wunlz | [u—unlra | |u—unl2
10x8 |3.83x1072| 1.32x 1073 0.4236 0.1813
20%x 16| 1.24 x 1072 | 3.12x 104 0.3640 0.1333
40 x 32 [ 5.19 x 1073 | 8.54 x 1077 0.3047 0.0932
80 x 64 | 2.46 x 1073 | 3.75 x 107 0.2558 0.0656

The conjugate gradient method is applied to solve the discrete problem of the
regularized mesh transformation method, where the penalty parameter r = 8 is
taken. The mesh is refined by dividing each element into four equivalent elements
when certain convergence tolerance is satisfied. Some numerical results are shown

14



in Table 1. The final transformed 10 x 8 and 20 x 16 meshes are shown in Figure 4
and Figure 6, and the final deformation u; on the corresponding meshes are shown
in Figure 5 and Figure 7.
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FIGURE 4. The final 10 x 8 transformed mesh distribution.

FIGURE 5. The final deformation u; on the 10 x 8 transformed mesh.
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FIGURE 6. The final 20 x 16 transformed mesh distribution.
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FIGURE 7. The final deformation u; on the 20 x 16 transformed mesh.

It is clearly seen in Figures 4-7 that the discontinuity set {(z,y) € R? :

3(x — 1) + 2y = 0} of the minimizer u of the relaxed problem is well resolved
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by the transformed meshes’ lines, which is the key contribution of the mesh
transformation method to the high accuracy numerical results. In fact, as a
comparison, some numerical results obtained on uniform meshes are shown in
Table 2, where we can see clearly that, if it happens that the discontinuity set
is covered by the mesh lines, numerical solutions with high accuracy similar to
those obtained by the mesh transformation method are produced, otherwise the
accuracy of the numerical solutions drop dramatically.

TABLE 2. Numerical results obtained on uniform meshes.

M x N E | EF—Ex, | MxN E}* E;* — E

min min

10 x 8 |0.1116503 | 3.84 x 1073 8 x 8 0.1086102 | 7.95 x 10~*
20 x 16 | 0.1089814 | 1.17 x 1073 || 16 x 16 0.1079301 | 1.15 x 104

40 x 32 | 0.1081967 | 3.82 x 1074 || 32 x 32 0.1078330 | 1.82 x 10~°
80 x 64 |0.1079442 | 1.29 x 1074 || 64 x 64 0.1078180 | 3.22 x 1076
160 x 128 | 0.1078594 | 4.46 x 1075 || 128 x 128 | 0.1078154135 | 6.46 x 10~7

10° F T T

107 E

Error

107F 1

[~ U=yl

L[| e llo=ylly,
- lu-ull,

L L T

Ll

10° 10
Number of nodes M x N

10

10°

FIGURE 8. Errors of u, and o, with respect to the total node numbers.

17



Figure 8 shows the relations between various errors and the total node num-
bers used in the computation. More precisely, let h = /(1.5N)? + M?/(M - N),

the numerical solutions obtained by the regularized mesh transformation method
are found to have the following convergence rates:

E* — Epin < b2, ||on — ollasz < by |Jup — ul]2 o< B?/2,

(4.2)
IVup — Vulls oc B4, [V, — Vally oc Y2,

which is in nice agreement with the error estimates given in Section 3.

As we know, the mesh transformation method is a global mesh redistribution
technique, while the adaptive method is a local mesh refinement technique. It is
worth noticing here that the adaptive method given by Carstensen and Jochimsen
[7] produces pretty much the same overall convergence rate on the stress field as
the method given by the present paper. However, our numerical experiments show
that the mesh transformation method is particularly efficient in the beginning of
the minimization process when the discontinuous set is not yet well resolved
by the mesh lines. On the other hand, the adaptive method is obviously more
efficient in mesh refinement. Hence, we believe that, in general, a combination of
the mesh transformation method and an adaptive method should provide a more
powerful numerical method for computing discontinuous minimizers.
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