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§1. Introduction

The main purpose of this paper is to discuss a numerical method, of which
a truncation method is a special case, for computing singular minimizers of
integrals in the calculus of variations. The idea of trying to find a particu-
lar method for detecting singular minimizers is motivated by the so called
Lavrentiev phenomenon [1 – 5].

Consider the problem of minimizing

I(u) =
∫ 1

0

(u3 − x)2(u′)6 dx (1.1)

in the set of admissible functions

A = {u ∈ W 1,1(0, 1) : u(0) = 0, u(1) = 1} (1.2)

It is easy to see that the unique minimizer of I in A is û = x1/3 and that
I(û) = 0. It was shown by Manià [2] that the Lavrentiev phenomenon occurs
in the problem, i.e.

inf
u∈A∩W 1,∞(0,1)

I(u) > inf
u∈A

= I(û) = 0 (1.3)

Furthermore, Ball & Mizel [3] showed that if p ≥ 3/2

lim
i→∞

I(ui) = ∞ (1.4)
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for any sequence of functions ui ∈ A ∩W 1,p(0, 1) converging almost every-
where to û. It is easily seen from (1.3) and (1.4) that any numerical method
based on a sufficiently accurate computation of I(ui) for Lipschitz functions
ui will fail both to locate û and to produce the correct minimum value of I
in A.

The existing numerical methods, which can avoid Lavrentiev phenomenon
and detect singular minimizers, can be found in [4,6]. To apply truncation
methods to compute singular minimizers was suggested by J.M.Ball.

In this paper, a numerical method with a more general form, which in-
cludes truncation methods as special cases, is described (§3). As a theoretical
base of the method, some lower semicontinuity theorems [7] are given in §2.
Approximation properties and convergence theorems of the method are es-
tablished in §3. In §4, I describe 2 truncation methods as examples of the
method given in §3. In §5, I show the results of a numerical example.

§2. Lower semicontinuity theorems

Let Ω ⊂ Rn be bounded and open.

Definition 2.1. A function f : Ω×Rm×Rk → R is a Carathéodory function
if

(1) f(·, u, P ) is measurable for every u ∈ Rm, P ∈ Rk,
(2) f(x, ·, ·) is continuous for almost every x ∈ Ω.

Throughout the rest of this paper ⇀ denotes the weak convergence of
sequences. The following theorems are special cases, where u and P are
related by P = Du, of a general lower semicontinuity theorem given by Li
[7].

Theorem 2.1. Let f : Ω×Rm ×Rm×n → R satisfy
( i ) f(x, u, P ) is a Carathéodory function;
( ii) f(x, u, P ) ≥ a(x), a(x) ∈ L1(Ω);
(iii) f(x, u, ·) is convex.

Let fM : Ω×Rm ×Rm×n → R satisfy
(a) fM (x, u, P ) are Carathéodory functions;
(b) fM (x, u, P ) ≥ a(x), a(x) ∈ L1(Ω);
(c) There exists a sequence of compact subsets Ωl in Ω such that

lim
l→∞

meas (Ω \ Ωl) = 0

and
fM −→ f, uniformly on Ωl ×G,
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for each l and any compact set G in Rm ×Rm×n.

Let {uM}, u ∈ W 1,p(Ω; Rm), 1 ≤ p ≤ ∞ be such that

uM ⇀ u, in W 1,p(Ω;Rm). (2.1)

Then
I(u) ≤ limM→∞ IM (uM ), (2.2)

where

I(u) =
∫

Ω

f(x, u, Du) dx,

IM (v) =
∫

Ω

fM (x, v,Dv) dx.

Theorem 2.2. Let f satisfy (i) – (iii) in theorem 2.1. Let {fM} satisfy (a),
(b) in theorem 2.1 and

(c′) There exists a sequence of compact subsets Ωl in Ω such that

lim
l→∞

meas (Ω \ Ωl) = 0

and

∫

Ωl\E(v,K)

|fM (x, v, Dv)−f(x, v, Dv)| dx −→ 0, uniformly in W 1,p(Ω;Rm),

for each l and any fixed K > 0, where E(v,K) = {x ∈ Ω : |v| >
K, or |Dv| > K}.

Let {uM}, u ∈ W 1,p(Ω;Rm), 1 ≤ p ≤ ∞, satisfy

uM ⇀ u, in W 1,p(Ω;Rm).

Then
I(u) ≤ limM→∞ IM (uM ).
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§3. The method and its properties

Assume for simplicity that Ω ⊂ Rn is a polyhedron and ∂Ω0 ⊂ ∂Ω, where
∂Ω is the boundary of Ω, consists of faces of the polyhedron. Let Th be
regular triangulations of Ω with h being the mesh size [8]. Let

A(u0; ∂Ω0) = {u ∈ W 1,p(Ω; Rm) : u = u0, on ∂Ω0};
Ah = {u ∈ C(Ω̄) : u is a polynomial of degree k on K, ∀K ∈ Th};

Ah(u0h; ∂Ω0) = {u ∈ Ah : u = u0h on ∂Ω0},

where u0h ∈ Ah satisfy

u0h −→ u0, in W 1,p(Ω; Rm). (3.1)

Our method for computing the minimizers of I(u) =
∫
Ω

f(x, u, Du) dx in
A(u0; ∂Ω0) is to solve the finite problem of minimizing IM (uh) =

∫
Ω

fM (x,
uh, Duh) dx in Ah(u0h; ∂Ω0) for properly chosen fM and h.

Lemma 3.1. Let f : Ω×Rm ×Rm×n → R satisfy
( i ) f(x, u, P ) is a Carathéodory function;
( ii) f(x, u, P ) ≥ a(x), a(x) ∈ L1(Ω);

Let fM : Ω×Rm ×Rm×n → R satisfy
(a) fM (x, u, P ) are Carathéodory functions;
(b) a(x) ≤ fM (x, u, P ) ≤ min{f(x, u, P ), bM (x) + aM (x)(|u|p + |P |p)},

where a(x), bM (x) ∈ L1(Ω), aM (x) ∈ L∞(Ω) and 1 ≤ p ≤ ∞;
(c′′) For any v ∈ W 1,p(Ω;Rm)

fM (x, v,Dv) −→ f(x, v, Dv), in measure,

i.e. for any ε > 0

meas {x ∈ Ω : |fM (x, v, Dv)− f(x, v,Dv)| ≥ ε} → 0, as M →∞.

Let u ∈ A(u0; ∂Ω0) be such that f(x, u(x), Du(x)) ∈ L1(Ω). Let uh ∈
Ah(u0h; ∂Ω0)
be such that

uh −→ u, in W 1,p(Ω;Rm). (3.2)

Then, for any ε > 0, there exist M(ε) > 0 and h(ε, M) > 0 such that

|IM (uh)− I(u)| < ε, for M > M(ε) and 0 < h < h(ε, M). (3.3)
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Proof.

IM (uh)− I(u)

=
∫

Ω

(fM (x, uh, Duh)− fM (x, u,Du)) dx

+
∫

Ω

(fM (x, u, Du)− f(x, u, Du)) dx

=I1 + I2

It follows from f(x, u(x), Du(x)) ∈ L1(Ω) and a(x) ∈ L1(Ω) that for any
ε > 0 there exists δ(ε) > 0 such that

∫

Ω′
|f(x, u(x), Du(x))| dx < ε,

and ∫

Ω′
|a(x)| dx < ε,

for any Ω′ ⊂ Ω with meas(Ω′) < δ(ε).
On the other hand, let

ΩM (ε) =

{x ∈ Ω : |fM (x, u(x), Du(x))− f(x, u(x), Du(x))| > ε/(8 meas(Ω))}.

Then, by (c′′), for any ε > 0 and δ > 0 there exists M(ε, δ) > 1 such that

meas(ΩM (ε)) < δ, ∀M ≥ M(ε, δ).

Now, by taking M(ε) = M(ε/8, δ(ε/8)) and by using the fact (see (b))
that

|fM (x, u(x), Du(x))| ≤ |a(x)|+ |f(x, u(x), Du(x))|,
we have

|I2| ≤
∫

ΩM (ε)

(|a(x)|+ 2 |f(x, u(x), Du(x))|) dx

+
∫

Ω\ΩM (ε)

|fM (x, u,Du)− f(x, u,Du)| dx

≤4 · ε/8 = ε/2, ∀M ≥ M(ε). (3.4)

We claim that for any ε > 0 and M > 0 there exists h(ε,M) > 0 such that

|I1| < ε/2, ∀0 < h ≤ h(ε,M). (3.5)
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Suppose otherwise. Then, there would be ε0 > 0,M0 > 0 and a decreasing
sequence {hj} with limj→∞ hj = 0 such that

|
∫

Ω

(fM0(x, uhj
, Duhj

)− fM0(x, u,Du)) dx| ≥ ε0/2, ∀j.

By (3.2), we may assume

uhj
−→ u, almost everywhere in Ω,

Duhj
−→ Du, almost everywhere in Ω.

Thus by (a)

fM0(x, uhj , Duhj ) → fM0(x, u, Du), almost everywhere in Ω. (3.6)

On the other hand, by (b)

|fM0(x, uhj , Duhj )− fM0(x, u,Du)|
≤bM0(x) + aM0(x)(|uhj |p + |u|p + |Duhj |p + |Du|p). (3.7)

By (3.2), the right hand side of (3.7) is uniformly integral continuous. Hence
by (3.6) and (3.7),

|I1| −→ 0, as j →∞.

This is a contradiction.
(3.3) now follows from (3.4) and (3.5). ¤

As a direct corollary of lemma 3.1, we have

Theorem 3.1. Let f, fM satisfy the hypotheses in lemma 3.1. Then, for
any ε > 0, there exist M(ε) > 0 and h(ε, M) > 0 such that

inf
uh∈Ah(u0h;∂Ω0)

IM (uh) < inf
u∈A(u0;∂Ω0)

I(u) + ε,

for M ≥ M(ε), 0 < h ≤ h(ε,M).

Now, we can prove the following convergence theorem for the method.

Theorem 3.2. Let 1 < p < ∞. Let f : Ω×Rm ×Rm×n → R satisfy

( i ) f(x, u, P ) is a Carathéodory function;
( ii) f(x, u, P ) ≥ a(x), a(x) ∈ L1(Ω);
(iii) f(x, u, ·) is convex.
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Let fM : Ω×Rm ×Rm×n → R satisfy
(a) fM (x, u, P ) are Carathéodory functions;
(b) a(x) ≤ fM (x, u, P ) ≤ min{f(x, u, P ), bM (x) + aM (x)(|u|p + |P |p)},

where a(x), bM (x) ∈ L1(Ω), aM (x) ∈ L∞(Ω);
(c′) There exists a sequence of compact subsets Ωl in Ω such that

lim
l→∞

meas (Ω \ Ωl) = 0

and
∫

Ωl\E(v,K)

|fM (x, v, Dv)− f(x, v,Dv)| dx −→ 0,

uniformly in W 1,p(Ω;Rm)

for each l and any fixed K > 0, where E(v,K) = {x ∈ Ω : |v| >
K, or |Dv| > K}.

Let {εj} be a decreasing sequence satisfying limj→∞ εj = 0. Let Mj = M(εj)
and hj = h(εj ,Mj), where M(εj) and h(εj ,Mj) are valued by theorem 3.1.
Let uhj ∈ Ahj (u0hj ; ∂Ω0) be such that

Ij(uj) =
∫

Ω

fMj (x, uj , Duj) dx < inf
v∈Ahj

(u0hj
;∂Ω0)

Ij(v) + εj , (3.8)

and
u0hj −→ u0, in W 1,p(Ω;Rm). (3.9)

Assume {uj} are uniformly bounded in W 1,p(Ω;Rm), i.e. there is a constant
C > 0 such that

‖uj‖1,p ≤ C, ∀j. (3.10)

Then, there exists a function u ∈ A(u0; ∂Ω0) and a subsequence of {uj},
again denoted {uj}, such that

uj ⇀ u, in W 1,p(Ω; Rm), (3.11)

and
I(u) = inf

v∈A(u0;∂Ω0)
I(v) = limj→∞Ij(uj). (3.12)

Proof. It is a classical result that (3.11) holds for a function u ∈ W 1,p(Ω;
Rm). From (3.9), it follows that u = u0 on ∂Ω0, i.e. u ∈ A(u0; ∂Ω0).
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By theorem 2.2, we have

I(u) ≤ limj→∞Ij(uj). (3.13)

It follows from (c′) that fM also satisfy (c′′) in lemma 3.1. Hence by
theorem 3.1, we have

limj→∞Ij(uj) ≤ inf
v∈A(u0;∂Ω0)

I(v). (3.14)

Combining (3.13) and (3.14), we have (3.12). ¤
Remark. If (c′) is replaced by (c) in theorem 3.2, the conclusion of the
theorem still holds.

§4. Truncation methods

To apply the results in §2 and §3, we need to find an appropriate sequence
of functions {fM}. We may use the truncation method to construct such
sequences.

Let 1 < p < ∞ and define

f̄M (x, u, P ) =
{

f(x, u, P ), if |u| ≤ M and |P | ≤ M ;
f(x, uM , PM ) + αM (x)(χp

M (|u|) + χp
M (|P |)), otherwise,

where

uM =

{
u, if |u| ≤ M ;
M
|u|u, if |u| > M,

PM =

{
P, if |P | ≤ M ;
M
|P |P, if |P | > M,

χp
M (t) =

{
0, if t ≤ 0;
tp −Mp, if t > 0,

and
αM ∈ L∞, αM (x) ≥ c > 0, ∀x ∈ Ω (4.1)

Define
f1

M (x, u, P ) = min{f(x, u, P ), f̄M (x, u, P )}. (4.2)

Let {ᾱM} be an increasing sequence satisfying

ᾱ1 ≥ c > 0, lim
M→∞

ᾱM = ∞ (4.3)

Define
f2

M (x, u, P ) = min{f(x, u, P ), ᾱM (1 + |P |p)}. (4.4)
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Lemma 4.1. Let f : Ω×Rm ×Rm×n → R satisfy
( i ) f(x, u, P ) is a Carathéodory function;
( ii) f(x, u, P ) ≥ a(x), a(x) ∈ L1(Ω);
(iii) f(x, u, ·) is convex.
(iv) Let gK(x) = sup|u|≤K,|P |≤K |f(x, u, P )|. Then gK(·) ∈ L1(Ω).

Then, f i
M , i = 1, 2, defined by (4.2) and (4.4) respectively, satisfy

(a) f i
M (x, u, P ) are Carathéodory functions;

(b) ā(x) ≤ f i
M (x, u, P ) ≤ min{f(x, u, P ), bM (x) + aM (x)(|u|p + |P |p)},

where ā(x), bM (x) ∈ L1(Ω), aM (x) ∈ L∞(Ω), aM (x) ≥ c > 0,
a.e. in Ω.

and furthermore f1
M satisfy

(c) There exists a sequence of compact sets Ωl in Ω such that

lim
l→∞

meas (Ω \ Ωl) = 0

and
f1

M −→ f, uniformly on Ωl ×G

for each l and any compact set G ∈ Rm ×Rm×n;
f2

M satisfy
(c′) There exists a sequence of compact sets Ωl in Ω such that

lim
l→∞

meas (Ω \ Ωl) = 0

and
∫

Ωl\E(v,K)

|f2
M (x, v, Dv)− f(x, v, Dv)| dx −→ 0,

uniformly in W 1,p(Ω; Rm),

for each l and any fixed K > 0 where E(v,K) = {x ∈ Ω : |v| >
K, or |Dv| > K}.

Proof. (a) is obvious.
For i = 1, take ā(x) = a(x), bM (x) = gM (x) (see (iv)) and aM (x) =

αM (x). For i = 2, take ā(x) = min{a(x), α1}, and aM (x) = bM (x) = ᾱM .
Then, it is easy to check that (b) holds.

It is obvious that (c) is satisfied by f1
M , since fM (x, u, P ) = f(x, u, P ) for

all x ∈ Ω, |u| ≤ M and |P | ≤ M .
Now we show that (c′) is satisfied by f2

M .
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For any ε > 0 and K > 1, it follows from (iv) that there exist C(K) > 0
and δ(ε,K) > 0 such that

∫

Ω

gK(x) ≤ C(K), (4.5)

and ∫

Ω′
gK(x) ≤ ε, ∀Ω′ ⊂ Ω with meas (Ω′) < δ(ε,K), (4.6)

where gK is defined as in (iv).
For any δ > 0 and K > 1, it follows from (4.5) that there exists A(K, δ) >

1 such that
meas (G(K,A)) < δ, ∀A ≥ A(K, δ), (4.7)

where G(K, A) = {x ∈ Ω : gK(x) > A}.
By (4.3), for any A > 0 there exists M(A) > 1 such that

ᾱM ≥ A, ∀M ≥ M(A). (4.8)

By (4.4) and (4.8),

f2
M (x, v(x), Dv(x)) = f(x, v(x), Dv(x)),

∀x ∈ Ω \G(K,A), and ∀M ≥ M(A).
(4.9)

Thus, by taking δ = δ(ε, K), A = A(ε,K) = A(K, δ(ε,K)), and M(ε,K) =
M(A(ε, K)) and by (4.4), (4.6), (4.7) and (4.9), we have

∫

Ω\E(v,K)

|f2
M (x, v, Dv)− f(x, v,Dv)| dx

=
∫

(Ω\E(v,K))∩G(K,A)

|f2
M (x, v,Dv)− f(x, v, Dv)| dx

≤2
∫

(Ω\E(v,K))∩G(K,A)

|f(x, v, Dv)| dx

≤2
∫

G(K,A)

gK(x) dx

<2 ε, ∀M ≥ M(ε,K) and v ∈ W 1,p(Ω; Rm). (4.10)

(4.10) implies that f2
M satisfy (c′). ¤

By lemma 4.1, we know that all the results in §2 and §3 remain valid if
fM is substituted by f1

M defined by (4.2) or f2
M defined by (4.4).
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Let Ω, ∂Ω0 and Th be the same as in §3. Let

A = {u ∈ W 1,1(Ω; Rm) : u = 0, on ∂Ω0},
Ah = {u ∈ C(Ω̄) : u is a polynomial of degree ≤ k on each element in Th,

u = 0 on ∂Ω0}
Suppose û ∈ W 1,p(Ω;Rm), p > 1, is a minimizer of

I(u) =
∫

Ω

f(x, u, Du) dx

in A. Let

L = 1 + |û|p1,p, (4.11)

Ah(L) = {u ∈ Ah :
∫

Ω

|Du|p dx ≤ L}. (4.12)

Theorem 4.1. Let f : Ω×Rm ×Rm×n → R satisfy
( i ) f(x, u, P ) is a Carathéodory function;
( ii) f(x, u, P ) ≥ a(x), a(x) ∈ L1(Ω);
(iii) f(x, u, ·) is convex.
(iv) Let gK(x) = sup|u|≤K,|P |≤K |f(x, u, P )|. Then gK(·) ∈ L1(Ω).

Let f i
M , i = 1, 2, be defined by (4.2) and (4.4) respectively. Let {εj} be a

decreasing sequence with limj→∞ εj = 0. We have
(1) There exist a nonincreasing function M(ε) > 0 and a function h(ε,M)

with h(·,M) nondecreasing and h(ε, ·) nonincreasing such that

inf
v∈Ah(L)

Ii
M (v) < I(û) + εj , for M ≥ M(εj), 0 < h ≤ h(εj ,M), (4.13)

where
Ii
M (v) =

∫

Ω

f i
M (x, v,Dv) dx.

(2) Let Mj ≥ M(εj), 0 < hj ≤ h(εj ,Mj). Let ui
j ∈ Ahj (L) be minimizers

of Ii
Mj

in Ahj (L). Then there exsit functions ūi ∈ A ∩W 1,p(Ω;Rm)
and subsequences of {ui

j}∞j=1, again denoted by {ui
j}∞j=1, such that

ui
j ⇀ ūi, in W 1,p(Ω;Rm),

and
I(ūi) = inf

u∈A
I(u) = limj→∞Ii

Mj
(ui

j).

Proof. (1) follows from a similar argument as in lemma 3.1. (2) follows from
a similar argument as in theorem 3.2. ¤
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Remark. The arguments in the proof of lemma 4.1 show that the conclu-
sions in lemma 4.1 and theorem 4.1 for f1

M hold without the hypothesis (iv).

Remark. Comparing the truncation method presented here with the element
removal method [6], we see that both methods replaced the fast growth part
of the integrand by certain slower growth functions so that the Lavrentiev
phenomenon can be avoided. The difference is that in the element removal
method the substitution is taken to be zero, while in the truncation method
the truncation functions themselves, even though their growth is to a certain
degree under control, still grow fast.

§5. Numerical example

I now apply the truncation method to the following 2-D problem, which
is motivated by the 1-D problem of minimizing (1.1) in (1.2).

Take Ω = (−1, 1)× (0, 1), and

f(x, y, u, u′x, u′y) = h(x, y)((u3 − x)2(u′x)6 + (u′y)2),

where

h(x, y) =





a y2|x|3−b y2
, if y ∈ (0, 0.3);

1, if y ∈ [0.3, 0.7];

a (1− y)2|x|3−b (1−y)2 , if y ∈ (0.7, 1),

with a = 100/9, b = 100/3. Here h(x, y) is so defined that for y near either
0 or 1 the value of h(x, y) goes to zero faster than x2. This guarentees that
the Lavrentiev phenonmenon still occurs in the problem.

Take

A = {u ∈ W 1,1(Ω) : u(±1, y) = ±1; u(x, y) = x, on y = 0 and y = 1}.

Take fM = f2
M defined by (4.4) with αM = 10−3M,p = 1.2.

For M = 10, devide Ω into rectangulars by introducing lines

xi = −1 +
i

10
, 1 ≤ i < 20;

yj =
j

10
, 1 ≤ j < 10.

Bilinear elements are used to construct the finite element function space
Ah. The numerical results of the truncation method and the standard finite
element method are shown in Figure-1 and Figure-2 respectively.
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For M = 20, devide Ω into rectangulars by introducing lines

xi = −1 +
i

10
, 1 ≤ i < 8;

x9 = −0.13, x10 = −0.08,x11 = −0.04, x12 = −0.02,

x13 = −0.01, x14 = 0.0,x15 = 0.01, x16 = 0.02,

x17 = 0.04, x18 =0.08, x19 = 0.13,

xi = 0.2 +
i− 20

10
, 20 ≤ i < 28;

yj =
j

10
, 1 ≤ j < 10.

Bilinear elements are used to construct the finite element function space
Ah. The numerical results of the truncation method and the standard finite
element method are shown in Figure-3 and Figure-4 respectively.
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