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Abstract. A rotation transformation method and an incremental crystal-
lization method are developed to overcome some of the difficulties involved
in the computation of microstructures. The numerical method based on
these techniques is proved to converge. To increase further the accuracy of
the computation, a technique is applied to remove the boundary effect of
the numerical solutions. Numerical results for a double well problem are
given to show the efficiency of the techniques.

1. Introduction

In many physical problems, for example in material sciences and nonlinear

elasticity [1, 2], one is often lead to consider problems of minimizing an integral

functional

F (u; Ω) =

∫

Ω

f(∇u(x)) dx (1.1)

in a set of admissible functions

U(u0; Ω) = {u ∈ W 1,p(Ω; Rm) : u = u0, on ∂Ω}, (1.2)

where Ω ∈ Rn is a bounded open set with a Lipschitz continuous boundary,

and where the integrand f : Rmn → R1 is continuous, nonquasiconvex [3, 4]

and satisfies

(h1): max{0, a1 + b1|ξ|p} ≤ f(ξ) ≤ a2 + b2|ξ|p,
(h2): |f(ξ)− f(η)| ≤ C(1 + |ξ|p−1 + |η|p−1)(|ξ − η|),
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where a1 ∈ R1, a2 > 0, b2 ≥ b1 > 0 and C > 0 are constants. It is well known

that, in general, such a problem fails to have a solution [3, 4, 5], and the mini-

mizing sequences of F (·; Ω) in U(u0; Ω), which develop finer and finer oscilla-

tions, can converge in the sense of Young measures and lead to microstructures

[1, 2, 6, 7]. To compute the microstructures , or more precisely, to find nu-

merically a minimizing sequence of F (·; Ω) in U(u0; Ω) consisting of finer and

finer oscillations, with finite element method for instance, involves many diffi-

culties (see [8] for a review). Many numerical methods have been developed to

compute the microstructures, for example gradient iterative methods [9, 10],

methods using simulated annealing and Monte Carlo techniques [11, 12] and

multilevel techniques [13].

It has long been realized that the local minimizers of the corresponding

discrete problems not only depend on the original problem but also depend

strongly on the mesh and the shape functions. A mesh which is not compat-

ible with the microstructure, i.e. the planes across which the finite element

deformation gradients can be discontinuous are not parallel to the interfaces

of the microstructure, may produce oscillations which do not converge to the

microstructures of the original problem and lead to a pseudo-microstructure

(see Sec. 3 for an example), in other words, the sequence with such oscillations

is not a minimizing sequence of the original problem. Thus, to choose the right

orientation of the mesh, or alternatively the right orientation of the reference

configuration is of crucial importance to the computation of microstructures

(see [8, 10]).

The purpose of the present paper is to develop an efficient high accuracy

numerical method for double well problems with linear boundary data. Double

well problems have important applications in material sciences [1], and an effi-

cient high accuracy numerical method for such problems with linear boundary

data will provide us a basic tool to study further the numerical computations

of microstructures for the double well problems in the general cases.

It is known that with a right orientation the corresponding numerical so-

lutions converge to the right microstructures for multiple well problems [14,

15, 16]. Hence, it makes sense to introduce the orientation as a unknown to

the discrete problem. This motivates the rotation transformation method in

which a finite element deformation u and a rotation transformation matrix
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R ∈ SO(n) are to be found to minimize the functional
∫

Ω̂

f(∇u(x)R−1) dx,

where Ω̂ ⊂ Rn is such that
⋂

R∈SO(n) R(Ω̂) ⊃ Ω (see Sec.2 for details). It is

shown in Sec. 2 that the finite element solutions thus obtained can be used to
construct a minimizing sequence of F (·; Ω) in U(u0; Ω).

One of the other main difficulties is that the patches of the numerical mi-

crostructures forms in the various parts of the domain may not be compatible

to each other and thus result in energy accumulation in the interface areas of

these patches (see Sec. 3 for an example). In other words, local minimizers are

usually obtained even if the mesh is well orientated. To overcome this diffi-

culty, the incremental crystallization method is introduced in Sec. 3. The idea

is to compute first on a small subset of the domain to produce a crystal core,

that is a numerical microstructure defined on the small subset, and then to let

the crystal grow in a neighborhood of the core incrementally until the whole

domain is covered. The method can be viewed as a simulated crystallization

procedure.

To satisfy the boundary conditions, a boundary layer usually forms in the

numerical solutions, this causes energy accumulation near the boundary. Such

a boundary effect is a factor that affects the accuracy of the computation of

microstructures. The effect reduces as the mesh refines. Thus, to obtain nu-

merical results with high accuracy usually needs the mesh to be sufficiently

fine. The following technique, which we call the boundary layer removal tech-

nique, can be used to reduce the boundary effect. In the discrete problems, Ω

is replaced by a slightly bigger open set Ω′ ⊃ Ω and the boundary condition is
set to

u = u0 on ∂Ω′, (1.3)

furthermore, a term of the form

µh−q

∫

Ω′
|u− u0|p dx, (1.4)

where h is the mesh size and µ > 0, q ∈ (0, p) are parameters, is added to

the functional F (u; Ω′) to be minimized. The extra term (1.4) guarantees that

any weakly convergent minimizing sequence {uh} of the resulted functional

Fµ(u; Ω′) = F (u; Ω′) + µh−q

∫

Ω′
|u− u0|p dx
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in W 1,p(Ω′; Rm) must satisfy

uh ⇀ u0 in W 1,p(Ω′; Rm), (1.5)

where ”⇀” means ”converges weakly to”. By Sobolev’s imbedding theorems

[17], (1.5) implies

uh −→ u0 in Lp(∂Ω; Rm). (1.6)

That is the boundary condition is satisfied by the sequence {uh|Ω} in a weaker

sense. We take {uh|Ω} as the numerical microstructure to the original prob-

lem. The technique removes the boundary layer, and thus can produce better

approximations. Furthermore, the technique can be used naturally in the ro-

tation transformation method to guarantee its convergence (see Sec. 2 and

Sec. 3).

In Sec. 2, the rotation transformation method is given and the convergence

of the method is proved. In Sec. 3, implementation of the rotation transfor-

mation method is discussed and the incremental crystallization technique is

introduced. Numerical results are given and compared in Sec. 3 which show

the efficiency of the techniques developed in this paper.

2. Rotation transformation method

Let Ω ⊂ Rn be a bounded open set with a Lipschitz continuous boundary.

Let f : Rmn → R1 be a continuous function satisfying (h1) and (h2) with

p > 1. Consider the problem of minimizing the functional

F (u; Ω) =

∫

Ω

f(∇u(x)) dx (2.1)

in a set of admissible functions

U((A, a); Ω) = {u ∈ W 1,p(Ω; Rm) : u(x) = Ax + a, on ∂Ω}. (2.2)

Without loss of generality, assume

Ω ⊂ B(0; r), (2.3)

where B(0; r) = {x ∈ Rn : ‖x‖ < r} is a ball in Rn. Define

Ω̂ = (−r, r)n. (2.4)

We have obviously

Ω ⊂ B(0; r) =
⋂

R∈SO(n)

R(Ω̂), (2.5)
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where SO(n) is the set of all n×n rotational transformation matrices with the

determinant det R = 1. Ω̂ will serve as the working domain for our numerical

computation.

Lemma 2.1. For any R ∈ SO(n), we have

inf
u∈U((A,a);R(Ω̂))

1

meas(Ω̂)
F (u; R(Ω̂)) = inf

u∈U((A,a);Ω)

1

meas(Ω)
F (u; Ω), (2.6)

where meas(·) is the Lebesgue measure in Rn.

Proof. It is well known [3, 7, 18] that

Qf(A) = inf
u∈U((A,a);Ω′)

1

meas(Ω′)
F (u; Ω′)

for all bounded open set Ω′ ⊂ Rn, where Qf(·) is the quasiconvex envelope of

f(·) [3, 4, 5]. Thus the lemma follows, since meas(Ω̂) = meas(R(Ω̂)) for all

R ∈ SO(n). ¤

Lemma 2.2. For any R ∈ SO(n) and u ∈ U((A, a); R(Ω̂)), let û(x) : Ω̂ → Rm

be defined by

û(x) = u(R x)− AR x− a. (2.7)

Then û ∈ U((0, 0); Ω̂) and
∫

Ω̂

f(A +∇û(x)R−1) dx = F (u; R(Ω̂)). (2.8)

Proof. û ∈ U((0, 0); Ω̂) follows directly from (2.7) and (2.3). By a change of

integral variables, we have
∫

R(Ω̂)

f(∇u(y)) dy =

∫

Ω̂

f(A +∇û(x)R−1) det R dx.

Since det R = 1, (2.8) follows. ¤

Lemma 2.3. Let R ∈ SO(n). Define

F (u,R; Ω̂) =

∫

Ω̂

f(A +∇u(x)R−1) dx. (2.9)

Then

inf
u∈U((0,0);Ω̂)

1

meas(Ω̂)
F (u,R; Ω̂) = inf

u∈U((A,a);Ω)

1

meas(Ω)
F (u; Ω). (2.10)
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Proof. The lemma is a direct corollary of lemma 2.1 and lemma 2.2. ¤

Let Th be regular triangulations of Ω̂ with mesh sizes h [19]. Let

Uh = {u ∈ (C(Ω̂))m : u|K is affine ∀K ∈ Th and u = 0 on ∂Ω̂}, (2.11)

and

Uh((A, a); Ω̂) = {u(x) = Ax + a + u′(x) : u′ ∈ Uh}. (2.12)

The key step of the rotation transformation method is to solve the following

discrete problem :

(DP )

{
find (u, R) ∈ Uh((0, 0); Ω̂)× SO(n) such that

F (u,R; Ω̂) = inf(u′,R′)∈Uh((0,0); Ω̂)×SO(n) F (u′, R′; Ω̂).
(2.13)

Theorem 2.1. The problem (DP ) has at least one solution.

Proof. Since (h1) implies the boundedness of a minimizing sequence of (DP ),

the continuity of f(·) and the relative compactness of bounded subset in

Uh((0, 0); Ω̂)× SO(n) give the theorem. ¤

Theorem 2.2. Let (uhi
, Rhi

) ∈ Uhi
((0, 0); Ω̂)× SO(n) be a sequence of min-

imizers of F (·, ·; Ω̂) in Uhi
((0, 0); Ω̂)× SO(n) with limi→∞ hi = 0. Then

lim
i→∞

F (uhi
, Rhi

; Ω̂) = inf
u∈U((A,a);Ω̂)

F (u, Ω̂). (2.14)

Proof. It follows from lemma 2.3 that

inf
u∈U((A,a);Ω̂)

F (u; Ω̂) = inf
u∈U((0,0);Ω̂)

F (u,Rhi
; Ω̂) ≤ F (uhi

, Rhi
; Ω̂). (2.15)

On the other hand, for any fixed R ∈ SO(n), we have

F (uhi
, Rhi

; Ω̂) ≤ inf
u∈Uhi

((0,0);Ω̂)
F (u,R; Ω̂). (2.16)

By the standard finite element approximation theory [19], we have

lim
hi→0

inf
u∈Uhi

((0,0);Ω̂)
F (u,R; Ω̂) = inf

u∈U((0,0);Ω̂)
F (u,R; Ω̂). (2.17)

Combining (2.17) with (2.15), (2.16) and (2.10), we obtain (2.14). ¤
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Corollary 2.1. As a consequence of lemma 2.1 and theorem 2.2, we have

Qf(A) =
1

meas(Ω)
inf

u∈U((A,a);Ω)
F (u; Ω)

=
1

meas(Ω̂)
lim
h→0

inf
(u,R)∈Uh((0,0); Ω̂)×SO(n)

F (u,R; Ω̂),

where Qf(·) is the quasiconvex envelope of f(·) [3, 4, 5].

Theorem 2.3. Let (uhi
, Rhi

) ∈ Uhi
((0, 0); Ω̂)× SO(n) be a sequence of min-

imizers of F (·, ·; Ω̂) in Uhi
((0, 0); Ω̂) × SO(n) with limi→∞ hi = 0. Assume

that there exists a R ∈ SO(n) such that

lim
i→∞

Rhi
= R. (2.18)

Then {uhi
} is a minimizing sequence of F (·, R; Ω̂) in U((0, 0); Ω̂), that is

{uhi
} ⊂ U((0, 0); Ω̂) and

lim
i→∞

F (uhi
, R; Ω̂) = inf

u∈U((0,0);Ω̂)
F (u,R; Ω̂). (2.19)

Proof. Since Uhi
((0, 0); Ω̂) ⊂ U((0, 0); Ω̂) for all hi, we only need to show

(2.19). In view of (2.17), it is sufficient to prove that

lim
i→∞

(F (uhi
, R; Ω̂)− F (uhi

, Rhi
; Ω̂)) = 0. (2.20)

Since, by (h1), uhi
are uniformly bounded in W 1,p(Ω̂; Rm), ∇uhi

R−1
hi

and

∇uhi
R−1 are uniformly bounded in Lp(Ω̂; Rm) and by (2.18), taking a subse-

quence if necessary, we have

∇uhi
(R−1 −R−1

hi
) −→ 0, a.e. in Ω̂.

Thus, (2.20) follows from the inequality

|f(A +∇uhi
R−1)− f(A +∇uhi

R−1
hi

)| ≤ L̂|∇uhi
|p|R−1 −R−1

hi
|,

which is a consequence of (h2), the uniform boundedness of ∇uhi
in Lp(Ω̂; Rm)

and (2.18). ¤

As a consequence of theorem 2.3 and lemmas 2.1-2.3, we have
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Corollary 2.2. Let (uhi
, Rhi

) ∈ Uhi
((0, 0); Ω̂) × SO(n) be minimizers of

F (·, ·; Ω̂) in Uhi
((0, 0); Ω̂) × SO(n) with limi→∞ hi = 0 such that (2.18) is

satisfied. Let ũhi
: Rhi

(Ω̂) → Rm be defined by

ũhi
(x) = Ax + a + uhi

(R−1
hi

(x)), (2.21)

Then ũhi
∈ U((A, a); Rhi

(Ω̂)) and

lim
i→∞

F (ũhi
; Rhi

(Ω̂)) = inf
u∈U((A,a);Ω̂)

F (u, Ω̂). (2.22)

Proof. It is obvious that ũhi
∈ U((A, a); Rhi

(Ω̂)) . By lemma 2.2, we have

F (ũhi
; Rhi

(Ω̂)) = F (uhi
, Rhi

; Ω̂).

Without loss generality, we assume that limi→∞ Rhi
= R for some R ∈ SO(n).

Thus (2.22) follows from (2.6), (2.10), (2.19) and (2.20). ¤

It is well known that under the hypotheses (h1) and (h2), for any R ∈ SO(n)

there exists a minimizing sequence {ui} such that [7]

ui(x)− Ax− a ⇀ 0 in W 1,p(R(Ω̂); Rm), (2.23)

and it is proved by Kinderlehrer and Pedredal [20, 21] that such a minimizing

sequence satisfies

(C): {|∇ui|p} are precompact [22] in W 1,p(R(Ω̂); Rm).

To guarantee that the obtained numerical solutions satisfy (2.23) and thus

satisfy also the condition (C), we added a penalty term

µh−q

∫

Ω̂

|u(x)|p dx

to F (u,R; Ω̂) in (DP) with µ > 0 and 0 < q < p/2.

If the sequence ui = ũhi
defined by (2.21) satisfies (2.23), then it can be

used to construct a minimizing sequence of F (·; Ω) in U((A, a); Ω) as follows.

Denote

δi = min{1, max{hi,

∫

Rhi
(Ω̂)

|ũhi
(x)− Ax− a|p dx}}, (2.24)

Ω(ξ) = {x ∈ Ω : dist(x, ∂Ω) < ξ}. (2.25)
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Let ϕi : Rn → [0, 1] be such that ϕi ∈ C∞
0 (Rn),

ϕi(x) =

{
1, if x ∈ Ω \ Ω(2δ

1/p̂
i );

0, if x ∈ Rn \ (Ω \ Ω(hi)),
(2.26)

where p̂ > p is a constant and

|∇ϕi| ≤ δ
−1/p̂
i . (2.27)

Define ūi : Rhi
(Ω̂) → Rm by

ūi(x) = Ax + a + ϕi(x)(ũhi
(x)− Ax− a). (2.28)

Theorem 2.4. Let (uhi
, Rhi

) ∈ Uhi
((0, 0); Ω̂) × SO(n) be minimizers of

F (·, ·; Ω̂) in Uhi
((0, 0); Ω̂) × SO(n) with limi→∞ hi = 0 such that (2.18) is

satisfied. Assume that ui = ũhi
defined by (2.21) satisfies (2.23) and the con-

dition (C). Let {ūi} be given by (2.28). Then {ūi|Ω} is a minimizing sequence

of F (·; Ω) in U((A, a); Ω), that is

ūi|Ω ∈ U((A, a); Ω), ∀i (2.29)

and

lim
i→∞

F (ūi; Ω) = inf
u∈U((A,a);Ω)

F (u; Ω). (2.30)

Proof. (2.29) follows directly from (2.26) and (2.28). Suppose that (2.30) is

not true, then we would have

lim
i→∞

F (ūi; Ω)− inf
u∈U((A,a);Ω)

F (u; Ω) = β > 0. (2.31)

By (2.23) and (C), and by rescaling and periodic extension, we can show [7]

that there exists a minimizing sequence {vi} of F (·; Ω) in U((A, a); Ω) such

that

vi(x)− Ax− a ⇀ 0 in W 1,p(Ω; Rm), (2.32)

lim
i→∞

F (vi; Ω) = inf
u∈U((A,a);Ω)

F (u; Ω), (2.33)

and

(C′): {|∇vi|p} are precompact in W 1,p(Ω); Rm).

It follows from (2.32) and Kondrachov compactness theorems [23] that

vi(x)− Ax− a −→ 0 in Lp(Ω; Rm),
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Without loss of generality, we may assume that {vi} are such that

∫

Ω

|vi(x)− Ax− a|p dx ≤ δi ∀i, (2.34)

where δi is defined by (2.24). Let

ξi = 3δ
1/p̂
i . (2.35)

Define wi : Rhi
(Ω̂) → Rm by

wi(x) = (1− ϕi(x))ũhi
(x) + ϕi(x)vi(x).

Then, it is easily verified that wi ∈ U((A, a); Rhi
(Ω̂)) and

wi(x) =

{
ũhi

(x), if x ∈ Rhi
(Ω̂) \ Ω,

vi(x), if x ∈ Ω \ Ω(ξi).
(2.36)

Thus, noticing that ũhi
|Ω\Ω(ξi) = ūi|Ω\Ω(ξi) and f(·) is nonnegative, we have

F (wi; Rhi
(Ω̂))− F (ũhi

; Rhi
(Ω̂))

=F (vi; Ω \ Ω(ξi)) + F (wi; Ω(ξi))− F (ūi; Ω) + F (ūi; Ω(ξi))− F (ũhi
; Ω(ξi))

≤F (vi; Ω) + F (wi; Ω(ξi))− F (ūi; Ω) + F (ūi; Ω(ξi))

=F1 + F2 + F3 + F4. (2.37)

It follows from (2.33) that

lim
i→∞

F1 = inf
u∈U((A,a);Ω)

F (u, Ω). (2.38)

Since

∇wi(x) =(1− ϕi(x))∇ũhi
(x) + ϕi(x)∇vi(x)

− (ũhi
(x)− Ax− a)⊗∇ϕi(x) + (vi(x)− Ax− a)⊗∇ϕi(x),

it follows from (2.1) and 0 ≤ ϕi ≤ 1 that

0 ≤ F2 ≤c1 meas(Ω(ξi)) + 4p−1c2

∫

Ω(ξi)

(|∇ũhi
|p + |∇vi|p

+ |(ũhi
(x)− A x− a)⊗∇ϕi|p + |(vi(x)− Ax− a)⊗∇ϕi|p) dx

=I1 + I2 + I3 + I4 + I5.
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Since ũhi
satisfies (2.23), by Kondrachov compactness theorems [23], we have

limi→∞ δi = 0 (see (2.24)) and hence

lim
i→∞

I1 = c1 lim
i→∞

meas(Ω(ξi)) = 0.

Thus, by (C) and (C′), we have also

lim
i→∞

(I2 + I3) = 0.

By (2.24), (2.34) and (2.27), we have

0 ≤ I4 ≤4p−1c2δ
−p/p̂
i

∫

Ω(ξi)

|ũhi
(x)− Ax− a|p dx ≤ 4p−1c2δ

p̂−p
p̂

i

0 ≤ I5 ≤4p−1c2δ
−p/p̂
i

∫

Ω(ξi)

|vi(x)− Ax− a|p dx ≤ 4p−1c2δ
p̂−p

p̂

i .

Thus, recalling that limi→∞ δi = 0, we obtain

lim
i→∞

F2 = lim
i→∞

(I1 + I2 + I3 + I4 + I5) = 0. (2.39)

Since

∇ūhi
(x) = (1− ϕi(x))A + ϕi(x)∇ũhi

(x) + (ũhi
(x)− Ax− a)⊗∇ϕi(x),

with similar arguments as in the proof of (2.39), we obtain

lim
i→∞

F4 = 0. (2.40)

Thus, as a result of (2.22) and (2.37)-(2.40), we see that (2.31) would lead to

lim
i→∞

F (wi; R(Ω̂))− inf
u∈U((A,a); Rhi

(Ω̂))
F (u; Rhi

(Ω̂)) ≤ −β < 0.

This is a contradiction, since wi ∈ U((A, a); Rhi
(Ω̂)). ¤

Corollary 2.3. Let {ũhi
} be defined by (2.21). Let the assumptions of theo-

rem 2.4 be satisfied. Then

lim
i→∞

F (ũhi
; Ω) = inf

u∈U((A,a);Ω)
F (u, Ω). (2.41)

and




ũhi
→ A x + a in Lq(∂Ω; Rm), ∀q ∈ [1, (n−1)p

n−p
), if p < n;

ũhi
→ A x + a in Lq(∂Ω; Rm), ∀q ∈ [1, +∞), if p = n;

ũhi
→ A x + a in (C(Ω̄))m, if p > n.

(2.42)
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Proof. Let ūhi
be defined by (2.28). Then, we have

F (ũhi
; Ω) = F (ūhi

; Ω) + F (ũhi
; Ω(ξi))− F (ūhi

; Ω(ξi)),

where Ω(ξi) is defined by (2.24), (2.25) and (2.35) as in theorem 2.4. With

similar arguments as in the proof of theorem 2.4, we get

lim
i→∞

(F (ũhi
; Ω(ξi))− F (ūhi

; Ω(ξi))) = 0.

Thus, (2.41) follows from (2.30). (2.42) is a consequence of

ũhi
⇀ A x + a in W 1,p(Ω; Rm)

and the Sobolev’s imbedding theorems [17]. ¤

3. Implementation of the rotation transformation method
and incremental crystallization

The key to the application of the rotation transformation method is to solve

the discrete problem

(DP )

{
find (uh, Rh) ∈ Uh((0, 0); Ω̂)× SO(n) such that

F (uh, Rh; Ω̂) = inf(u′,R′)∈Uh((0,0); Ω̂)×SO(n) F (u′, R′; Ω̂).
(3.1)

Noticing that in the convergence analysis of the method (see theorem 2.4

and its proof), rather than the boundary condition

uh = 0 on ∂Ω̂, (3.2)

the condition

lim
h→0

∫

Ω̂

|uh|p dx = 0 (3.3)

plays a key role, so instead of considering problem (3.1), we consider the fol-

lowing discrete problem:

(DP ′)

{
find (uh, Rh) ∈ Uh((0, 0); Ω̂)× SO(n) such that

Fµ(uh, Rh; Ω̂) = inf(u′,R′)∈Uh((0,0); Ω̂)×SO(n) Fµ(u′, R′; Ω̂),
(3.4)

where

Fµ(u,R; Ω̂) =

∫

Ω̂

f(A +∇u(x)R−1) dx + µh−q

∫

Ω̂

|u(x)|p dx, (3.5)

and where in (3.5) µ > 0 and q ∈ (0, p) are parameters. In general, the

minimizing sequences produced by the discrete problems (3.4) satisfies (3.3)

12



(see (1.5) and (1.6)). It is also natural for us to apply at this stage the boundary

layer removal technique described in Sec. 1 by taking a slightly bigger open

set Ω̂′ such that Ω̂′ ⊃ Ω̂ which we still denote by Ω̂.

Remark 3.1. Convergence analysis and error estimates for the discrete prob-

lems in which the functional is added with an extra term

µh−q

∫

Ω̂

|u(x)|p dx (3.6)

can be found in [24] where the problem is considered in a more general setting.

Example. Let n = 2, m = 2 and let Ω = B(0; 1) be the unit ball centered at

the origin (0, 0). Let A = 0 and a = 0. Let

f(P ) = 〈P −B, P −B〉〈P + B, P + B〉 ∀P ∈ R2×2, (3.7)

where 〈D, E〉 = tr(DET ) and

B =

(
1 −1

2

−1
2

1
2

)
(3.8)

It is easily seen that f(P ) is an energy density with double wells B and −B

which are not rank-one connected.

It is known [25] that

inf
u∈U((0,0); Ω′)

F (u; Ω′) = 4(det B)2 meas(Ω′) =
1

4
meas(Ω′), (3.9)

for all bounded open sets Ω′ ⊂ R2, and it is also known [25] that the problem

of minimizing F (·; Ω) in U((0, 0); Ω) has a laminated microstructure which is

the fine scaled oscillations between the two states C and −C with C ∈ R2×2

uniquely determined by the solution of the linear equations

αC + adj C = βB, (3.10)

where adj C is the cofactor matrix of C and

α =
7 +

√
45

2
, β =

√√
45(7 +

√
45)

2
. (3.11)

13



It follows from (3.10) and (3.11) that





c11 = β(2α−1)
2(α2−1)

,

c22 = β(α−2)
2(α2−1)

,

c12 = c21 = −β
√

(2α−1)(α−2)

2(α2−1)
.

(3.12)

Let ~n = (nx, ny)
T be the unit normals of the interface between the two states

C and −C with nx > 0. It follows from C = ~c⊗ ~n and (3.12) that

ny

nx

=
c12

c11

= −
√

α− 2

2α− 1
.

Let φ~n be the angle between ~n and the unit vector (1, 0)T , then

φ~n = −arctg

√
α− 2

2α− 1
. (3.13)

To solve the problem with the rotation transformation method, we take

Ω̂ = [−1, 1]2 and introduce on Ω̂ regular triangulations Th for h = 2
N

with

N ≥ 2 by using the following lines





x = −1 + 2
N

i, i = 0, 1, . . . , N ;

y = −1 + 2
N

j, j = 0, 1, . . . , N ;

y = x− 2
N

k, k = −N + 1,−N, . . . , N − 1.

(3.14)

For the mesh introduced by (3.14), there are three groups of parallel planes,

with normal ~n1 = (1, 0)T , ~n2 = (0, 1)T and ~n3 = (
√

2
2

, −
√

2
2

)T respectively,

across which the deformation gradients can be discontinuous. Suppose that

under the rotation transformation

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
,

the planes corresponding to ~n3 are transformed to the planes with normal ~n,

then we have

θ =
π

4
− arctg

√
α− 2

2α− 1
. (3.15)

Hence, this is one of the rotation angles we can expect to obtain from the

numerical computations.
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In the numerical experiments, the discrete problems (3.4) were solved by the

conjugate gradient method with a linear search. The initial deformation was

a small random perturbation of the origin and the initial rotation angle was

set to 0. The parameters in (3.5) are set to µ = 1 and q = 1.5. Figure 1 shows

a numerical result obtained by the conjugate gradient method without using

the rotation transformation method, where in figure 1 we have D ≈ CR(θ)

and −D ≈ −CR(θ) with θ given by (3.15). Figure 2 shows a numerical result

given by the rotation transformation method.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x

y

state D

state -D

Figure 1. Numerical pseudo-microstructure with N = 6 ob-
tained without using rotation transformation method

To increase further the accuracy, after the convergence criterion is satisfied,

the parameter µ in (3.5) can be reduced gradually from the initial value to a

level of hq, as long as the inequality

∫

Ω̂

|uµ
h|p dx ≤ L

∫

Ω̂

|uµ0

h |p dx (3.16)

is satisfied for a given constant L > 1. The numerical results with N = 6 ob-

tained by the conjugate gradient method (C-G) and by the rotation transfor-

mation method combined with the conjugate gradient method (R-T) are com-

pared in table 1, where er(F (u; Ω)) and er(θ) are relative errors for F (u; Ω)

and θ respectively, and where the results for (R-T-µ) is obtained by further
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Figure 2. Numerical microstructure with N = 6 obtained by
the rotation transformation method

iterations, after the convergence is achieved in (R-T) method, in which µ is

reduced gradually to 0.1 from the original value of 1.

method er(F (u; Ω)) er(θ) ‖u‖L2(Ω; Rm)

C-G 0.4448× 100 not applicable 0.787251× 10−1

R-T 0.3605× 10−1 0.8628× 10−10 0.17100

R-T-µ 0.3668× 10−3 < 10−13 0.17570

Table 1. Comparison of numerical (N = 6) results.

As is shown, the rotation transformation method combined with the conju-

gate gradient method works very well for the coarse mesh. However, as the

number of the elements increases, local minimizers are usually obtained (see

figure 3).

In general, the rotation transformation method can be used together with

other techniques such as simulated annealing and Monte Carlo techniques

[11, 12] to overcome the difficulty. We present yet another approach: the

incremental crystallization method. The solution procedure is as follows.

For simplicity, we take N = kM , M = 1, 2, · · · , k ≥ 2 and h = 2/N , where

k is the increment. Instead of solving problem (3.4) directly by the conjugate

16
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Figure 3. Numerical microstructure with N = 50 obtained by
the rotation transformation method

gradient method, 2M + 1 smaller problems

(DP ′
i )

{
find (ui

h, Rh) ∈ Uh((0, 0); Ω̂)× SO(n) such that

Fµ(ui
h, Rh; Ω̂i) = inf(u′,R′)∈Uh((0,0); Ω̂)×SO(n) Fµ(u′, R′; Ω̂i).

(3.17)

for i = 1, 2, · · · , 2M + 1 are solved. Where Ω̂i in (3.17) are defined by

Ω̂i =





(−1 + (i− 1)kh, −1 + ikh)× (−1, −1 + kh), if i ≤ M,

(−1, 1)× (−1, 1), if i = 2M + 1,

(−1, 1)× (−1 + (i−M − 1)kh, −1 + (i−M)kh), otherwise.

The subproblems (DP ′
i ) are solved by the conjugate gradient method. In the

solution procedure, the i-th subproblem is solved on Ω̂i and thus ui
h(xτ ) remains

unchanged for all nodes xτ 6∈ ¯̂
Ω. The rotation transformation matrix R(θ), or

rather the rotation angle θ, is a global variable and is inherited from one step

to the next. The step M + 1 and the step 2M + 1, in which Ω̂M+1 =
⋃M

i=1 Ω̂i

and Ω̂2M+1 =
⋃2M+1

i=1 Ω̂i respectively, are designed to coordinate further the

ui
hs obtained in the previous steps.
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To apply the incremental crystallization method to our example, the incre-

ment k = 3 is taken and the parameters µ and q in (3.5) are taken to be 1 and

1.5 respectively. A numerical result is shown in figure 4.
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state -C

Figure 4. numerical microstructure with N = 50 obtained by
the rotation transformation method combined with the incre-
mental crystallization method

In table 2, the numerical results with N = 50 obtained by the rotation trans-

formation method (R-T) and by the rotation transformation method combined

with the incremental crystallization method (R-T + INCR) are compared with

the analytical results, where the results for (R-T + INCR-µ) is obtained by

further iterations, after the convergence in the last step (step 2M + 1) of the

(R-T + INCR) method is achieved, in which µ is reduced gradually to 0.0085

from the original value of 1.

method er(F (u; Ω)) er(θ) ‖u‖L2(Ω; Rm)

R-T 1.2701 0.2127× 10−1 0.28177× 10−1

R-T + INCR 0.3290× 10−2 0.1553× 10−11 0.20966× 10−1

R-T + INCR-µ 0.9400× 10−7 < 10−13 0.21146× 10−1

Table 2. Comparison of numerical (N = 50) results.
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As is clearly shown by table 2, the rotation transformation method com-

bined with the incremental crystallization method, (R-T + INCR) and (R-T

+ INCR-µ) in particular, produces very sharp numerical results for double

well problems. Numerical experiments show that the incremental crystalliza-

tion method not only provides sharper numerical results but also increases

further the efficiency of the rotation transformation method. In our numeri-

cal experiments for double well problems, the rotation transformation method

combined with the incremental crystallization method can easily converge to

the global minimizer without taking any other measure to aviod beeing traped

into a local minimizer.
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