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Abstract. Lower semicontinuity of multiple integrals
R
Ω

f(x, uα, Pα) dµ and
R
Ω

fα(x, uα, Pα) dµ

are studied. It is proved that the two can derive from each other under certain general hypothe-

ses such as uniform lower compactness property and locally uniform convergence of fα to f .

The result is applied to obtain some general lower semicontinuity theorems on multiple integrals

with quasiconvex integrand f , while fα are not required to be quasiconvex.

Keywords: Lower semicontinuity, convergent integrands, lower precompactness, weakly precom-
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1. Introduction and preliminaries

Let Ω be a measurable space with finite positive nonatomic complete measure µ, let f, fβ :
Ω×Rm×RN → R∪{+∞} be extended real-valued functions satisfying certain hypotheses, and
let u : Ω → Rm, P : Ω → RN be measurable functions in two linear topological spaces U and V

respectively.
We consider integral functionals of the form

I(u, P ) =
∫

Ω
f(x, u(x), P (x)) dµ, (1.1)

and
Iα(u, P ) =

∫

Ω
fα(x, u(x), P (x)) dµ. (1.2)

The main purpose of this paper is to study, under certain general hypotheses on U, V, f and
fβ, lower semicontinuity theorems of the form

I(u, P ) ≤ limα→∞I(uα, Pα), (1.3)

I(u, P ) ≤ limα→∞Iα(uα, Pα), (1.4)

and the relationship between them. The study of the relationship between (1.3) and (1.4) was
motivated mainly by the needs of convergence analysis for numerical solutions to some problems
in calculus of variations. For example, in many cases, we have lower semicontinuity theorems of
the form (1.3), however, for one reason or another, the sequence (uα, Pα) obtained by numerical
methods is often a minimizing sequence with respect to Iα(·) rather than with respect to I(·),
and a lower semicontinuity theorem of the form (1.4) is needed for convergence analysis (see Li
[1]). In some applications it is equally important to know under what conditions (1.3) can be
derived from (1.4) (see §3).
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Some useful results are established in this paper on the relationship between (1.3) and (1.4).
These results are then applied to establish some general lower semicontinuity theorems on multi-
ple integrals with quasiconvex integrands. It is worth noticing that in these theorems fα are not
required to be quasiconvex which allows us to choose fα more freely in numerical computations.

For better understanding of the background and relevant known results, and for the later use
of this paper, we first introduce some definitions and hypotheses.

Definition 1.1. A function f : Ω × Rm × RN → R ∪ {+∞} is called L⊗B− measurable, if
it is measurable respect to the σ-algebra generated by products of measurable subsets of Ω and
Borel subsets of Rm ×RN .

Definition 1.2. A function f : Ω×Rm ×RN → R is a Carathéodory function if
(1): f(·, u, P ) is measurable for every u ∈ Rm and P ∈ RN ,
(2): f(x, ·, ·) is continuous for almost every x ∈ Ω.

Definition 1.3. A function f : Ω×Rm×RN → R∪{+∞} has the lower compactness property
on U × V if any sequence of f−(x, uα(x), Pα(x)) is weakly precompact in L1(Ω) whenever (1):
uα converge in U , Pα converge in V ; and (2): I(uα, Pα) ≤ C < ∞ for all α = 1, 2, · · · . f has the
strong lower compactness property on U × V if any sequence of f−(x, uα(x), Pα(x)) is weakly
precompact in L1(Ω) whenever (1) holds. Here f− = min {f, 0}.

The assumption of lower compactness property provide us more freedom in applications than
the nonnegative assumptions. For example, let U be Lq(Ω; Rm), 1 ≤ q ≤ +∞, with strong
topology and V be Lp(Ω;RN ), 1 ≤ p ≤ +∞, with weak topology, let g : Ω×Rm → RN be such
that

|g(x, u)|p′ ≤ c|u|q + b(x)

for some constant c > 0 and function b(·) ∈ L1(Ω), where p′ = p
p−1 , and let f : Ω×Rm×RN → R

satisfy
f(x, u, P ) ≥ 〈g(x, u), P 〉 − c1|u|q + b1(x)

for some constant c1 > 0 and function b1(·) ∈ L1(Ω), where 〈Q,P 〉 =
∑N

i=1 QiPi, then it is easy
to verify that f has the strong compactness property on U × V .

Definition 1.4. A sequence of functions fβ : Ω × Rm × RN → R ∪ {+∞} is said to have the
uniform lower compactness property, if f−β (x, uα(x), Pα(x)) are uniformly weakly precompact
in L1(Ω), in other words (see [2, 3]), f−β (x, uα(x), Pα(x)) are equi-uniformly integral continuous
on Ω, i.e. for any ε > 0 there exists δ > 0 such that

|
∫

Ω′
f−β (x, uα(x), Pα(x)) dµ| < ε

for all α, β and any measurable subset Ω′ ⊂ Ω satisfying µ(Ω′) < δ, whenever uα(·) converge in
U , Pα(·) converge in V and Iβ(uα, Pα) ≤ C < ∞ for all α and β.

Definition 1.5. A sequence of functions fα : Ω×Rm×RN → R∪{+∞} is said to converge to
f : Ω×Rm ×RN → R ∪ {+∞} locally uniformly in Ω×Rm ×RN , if there exists a sequence of
measurable subsets Ωl ⊂ Ω with µ(Ω \ Ωl) → 0 as l →∞ such that for each l and any compact
subset G ⊂ Rm ×RN

fα(x, u, P ) −→ f(x, u, P ), unifomly on Ωl ×G, as α →∞.
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Definition 1.6. A sequence of functions fα : Ω×Rm×RN → R∪{+∞} is said to converge to
f : Ω×Rm ×RN → R ∪ {+∞} locally uniformly in the sense of integration on U × V , if there
exists a sequence of measurable subsets Ωl ⊂ Ω with µ(Ω \ Ωl) → 0 as l →∞ such that∫

Ωl\E(u,P,K)
fα(x, u(x), P (x)) dµ →

∫

Ωl\E(u,P,K)
f(x, u(x), P (x)) dµ

uniformly in U × V for each l and any fixed K > 0, where

E(u, P,K) = {x ∈ Ω : |u(x)| > K or |P (x)| > K}.

Remark 1.1. In numerical computations of singular minimizers, truncation methods turned out
to be successful (see [1]). In such applications, fα can be as simple as

fα(x, u, P ) = min{−α, max{α, f(x, u, P )}}
which converge to f locally uniformly in Ω × Rm × RN if f is a Carathéo- dory function, and
which have the uniform lower compactness property on U × V if f has the lower compactness
property on U × V .

Remark 1.2. When Ω is a locally compact metric space, Ωl in definition 1.5 and definition 1.6
can be taken to be compact subsets of Ω. In such a case, to say that fα converge to f locally
uniformly in Ω × Rm × RN is equivalent to saying that fα converge to f uniformly on every
compact subset in Ω × Rm × RN . Especially, if fα converge to f uniformly on every bounded
subset in Ω× Rm × RN then fα converge to f locally uniformly in Ω× Rm × RN , if fα, f are
Carathéodory functions and fα converge to f in measure on every bounded subset in Ω×Rm×RN

then fα converge to f locally uniformly in the sense of integration on U × V .

Remark 1.3. To cover more applications, we may consider fα, f as mappings from U × V to
{measurale functions g : Ω → R∪{+∞}}. This allows us to consider, for example, interpolations
of f(x, u(x), P (x)) in finite element spaces. In fact, definitions and results in this paper can be
extended parallely to such mappings without difficulty, as we will see that in the proofs of the
theorems fα are related to f only as such mappings.

Definition 1.7. (See [4, 5, 6]) A function f : Rm×n → R is quasiconvex if∫

Ω′
f(P + D φ(x)) dx ≥ f(P )µ(Ω′)

for every P ∈ Rm×n, φ ∈ C1
0 (Ω′; Rm), and every open bounded subset Ω′ ⊂ Rn, where µ is

the Lebesgue measure on Rn. Let Ω ⊂ Rn be open and bounded. A Carathéodory function
f : Ω×Rm×Rm×n → R is quasiconvex in P if there exists a subset E ⊂ Ω with µ(E) = 0 such
that f(x, u, ·) is quasiconvex for all x ∈ Ω \E and u ∈ Rm.

Example 1. Let Ω ⊂ R2, n = m = 2. Then the function

f(Du) = |Du|2 − (trDu)2

is quasiconvex (in fact it is polyconvex, see [6, 9, 10]) and is unbounded below. In addition, f

has the strong lower compactness property on Lp(Ω; R2×2) with weak topology for all p > 2. If
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V is taken to be L2(Ω;R2×2) with weak topology then f has a slightly weaker lower compactness
property which can be described by Chacon’s biting lemma [5, 7, 8, 3] (see lemma 3.4)

Let
D(Ω;Rk) = {v : Ω → Rk | v is measurable }.

We assume that U ⊂ D(Ω; Rm) and V ⊂ D(Ω;RN ) are decomposable, i.e. if v(·) belongs to
one of them, then χT (·)v(·) belongs to the same space whenever T is a measurable subset of Ω,
where χT (·) is the characteristic function of T :

χT (x) =

{
1, if x ∈ T,

0, if x /∈ T.

We assume that U and V satisfy the following hypotheses on their topologies:

(H1): If vα(·), α = 1, 2, · · · belong to one of the spaces and converge there to zero and if
µTα → 0, then χTα(·)vα(·) also converge to zero.

(H2): The topology in U is not weaker than the topology of convergence in measure; the
topology of V is not weaker than the topology induced in V by the weak topology of
L1(Ω; RN ).

It is easy to see that if U is taken to be Lq(Ω;Rm), 1 ≤ q ≤ +∞, with strong topology
and V is taken to be Lp(Ω;Rm) with weak topology for 1 ≤ p < +∞ or weak∗ topology for
p = +∞, then (H1) and (H2) are satisfied. This covers most applications in Sobolev spaces. For
applications concerning Orlicz spaces see for example [2].

Remark 1.4. Here and throughout this paper, assumptions and statements are referred to sets
with measure-negligible projections on Ω, i.e. they hold on a subset Ω′ ⊂ Ω with µ Ω′ = µ Ω.

In Reshetnyak’s result ( see theorem 1.2 in [11]), Ω is taken to be a local compact metric
space, f, fα : Ω×RN → R are nonnegative functions such that for any ε > 0 there is a compact
set A ⊂ Ω with µ(Ω \ A) < ε and f(x, u), fα(x, u) being continuous on A× RN , f(x, ·), fα(x, ·)
are convex for almost all x ∈ Ω, and fα → f locally uniformly in Ω× RN as α → ∞, and V is
taken to be L1(Ω;RN ) with weak topology.

In the case when f(x, u, ·) is convex, (1.3) was proved (see Ioffe [2]) under the hypotheses that
f satisfies lower compactness property and U , V satisfy (H1) and (H2), and (1.4) was proved
(see Li [12]), by using (1.3) , under the hypotheses that f has the lower compactness property,
fα have the uniform compactness property and fα → f locally uniformly in Ω×Rm ×RN .

The results of the type (1.3) concerning quasiconvexity of f(x, u, ·) and P = Du can be found
in [5, 6]. The following theorem, which will be used in §3, was established by Acerbi and Fusco
[5, 6].

Theorem 1.1. Let Ω ⊂ Rn be bounded and open. Let

F (u) =
∫

Ω
f(x, u, Du) dx, u ∈ W 1,p(Ω;Rm),

where 1 ≤ p < ∞, and where f : Ω×Rm ×Rm×n → R satisfies

(1): f(·, ·, ·) is a Carathéodory function;
(2): f(x, u, ·) is quasiconvex;
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(3): 0 ≤ f(x, u, P ) ≤ a(x) + C (|u|p + |P |p) for every x ∈ Ω, u ∈ Rm and P ∈ Rm×n,
where C > 0 and a(·) ∈ L1(Ω).

Then, the functional u → F (u) is sequentially weakly lower semicontinuous on W 1,p(Ω; Rm), i.e.
(1.3) holds for P = Du and Pα = Duα with uα ⇀ u in W 1,p(Ω; Rm), where and in what follows
”⇀” means ”converges weakly to”.

Ball and Zhang [6] generalized the above result to cover the case when

|f(x, u, P )| ≤ a(x) + C (|u|p + |P |p),
and proved that (1.3) holds on each Ω\Ek, where {Ek} is a nonincreasing sequence of measurable
subsets of Ω with limk→∞ µEk = 0.

In §2, It is shown, under certain general hypotheses, such as uniform lower compactness
property and locally uniform convergence of fα to f (see theorem 2.1 for details), that (1.3)
and (1.4) can somehow be derived from each other, and the results are further developed into a
theorem concerning Γ-limit (see theorem 2.3, for Γ-limit, Γ-convergence and their applications
in calculus of variations see for example [13, 14]). These results generalized the result of Li [12]
which was proved for the case when f(x, u, ·) is convex. In §3, the results established in §2 are
applied to prove some lower semicontinuity theorems of the form (1.3) and (1.4) for quasiconvex
integrands, which generalize the results of Acerbi and Fusco [5], Ball and Zhang [6] and Li [12].

2. Lower semicontinuity and convergent integrands

The following theorem establishes the relationship between the lower semicontinuity theorems
of the form (1.3) and those of the form (1.4).

Theorem 2.1. Let Ω be a measurable space with finite positive non- atomic complete measure
µ. Let U and V satisfy (H1) and (H2). Let {uα}, u ∈ U and {Pα}, P ∈ V be such that

uα −→ u, in U, (2.5)

and
Pα −→ P, in V. (2.6)

Let f, {fβ} : Ω×Rm ×RN → R ∪ {+∞} satisfy
(i): f, {fβ} are L⊗B- measurable;
(ii): f−(x, u(x), P (x)), f−(x, uα(x), Pα(x)), and f−α (x, uα(x), Pα(x))

are weakly precompact in L1(Ω);
(iii): fα → f locally uniformly in Ω×Rm ×RN .

Then, we have (a): ∫

Ω
f(x, u, P ) dµ ≤ limα→∞

∫

Ω
fα(x, uα, Pα) dµ, (2.7)

provided that ∫

Ω′
f(x, u, P ) dµ ≤ limα→∞

∫

Ω′
f(x, uα, Pα) dµ, (2.8)

for all measurable subset Ω′ ⊂ Ω;
and (b): ∫

Ω
f(x, u, P ) dµ ≤ limα→∞

∫

Ω
f(x, uα, Pα) dµ, (2.9)
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provided that f, {fβ} satisfy a further hypothesis

(iv): f+
α (x, uα(x), Pα(x)) ≤ a(x)+f+(x, uα(x), Pα(x)), where a(·) ∈ L1(Ω) is nonnegative;

and ∫

Ω
f(x, u, P ) dµ ≤ limα→∞

∫

Ω
fα(x, uα, Pα) dµ. (2.10)

To prove the theorem, we need the following lemmas.

Lemma 2.1. Let {uα}, u ∈ U and {Pα}, P ∈ V satisfy (2.5) and (2.6) respectively. Let

E1
α(K) = {x ∈ Ω : |uα(x)| > K},

E2
α(K) = {x ∈ Ω : |Pα(x)| > K},

and

Eα(K) = E1
α(K) ∪ E2

α(K). (2.11)

Then

µEα(K) −→ 0, uniformly for α as K →∞.

Proof. For any ε > 0, since u ∈ U , there exists K1(ε) > 1 such that

µ {x ∈ Ω : |u(x)| > K} < ε/2, ∀K > K1(ε).

Thus, by (2.5) and (H2), there exists α(ε) > 1 such that

µE1
α(K) < ε/2, ∀α > α(ε) and K > K1(ε) + 1. (2.12)

Since uα ∈ U for each α, we have

lim
K→∞

µE1
α(K) = 0, for each α.

Thus, for α ∈ {1, 2, · · · , α(ε)}, there exists K2(ε) > 1 such that

µE1
α(K) < ε/2, ∀α ∈ {1, 2, · · · , α(ε)} and K > K2(ε). (2.13)

Let K(ε) = max{K1(ε) + 1,K2(ε)}, then (2.12) and (2.13) give

µE1
α(K) < ε/2, ∀α ≥ 1 and K > K(ε). (2.14)

On the other hand, it follows from (2.6) and (H2) that
∫

Ω
|Pα(x)| dµ ≤ C,

for some constant C > 0. Thus, for any ε > 0 there exists K(ε) > 1 such that

µE2
α(K) < ε/2, ∀α ≥ 1 and K > K(ε). (2.15)

Hence the lemma follows from (2.14) and (2.15). 2
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Lemma 2.2. Let f, {fα} satisfy the hypotheses in theorem 2.1. Let f̄A : Ω×Rm ×RN → R be
defined by

f̄A(x, u, P ) = min{A, f(x, u, P )}. (2.16)

Let {uα}, u ∈ U and {Pα}, P ∈ V satisfy (2.5) and (2.6) respectively. Let {Ωl} be a sequence of
measurable subsets of Ω, the existence of which is guaranteed by the hypothesis (iii) for fα, such
that

µ (Ω \ Ωl) −→ 0, as l →∞, (2.17)

and
fα −→ f, uniformly on Ωl ×G, (2.18)

for each l and any compact set G ⊂ Rm ×RN .
Suppose ∫

Ω
fα(x, uα, Pα) dµ ≤ C,

for some constant C > 0.
Then, for any ε > 0, A > 1, there exist l(ε) ≥ 1 and α(ε, A, l) ≥ 1 such that

∫
Ωl

f̄A(x, uα, Pα) dµ ≤ ∫
Ω fα(x, uα, Pα) dµ + ε

∀l ≥ l(ε) and α ≥ α(ε, A, l).
(2.19)

Proof. ∫
Ωl

f̄A(x, uα, Pα) dµ

=
∫
Ω fα(x, uα, Pα) dµ +

∫
Ω\Ωl

(−fα(x, uα, Pα)) dµ+

+
∫
Ωl

(f̄A(x, uα, Pα)− fα(x, uα, Pα)) dµ

=
∫
Ω fα(x, uα, Pα) dµ + I1 + I2.

By (2.5), (2.6), (2.17) and (ii), there exists l(ε) > 0 such that

I1 =
∫
Ω\Ωl

(−fα(x, uα, Pα)) dµ

≤ ∫
Ω\Ωl

(−f−α (x, uα, Pα)) dµ

< ε/2, if l ≥ l(ε).

(2.20)

By (2.16), we have

I2 ≤
∫
Ωl\Eα(K)(f(x, uα, Pα)− fα(x, uα, Pα)) dµ+

+
∫
Eα(K)(A− fα(x, uα, Pα)) dµ

= I21 + I22,

where Eα(K) is defined by (2.11).
By lemma 2.1, Eα(K) → 0 uniformly for α as K → ∞. Thus it follows from (ii) that there

exists K(ε, A) > 1 such that

I22 ≤
∫
Eα(K)(A− f−α (x, uα, Pα)) dµ

< ε/4, if K ≥ K(ε, A).

Let K̄ = K(ε, A), then

G(K̄) = {u ∈ Rm : |u| ≤ K̄} × {P ∈ RN : |P | ≤ K̄}
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is a compact set in Rm ×RN . It follows from (2.18) that there exists α(ε, A, l) > 0 such that

|I21| < ε/4, ∀α ≥ α(ε, A, l).

Thus, we have
|I2| < ε/2, ∀α ≥ α(ε, A, l). (2.21)

Thus (2.19) follows from (2.20) and (2.21). 2

Lemma 2.3. Let f, {fα} satisfy the hypotheses in theorem 2.1. Let {uα}, u ∈ U and {Pα}, P ∈ V

satisfy (2.5) and (2.6) respectively. Let

F (α, A) = {x ∈ Ω : f(x, uα(x), Pα(x)) > A}.
Suppose ∫

Ω
fα(x, uα, Pα) dµ ≤ C, (2.22)

for some constant C > 0.
Then, for any ε > 0 and K ≥ 1, there exist A(ε) > 1 and α(ε,K) > 1 such that

µF (α, A) ≤ µEα(K) + ε,

if A ≥ A(ε) and α ≥ α(ε,K),
(2.23)

where Eα(K) is defined by (2.11).

Proof. By (iii), there is a sequence of measurable subsets {Ωl} in Ω such that

µ (Ω \ Ωl) −→ 0, as l →∞, (2.24)

and
fα −→ f, uniformly on Ωl ×G, (2.25)

for each l and any compact set G ⊂ Rm ×RN .
For any ε > 0, by (2.24), there is l1(ε) ≥ 1 such that

µ (Ω \ Ωl) < ε/2, if l ≥ l1(ε). (2.26)

By (2.22), ∫
Ωl\Eα(K) f(x, uα, Pα) dµ

=
∫
Ωl\Eα(K)(f(x, uα, Pα)− fα(x, uα, Pα)) dµ

+
∫
Ω\(Ωl\Eα(K))(−fα(x, uα, Pα)) dµ + C

= I1 + I2 + C,

It follows from (ii) that

I2 ≤
∫

Ω\(Ωl\Eα(K))
(−f−α (x, uα, Pα)) dµ

≤
∫

Ω
(−f−α (x, uα, Pα)) dµ

≤ C1, (2.27)

for some constant C1 > 0.
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It follows from (2.25) that there exists α(l,K) > 1 such that

|I1| ≤ ∫
Ωl\Eα(K) |f(x, uα, Pα)− fα(x, uα, Pα)| dµ

≤ 1, ∀α ≥ α(l, K). (2.28)

Thus we have ∫

Ωl\Eα(K)
f(x, uα, Pα) dµ ≤ C2, ∀α ≥ α(l, K), (2.29)

where C2 = C + C1 + 1 is a constant.
Denote Ω−α = {x ∈ Ω : f(x, uα(x), Pα(x)) < 0} and f+ = max{f, 0}; then, by (2.29)

∫
Ωl\Eα(K) f+(x, uα, Pα) dµ

≤ ∫
Ωl\Eα(K)(−f−(x, uα, Pα)) dµ + C2

=
∫
(Ωl\Eα(K))∩Ω−α

(−f(x, uα, Pα)) dµ + C2

=
∫
(Ωl\Eα(K))∩Ω−α

(fα(x, uα, Pα)− f(x, uα, Pα)) dµ

+
∫
(Ωl\Eα(K))∩Ω−α

(−fα(x, uα, Pα)) dµ + C2

≤ ∫
Ωl\Eα(K) |f(x, uα, Pα)− fα(x, uα, Pα)| dµ

+
∫
Ω(−f−α (x, uα, Pα)) dµ + C2.

It follows from this and (2.27), (2.28) that
∫

Ωl\Eα(K)
f+(x, uα, Pα) dµ ≤ C3, ∀α ≥ α(l, K), (2.30)

where C3 = C1 + C2 + 1 is a constant.
Now (2.30) implies that there exists A(ε) > 0 such that

µ {x ∈ Ωl \ Eα(K) : f(x, uα(x), Pα(x)) > A} < ε/2,

if A ≥ A(ε) and α ≥ α(l, K). (2.31)

Since
F (α, A) ⊂ Eα(K) ∪ (Ω \ Ωl) ∪ F (l,K, α,A),

where
F (l, K, α, A) = {x ∈ Ωl \Eα(K) : f(x, uα(x), Pα(x)) > A},

we have
µF (α,A) ≤ µEα(K) + µ (Ω \ Ωl) + µF (l,K, α,A).

Taking l = l1(ε) and α(ε,K) = α(l1(ε),K), by (2.26) and (2.31), we conclude that (2.23) is
true. 2

Proof of Theorem 2.1.
Without loss of generality, we assume that∫

Ω
fα(x, uα, Pα) dµ ≤ C,

for some constant C > 0. It follows from (iii) that there exists a sequence of measurable subsets
{Ωl} of Ω such that

Ωl ⊂ Ωl+1, ∀l, and lim
l→∞

µ (Ω \ Ωl) = 0, (2.32)
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and
fα −→ f, uniformly on Ωl ×G, (2.33)

for each l and any compact set G ⊂ Rm ×RN .
Let Eα(K) be defined by (2.11). It follows from lemma 2.1 that there exists an increasing

sequence {Ki} such that
∞∑

i=1

sup
1≤α<∞

{µEα(Ki)} < ∞. (2.34)

Let εi > 0, i = 1, 2, · · · be a decreasing sequence of numbers satisfying limi→∞ εi = 0. Let
Ai = A(εi/2i), li = l(εi), αi = max{α(li, Ki),
α(εi, Ai, li)} and Fi = F (αi, Ai) = {x ∈ Ω : f(x, uαi(x), Pαi(x)) > Ai} where A(·), α(·, ·) are
defined by lemma 2.3 and l(·), α(·, ,̇ ·) are defined by lemma 2.2. Then, by lemma 2.2, we have

∫

Ωli

f̄Ai(x, uαi , Pαi) dµ ≤
∫

Ω
fαi(x, uαi , Pαi) dµ + εi ∀i, (2.35)

and by lemma 2.3, we have
∞∑

i=1

µ Fi ≤
∞∑

i=1

(µ Eαi(Ki) + εi/2i) < ∞. (2.36)

Let Hj = ((Ω \ Ωlj ) ∪ (∪i≥jFi)) and Gj = Ω \Hj . It follows from (2.28) and (2.32) that

Gj ⊂ Gj+1, ∀j, and lim
j→∞

(Ω \Gj) = 0. (2.37)

Thus, by the definition of f̄Ai and Fi, we have
∫
Gj

f(x, uαi , Pαi) dµ

=
∫
Ωli

\Fi
f(x, uαi , Pαi) dµ +

∫
(Ωli

\Fi)\Gj
(−f(x, uαi , Pαi)) dµ

≤ ∫
Ωli

\Fi
f(x, uαi , Pαi) dµ +

∫
Ω\Gj

(−f−(x, uαi , Pαi)) dµ

≤ ∫
Ωli

\Fi
f̄Ai(x, uαi , Pαi) dµ +

∫
Hj

(−f−(x, uαi , Pαi)) dµ, ∀i ≥ j.

It follows from this and (2.35) that
∫
Gj

f(x, uαi , Pαi) dµ

≤ ∫
Ω fαi(x, uαi , Pαi) dµ

+
∫
Hj

(−f−(x, uαi , Pαi)) dµ +εi, ∀i ≥ j. (2.38)

Let i →∞ in (2.38). By (2.8), we have
∫
Gj

f(x, u, P ) dµ

≤ limi→∞
∫
Ω fαi(x, uαi , Pαi) dµ

+limi→∞
∫
Hj

(−f−(x, uαi , Pαi)) dµ. (2.39)

By (ii) and (2.37), we have

lim
j→∞

(sup
i≥1

∫

Hj

(−f−(x, uαi , Pαi)) dµ) = 0.

10



It follows from this and (2.37), (2.39) that
∫
Ω f(x, u, P ) dµ = limj→∞

∫
Gj

f(x, u, P ) dµ

≤ limi→∞
∫
Ω fαi(x, uαi , Pαi) dµ.

This completes the proof of (a).
Next, we prove (b). Without loss of generality, we assume that∫

Ω
f(x, uα, Pα) dµ ≤ C < ∞. (2.40)

It follows from (ii), (iv) and (2.40) that∫

Ω
fα(x, uα, Pα) dµ ≤ C1 < ∞.

By (2.10), for any ε > 0, there exists α̂(ε) > 0 such that∫

Ω
f(x, u, P ) dµ ≤

∫

Ω
fα(x, uα, Pα) dµ + ε ∀α ≥ α̂(ε). (2.41)

By (ii), for any ε > 0, there exists δ1(ε) > 0 such that

|
∫

Ω′
f−(x, uα, Pα) dµ| < ε, ∀µΩ′ ≤ δ1(ε), (2.42)

|
∫

Ω′
f−α (x, uα, Pα) dµ| < ε, ∀µΩ′ ≤ δ1(ε). (2.43)

By (iv) and (ii), for any ε > 0, there exists δ2(ε) > 0 such that∫

Ω′
f+

α (x, uα, Pα) dµ

≤
∫

Ω′
f+(x, uα, Pα) dµ +

∫

Ω′
a(x) dµ

≤
∫

Ω′
f(x, uα, Pα) dµ + ε, ∀Ω′ ⊂ Ω and µΩ′ ≤ δ2(ε). (2.44)

Let
Eα(K) = {x ∈ Ω : |uα(x)| > K or |Pα(x)| > K}.

By lemma 2.1, for any δ > 0 there exists K(δ) > 0 such that

µEα(K) < δ, ∀K ≥ K(δ). (2.45)

By (iii), there exists a sequence of measurable subsets Ωl ⊂ Ω such that µ(Ω \ Ωl) → 0 as
l →∞ and fα → f uniformly on Ωl ×G for each fixed l and compact set G ⊂ Rm ×RN . Thus,
for any δ > 0 there exists l(δ) ≥ 1 such that

µ (Ω \ Ωl) < δ, ∀l ≥ l(δ), (2.46)

and for any ε > 0, l ≥ 1 and compact set G ⊂ Rm ×RN there exists α(ε, l, G) > 0 such that

|fα(x, v,Q)− f(x, v, Q)| < ε

µ Ω
(2.47)

for all α ≥ α(ε, l, G) and (x, v, Q) ∈ Ωl ×G.
Now, by taking

δ = min{δ1(ε), δ2(ε)},
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K = K(δ),

l = l(δ),

G = {(v, Q) ∈ Rm ×RN : |v| ≤ K and |P | ≤ K}

and
α(ε) = max{α̂(ε), α(ε, l, G)},

we get from (2.41) – (2.47) that
∫

Ω
f(x, u, P ) dµ

≤
∫

Ω
fα(x, uα, Pα) dµ + ε

≤
∫

Ωl\Eα(K)
fα(x, uα, Pα) dµ +

∫

Ω\(Ωl\Eα(K))
f+

α (x, uα, Pα) dµ + ε

≤
∫

Ωl\Eα(K)
f(x, uα, Pα) dµ +

∫

Ω\(Ωl\Eα(K))
f+(x, uα, Pα) dµ + 3ε

≤
∫

Ω
f(x, uα, Pα) dµ + 4ε, ∀α > α(ε).

This and the arbitrariness of ε imply (2.9). 2

Corollary 2.1. If the hypothesis (iii) is replaced by the hypothesis

(iii)′: fα → f locally uniformly in the sense of integration on U × V ,

in theorem 2.1, the conclusions of the theorem still hold.

Proof. Since in the proof of theorem 2.1 the hypothesis (iii) was only used to show that there
exists α(ε, l, K) > 0 such that

|
∫

Ωl\Eα(K)
f(x, uα, Pα)− fα(x, uα, Pα) dµ| < ε/4

for α ≥ α(ε, l,K), the result follows. 2

Corollary 2.2. If the hypothesis (ii) is replaced by the hypothesis

(ii)′: f has the strong lower compactness property and {fα} have the uniform lower com-
pactness property,

in theorem 2.1, the conclusions of the theorem still hold.

Proof. The proof of the part (a) of theorem 2.1 remains valid, since (ii)′ and the assumption∫
Ω fα(x, uα(x), Pα(x)) dµ ≤ C < ∞ give (ii).
The proof of the part (b) of theorem 2.1 still holds, because (ii)′, (iv) and the assumption∫

Ω f(x, uα(x), Pα(x)) dµ ≤ C < ∞ imply
∫

Ω
fα(x, uα(x), Pα(x)) dµ ≤ C1 < ∞

and hence (ii). 2
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Theorem 2.2. Let Ω be a measurable space with finite positive non-
atomic complete measure µ. Let U and V satisfy (H1) and (H2). Let f, {fα} : Ω×Rm×RN →
R ∪ {+∞} satisfy

(i): f, {fβ} are L⊗B- measurable;
(ii)′′: f has the lower compactness property and fα have the uniform lower compactness

property.
(iii)′: fα → f locally uniformly in the sense of integration on U × V ;
(iv)′: f+

α (x, v,Q) ≤ a(x) + f+(x, v, Q) for all (v, Q) ∈ Rm × RN , where a(·) ∈ L1(Ω) is
nonnegative.

Let {uα}, u ∈ U and {Pα}, P ∈ V be such that

uα −→ u, in U,

and
Pα −→ P, in V.

Suppose ∫

Ω
f(x, u, P ) dµ ≤ limα→∞

∫

Ω
fα(x, uα, Pα) dµ.

Then ∫

Ω
f(x, u, P ) dµ ≤ limα→∞

∫

Ω
f(x, uα, Pα) dµ.

Proof. Without loss of generality, we may assume
∫

Ω
f(x, uα(x), Pα(x)) dµ ≤ C1 < ∞.

Thus (ii)′′, (iv)′ give (ii). It is easily seen that (iv)′ imply (iv). Hence the theorem follows from
the same arguments as in the proof of the part (b) of theorem 2.1. 2

So far, only individual sequence {(uα, Pα)} satisfying (2.5) and (2.6) is considered. If all
sequences {(uα, Pα)} satisfying (2.5) and (2.6) are considered at the same time, some Γ-
convergence results can be obtained from the above theorems. First, recall that the Γ-limit
of a sequence of integrals Iα(·, ·) can be defined by

Γ(U−, V −) limα→∞ Iα(u, P )
= inf{limα→∞Iα(uα, Pα) : (uα, Pα) → (u, P ) in U × V }

provided it exists and the topologies of U and V are metrizable [13, 14]. We have the following
theorem as a consequence of theorem 2.1 and theorem 2.2.

Theorem 2.3. Let Ω be a measurable space with finite positive non-
atomic complete measure µ. Let U and V satisfy (H1), (H2) and be metrizable. Let f, {fα} :
Ω×Rm ×RN → R ∪ {+∞} satisfy

(i): f, {fα} are L⊗B- measurable;
(ii)′′: f has the lower compactness property and fα have the uniform lower compactness

property.
(iii)′: fα → f locally uniformly in the sense of integration on U × V .
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Then, (a): ∫

Ω
f(x, u, P ) dµ ≤ Γ(U−, V −) lim

α→∞ Iα(u, P ), (2.48)

provided that I(u, P ; Ω′) =
∫
Ω′ f(x, u(x), P (x)) dµ is lower semicontinuous at (u, P ) ∈ U ×V for

all measurable subsets Ω′ ⊂ Ω;
and (b): ∫

Ω
f(x, u, P ) dµ ≤ limα→∞

∫

Ω
f(x, uα, Pα) dµ (2.49)

for all (uα, Pα) → (u, P ) in U × V , i.e.
∫
Ω f(x, u, P ) dµ is lower semicontinuous at (u, P ) ∈

U × V , provided that f, {fα} satisfy a further hypothesis
(iv)′: f+

α (x, v,Q) ≤ a(x) + f+(x, v, Q) for all (v, Q) ∈ Rm × RN , where a(·) ∈ L1(Ω) is
nonnegative;

and ∫

Ω
f(x, u, P ) dµ ≤ Γ(U−, V −) lim

α→∞ Iα(u, P ).

Corollary 2.3. Let Ω be a measurable space with finite positive non-
atomic complete measure µ. Let U and V satisfy (H1), (H2) and be metrizable. Let f, {fα} :
Ω×Rm ×RN → R ∪ {+∞} satisfy

(i): f, {fα} are L⊗B- measurable;
(ii)′′: f has the lower compactness property and fα have the uniform lower compactness

property.
(iii)′: fα → f locally uniformly in the sense of integration on U × V .
(iv)′: f+

α (x, v,Q) ≤ a(x) + f+(x, v, Q) for all (v, Q) ∈ Rm × RN , where a(·) ∈ L1(Ω) is
nonnegative.

Then ∫

Ω
f(x, u, P ) dµ = Γ(U−, V −) lim

α→∞ Iα(u, P ), (2.50)

provided that I(u, P ; Ω′) =
∫
Ω′ f(x, u(x), P (x)) dµ is lower semicontinuous at (u, P ) ∈ U ×V for

all measurable subsets Ω′ ⊂ Ω. In addition, we have in this case

Γ(U−, V −) lim
α→∞ Iα(u, P ) = limα→∞

∫

Ω
fα(x, u(x), P (x)) dµ. (2.51)

Proof. By theorem 2.3, we only need to show that∫

Ω
f(x, u, P ) dµ ≥ limα→∞

∫

Ω
fα(x, u(x), P (x)) dµ. (2.52)

This can be easily verified by using the inequality
∫
Ω f(x, u(x), P (X)) dµ

≥ ∫
Ω fα(x, u(x), P (X)) dµ

+
∫
Ωl\E(K)(f(x, u(x), P (X))− fα(x, u(x), P (X))) dµ

− ∫
Ω\(Ωl\E(K)) f+

α (x, u(X), P (X)) dµ

+
∫
Ω\(Ωl\E(K)) f−(x, u(X), P (X)) dµ

for all l ≥ 1 and K > 0, where

E(K) = {x ∈ Ω : |u(x)| > K or |P (x)| > K},
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and by using lemma 2.1 and the hypotheses (ii)′′, (iii)′ and (iv)′. 2

3. Lower semicontinuity theorems

for quasiconvex integrands

In this section, some lower semicontinuity theorems in the form of (1.3) and (1.4) are estab-
lished for quasiconvex integrand f(x, u, P ). In the following, U is taken to be Lp(Ω;Rm) with
strong topology and V is taken to be Lp(Ω;Rm×n) with weak topology, where 1 ≤ p < ∞, and
µ is taken to be the Lebesgue measure on Rn.

Theorem 3.1. Let Ω ⊂ Rn be open and bounded. Let f : Ω×Rm ×Rm×n → R satisfy

(i): f(·, ·, ·) is a Carathéodory function;
(ii): f(x, u, P ) is quasiconvex in P ;
(iii): f has the strong lower compactness property on U × V ;
(iv): f(x, u, P ) ≤ a(x) + b(x)(|u|p + |P |p) for every x ∈ Ω, u ∈ Rm and P ∈ Rm×n, where

a(·), b(·) ∈ L1(Ω) are nonnegative functions.

Let {fβ} : Ω×Rm ×Rm×n → R satisfy

(a): fβ(·, ·, ·) are L⊗B- measurable;
(b): fβ have the uniform lower compactness property;
(c): fβ → f locally uniformly in Ω×Rm ×Rm×n.

Let
uα ⇀ u, in W 1,p(Ω; Rm). (3.53)

Then ∫

Ω
f(x, u,Du) dµ ≤ limα→∞

∫

Ω
fα(x, uα, Duα) dµ. (3.54)

To prove the theorem, we begin with the following lemmas.

Lemma 3.1. Let Ω ⊂ Rn be open and bounded. Let f : Ω× Rm × Rm×n → R satisfy (i) –(iv)
in theorem 3.1. For all integers β ≥ 1, let functions f̂β : Ω×Rm ×Rm×n → R be defined by

f̂β(x, u, P ) = max{−β, f(x, u, P )}.
Let uα ⇀ u in W 1,p(Ω; Rm). Then, for each fixed β ≥ 1,

∫

Ω
f̂β(x, u(x), Du(x)) dµ ≤ limα→∞

∫

Ω
f̂β(x, uα(x), Duα(x)) dµ. (3.55)

Proof. Let
E(b,K) = {x ∈ Ω : |b(x)| ≤ K}.

Denote χK(x) the characteristic function of the set E(b,K). It is easily verified that the functions

f̃β,K = χK f̂β + β, β ≥ 1, K ≥ 1

satisfy the hypotheses of theorem 1.1. Hence we have
∫
Ω χK(x)f̂β(x, u(x), Du(x)) dµ

≤ limα→∞
∫
Ω χK(x)f̂β(x, uα(x), Duα(x)) dµ.
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Since ∫
Ω χK(x)f̂β(x, u(x), Du(x)) dµ

≥ ∫
Ω f̂−β (x, u(x), Du(x)) dµ +

∫
Ω χK(x)f̂+

β (x, u(x), Du(x)) dµ

and ∫
Ω χK(x)f̂β(x, uα(x), Duα(x)) dµ

≤ ∫
Ω f̂β(x, uα(x), Duα(x)) dµ +
| ∫Ω(1− χK(x))f̂−β (x, uα(x), Duα(x)) dµ|

≤ ∫
Ω f̂β(x, uα(x), Duα(x)) dµ + I(K,α, β),

we have ∫

Ω
f̂−β (x, u(x), Du(x)) dµ +

∫

Ω
χK(x)f̂+

β (x, u(x), Du(x)) dµ

≤ limα→∞

∫

Ω
f̂β(x, uα(x), Duα(x)) dµ + limα→∞I(K, α, β),

for fixed K and β. (3.56)

By (iii) and the definition of f̂β, we know that for any ε > 0 there exists K(ε) ≥ 1 such that

I(K, α, β) < ε, ∀α, β, and K ≥ K(ε),

since limK→∞ µ (Ω \E(b, K)) = 0.
Thus (3.55) is obtained by letting k →∞ in (3.56) and passing to the limit. 2

Lemma 3.2. Let Ω ⊂ Rn be open and bounded. Let f : Ω× Rm × Rm×n → R satisfy (i) –(iv)
in theorem 3.1. For all integers β ≥ 1, let functions f̂β : Ω×Rm ×Rm×n → R be defined by

f̂β(x, u, P ) = max{−β, f(x, u, P )}.
Let uα ⇀ u in W 1,p(Ω; Rm). Then∫

Ω
f(x, u(x), Du(x)) dµ ≤ limα→∞

∫

Ω
f̂α(x, uα(x), Duα(x)) dµ. (3.57)

Proof. Denote
F (β) = limα→∞

∫

Ω
f̂β(x, uα(x), Duα(x)) dµ. (3.58)

Since fβ ≥ fβ+1 for all β, F (β) is nonincreasing. On the other hand, it follows from (iii) that
F (β) is bounded from below. Hence limβ→∞ F (β) exists. Denote the limit by F .

Since f ≤ f̂β for all β, by lemma 3.1, we have
∫

Ω
f(x, u(x), Du(x)) dµ ≤ F. (3.59)

Given ε > 0, by (3.58) and F (β) ≥ F , there exists α(ε, β) ≥ β such that∫

Ω
f̂β(x, uα(x), Duα(x)) dµ > F − ε, ∀α ≥ α(ε, β). (3.60)

Let
I(α, β) =

∫

Ω
(f̂α(x, uα(x), Duα(x))− f̂β(x, uα(x), Duα(x))) dµ.

We have
I(α, β) ≥ ∫

E(α,β) f̂α(x, uα(x), Duα(x)) dµ

≥ ∫
E(α,β) f−(x, uα(x), Duα(x)) dµ, ∀α ≥ β,
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where E(α, β) = {x ∈ Ω : f−(x, uα(x), Duα(x)) < −β}. Hence, by (iii), for any ε > 0 there
exists β(ε) > 0 such that

I(α, β) > −ε, ∀β ≥ β(ε) and α ≥ β. (3.61)

It follows from (3.60) and (3.61) that
∫
Ω f̂α(x, uα(x), Duα(x)) dµ

=
∫
Ω f̂β(ε)(x, uα(x), Duα(x)) dµ + I(α, β)

> F − 2ε, ∀α ≥ α(ε, β(ε)).

Since ε > 0 is arbitrary, this and (3.59) imply (3.57). 2

Lemma 3.3. Let Ω ⊂ Rn be open and bounded. Let f : Ω× Rm × Rm×n → R satisfy (i) –(iv)
in theorem 3.1. Let uα ⇀ u in W 1,p(Ω; Rm). Then

∫

Ω′
f(x, u(x), Du(x)) dµ ≤ limα→∞

∫

Ω′
f(x, uα(x), Duα(x)) dµ, (3.62)

for all measurable subset Ω′ ⊂ Ω.

Proof. Let χΩ′ be the characteristic function of Ω′. Let f̃ = χΩ′ f , f̃β = max{−β, χΩ′ f}. It is
easily verified that f̃ satisfies the hypotheses (i) – (iv) in theorem 3.1 as well. Hence, by lemma
3.2, we have ∫

Ω′
f(x, u(x), Du(x)) dµ ≤ limα→∞

∫

Ω′
f̂α(x, uα(x), Duα(x)) dµ, (3.63)

where f̂α = max{−α, f}.
By (iii) and the definition of f̂α, we know that f̂α have the uniform lower compactness property

and f̂α → f locally uniformly in Ω×Rm ×Rm×n. Thus (3.62) follows from (3.63) and the part
(a) of theorem 2.1. 2

Proof of theorem 3.1. The conclusion follows directly from lemma 3.3 and the part (b) of
theorem 2.1. 2

In theorem 3.1, the hypothesis that f has the strong compact property is not essential.
Actually, we have the following stronger result.

Theorem 3.2. Let Ω ⊂ Rn be open and bounded. Let uα ⇀ u in W 1,p(Ω;
Rm). Let f, fβ : Ω×Rm×Rm×n → R satisfy (i), (ii), (iv) and (a), (c) in theorem 3.1 respectively,
and satisfy also the following hypothesis

(h): f−α (x, uα(x), Duα(x)) are weakly precompact in L1(Ω).

Then ∫

Ω
f(x, u,Du) dµ ≤ limα→∞

∫

Ω
fα(x, uα, Duα) dµ.

Proof. Let fN = max{f,−N} and fN
α = max{fα,−N}. Then, for each fixed N > 0, fN and

fN
α satisfy (i) – (iv) and (a) – (c) in theorem 3.1 respectively.
Thus, by theorem 3.1, we have, for each fixed N > 0,∫

Ω
fN (x, u,Du) dµ ≤ limα→∞

∫

Ω
fN

α (x, uα, Duα) dµ. (3.64)
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Let N →∞, by (h) and by passing to the limit in (3.64), we get the result. 2

The following lemma is a version of Chacon’s biting lemma (see [5], see also [7, 8, 3]).

Lemma 3.4. Let Ω ⊂ Rn be bounded and measurable, and let gα be a bounded sequence in
L1(Ω). Then there exist a subsequence gαj of gα and a nonincreasing sequence of measurable
subsets Ek with limk→∞ µEk = 0 such that gαj are weakly precompact in L1(Ω \ Ek) for each
fixed k, i.e. for any ε > 0 and fixed k there exists δ(ε, k) > 0 such that

∫

Ω′
|gαj (x)| dµ < ε, ∀j,

provided that Ω′ ⊂ Ω \ Ek and µ(Ω′) < δ(ε, k).

Lemma 3.5. Let Ω ⊂ Rn be open and bounded. Let f, {fβ} : Ω×Rm ×Rm×n → R satisfy

(L): f(x, u, P ) and fβ(x, u, P ) are bounded below by −(a(x) + b(x)(|u|p + |P |p)), where
a(·), b(·) ∈ L1(Ω) and a(x) ≥ 0, b(x) ≥ 0, ∀x ∈ Ω.

Let uα ⇀ u in W 1,p(Ω;Rm). Then there exist a subsequence uαj of uα and a nonincreasing
sequence of measurable subsets Ek with limk→∞ µEk = 0 such that f−(x, uαj (x), Duαj (x)),
f−αj

(x, uαj (x), Duαj (x)) are weakly precompact in L1(Ω \ Ek) for each fixed k.

Proof. By lemma 3.4, there exist a subsequence uαj of uα and a nonincreasing sequence of
measurable subsets Ẽk with limk→∞ µ Ẽk = 0 such that hαj (x) = (|uαj (x)|p + |Duαj (x)|p) are
weakly precompact in L1(Ω \ Ẽk) for each fixed k.

Let Êk = {x ∈ Ω : |b(x)| > k} and Ek = Êk ∪ Ẽk.Then Ek are nonincreasing with
limk→∞ µ Ek = 0 and gαj (x) = a(x) + b(x)(|uαj (x)|p + |Duαj (x)|p) are weakly precompact
in L1(Ω \Ek) for each fixed k. This and the hypothesis (L) give the result. 2

Theorem 3.3. Let Ω ⊂ Rn be open and bounded. Let f, {fβ} : Ω×Rm ×Rm×n → R satisfy

(i): f, {fβ} are Carathéodory functions;
(ii): f(x, u, P ) is quasiconvex in P ;
(iii): |f(x, u, P )| ≤ a(x) + b(x)(|u|p + |P |p) and |fβ(x, u, P )| ≤ a(x) + b(x)(|u|p + |P |p) for

every x ∈ Ω, u ∈ Rm and P ∈ Rm×n, where a(·), b(·) ∈ L1(Ω) are nonnegative functions;
(iv): fβ → f locally uniformly in Ω×Rm ×Rm×n.

Let
uα ⇀ u, in W 1,p(Ω; Rm). (3.65)

Then there exist a subsequence uαj of uα and a nonincreasing sequence of measurable subsets
Ek with limk→∞ µEk = 0 such that

∫
Ω\Ek

f(x, u, Du) dµ ≤ limj→∞
∫
Ω\Ek

fαj (x, uαj , Duαj ) dµ,

for each k.
(3.66)

Proof. By (iii), (3.65) and lemma 3.5, there exist a subsequence uαj of uα and a nonincreasing
sequence of measurable subsets Ek with limk→∞ µEk = 0 such that f−αj

(x, uαj (x), Duαj (x)) are
uniformly weakly precompact in L1(Ω \ Ek).

Let fk = χΩ\Ek
f and fk

αj
= χΩ\Ek

fαj . Applying theorem 3.2 to fk, fk
αj

and uαj , we obtain
(3.66). 2
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