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Abstract

A general lower semicontinuity theorem, in which not only
mappings uM and PM but also the integrands fM depend on M ,
is proved for integrands f, fM under certain general hypotheses
including that f(x, u, P ) is convex respect to P and fM converge
to f locally uniformly, but fM (x, u, P ) are not required to be
convex respect to P and fM (x, ·, ·) do not even need to be lower
semicontinuous. Some more usable criteria, as corollaries of the
main theorem, for lower semicontinuity of integral functionals are
also given.

1 Introduction

In the present paper, we consider integral functionals of the form

I(u, P ) =
∫

Ω
f(x, u(x), P (x)) dµ, (1.1)

and
IM(u, P ) =

∫

Ω
fM(x, u(x), P (x)) dµ, (1.2)

where Ω is a measurable space with finite positive nonatomic complete
measure µ, f, fM : Ω×Rm ×Rn → R ∪ {+∞} are extended real-valued
functions satisfying certain hypotheses, and u : Ω → Rm, P : Ω →
Rn are measurable functions in two linear topological spaces U and V
respectively.
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The purpose is to establish, under certain general hypotheses on
U, V, f and fM , a lower semicontinuity theorem of the form

I(u, P ) ≤ limM→∞IM(uM , PM), (1.3)

for every sequence (uM , PM) converging to (u, P ) in U × V .
In Reshetnyak’s result ( see theorem 1.2 in [1]), Ω is taken to be a local

compact metric space, f, fM : Ω × Rn → R are nonnegative functions
such that for any ε > 0 there is a compact set A ⊂ Ω with µ(Ω \A) < ε
and f(x, u), fM(x, u) being continuous on A × Rn, f(x, ·), fM(x, ·) are
convex for almost all x ∈ Ω, and fM → f locally uniformly in Ω×Rn as
m →∞, and V is taken to be L1(Ω; Rn) with weak topology.

In the case when fM ≡ f , there is a standard lower semicontinuity
theorem by Ioffe [2]. To present the theorem, we first introduce some
definitions and hypotheses which will also be used throughout this paper.

Definition 1.1 : A function f : Ω × Rm × Rn → R ∪ {+∞} is called

L⊗B− measurable, if it is measurable respect to the σ-algebra generated

by products of measurable subsets of Ω and Borel subsets of Rm ×Rn.

Definition 1.2 : A function f : Ω × Rm × Rn → R ∪ {+∞} is said

to satisfy the lower compactness property on U × V if any sequence

of f−(x, uM(x), PM(x)) is weakly precompact in L1(Ω) whenever uM

converge in U , PM converge in V and I(uM , PM) ≤ C < ∞ for all

M = 1, 2, · · ·. Here f− = min {f, 0}.
Let

D(Ω; Rk) = {v : Ω → Rk | v is measurable }.
We assume that U ⊂ D(Ω; Rm) and V ⊂ D(Ω; Rn) are decomposable,
i.e. if v(·) belongs to one of them, then χT (·)v(·) belongs to the same
space whenever T is a measurable subset of Ω, where χT (·) is the char-
acteristic function of T :

χT (x) =

{
1, if x ∈ T,

0, if x /∈ T.

We assume that U and V satisfy the following hypotheses on their
topologies:

(H1) If vM(·),M = 1, 2, · · · belong to one of the spaces and converge
there to zero and if µTM → 0, then χTM

(·)v(·) also converge to
zero.
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(H2) The topology in U is not weaker than the topology of convergence
in measure; the topology of V is not weaker than the topology
induced in V by the weak topology of L1(Ω; Rn)

The following theorem is given by Ioffe [2] in 1977.

Theorem 1.1 (Ioffe) : Let U and V satisfy (H1) and (H2). Assume

that f(x, u, P ) is L⊗B− measurable, lower semicontinuous in (u, P )

and convex in P . In order that I(·, ·) be lower semicontinuous on U ×V

and everywhere on U × V more than −∞, it is necessary and (if I(·, ·)
is finite at least at one point in U ×V ) sufficient that f satisfy the lower

compactness property.

Remark 1.1 : Here and throughout this paper, assumptions and state-

ments are referred to sets with measure-negligible projections on Ω, i.e.

they hold on a subset Ω′ ⊂ Ω with µ Ω′ = µ Ω.

A lot of developments have since been made, mainly devoted to re-
placing the convexity conditions by some weaker conditions and for the
case when u, P are related in some way(see for example Ball [3], Acerbi
and Fusco [4], Ball and Zhang [5]).

The main result of this paper, theorem 2.1, generalizes theorem 1.1
as well as the result of Reshetnyak in the form of (1.3). The proof of the
theorem in fact depends on Ioffe’s result, i.e. theorem 1.1.

The statement and the proof of the main result are given in §2. In
§3, some more usable criteria, as corollaries of theorem 2.1, for (1.3)
to hold are given. These criteria are natural generalizations of Ioffe’s
results which are the corollaries of theorem 1.1.

2 Lower Semicontinuity Theorem

Let Ω be a measurable space with finite positive nonatomic complete
measure µ.

Before stating the theorem, we introduce some definitions concerning
fM .

Definition 2.1 : A sequence of functions fM : Ω × Rm × Rn → R ∪
{+∞} is said to have the uniform lower compactness property, if f−M(x, uM(x), PM(x))

are uniformly weakly precompact in L1(Ω), in other words (see [2]),
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f−M(x, uM(x), PM(x)) are equi-uniformly integral continuous on Ω, i.e.

for any ε > 0 there exists δ > 0 such that

|
∫

Ω′
f−M(x, uM(x), PM(x)) dµ| < ε

for all M and any measurable subset Ω′ ⊂ Ω satisfying µ(Ω′) < δ, when-

ever uM(·) converge in U , PM(·) converge in V and IM(uM , PM) ≤ C <

∞.

Definition 2.2 : A sequence of functions fM : Ω × Rm × Rn → R ∪
{+∞} is said to converge to f : Ω × Rm × Rn → R ∪ {+∞} locally

uniformly in Ω × Rm × Rn, if there exists a sequence of measurable

subsets Ωl ⊂ Ω with µ(Ω \ Ωl) → 0 as l → ∞ such that for each l and

any compact subset G ⊂ Rm ×Rn

fM(x, u, P ) −→ f(x, u, P ), unifomly on Ωl ×G, as M →∞.

Remark 2.1 : When Ω is a locally compact metric space, Ωl in defini-

tion 2.2 can be taken to be compact subsets of Ω.

Theorem 2.1 : Let U and V satisfy (H1) and (H2). Let f : Ω×Rm×
Rn → R ∪ {+∞} satisfy

(i) f(·, ·, ·) is L⊗B- measurable,

(ii) f(x, ·, ·) is lower semicontinuous,

(iii) f(x, u, ·) is convex,

(iv) f(x, u, P ) has the lower compactness property.

Let fM : Ω×Rm ×Rn → R ∪ {+∞} satisfy

(a) fM(·, ·, ·) are L⊗B- measurable,

(b) fM(x, u, P ) have the uniform lower compactness property,

(c) fM → f locally uniformly in Ω×Rm ×Rn.
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Let {uM}, u ∈ U and {PM}, P ∈ V be such that

uM −→ u, in U, (2.1)

and

PM −→ P, in V, (2.2)

Then
∫

Ω
f(x, u, P ) dµ ≤ limM→∞

∫

Ω
fM(x, uM , PM) dµ. (2.3)

To prove the theorem, we need the following lemmas.

Lemma 2.1 : Let {uM}, u ∈ U and {PM}, P ∈ V satisfy (2.1) and

(2.2) respectively. Let

E1
M(K) = {x ∈ Ω : |uM(x)| > K}, (2.4)

E2
M(K) = {x ∈ Ω : |PM(x)| > K}, (2.5)

and

EM(K) = E1
M(K) ∪ E2

M(K). (2.6)

Then

µEM(K) −→ 0, uniformly for M as K →∞. (2.7)

Proof: For any ε > 0, since u ∈ U , there exists K1(ε) > 1 such that

µ {x ∈ Ω : |u(x)| > K} < ε/2, ∀K > K1(ε).

Thus, by (2.1) and (H2), there exists M(ε) > 1 such that

µE1
M(K) < ε/2, ∀M > M(ε) and K > K1(ε) + 1. (2.8)

Since uM ∈ U for each M , we have

lim
K→∞

µE1
M(K) = 0, for each M.
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Thus, for M ∈ {1, 2, · · · ,M(ε)}, there exists K2(ε) > 1 such that

µE1
M(K) < ε/2, ∀M ∈ {1, 2, · · · ,M(ε)} and K > K2(ε). (2.9)

Let K(ε) = max{K1(ε) + 1, K2(ε)}, then (2.8) and (2.9) give

µE1
M(K) < ε/2, ∀M ≥ 1 and K > K(ε). (2.10)

On the other hand, it follows from (2.2) and (H2) that
∫

Ω
|PM(x)| dµ ≤ C,

for some constant C > 0. Thus, for any ε > 0 there exists K(ε) > 1 such
that

µE2
M(K) < ε/2, ∀M ≥ 1 and K > K(ε). (2.11)

Hence (2.7) follows from (2.10) and (2.11). 2

Lemma 2.2 : Let f, {fM} satisfy the hypotheses in theorem 2.1. Let

f̄A : Ω×Rm ×Rn → R be defined by

f̄A(x, u, P ) = min{A, f(x, u, P )}. (2.12)

Let {uM}, u ∈ U and {PM}, P ∈ V satisfy (2.1) and (2.2) respectively.

Let {Ωl} be a sequence of measurable subsets of Ω, the existence of which

is guaranteed by the hypothesis (c) for fM , such that

µ (Ω \ Ωl) −→ 0, as l →∞, (2.13)

and

fM −→ f, uniformly on Ωl ×G, (2.14)

for each l and any compact set G ⊂ Rm ×Rn.

Suppose ∫

Ω
fM(x, uM , PM) dµ ≤ C,

for some constant C > 0.

Then, for any ε > 0, A > 1, there exist l(ε) ≥ 1 and M(ε, A, l) ≥ 1

such that
∫
Ωl

f̄A(x, uM , PM) dµ ≤ ∫
Ω fM(x, uM , PM) dµ + ε

∀l ≥ l(ε) and M ≥ M(ε, A, l).
(2.15)
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Proof:

∫
Ωl

f̄A(x, uM , PM) dµ

=
∫
Ω fM(x, uM , PM) dµ +

∫
Ω\Ωl

(−fM(x, uM , PM)) dµ+

+
∫
Ωl

(f̄A(x, uM , PM)− fM(x, uM , PM)) dµ

=
∫
Ω fM(x, uM , PM) dµ + I1 + I2.

By (2.1), (2.2), (2.13) and (b), there exists l(ε) > 0 such that

I1 =
∫
Ω\Ωl

(−fM(x, uM , PM)) dµ

≤ ∫
Ω\Ωl

(−f−M(x, uM , PM)) dµ

< ε/2, if l ≥ l(ε).

(2.16)

By (2.12), we have

I2 ≤
∫
Ωl\EM (K)(f(x, uM , PM)− fM(x, uM , PM)) dµ+

+
∫
EM (K)(A− fM(x, uM , PM)) dµ

= I21 + I22,

where EM(K) is defined by (2.6).
By lemma 2.1, EM(K) → 0 uniformly for M as K → ∞. Thus it

follows from (b) that there exists K(ε, A) > 1 such that

I22 ≤
∫
EM (K)(A− f−M(x, uM , PM)) dµ

< ε/4, if K ≥ K(ε, A).

Let K̄ = K(ε, A), then

G(K) = {u ∈ Rm : |u| ≤ K̄} × {P ∈ Rn : |P | ≤ K̄}

is a compact set in Rm × Rn. It follows from (iv), (b), (2.14) and the
boundedness of

∫
Ω fM(x, uM , PM) dµ that there exists M(ε, A, l) > 0 such

that
|I21| < ε/4, ∀M ≥ M(ε, A, l).

Thus, we have
|I2| < ε/2, ∀M ≥ M(ε, A, l). (2.17)

Thus (2.15) follows from (2.16) and (2.17). 2
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Lemma 2.3 : Let f, {fM} satisfy the hypotheses in theorem 2.1. Let

{uM}, u ∈ U and {PM}, P ∈ V satisfy (2.1) and (2.2) respectively. Let

F (M, A) = {x ∈ Ω : f(x, uM(x), PM(x)) > A}. (2.18)

Suppose ∫

Ω
fM(x, uM , PM) dµ ≤ C, (2.19)

for some constant C > 0.

Then, for any ε > 0 and K ≥ 1, there exist A(ε) > 1 and M(ε,K) >

1 such that

µ F (M,A) ≤ µEM(K) + ε,

if A ≥ A(ε) and M ≥ M(ε, K),
(2.20)

where EM(K) is defined by (2.6).

Proof: By (c), there is a sequence of measurable subsets {Ωl} in Ω
such that

µ (Ω \ Ωl) −→ 0, as l →∞, (2.21)

and
fM −→ f, uniformly on Ωl ×G, (2.22)

for each l and any compact set G ⊂ Rm ×Rn.
For any ε > 0, by (2.21), there is l1(ε) ≥ 1 such that

µ (Ω \ Ωl) < ε/2, if l ≥ l1(ε). (2.23)

By (2.19),

∫
Ωl\EM (K) f(x, uM , PM) dµ

=
∫
Ωl\EM (K)(f(x, uM , PM)− fM(x, uM , PM)) dµ

+
∫
Ω\(Ωl\EM (K))(−fM(x, uM , PM)) dµ + C

= I1 + I2 + C,

It follows from (b) that

I2 ≤
∫

Ω\(Ωl\EM (K))
(−f−M(x, uM , PM)) dµ

≤
∫

Ω
(−f−M(x, uM , PM)) dµ

≤ C1, (2.24)
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for some constant C1 > 0.
It follows from (2.22), (iv), (b) and (2.19) that there exists

M(l,K) > 1 such that

|I1| ≤ ∫
Ωl\EM (K) |f(x, uM , PM)− fM(x, uM , PM)| dµ

≤ 1, ∀M ≥ M(l, K). (2.25)

Thus we have
∫

Ωl\EM (K)
f(x, uM , PM) dµ ≤ C2, ∀M ≥ M(l,K), (2.26)

where C2 = C + C1 + 1 is a constant.
Denote Ω−

M = {x ∈ Ω : f(x, uM(x), PM(x)) < 0}
and f+ = max{f, 0}; then, by (2.26)

∫
Ωl\EM (K) f+(x, uM , PM) dµ

≤ ∫
Ωl\EM (K)(−f−(x, uM , PM)) dµ + C2

=
∫
(Ωl\EM (K))∩Ω−M

(−f(x, uM , PM)) dµ + C2

=
∫
(Ωl\EM (K))∩Ω−M

(fM(x, uM , PM)− f(x, uM , PM)) dµ

+
∫
(Ωl\EM (K))∩Ω−M

(−fM(x, uM , PM)) dµ + C2

≤ ∫
Ωl\EM (K) |f(x, uM , PM)− fM(x, uM , PM)| dµ

+
∫
Ω(−f−M(x, uM , PM)) dµ + C2.

It follows from this and (2.24), (2.25) that
∫

Ωl\EM (K)
f+(x, uM , PM) dµ ≤ C3, ∀M ≥ M(l,K), (2.27)

where C3 = C1 + C2 + 1 is a constant.
Now (2.27) implies that there exists A(ε) > 0 such that

µ {x ∈ Ωl \ EM(K) : f(x, uM(x), PM(x)) > A} < ε/2,

if A ≥ A(ε) and M ≥ M(l, K). (2.28)

Since

F (M,A) ⊂ EM(K) ∪ (Ω \ Ωl) ∪ F (l, K, M, A),

where F (l, K, M, A) = {x ∈ Ωl \ EM(K) : f(x, uM(x), PM(x)) > A}, we
have

µF (M, A) ≤ µEM(K) + µ (Ω \ Ωl) + µF (l, K, M, A).

9



Taking l = l1(ε) and M(ε,K) = M(l1(ε), K), by (2.23) and (2.28),
we conclude that (2.20) is true. 2

Proof of Theorem 2.1:
Without loss of generality, we assume that

∫

Ω
fM(x, uM , PM) dµ ≤ C,

for some constant C > 0. It follows from (c) that there exists a sequence
of measurable subsets {Ωl} of Ω such that

Ωl ⊂ Ωl+1, ∀l, and lim
l→∞

µ (Ω \ Ωl) = 0, (2.29)

and
fM −→ f, uniformly on Ωl ×G, (2.30)

for each l and any compact set G ⊂ Rm ×Rn.
Let EM(K) be defined by (2.6). It follows from lemma 2.1 that there

exists an increasing sequence {Ki} such that

∞∑

i=1

sup
1≤M<∞

{µEM(Ki)} < ∞. (2.31)

Let εi > 0, i = 1, 2, · · · be a decreasing sequence of numbers satisfying
limi→∞ εi = 0. Let Ai = A(εi/2

i), li = l(εi), Mi = max{M(li, Ki),
M(εi, Ai, li)} and Fi = F (Mi, Ai) = {x ∈ Ω : f(x, uMi

(x), PMi
(x)) >

Ai} where A(·), M(·, ·) are defined by lemma 2.3 and l(·), M(·, ,̇ ·)
are defined by lemma 2.2. Then, by lemma 2.2, we have

∫

Ωli

f̄Ai
(x, uMi

, PMi
) dµ ≤

∫

Ω
fMi

(x, uMi
, PMi

) dµ + εi ∀i, (2.32)

and by lemma 2.3, we have

∞∑

i=1

µ Fi ≤
∞∑

i=1

(µ EMi
(Ki) + εi/2

i) < ∞. (2.33)

Let Hj = ((Ω \ Ωlj) ∪ (∪i≥jFi)) and Gj = Ω \ Hj. It follows from
(2.28) and (2.32) that

Gj ⊂ Gj+1, ∀j, and lim
j→∞

(Ω \Gj) = 0. (2.34)
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Thus, by the definition of f̄Ai
and Fi, we have

∫
Gj

f(x, uMi
, PMi

) dµ

=
∫
Ωli

\Fi
f(x, uMi

, PMi
) dµ +

∫
(Ωli

\Fi)\Gj
(−f(x, uMi

, PMi
)) dµ

≤ ∫
Ωli

\Fi
f(x, uMi

, PMi
) dµ +

∫
Ω\Gj

(−f−(x, uMi
, PMi

)) dµ

≤ ∫
Ωli

\Fi
f̄Ai

(x, uMi
, PMi

) dµ +
∫
Hj

(−f−(x, uMi
, PMi

)) dµ, ∀i ≥ j.

It follows from this and (2.32) that

∫
Gj

f(x, uMi
, PMi

) dµ

≤ ∫
Ω fMi

(x, uMi
, PMi

) dµ

+
∫
Hj

(−f−(x, uMi
, PMi

)) dµ +εi, ∀i ≥ j. (2.35)

Let i →∞ in (2.35). By (i) – (iv), (2.1), (2.2) and theorem 1.1, we have

∫
Gj

f(x, u, P ) dµ

≤ limi→∞
∫
Ω fMi

(x, uMi
, PMi

) dµ

+limi→∞
∫
Hj

(−f−(x, uMi
, PMi

)) dµ. (2.36)

By (iv) and (2.34), we have

lim
j→∞

(sup
i≥1

∫

Hj

(−f−(x, uMi
, PMi

)) dµ) = 0.

It follows from this and (2.34), (2.36) that

∫
Ω f(x, u, P ) dµ = limj→∞

∫
Gj

f(x, u, P ) dµ

≤ limi→∞
∫
Ω fMi

(x, uMi
, PMi

) dµ.

This completes the proof. 2

Notice that the hypothesis (c) for fM was only used to show that
there exists M(ε, l, K) > 0 such that

|
∫

Ωl\EM (K)
f(x, uM , PM)− fM(x, uM , PM) dµ| < ε/4,

for M ≥ M(ε, l, K). We may replace it with a weaker hypothesis

(c′) There exists a sequence of measurable subsets Ωl in Ω such that

lim
l→∞

µ (Ω \ Ωl) = 0
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and
∫

Ωl\E(u,P,K)
fM(x, u(x), P (x)) dµ →

∫

Ωl\E(u,P,K)
f(x, u(x), P (x)) dµ

uniformly in U × V for each l and any fixed K > 0, where

E(u, P,K) = {x ∈ Ω : |u(x)| > K or |P (x)| > K}.

Theorem 2.2 : Let U and V satisfy (H1) and (H2). Let f : Ω ×
Rm × Rn → R ∪ {+∞} satisfy (i) – (iv) in theorem 2.1. Let fM :

Ω×Rm×Rn → R∪{+∞} satisfy (a), (b) in theorem 2.1 and (c′) above.

Let {uM}, u ∈ U and {PM}, P ∈ V satisfy (2.1) and (2.2) respectively.

Then ∫

Ω
f(x, u, P ) dµ ≤ limM→∞

∫

Ω
fM(x, uM , PM) dµ.

3 Some Corollaries

In this section, some more usable criteria, which are the generalizations
of Ioffe’s corresponding theorems [2], as corollaries of theorem 2.1, for
lower semicontinuity of integral functionals of the form (1.3) are given.
In fact, all the lower semicontinuity theorems which can be covered by
theorem 1.1, in the case fM ≡ f , can be generalized to the form (1.3)
and can be covered by theorem 2.1 and theorem 2.2.

Theorem 3.1 : Let U = L1(Ω; Rm) with the topology induced by the

L1−norm and V = L1(Ω; Rn) with the weak topology. Let f : Ω×Rm×
Rn → R ∪ {+∞} satisfy

(i) f(·, ·, ·) is L⊗B- measurable,

(ii) f(x, ·, ·) is lower semicontinuous,

(iii) f(x, u, ·) is convex,

(iv) f(x, u, P ) ≥ −c(|u|+ |P |)+ b(x) for some c ∈ R, and b(·) ∈ L1(Ω).

Let fM : Ω×Rm ×Rn → R ∪ {+∞} satisfy

(a) fM(·, ·, ·) are L⊗B- measurable,
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(b) fM → f locally uniformly in Ω×Rm ×Rn,

(c) fM(x, u, P ) ≥ −c(|u|+ |P |)+b(x) for some c ∈ R, and b(·) ∈ L1(Ω).

Let {uM}, u ∈ L1(Ω; Rm) and {PM}, P ∈ L1(Ω; Rn) be such that

uM → u, in L1(Ω; Rm), (3.1)

and

PM ⇀ P, in L1(Ω; Rn), (3.2)

Then
∫

Ω
f(x, u, P ) dµ ≤ limM→∞

∫

Ω
fM(x, uM , PM) dµ. (3.3)

Proof: It is obvious that U and V taken in the theorem satisfy (H1)
and (H2).

Since uM(·) converge to u(·) in U implies that |uM(·)| converge strongly
in L1(Ω; Rm) and PM(·) converge to P (·) in V implies that |PM(·)| is
weakly precompact in L1(Ω; Rn), by (iv) and (c), we conclude that f
has the lower compactness property, and fM have uniform lower com-
pactness property. Thus (3.3) follows from theorem 2.1. 2

Now, we consider that Ω ⊂ Rk is a bounded open set, which is the
case in most applications.

Definition 3.1 : A function f : Ω × Rm × Rn → R is said to be a

Carathéodory function if

(i) f(·, u, P ) is measurable for every u ∈ Rm and P ∈ Rn,

(ii) f(x, ·, ·) is continuous for almost every x ∈ Ω.

It is easy to see that Carathéodory functions are L⊗B- measurable
and lower semicontinuous

Theorem 3.2 : Let U = L1(Ω; Rm) with the topology induced by the

L1−norm and V = L1(Ω; Rn) with the weak topology. Let f : Ω×Rm×
Rn → R satisfy
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(i) f(·, ·, ·) is a Carathéodory function,

(ii) f(x, u, ·) is convex,

(iii) f(x, u, P ) ≥ −c(|u|+ |P |)+ b(x) for some c ∈ R, and b(·) ∈ L1(Ω).

Let fM : Ω×Rm ×Rn → R satisfy

(a) fM(·, ·, ·) are L⊗B- measurable,

(b) fM → f locally uniformly in Ω×Rm ×Rn,

(c) fM(x, u, P ) ≥ −c(|u|+ |P |)+b(x) for some c ∈ R, and b(·) ∈ L1(Ω).

Let {uM}, u ∈ L1(Ω; Rm) and {PM}, P ∈ L1(Ω; Rn) be such that

uM → u, in L1(Ω; Rm), (3.4)

and

PM ⇀ P, in L1(Ω; Rn), (3.5)

Then
∫

Ω
f(x, u, P ) dµ ≤ limM→∞

∫

Ω
fM(x, uM , PM) dµ. (3.6)

Proof: The theorem is a direct corollary of theorem 3.1. 2

Theorem 3.3 : Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. Let U = Lp(Ω; Rm)

with the topology induced by the Lp−norm and V = Lq(Ω; Rn) with the

weak topology. Let f : Ω×Rm ×Rn → R satisfy

(i) f(·, ·, ·) is a Carathéodory function,

(ii) f(x, u, ·) is convex,

(iii) f(x, u, P ) ≥ b(x) for b(·) ∈ L1(Ω).

Let fM : Ω×Rm ×Rn → R satisfy

(a) fM(·, ·, ·) are L⊗B- measurable,

(b) fM → f locally uniformly in Ω×Rm ×Rn,

14



(c) fM(x, u, P ) ≥ b(x) for some b(·) ∈ L1(Ω).

Let {uM}, u ∈ Lp(Ω; Rm) and {PM}, P ∈ Lq(Ω; Rn) be such that

uM → u, in Lp(Ω; Rm), (3.7)

and

PM ⇀ P, in Lq(Ω; Rn), (3.8)

Then
∫

Ω
f(x, u, P ) dµ ≤ limM→∞

∫

Ω
fM(x, uM , PM) dµ. (3.9)

Proof: It is obvious that U and V taken in the theorem satisfy (H1)
and (H2).

It follows from (iii) and (c) that f has the lower compact-
ness property, and fM have uniform lower compactness property. Thus,
the theorem follows from theorem 2.1. 2

As a corollary of theorem 3.3, we have

Theorem 3.4 : The conclusion of theorem 3.3 remains true if the hy-

pothesis (a) for fM is replaced by

(a′) fM are Carathéodory functions.

Remark 3.1 : As corollaries of theorem 2.2, theorem 3.1 — theorem

3.4 still hold if the hypothesis (b) for fM is replaced by the hypothesis

(c′) in §2.

Remark 3.2 : As an application, theorem 3.3 can be used to simplify

the proofs in [6] where the element removal method for singular mini-

mizers is proved to be able to overcome the Lavrentiev phenomenon. An

application of theorem 3.4 can be found in [7].

Acknowledgment: I want to thank Professor J.M. Ball and the
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