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Abstract. Variational problems with non-rank-one connected double well
potential are considered. It is proved that the problem has a laminated mi-
crostructure solution which is uniquely determined by the two potential
wells yet certainly not characterized by the fine oscillations between them
because of the lack of rank-one connection. The laminated microstructure is
explicitly worked out. It is also shown that an application of a nonconform-
ing finite element method can cause over-relaxation and fail to approximate
the right microstructure.

1. Introduction

Variational problems that are not quasiconvex can fail to attain a minimum

value, and the minimizing sequences for such problems can consist of finer and

finer oscillations and lead to microstructures [1, 2, 3, 4]. A typical example of

such a problem is the double well system in which the two potential wells have

a rank-one connection [2, 5]. It is well known that such problems can have

a laminated microstructure solution which is characterized by the fine oscilla-

tions between the two potential wells [2]. Finite element methods, including

nonconforming finite element methods, are known to be successfully applied

to solve the so called double well problems (see [6]-[12] among many others).

In the present paper, we consider a double well problem in which the two

potential wells are not in rank-one connection. Since the lack of rank-one con-

nection, there can be no oscillations between the two potential wells. However,

it is shown in Sec. 2 that there exist two states with rank-one connection such
that the fine oscillations between the two states form a minimizing sequence

for the problem. It is proved that such a laminated microstructure solution

is uniquely determined by the two potential wells. An explicit formula of the
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microstructure for the problem in given in Sec. 2. In Sec. 3, a nonconforming

finite element method is applied to solve the problem, and it turns out that

the method can cause over-relaxation, that is to reach an energy less than the

infimum, and fail to approximate the right microstructure.

2. The problem and its laminated microstructure

Let B = (bij) ∈ R2×2 be a real symmetric matrix satisfying

bii > 0, i = 1, 2; b12 = b21 < 0; and det B > 0. (2.1)

Let f : R2×2 → R be given by

f(A) = 〈A−B, A−B〉 · 〈A + B, A + B〉, ∀A ∈ R2×2, (2.2)

where 〈A, C〉 =
∑2

i,j=1 aijcij denotes the inner product in R2×2. Let Ω ⊂ R2

be a bounded open set with Lipschitz continuous boundary. Consider the

problem of minimizing the integral functional

F (~u) =

∫

Ω

f(∇~u(x)) dx (2.3)

in the set of admissible functions

A = {~u ∈ W 1,4(Ω; R2) : ~u = ~0 on ∂Ω}, (2.4)

where, and in what follows, ~0 denotes the origin of the space in question.

It is easily seen that B and −B are the only two potential wells of the energy

density f(·), and there is no rank-one connection between the two potential

wells B and −B, since by (2.1)

det(B − (−B)) = det(2B) = 4 det B > 0.

Let Qf(·) be the quasiconvex envelope [1, 5] of f(·). It is well known [1, 5]

that the problem of minimizing the relaxed integral functional

QF (~u) =

∫

Ω

Qf(∇~u(x)) dx (2.5)

in A has a solution ~u(x) ≡ ~0 and

QF (~0) = Qf(~0) meas(Ω) = inf
~u∈A

F (~u). (2.6)

Thus, assuming that the measure of Ω is known, to calculate the infimum value

of F (·) in A is equivalent to evaluate Qf(~0).
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Let Pf(·) and Rf(·) be the polyconvex envelope and rank-one convex enve-

lope of f(·) respectively [5].

Lemma 2.1. We have

Pf(~0) = sup
Y ∈R2×2

λ∈R

inf
A∈R2×2

[f(A)− 〈Y, A〉 − λ det A]

≥ sup
λ∈R

inf
A∈R2×2

[f(A)− λ det A], (2.7)

Rf(~0) ≤ inf{λ1f(A1) + λ2f(A2) : λ1A1 + λ2A2 = ~0,

λ1 ≥ 0, λ2 ≥ 0; λ1 + λ2 = 1}

≤ inf{1

2
f(A) +

1

2
f(−A) : det A = 0}. (2.8)

Proof. The lemma follows directly from a theorem ( theorem 1.1 of chapter 5)

in [5]. ¤

Theorem 2.1. We have

Pf(~0) = Qf(~0) = Rf(~0)

= sup
λ∈R

inf
A∈R2×2

[f(A)− λ det A]

= inf{f(A) : det A = 0}. (2.9)

Proof. Since f(A) = f(−A), by (2.8), we have

Rf(~0) ≤ inf{f(A) : det A = 0}.
Since

inf{f(A) : det A = 0} ≤ sup
λ∈R

inf
A∈R2×2

[f(A)− λ det A]

and Pf ≤ Qf ≤ Rf (see [5]), (2.9) follows from (2.7). ¤

In view of theorem 2.1, to evaluate Qf(~0) is equivalent to solve the problem





find Â ∈ R2×2 such that det Â = 0 and

f(Â) = inf{f(A) : det A = 0}.
(2.10)
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Lemma 2.2. Suppose Â is a solution of the problem (2.10). Then, there exists

a λ̂ ∈ R such that

4(〈Â, Â〉+ 〈B, B〉)Â− 8〈Â, B〉B − λ̂ adj Â = 0, (2.11)

det Â = 0, (2.12)

where adj A is the adjoint matrix of A.

Proof. By (2.2), we may rewrite

f(A) = (〈A, A〉+ 〈B, B〉)2 − 4(〈A, B〉)2. (2.13)

Hence,

∇f(A) = 4(〈A, A〉+ 〈B, B〉)A− 8〈A, B〉B, (2.14)

where ∇ is the gradient operator in R2×2. We have also

∇(det A) = adj A, ∀A ∈ R2×2.

Thus, the lemma follows by applying the Lagrange multiplier theorem. ¤

Lemma 2.3. Suppose Â is a solution of the problem (2.10). Then,

f(Â) = (〈B, B〉)2 − (〈Â, Â〉)2. (2.15)

Proof. By (2.11), we have

4(〈Â, Â〉+ 〈B, B〉)〈Â, Â〉 − 8(〈Â, B〉)2 − λ̂〈adj Â, Â〉 = 0.

Since, by (2.12), 〈adj Â, Â〉 = 2 det Â = 0, we have

4(〈Â, B〉)2 = 2(〈Â, Â〉+ 〈B, B〉)〈Â, Â〉. (2.16)

Thus, by (2.13),

f(Â) = (〈Â, Â〉+ 〈B, B〉)2 − 2(〈Â, Â〉+ 〈B, B〉)〈Â, Â〉
= (〈Â, Â〉+ 〈B, B〉)(〈B, B〉 − 〈Â, Â〉)
= (〈B, B〉)2 − (〈Â, Â〉)2.

This completes the proof. ¤

Theorem 2.2. The problem (2.10) has a unique pair of solutions Â and −Â.
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Proof. By (2.2), we have f(A) ≥ 0 for all A ∈ R2×2 and lim‖A‖→∞ f(A) = +∞.

Since f(·) and det(·) are continuous on R2×2 and the set {A ∈ R2×2 : det A =

0, f(A) ≤ f(~0)} is compact, we conclude that there exists at least one solution.

Since, by (2.2), f(A) = f(−A), we see that if Â is a solution of (2.10) so is

−Â.

Suppose A1 and A2 are solutions of (2.10). By lemma 2.3, assuming A1 6= ~0,

we have

〈A1, A1〉 = 〈A2, A2〉 = c2 > 0 (2.17)

where c2 = ((〈B, B〉)2 − inf{f(A) : det A = 0})1/2. Let i = 1, 2. It follows

from (2.11) that

4(〈Ai, Ai〉+ 〈B, B〉)〈Ai, adj Ai〉
− 8〈Ai, B〉〈B, adj Ai〉 − λ̂i〈adj Ai, adj Ai〉 = 0.

Since, by (2.12),

〈Ai, adj Ai〉 = 2 det Ai = 0,

〈B, adj Ai〉 = 〈Ai, adj B〉,
〈adj Ai, adj Ai〉 = 〈Ai, Ai〉,

we have

λ̂i =
−8〈Ai, B〉〈Ai, adj B〉

〈Ai, Ai〉 . (2.18)

It follows again from (2.11) that

4(〈Ai, Ai〉+ 〈B, B〉)〈Ai, adj B〉
− 8〈Ai, B〉〈B, adj B〉 − λ̂i〈adj Ai, adj B〉 = 0.

Since, by (2.16) and (2.17), 〈Ai, B〉 6= 0, this gives

λ̂i =
4(〈Ai, Ai〉+ 〈B, B〉)〈Ai, adj B〉 − 16 det B〈Ai, B〉

〈Ai, B〉 (2.19)

It follows from (2.18), (2.19) and (2.16) that

〈Ai, adj B〉 =
16 det B〈Ai, B〉〈Ai, Ai〉

4(〈Ai, Ai〉+ 〈B, B〉)〈Ai, Ai〉+ 8(〈Ai, B〉)2

=
〈Ai, Ai〉
〈Ai, B〉 det B.
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Substitute this into (2.18), we obtain

λ̂1 = λ̂2 = −8 det B. (2.20)

Now, by (2.16), (2.17) and (2.20), we can rewrite (2.11) into

(c2 + 〈B, B〉)Ai + 2 det B adj Ai = 2c

(
c2 + 〈B, B〉

2

)1/2

B (2.21)

for i = 1, 2.

Since, by (2.1),

−〈B, B〉 < 2 det B < 〈B, B〉, (2.22)

the system (2.21) is nonsingular and thus has one and only one solution for

each of the two right hand side term which are distinguished by the sign of c.

Hence, the conclusion of the theorem follows. ¤

Lemma 2.4. Suppose Â = (âij) with â11 + â22 > 0 is a solution of (2.10).

Then, we have

â11 > 0, â22 > 0, â12 = â21 = −
√

â11â22 < 0, (2.23)

〈Â, Â〉 = (â11 + â22)
2. (2.24)

Proof. By (2.12), we have

â12â21 = â11â22. (2.25)

By (2.21), (2.22), (2.1) and the assumption â11 + â22 > 0 which implies c > 0,

we have
â12 = â21 < 0. (2.26)

Since â11 + â22 > 0, (2.25) and (2.26) imply (2.23). (2.24) is a direct conse-

quence of (2.23). ¤

Theorem 2.3. Let Â be a solution of (2.10). Then

〈Â, Â〉 =
√

(〈B, B〉)2 − 4(det B)2, (2.27)

f(Â) = 4(det B)2 (2.28)

and Â is determined up to a sign by the system

(c2 + 〈B, B〉)Â + 2 det B adj Â = 2c

(
c2 + 〈B, B〉

2

)1/2

B, (2.29)

where c = ((〈B, B〉)2 − 4(det B)2)1/4.
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Proof. Let c2 = 〈Â, Â〉. By lemma 2.4, without loss of generality, we assume

that the diagonal entries of Â = (âij) are positive and c > 0. Thus, by taking

the trace of (2.21), we have

â11 + â22 =
2r(b11 + b22)

c2 + 〈B, B〉+ 2 det B
, (2.30)

where

r = 2c

(
c2 + 〈B, B〉

2

)1/2

. (2.31)

Since (â11 + â22)
2 = 〈Â, Â〉 = c2 by (2.24), (2.30) and (2.31) give

2(b11 + b22)
2(c2 + 〈B, B〉) = (c2 + 〈B, B〉+ 2 det B)2. (2.32)

Since B is symmetric, we have

〈B, B〉+ 2 det B − (b11 + b22)
2 = 0. (2.33)

(2.32) and (2.33) give that c > 0 is a solution of the equation

c4 − [(〈B, B〉)2 − 4(det B)2] = 0. (2.34)

this proves (2.27). (2.28) follows from (2.27) and lemma 2.3. Substitute (2.27)

into (2.21), we obtain (2.29). ¤

Next, we are going to construct the laminated microstructure from the so-

lutions of (2.10).

Let A be a solution of the problem (2.10). By (2.1) and theorem 2.3 (see

(2.27)), 〈A, A〉 > 0. Thus, by lemma 2.2 (see (2.12)), A is rank-one. This

implies that A = (aij) has the following decomposition

2A = ~α⊗ ~n, (2.35)

where ⊗ denotes the tensor product in R2 and ~n = (n1, n2)
T ∈ R2 is a unit

vector with n1 > 0, this is possible since a11 6= 0 by theorem 2.2 and lemma 2.4.

Denote, for i = 1, 2, . . . and ν = 0,±1,±2, . . . ,

Ωi,ν = {x ∈ Ω : x · ~n ∈ [
ν − 1

i
,

ν

i
)}. (2.36)
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Define a sequence of functions {~̃ui,A}∞i=1 by

~̃ui,A(x) =





A(x− 2ν−1
i

~n), if x ∈ Ωi,2ν ,

−A(x− 2ν+1
i

~n), if x ∈ Ωi,2ν+1.
(2.37)

Then it is easily verified that

~̃ui,A ∈ W 1,∞(Ω; R2), ∀i (2.38)

and

∇~̃ui,A(x) =





A, if x ∈ Ωi,A,

−A, if x ∈ Ωi,−A,
(2.39)

where

Ωi,A = ∪+∞
ν=−∞Ωi,2ν , (2.40)

Ωi,−A = ∪+∞
ν=−∞Ωi,2ν+1. (2.41)

Let φi(x) ∈ C∞
0 (Ω) be a sequence of functions satisfying

φi(x) =

{
1, if x ∈ Ω and dist(x, ∂Ω) ≥ i−1,

0, if x ∈ Ω and dist(x, ∂Ω) ≤ (2i)−1,
(2.42)

and

‖∇φi(x)‖ ≤ Ci−1, ∀x ∈ Ω, (2.43)

where C is a constant independent of i.

Defining a sequence of functions {~ui}∞i=1 by

~ui(x) = ~̃ui,A(x)φi(x), i = 1, 2, . . . , (2.44)

we have the following result.

Theorem 2.4. Let A be a solution of the problem (2.10). Let ~ui, i = 1, 2, . . .

be a sequence of functions defined by (2.44). Then, ~ui ∈ A is a minimizing

sequence of F (·) in A and represents a laminated microstructure.

Proof. By the definition of ~ui, it is easily seen that ~ui ∈ A and

∇~ui(x) =





A, if x ∈ Ωi,A ∩ Ω(i−1),

−A, if x ∈ Ωi,−A ∩ Ω(i−1),

O(1), if x ∈ Ω \ Ω(i−1),

(2.45)
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where Ω(i−1) = {x ∈ Ω : dist(x, ∂Ω) > i−1}. Thus

F (~ui) =

∫

Ωi,A∩Ω(i−1)

f(A) dx +

∫

Ωi,−A∩Ω(i−1)

f(−A) dx +

∫

Ω\Ω(i−1)

f(∇~ui(x)) dx

≤ f(A) meas(Ω) + O(i−1)

= inf{f(A′) : det(A′) = 0}meas(Ω) + O(i−1).

This, by (2.6) and (2.9), shows that {~ui} is a minimizing sequence of F (·) in

A. It is easily seen from (2.45) that ~ui has a fine scaled laminated structure

and

∇~ui ⇀
1

2
δA +

1

2
δ−A in the sense of measure, (2.46)

where δA is the Dirac measure in R2×2 at A. This completes the proof. ¤

3. Application of a nonconforming finite element
method and over-relaxation

Let Ω = (0, 1)× (0, 1), and let B ∈ R2×2 be given by

 1 −1

2

−1
2

1
2


 . (3.1)

Consider the problem of minimizing the integral functional F (·) in A (see (2.3)

and (2.4) respectively) with f(A) defined by (2.2).

It follows from (2.6), (2.9) and (2.28) that

inf
~v∈A

F (~v) = inf{f(A) : det A = 0}meas(Ω) = 4(det B)2 =
1

4
, (3.2)

and it follows from theorem 2.2, theorem 2.3 and theorem 2.4 that the lam-

inated microstructure of the problem is determined by the unique solution

A ∈ R2×2 of the following system

αA + adj A = βB, (3.3)

where

α =
7 +

√
45

2
, β = (

√
45(7 +

√
45)

2
)1/2. (3.4)

A resulted fine scaled oscillation is shown in figure 1.

Next, we are going to solve the problem by applying a nonconforming finite

element method utilizing the Crouzeix-Raviart piece wise linear, triangular
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state A

state -A

Figure 1. Fine scaled oscillation between A and −A.

element which is constrained to be continuous at the midpoints of line segments

which are edges of adjacent triangles [14].

For each integer M ≥ 1 and 0 ≤ i, j ≤ M − 1, define

K+
M(i, j) = {the triangle in R2 with vertices

a1 = (
i

M
,

j

M
), a2 = (

i + 1

M
,
j + 1

M
), a3 = (

i

M
,
j + 1

M
)},

K−
M(i, j) = {the triangle in R2 with vertices

a1 = (
i

M
,

j

M
), a2 = (

i + 1

M
,

j

M
), a3 = (

i + 1

M
,
j + 1

M
)}.

Let TM = (∪M−1
i,j=0K

+
M(i, j))∪(∪M−1

i,j=0K
−
M(i, j)). Then {T}∞M=1 is a regular family

of triangulations of Ω [14].

Define

XM = {u :
∏

K∈TM

K → R | u is affine on each K ∈ TM
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and u is continuous at b, ∀b ∈ NM},
where NM is the set of all nodes, or the degrees of freedom of the finite element

function space [14], defined by

NM = {aK
ij = (aK

i + aK
j )/2, 1 ≤ i 6= j ≤ 3, ∀K ∈ TM}.

Let

AM = {~u ∈ XM ×XM : ~u = ~0, ∀b ∈ NM ∩ ∂Ω}. (3.5)

Consider the finite problem of minimizing the integral functional F (·) in

AM , that is {
find ~u ∈ AM such that

F (~u) = inf~v∈AM
F (~v).

(3.6)

We claim that

inf
~v∈AM

F (~v) = O(M−1). (3.7)

In fact, we can construct a minimizing sequence ~uM = (uM,1, uM,2) by defin-

ing

uM,1(x) =





(x1 − i
M

)− 1
2
(x2 − j+ 1

2

M
), if x ∈ K+

M(i, j), for j 6= M − 1;

−(x1 − i+1
M

) + 1
2
(x2 − j+ 1

2

M
), if x ∈ K−

M(i, j), for j 6= 0;

(x1 − i
M

)− (x2 −M + 1
2M

), if x ∈ K+
M(i,M − 1);

−(x1 − i+1
M

) + (x2 − 1
2M

), if x ∈ K+
M(i, j),

uM,2(x) =




−1

2
(x1 − i

M
) + 1

2
(x2 − j+ 1

2

M
), if x ∈ K+

M(i, j);

1
2
(x1 − i+1

M
)− 1

2
(x2 − j+ 1

2

M
), if x ∈ K−

M(i, j).

It is easily verified that ~uM thus defined is in AM and satisfies

∇~uM =





B, on K+
M(i, j) for j 6= M − 1;

−B, on K−
M(i, j) for j 6= 0;

B − 1
2
E, on K+

M(i, M − 1);

−B + 1
2
E, on K−

M(i, 0),

(3.8)

where

E =


 0 0

1 0


 .
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Thus, by (2.2), (3.1) and (3.8),

f(∇~uM(x)) =





0, if x 6∈ K+
M(i,M − 1) ∪K−

M(i, 0);

33/16, if x ∈ K+
M(i,M − 1) ∪K−

M(i, 0).

This gives

F (~uM) =

∫

Ω

f(∇~uM(x) dx =
33

16
M−1. (3.9)

Since F (~u) ≥ 0 for all ~u ∈ AM , (3.7) follows from (3.9).

It follows from (3.7) that the application of the finite element method with

Crouzeix-Raviart triangular element results in over-relaxation to the original

problem. We see also that the finite element solutions of (3.6) present un-

realistic oscillations between the two potential wells which have no rank-one

connection and lead to a pseudo-microstructure (see figure 2).

state B

state -B

otherwise

Figure 2. 25× 25 nonconforming finite element pseudo-microstructure.
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4. Conclusions

Conclusions are drawn from the results of this paper that laminated mi-

crostructures can occur even when there is no rank-one connected potential

wells, and that a direct application of nonconforming finite element methods

to such problems can cause over-relaxation and fail both to approximate the

microstructure and to calculate the infimum value of the potential energy.
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