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Finite Difference Methods for Hyperbolic Equations

Fourier Analysis of the Upwind Scheme for the Advection Equation

Fourier Analysis of Upwind Scheme for Advection Equation

Amplification Factors and L2 stability of the Upwind Scheme

Substituting the Fourier mode Um
j = λmk e

ikjh into the upwind

scheme Um+1
j = (1− |ν|)Um

j + |ν|Um
j−sign(a) yields the

characteristic equation of the scheme

λk = (1− |ν|) + |ν| e−sign(a) ikh.

Hence, |λk |2 = [(1− |ν|) + |ν| cos kh]2 + [|ν| sin kh]2

= 1− 4|ν|(1− |ν|) sin2 1

2
kh.

consequently, for any k , |λk | ≤ 1 as long as |ν| ≤ 1. This shows
that, for the upwind scheme, CFL condition is not only a necessary
but also a sufficient condition for its L2 stability.

(Let L be the length of the domain I , then h = LN−1, k = k′πL−1, where the frequency −N + 1 ≤ k′ ≤ N.)
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Finite Difference Methods for Hyperbolic Equations

Fourier Analysis of the Upwind Scheme for the Advection Equation

Fourier Analysis of Upwind Scheme for Advection Equation

Convergence of the Upwind Scheme

1 CFL condition |ν| ≤ 1 ⇒ L2 stability;

2 more precisely, ‖em+1‖2 ≤ ‖e0‖2 + τ
∑m

l=0 ‖T l‖2;

3 Further more, if limτ→0

∫ tmax

0 ‖Tu(·, t)‖2 dt = 0, then the
upwind scheme is convergent.

In applications, the regularity of the solution u is not always
available. When weak solutions is involved, the truncation error
above does not make much sense.

An alternative approach: Analytical properties of a difference
scheme can often be explored by its errors on the amplitudes and
phase angles of Fourier mode solutions.
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Finite Difference Methods for Hyperbolic Equations

Fourier Analysis of the Upwind Scheme for the Advection Equation

Amplitude and Phase Errors of the Upwind Scheme for the Advection Equation

Dispersion Relation of the Advection Equation

1 A continuous Fourier mode u(x , t) = e i(kx+ωt) is a solution of
the advection equation ut + aux = 0, if and only if ω and k
satisfies the dispersion relation ω(k) = −ak, i.e. ω(k) is the
phase speed of the Fourier mode of frequency k ′ (k = k′πL−1);

2 The amplitude of the Fourier mode solution remains a
constant in propagation, this means that there is no
dissipation;

3 In each time step τ , the shift of the phase angle of the Fourier
mode solution is ω(k)τ = −akτ .

Remark: Fourier mode solutions can be obtained by the method
of separation of variables for constant coefficient evolution
equations with periodic boundary conditions in general.
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Fourier Analysis of the Upwind Scheme for the Advection Equation

Amplitude and Phase Errors of the Upwind Scheme for the Advection Equation

Dispersion Relation of the Upwind Scheme

For the corresponding discrete Fourier modes Um
j = λmk e

ikjh,

1 λk = (1− |ν|) + |ν| e−sign(a) ikh;

2 |λk |2 = 1− 4|ν|(1− |ν|) sin2 1
2kh, there is generally some

dissipation except when |ν| = 1;

3 The phase shift of the mode in one time step τ is given by

arg λk = arctan Im(λk )
Re(λk ) = −sign(a) arctan

[
|ν| sin kh

(1−|ν|)+|ν| cos kh

]
.

4 So the phase speed, or the discrete dispersion relation is given
by ωh(k) = arg λk/τ , or ωh(k)τ = arg λk .

Remark: Discrete Fourier mode solutions can also be obtained by
the method of separation of variables for constant coefficient finite
difference schemes with periodic boundary conditions in general.
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Finite Difference Methods for Hyperbolic Equations

Fourier Analysis of the Upwind Scheme for the Advection Equation

Amplitude and Phase Errors of the Upwind Scheme for the Advection Equation

Amplitude Errors of the Upwind Scheme

If |ν| < 1 is satisfied, |λk |2 = 1− 4|ν|(1− |ν|) sin2 1
2kh < 1, ∀k.

1 |λk | = 1− O(k2h2) for low frequencies, i.e. kh� 1;

2 |λk | =
√

1− 4|ν|(1− |ν|) for the highest frequency k = π/h;

3 The higher the frequency, the faster it decays;

4 The numerical solution contains less and less high frequency
modes as m increases.

5 For any fixed k, the global approximation error of the upwind
scheme on the amplitude is O(h), since the amplitude of the
Discrete Fourier mode solution is given by
(1− O(k2h2))τ

−1tmax = 1− τ−1tmaxO(k2h2) = 1− O(h).
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Phase Errors of the Upwind Scheme

Remember ωh(k)τ = arg λk = −sign(a) arctan
[

|ν| sin kh
(1−|ν|)+|ν| cos kh

]
.

If |ν| = 1, ωh(k)τ = arg λk = −akh/|a| = −akτ = ω(k)τ , the
upwind scheme has no error on the phase angle.

If |ν| = 1/2, ωh(k)τ = arg λk = −akh/(2|a|) = −akτ = ω(k)τ ,
again the upwind scheme has no error on the phase angle.

If 0 < |ν| < 1 and |ν| 6= 1/2, the high frequency modes decay
sharply, while for kh� 1, by the Taylor series expansion
arg λk = −akτ

[
1− 1

6 (1− |ν|)(1− 2|ν|)k2h2 + · · ·
]
.

For any fixed k, ωh(k) = ω(k)(1 + O(k2h2))), the global error
on the phase angle is O(h2).

There is a phase lag (i.e. |ωh(k)| < |ω(k)|), if |ν| < 1/2; and
a phase advance (i.e. |ωh(k)| > |ω(k)|), if |ν| > 1/2.



Finite Difference Methods for Hyperbolic Equations

Fourier Analysis of the Upwind Scheme for the Advection Equation

Overall Performance of the Upwind Scheme

Overall Performance of the Upwind Scheme

Under the CFL condition,

1 all modes decay, the higher the frequency the faster it decays;

2 global error on the amplitude is O(h), there will be significant
dissipation in the numerical solution;

3 global error on the phase angle is O(h2);

4 since high frequency modes decay very fast, and low frequency
modes have higher order phase error than the amplitude error,
there is no obvious dispersion in the numerical solution;

5 in addition, the upwind scheme satisfies the maximum
principle, hence it hardly experience any oscillations.

The obvious shortcoming: only first order approximate accuracy
(in the form of O(h) dissipation).
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Finite Difference Methods for Hyperbolic Equations

Lax-Wendroff, Beam-Warming and Leap-frog Schemes for the Advection Equation

Lax-Wendroff and Beam-Warming Schemes

Establishment of Lax-Wendroff and Beam-Warming Schemes — 1

Method 1: Characteristic method + 2nd order interpolation.

The Lagrange quadratic interpolation formula

f̂ (x) =
(x − x1)(x − x2)

(x0−x1)(x0−x2)
f (x0)+

(x − x0)(x − x2)

(x1−x0)(x1−x2)
f (x1)+

(x − x0)(x − x1)

(x2−x0)(x2−x1)
f (x2).

The Lax-Wendroff scheme:

Um+1
j = −1

2
ν(1− ν)Um

j+1 + (1− ν2)Um
j +

1

2
ν(1 + ν)Um

j−1.

The Beam-Warming scheme:

Um+1
j =

1

2
(1− ν)(2− ν)Um

j + ν(2− ν)Um
j−1 −

1

2
ν(1− ν)Um

j−2.
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Lax-Wendroff and Beam-Warming Schemes

Establishment of Lax-Wendroff and Beam-Warming Schemes — 2

Method 2: Discrete the leading term of the truncation error.

For a > 0, the leading term of the truncation error of the upwind
scheme is −1

2ah(1− ν)uxx ,

The Lax-Wendroff scheme: substitute uxx |mj by h−2δ2
xu

m
j .

The Beam-Warming scheme: substitute uxx |mj by h−2δ2
xu

m
j−1.

m

m+1

jj−1 j+1

t

x

Lax−Wendroff

Q

P

m

m+1

j−1j−2 j

t

x

Beam−Warming (a>0)

Q

P
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Lax-Wendroff, Beam-Warming and Leap-frog Schemes for the Advection Equation

Lax-Wendroff and Beam-Warming Schemes

Establishment of Lax-Wendroff and Beam-Warming Schemes — 3

Method 3: Taylor series expansion with respect to τ + the
equation + difference approximations.

1 By the Taylor series expansion

um+1
j =

[
u + τut +

1

2
τ2utt

]m
j

+ O(τ3).

2 By the advection equation ut = −aux , utt = a2uxx , etc.,

um+1
j =

[
u − a τux +

1

2
a2τ2uxx

]m
j

+ O(τ3).
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Lax-Wendroff, Beam-Warming and Leap-frog Schemes for the Advection Equation

Lax-Wendroff and Beam-Warming Schemes

Establishment of Lax-Wendroff and Beam-Warming Schemes — 3

3 The Lax-Wendroff scheme: ∂x ∼ 40x
2h , ∂2

x ∼
δ2
x
h2 .

4 The Beam-Warming scheme: first ∂x ∼ 4−x

h , yields

um+1
j = umj − a τ

umj − umj−1

h
+

[
1

2
(a2τ2 − aτh)uxx

]m
j

+O(τ3).

then, substitute uxx |mj by h−2δ2
xu

m
j−1.
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Lax-Wendroff and Beam-Warming Schemes

L2 Stability of Lax-Wendroff and Beam-Warming Schemes

1 Truncation error of L-W & B-W Schemes: O(τ2 + h2).

2 CFL condition for L-W Scheme: |ν| ≤ 1 (see stencil).

3 CFL condition for B-W Scheme: |ν| ≤ 2 (see stencil).
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Lax-Wendroff, Beam-Warming and Leap-frog Schemes for the Advection Equation

Lax-Wendroff and Beam-Warming Schemes

L2 Stability of Lax-Wendroff and Beam-Warming Schemes

4 Characteristic equation for L-W Scheme (see (3.2.41)):
λk = 1− iν sin kh − 2ν2 sin2 1

2kh with its amplitude
|λk |2 = 1− 4ν2(1− ν2) sin4 1

2kh.

5 Characteristic equation for B-W Scheme (a > 0, see (3.2.39)):
λk = 1− ν + νe−ikh − 1

2ν(1− ν)e−ikh
(
e ikh − 2 + e−ikh

)
, or

λk = e−ikh
(
1− 2(1− ν)2 sin2 1

2kh + i(1− ν) sin kh
)

with

|λk |2 = 1− 4ν(2− ν)(1− ν)2 sin4 kh
2 (= 1− 4(ν− 1)2(1− (ν− 1)2) sin4 kh

2
).

6 If CFL condition is satisfied, both the Lax-Wendroff scheme
and the Beam-Warming scheme are L2 stable.

(Let L be the length of the domain I , then h = LN−1, k = k′πL−1, where the frequency −N + 1 ≤ k′ ≤ N.)
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The Leap-frog Scheme for the Advection Equation

A typical three-time-level scheme for the advection equation is the

leap-frog scheme
Um+1
j − Um−1

j

2τ
+ a

Um
j+1 − Um

j−1

2h
= 0. or

equivalently Um+1
j = Um−1

j − ν(Um
j+1 − Um

j−1).

1 CFL condition of the leap-frog scheme: |ν| = |a|τ/h ≤ 1.

2 Truncation error: Tumj = 1
6ah

2(1− ν2)uxxx |mj + O(h4).

3 Characteristic equation: λ2
k + 2iνλk sin kh − 1 = 0.

4 Amplification factors: λk± = −iν sin kh ±
√

1− ν2 sin2 kh.

5 If |ν| > 1, for kh = π/2, max{|λk±|} = |ν|+
√
ν2 − 1 > 1.

6 If |ν| ≤ 1, |λk+| = |λk−| = 1, no damping on Fourier modes.

7 The leap-frog scheme is L2 stable ⇔ |ν| ≤ 1.



Finite Difference Methods for Hyperbolic Equations

Dissipation and Dispersion of Difference Schemes

Dissipation and Dispersion of Solutions of Hyperbolic Equations

The solution to an initial value problem of a 1D homogeneous
constant-coefficient linear system of hyperbolic equations is
composed of

a set of traveling waves, each of which propagates

at a corresponding characteristic velocity of the system;

without any dissipation;

regardless of whatever superpositions these waves may make.
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Finite Difference Methods for Hyperbolic Equations

Dissipation and Dispersion of Difference Schemes

Dissipation and Dispersion of Numerical Solutions of Hyperbolic Equations

On the other hand,

1 Dissipation and dispersion do occur in finite difference
solutions.

2 The rates of dissipation and dispersion of a Fourier mode
generally depend on its frequency.

3 The discrete solution is no longer composed of a set of
characteristic traveling waves, because of dispersion.

4 The discrete solution may exhibits numerical oscillations.

17 / 37



Finite Difference Methods for Hyperbolic Equations

Dissipation and Dispersion of Difference Schemes

Dissipation and Error of Amplitudes

Dissipation of Lax-Wendroff and Beam-Warming Schemes

Suppose the CFL condition is satisfied, then, the Fourier mode
solutions produced by the Lax-Wendroff and Beam-Warming
schemes will generally decay, if |ν| 6= 1, and for B-M |ν| 6= 1, 2.

1 Damping factors in each time step: 1− O(k4h4), for kh� 1;
More damping as kh↗ π.

√
1− 4ν2(1− ν2) (L-W) and√

1− 4|ν|(2− |ν|)(1− |ν|)2 (B-W) respectively, for kh = π.

2 For fixed k and ν, the global decay factor at time tmax is
(1− O(k4h4))τ

−1tmax = 1− τ−1tmaxO(k4h4) = 1− O(h3).

3 For both schemes, the global error on the amplitude of a
Fourier mode solution with kh� 1 is O(h3), as h→ 0.

4 Relatively high frequencies on a given grid decay sharply, as
m→∞.
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Dispersion of Lax-Wendroff and Beam-Warming Schemes

1 ω(k) = −ak: dispersion relation of Fourier mode solution
e i(kx+ωt) for the advection equation;

2 wh(k) = τ−1 arg λk : discrete dispersion relation for Fourier
mode solution Um

j = λmk e
ikjh of a difference scheme.

3 Phase shift of the Lax-Wendroff scheme in a time step τ :
arg λk = −akτ

[
1− 1

6 (1− ν2)k2h2 + · · ·
]
, kh� 1. (see (3.2.43))

4 Phase shift of the Beam-Warming scheme in a time step τ :
arg λk = −akτ

[
1 + 1

6 (1− |ν|)(2− |ν|)k2h2 + · · ·
]
, kh� 1.

5 Global relative phase error of both schemes: O(k2h2), for |ν| 6= 1.

6 L-W experiences phase lag, which ↗ as k ↗.

7 B-W experiences phase advance for |ν| < 1, and phase lag for
1 < |ν| < 2, both ↗ as k ↗.



Finite Difference Methods for Hyperbolic Equations

Dissipation and Dispersion of Difference Schemes

Dispersion Relations and Error of Phase Angles

Dispersion of the Leap-frog Scheme (kh� 1)

1 Amplification factors:

λk± = −iν sin kh ±
√

1− ν2 sin2 kh.

2 Phase shift of the leap-frog scheme in a time step τ :

arg λk± = ∓akτ
[

1− 1

6
(1− ν2)k2h2 + · · ·

]
, ∀kh� 1.

3 For kh� 1, λ+ corresponds to the real solution mode, while
λ− corresponds to a spurious solution mode.

4 Global relative phase error of the scheme: O(k2h2), for |ν| 6= 1.

5 Leap-frog scheme experiences phase lag, which ↗ as k ↗.
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Dispersion of the Leap-frog Scheme (k ′h = π − kh, for kh� 1)

On the high frequency end, i.e. k ′h = π − kh, for kh� 1.

6 Amplification factors:

λk ′± = −iν sin k ′h±
√

1− ν2 sin2 k ′h = −iν sin kh±
√

1− ν2 sin2 kh.

7 Phase shift of the leap-frog scheme in a time step τ :

arg λk ′± = ∓akτ
[

1− 1

6
(1− ν2)k2h2 + · · ·

]
, ∀kh� 1.

8 Phase shift of the advection equation in a time step τ :
−ak ′τ = −νπ + akτ . The one time step phase error of the
scheme on high frequency modes is O(1), for |ν| 6= 1.

9 Since there is no damping when CFL condition is satisfied, the
dispersion as well as the spurious solution modes can cause
more serious numerical oscillations.
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Dissipation and Dispersion of Difference Schemes

Group Speed and Error of High Frequency Modes

The Group Speed and Its Geometrical and Physical Explanations

1 Group speed of Fourier mode e i(kx+ω(k)t): C (k) = −dω(k)
dk ;

2 Let k = k0 +4k , |4k| � k0. Let δ = 4k
k0

, g(δ) = ω(k0(1+δ))
k0(1+δ) .

3 g(δ) = ω(k0)
k0

+
(
ω′(k0)− ω(k0)

k0

)
δ+O(δ2). (by Taylor expansion)

4 e i(kx+ω(k)t) = e ik(x+g(δ)t) = e i(kx+(ω(k0)−C(k0)4k+O(δ))t).

Remark 1: In wave propagation problems, the superposition of a wave
usually has important physical meaning. If accurately computing each of
the Fourier mode solutions is a mission impossible, is it possible for one
to accurately compute the superposition of the wave?

Remark 2: Since low frequency modes usually have small errors, the

main task reduces to characterize the phase speed of the superposition of

high frequency modes.
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Dissipation and Dispersion of Difference Schemes

Group Speed and Error of High Frequency Modes

The Group Speed and Its Geometrical and Physical Explanations

5 In other words, e i(kx+ω(k)t) ≈ e i(ω(k0)+C(k0)k0)te ik(x−C(k0)t).

6 Thus
∑
|δ|�1

ake
i(kx+ω(k)t) ≈ e i(ω(k0)+C(k0)k0)t

∑
|δ|�1

ake
ik(x−C(k0)t).

That means the superposition of a group of waves with k
close to k0 travels approximately at the group speed C (k0).

7 In physics, the energy of a group of waves with frequencies
centered at k0 propagates approximately in the speed C (k0).

8 It makes sense to study the group speed for high frequency
modes, especially for non-damping difference schemes.
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Dissipation and Dispersion of Difference Schemes

Group Speed and Error of High Frequency Modes

The Discrete Group Speed for the Lax-Wendroff Scheme

Parallelly, we may define the discrete group speed of a finite
difference scheme by Ch(k) = −dωh(k)

dk .

Since the discrete dispersion relation of a scheme is given by
ωh(k) = τ−1 arg λk , so, its discrete group speed is given by

Ch(k)τ = −dωh(k)

dk
τ = − d

dk

(
arctan

Im(λk)

Re(λk)

)
.

1 For the Lax-Wendroff scheme of the advection equation:

Ch(k) = a
(1− 2ν2 sin2 1

2kh) cos kh + ν2 sin2 kh

(1− 2ν2 sin2 1
2kh)2 + ν2 sin2 kh

.

2 As kh→ π, Ch(k)→ a/(2ν2 − 1).
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Dissipation and Dispersion of Difference Schemes

Group Speed and Error of High Frequency Modes

The Discrete Group Speed for the Lax-Wendroff Scheme

3 Since high frequency modes decay sharply, what really matters
are the modes with large k while kh� 1.

4 Ch(k) = a(1− 1
2 (1− ν2)k2h2 + O(k4h4)), for kh� 1.

5 Ch(k) ≈ C (k)(1− 1
2 (1− ν2)k2h2), for kh� 1, the numerical

superposition of waves propagating slower than the real one.

6 On fine grids, for large k with kh� 1, the error on the group
speed is about 3 times of the relative phase error.
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The Discrete Group Speed for the Beam-Warming Scheme

1 For the Beam-Warming scheme (a > 0):

Ch(k) = a
(1− 2(1− ν)2 sin2 1

2kh)(2(2− ν) sin2 1
2kh + cos kh) + (1− ν)2 sin2 kh

(1− 2(1− ν)2 sin2 1
2kh)2 + (1− ν)2 sin2 kh

.

2 As kh→ π, Ch(k)→ a(3− 2ν)/(1− 2(1− ν)2).

3 Since high frequency modes decay sharply, what really matters
are the modes with large k while kh� 1.

4 Ch(k) = a(1 + 1
2 (1− ν)(2− ν)k2h2 + O(k4h4)), for kh� 1.

5 Ch(k) ≈ C (k)(1 + 1
2 (1− ν)(2− ν)k2h2), for kh� 1.

6 On fine grids, for large k with kh� 1, the error on the group
speed is about 3 times of the relative phase error.

7 For a < 0, the conclusions are similar (replace ν by |ν|).



The Discrete Group Speed for the Leap-frog Scheme

1 For the Leap-frog scheme:

λk± = −iν sin kh ±
√

1− ν2 sin2 kh, thus
sin(ωh(k)τ) = sin(arg λk±) = −ν sin(kh),

cos(ωh(k)τ) = ±
√

1− ν2 sin2 kh,

Ch(k) = −dωh(k)

dk
=

νh cos(kh)

τ cos(ωh(k)τ)
=

± a cos kh√
1− ν2 sin2 kh

.

2 Since there is no decay, all modes counts.

3 For 0 < kh < 1
2π, λk+ real, λk− spurious solution.

4 Ch(k) = ±a(1− 1
2 (1− ν2)k2h2 + O(k4h4)), for kh� 1.

5 For 1
2π < kh < π, λk+ spurious, λk− real solution.

6 Ch(π/h− k) = ∓a(1− 1
2 (1− ν2)k2h2 +O(k4h4)), for kh� 1.

7 On fine grids, for large k with kh� 1, the error on the group
speed is about 3 times of the relative phase error.
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Dissipation and Dispersion of Difference Schemes

Group Speed and Error of High Frequency Modes

Overall performance of the Leap-frog Scheme

1 No damping, when the CFL condition |ν| ≤ 1 is satisfied.

2 Relative phase error on low frequency modes are O(k2h2).

3 For 0 < kh < 1
2π, λk+ corresponds to the real solution mode.

4 For 1
2π < kh < π, λk− corresponds to the real solution mode.

5 The error on the group speed is O(h2) on both high and low
frequencies. Though, the one time step phase errors on high
frequency modes are O(1).

Proper numerical initial and boundary conditions are important in
applications to reduce as much as possible the spurious modes in
the numerical solution.
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Dissipation and Dispersion of Difference Schemes

Group Speed and Error of High Frequency Modes

Inflow, Outflow Boundaries and Numerical Boundary Conditions

For initial-boundary value problems of hyperbolic equations,
numerical boundary condition is also an important issue.

1 Inflow boundary: where the characteristic evolves into Ω.

2 Outflow boundary: where the characteristic goes out of Ω.

3 For the advection equation with a > 0, the left boundary is
inflow, and the right boundary is outflow.

4 On inflow boundary, the boundary condition(s) for the PDE
will naturally provide boundary condition(s) for FDM.
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Dissipation and Dispersion of Difference Schemes

Group Speed and Error of High Frequency Modes

Inflow, Outflow Boundaries and Numerical Boundary Conditions

5 Additional numerical boundary conditions are often required
on the outflow boundary point by difference schemes.

6 For example, both the Lax-Wendroff scheme and the leap-frog
scheme need a numerical boundary condition at the outflow
boundary.

7 Use of one sided schemes, such as the upwind scheme and the
Beam-warming scheme, on the outflow boundary, can avoid
the need for numerical boundary conditions there.
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Dissipation and Dispersion of Difference Schemes

Group Speed and Error of High Frequency Modes

Zero Order Extrapolation and Non-reflection Boundary Conditions

If a numerical boundary condition is required at the outflow right
boundary xN , then, the simplest way we can do is to

introduce a ghost node xN+1;

apply the zero order extrapolation formula: Um
N+1 = Um

N ;

couple the numerical boundary condition with the scheme
used on the interior nodes.

The numerical boundary condition so obtained is called a
non-reflection boundary condition or an absorbtion boundary
condition. Higher order extrapolations are not recommended
because of numerical oscillations.
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Dissipation and Dispersion of Difference Schemes

Group Speed and Error of High Frequency Modes

Vertical Fourier Modes and Amplification Factors

1 Separation of variables of difference solutions: Um
j = λmµj .

2 Standard Fourier modes: Um
j = λmk e

ikjh. (µk = e ikh)

3 Vertical Fourier modes: Um
j = e±iamkτµjk . (λk = e±iakτ )

4 Fourier mode solutions of the advection equation: e∓ik(x−at).

5 The amplification factors of the advection equation: e∓ikh.

6 Substitute the vertical Fourier mode Um
j = e±iamkτµjk into a

difference scheme to get the amplification factor µ±k .

7 For real solution modes, we expect µ±k ≈ e∓ikh.
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Dissipation and Dispersion of Difference Schemes
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1 Substitute Um
j = λmk µ

j
k = e±iamkτµjk into the Lax-Wendroff

scheme (a > 0, see (3.2.33)) yields the characteristic equation:
1

2
ν(1− ν)µ2

k − ((1− ν2)− λk)µk −
1

2
ν2(1− ν2) = 0.

2 The amplification factor of the vertical Fourier mode:

µk =
(1− ν2)− λk ±

√
((1− ν2)− λk)2 + ν2(1− ν2)

ν(1− ν)
.

3 λ±k = e±iakτ ≈ 1± iakτ = 1± iνkh.
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4 For the two real solution modes U±mj =
(
λ±k
)m (

µr±k
)j

:

µr±k = µrk(λ±k ) ≈

{
1− ikh ≈ e−ikh,

1 + ikh ≈ e ikh,

5 For the two spurious solution modes V±mj =
(
λ±k
)m (

µs±k
)j

:

µs±k = µsk(λ±k ) ≈


−1 + ν

1− ν
(1 + ikh) ≈ −1 + ν

1− ν
e ikh;

−1 + ν

1− ν
(1− ikh) ≈ −1 + ν

1− ν
e−ikh.
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6 The two ”real” solution modes satisfy U±mj ≈ e∓ik(jh−amτ),
and their approximation accuracy are second order;

7 The two spurious modes satisfy, up to second order accuracy,

V±mj ≈
(
−1 + ν

1− ν

)j

e±ik(jh+amτ).

8 Exponential decay of the errors on outflow boundary (ν < 1):

V±mj−1 ≈ −
1− ν
1 + ν

e∓ikhV±mj .
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In general, If the CFL condition is satisfied, the Lax-Wendroff
scheme has very strong damping effect to the reversely
propagating waves, so the additional numerical boundary
conditions will not cause too much error pollution to the
numerical results.
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