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Finite Difference Methods for Hyperbolic Equations

Introduction to Hyperbolic Equations

The Hyperbolic Equations

n-D 1st Order Linear Hyperbolic Partial Differential Equation

1 Scalar case (u ∈ R1), ut +
n∑

i=1

ai uxi + b u = ψ0,

where ai , b, ψ0 are real functions of x = (x1, . . . , xn) and t.

2 Vector case (u = (u1, · · · , up)T ∈ Rp),

ut +
n∑

i=1

Ai uxi + B u = ψ0,

where Ai , B ∈ Rp×p, ψ0 ∈ Rp are real functions of t and
x = (x1, . . . , xn), and ∀α ∈ Rn, A(x , t) =

∑n
i=1 αiAi (x , t) is

real diagonalizable, i.e. A(x , t) has p linearly independent
eigenvectors corresponding to real eigenvalues.

3 If A(x , t) =
∑n

i=1 αiAi (x , t) has p mutually different real
eigenvalues, the system is called strictly hyperbolic.
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Finite Difference Methods for Hyperbolic Equations

Introduction to Hyperbolic Equations

The Hyperbolic Equations

n-D 2nd Order Linear Hyperbolic Partial Differential Equation

A general 2nd order scalar equation (u ∈ R1),

utt + 2
n∑

i=1

ai uxi t + b0 ut −
n∑

i ,j=1

aij uxixj +
n∑

i=1

bi uxi + cu = ψ0,

where ai , aij , bi , c and ψ0 are real functions x = (x1, . . . , xn)
and t, (aij) is real symmetric positive definite.

Define v = u, v0 = ut , vi = uxi , then the above 2nd order
scalar equation transforms into a first order linear system of
partial differential equations for v = (v , v0, v1, · · · , vn)T

Avt +
n∑

i=1

Aivxi + Bv = ψ0,
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Finite Difference Methods for Hyperbolic Equations

Introduction to Hyperbolic Equations

The Hyperbolic Equations

n-D 2nd Order Scalar Transforms to n-D 1st Order System (p = n + 2)

A =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 a11 · · · a1n
...

...
...

...
0 0 an1 · · · ann

 , Ai =


0 0 0 · · · 0
0 2ai −a1i · · · −ani
0 −a1i 0 · · · 0
...

...
...

...
0 −ani

 ,

B =


0 −1 0 · · · 0
c b0 b1 · · · bn
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

 , ψ0 =


0
ψ0

0
...
0

 .

4 / 40
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Introduction to Hyperbolic Equations

The Hyperbolic Equations

n-D 2nd Order Scalar Transforms to n-D 1st Order System (p = n + 2)

1 Let RTAR = I (A is real symmetric positive definite);

2 Introduce a new variable w = R−1v;

3 Denote Âi = RTAiR, B̂ = RTBR, ψ̂0 = RTψ;

4 Â(x , t) =
∑n

i=1 αi Âi (x , t) is a real symmetric matrix and thus
is real diagonizable for all real αi , i = 1, . . . , n;

5 The 2nd order scalar equation now transforms into a 1st order
linear hyperbolic system of partial differential equations for
w ∈ R(n+2):

wt +
n∑

i=1

Âiwxi + B̂w = ψ̂0.
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Finite Difference Methods for Hyperbolic Equations

Introduction to Hyperbolic Equations

The Hyperbolic Equations

Standard Form of n-D 1st Order Linear Hyperbolic Equations

1 The standard form of 1st order linear hyperbolic equation:

ut +
n∑

i=1

ai uxi = ψ, (ψ = ψ0 − b u).

2 The standard form of 1st order linear hyperbolic system:

ut +
n∑

i=1

Ai uxi = ψ, (ψ = ψ0 − B u);

3 The equation (system) is said to be homogeneous, if ψ = 0;
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Finite Difference Methods for Hyperbolic Equations

Introduction to Hyperbolic Equations

The Hyperbolic Equations

Standard Form of n-D 1st Order Linear Hyperbolic Equations

4 In general, a higher order linear hyperbolic equation (system
of equations) can always be transformed into a first order
linear hyperbolic system of equations.

5 An equation (system) is said to be nonlinear, if at least one of
the coefficients depends on the unknown or the right hand
side term is a nonlinear function of the unknown.
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Finite Difference Methods for Hyperbolic Equations

Introduction to Hyperbolic Equations

Example on Hyperbolic Equations and Balance Laws

An Example of a Balance Law

Substance balance in flowing fluid in a 1D pipe.

1 u(x , t): substance density, measured by mass per unit length.

2 f (x , t, u): mass flux, measured by mass per unit time.

3 ψ(x , t, u): the density of the mass source (or sink), measured
by mass per unit length per unit time.

4 Balance law (integral form), for given xl < xr and tb < ta,∫ xr

xl

u(x , ta) dx =

∫ xr

xl

u(x , tb) dx +

∫ ta

tb

f (xl , t, u(xl , t)) dt

−
∫ ta

tb

f (xr , t, u(xr , t)) dt +

∫ ta

tb

∫ xr

xl

ψ(x , t, u(x , t)) dx dt.
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Introduction to Hyperbolic Equations

Example on Hyperbolic Equations and Balance Laws

An Example of a Balance Law

5 Suppose u and f are sufficiently smooth, we are led to∫ ta

tb

∫ xr

xl

[u(x , t)t + f (x , t, u(x , t))x − ψ(x , t, u(x , t))] dx dt = 0,

for all given xl < xr and tb < ta;

6 or equivalently:

u(x , t)t + f (x , t, u(x , t))x = ψ(x , t, u(x , t)),

this is the balance law in differential form.
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Finite Difference Methods for Hyperbolic Equations

Introduction to Hyperbolic Equations

Example on Hyperbolic Equations and Balance Laws

Advection Equation and Advection-Diffusion Equation

The simplest example is the 1D advection equation:

ut + a ux = 0,

in which the flowing velocity of the fluid is a constant a, the flux is
simply f (x , t, u) = f (u) = a u, and the source term is zero.

Another simple example is the 1D advection-diffusion equation:

ut + a ux = σuxx ,

in which diffusion as well as advection is considered, and the flux is
of the form f (x , t, u, ux) = a u − σ ux , where σ is the diffusion
parameter.

Note: Advection equation is also called convection equation,
advection-diffusion equation is also called convection-diffusion
equation.
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

Characteristics and Riemann Invariants

In hyperbolic equations (systems), the information propagates at
finite characteristic speeds.

Consider a 1D constant-coefficient hyperbolic system

ut + Aux = 0.

1 AR = RΛ, Λ = diag(λ1, · · · , λp) with λ1 ≤ λ2 ≤ · · · ≤ λp.

2 Define w = R−1u, the system is transformed to

wt + Λwx = 0.

3 p families of characteristics given by p characteristic equations
dxi
dt

= λi , i = 1, · · · , p.
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

Riemann Invariants and General Solutions of Initial Value Problems

4 wi is a constant on each characteristics of the ith family:

dwi (xi (t), t)

dt
= [wi ,t + λi wi ,x ] (xi (t), t) = 0.

5 wi (x , t) = wi (x − λi t, 0), i = 1, · · · , p.

6 wi , i = 1, · · · , p, are called the Riemann invariants of the
system with respect to the characteristics of (λi , ξ

i ), with
Aξi = λiξ

i , i = 1, · · · , p.
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

Riemann Invariants and General Solutions of Initial Value Problems

7 Denote ξi the ith column of R, and ηi the ith row of R−1.

8 By definition ηiu = wi , in particular wi (x , 0) = ηiu0(x).

9 By definition u(x , t) = Rw(x , t), thus, by 5© and 8©,

u(x , t) =

p∑
i=1

ξiwi (x , t) =

p∑
i=1

ξiηiu0(x − λi t).
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

Domains of Dependance, Influence and Determination

Since u(x , t) =
∑p

i=1 ξ
iηiu0(x − λi t), we define

1 domain of dependance of a set ΩT ⊂ R× R+:

D(ΩT ) = {y ∈ R : y = x−λi t, i = 1, · · · , p, ∀(x , t) ∈ ΩT}.

2 domain of influence of a set Ω ⊂ R:

I (Ω) = {(x , t) ∈ R× R+ : ∃ 1 ≤ i ≤ p, s.t. x − λi t ∈ Ω},

3 domain of determination of a set Ω ⊂ R:

K (Ω) = {(x , t) ∈ R× R+ : xi = x − λi t ∈ Ω, i = 1, · · · , p}.

4 We can also define D(ΩT , t0), I (Ω, t0) and K (Ω, t0) by
replacing λi t by λi (t − t0) in the above definitions.
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

Boundary Conditions in Initial-Boundary Value Problems

For an initial-boundary value problem defined on (0, 1)× R+,
suppose λ1 < . . . < λl < 0 < λr < λp (l = r − 1 or l = r − 2).

By the characteristics of the system, boundary conditions should
be imposed in the following way:

1 p − r + 1 linearly independent boundary conditions on the left
boundary 0, since {wi}pi=r picks up information from left.

2 l linearly independent boundary conditions on the right
boundary 1, since {wi}li=1 picks up information from right.
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

Boundary Conditions in Initial-Boundary Value Problems

3 The p − r + 1 boundary conditions on the left boundary 0
must contain sufficient information for {wi}pi=r .

4 The l boundary conditions on the right boundary 1 must
contain sufficient information for {wi}li=1.

5 The domains of dependance, influence and determination can
also be defined for initial-boundary value problems.
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

The Characteristic Method for the Advection Equation

1 Advection equation: ut(x , t) + a(x , t) ux(x , t) = 0,
x ∈ I = (xl , xr ) ⊂ R, t > 0;

2 Characteristics: x ′(t) = a(x , t), x ∈ I , t > 0;

3 Solution is a constant on a characteristic curve:

du(x(t), t)

dt
=
∂u

∂t
+
∂u

∂x

dx

dt
=
∂u

∂t
+ a

∂u

∂x
= 0.

4 Suppose a(xl , t) > 0 and a(xr , t) > 0 for all t ≥ 0.
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

The Characteristic Method for the Advection Equation

5 Initial-boundary conditions u(x , 0) = u0(x), u(xl , t) = ul(t).

6 Take xl ≤ x1 < · · · < xN < xr , and 0 ≤ t1 < · · · < tM .

7 Solving the characteristic equation with initial conditions:
x(0) = xi , i = 1, · · · ,N, and x(tm) = xl , m = 1, · · · ,M,
to obtain characteristic curves;

8 On these (approximate) characteristic curves, set
Ui (x , t) := u0(xi ), i = 1, · · · ,N, and
Um(x , t) := u(xl , t

m) = ul(t
m), m = 1, · · · ,M respectively.
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

The Characteristic Method for the Advection Equation

In particular, if a(x , t) ≡ a is a constant, then, we have

9 for a > 0,

u(x , t) =

u0(x − at), if x − at ≥ xl ,

ul

(
t − x − xl

a

)
, if x − at < xl .

10 if a < 0,

u(x , t) =

u0(x − at), if x − at ≤ xr ,

ur

(
t − x − xr

a

)
, if x − at > xr .
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Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

Inhomogeneous Advection Equation and Characteristic Method

1 Advection equation: ut(x , t) + a(x , t) ux(x , t) = ψ(x , t),
x ∈ I = (xl , xr ) ⊂ R, t > 0;

2 Characteristics: x ′(t) = a(x , t), x ∈ I , t > 0;

3 On a characteristic curve, the solution satisfies:

du(x(t), t)

dt
=
∂u

∂t
+
∂u

∂x

dx

dt
=
∂u

∂t
+ a

∂u

∂x
= ψ(x(t), t).

4 Suppose a(xl , t) > 0 and a(xr , t) > 0 for all t ≥ 0.

20 / 40



Finite Difference Methods for Hyperbolic Equations

Introduction to Hyperbolic Equations

Characteristics and Riemann Invariants

Inhomogeneous Advection Equation and Characteristic Method

5 Initial-boundary conditions u(x , 0) = u0(x), u(xl , t) = ul(t).

6 Take xl ≤ x1 < · · · < xN < xr , and 0 ≤ t1 < · · · < tM .

7 Solving the characteristic equation with initial conditions:
xi (0) = xi , i = 1, · · · ,N, and xm(tm) = xl , m = 1, · · · ,M,
to obtain characteristic curves;

8 Along these (approximate) characteristic curves, solving ODEs
systems U̇ i (t) = ψ(xi (t), t) and U̇

m
(t) = ψ(xm(t), t) with

initial conditions Ui (0) := u0(xi ), i = 1, · · · ,N, and
Um(tm) := u(xl , t

m) = ul(t
m), m = 1, · · · ,M respectively.
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Finite Difference Methods for Hyperbolic Equations

FDM for 1D 1st Order Linear Hyperbolic Equation

Characteristic Lines and CFL Condition

The Domain of Dependance of a Difference Scheme

1 Advection equation: ut(x , t) + a ux(x , t) = 0, (a = constant).

2 The simplest scheme:
Um+1
j − Um

j

τ
+ a

Um
j − Um

j−1

h
= 0;

3 or equivalently: Um+1
j = (1− ν)Um

j + νUm
j−1, (ν = aτ/h).

4 For P = (xj , tm+1), D(P) = Q = xj − a tm+1, the domain of
dependance of the scheme Dh(P) = {xj−m−1, · · · , xj−1, xj}.

m

m+1

jj−2 j−1......j−m−1

t

P

Q+ xQ−Q>
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FDM for 1D 1st Order Linear Hyperbolic Equation

Characteristic Lines and CFL Condition

The CFL Condition of a Difference Scheme

Simple observation: if Q = Q> < xj−m−1, or Q = Q− > xj ,
then Um+1

j can not properly approximate u(xj , tm+1).
CFL condition: a necessary condition for a numerical scheme
to converge is that the domain of dependence of the the real
solution is contained, at least in the sense of limit, in the
domains of dependence of the numerical scheme.

m

m+1

jj−2 j−1......j−m−1

t

P

Q+ xQ−Q>
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FDM for 1D 1st Order Linear Hyperbolic Equation

Characteristic Lines and CFL Condition

The CFL Condition is a Necessary Condition for Stability

The CFL condition is often used as a necessary condition for the
stability of finite difference schemes for hyperbolic differential
equations.

In general, the CFL condition is not a sufficient condition for the
stability of a numerical method.

24 / 40



Finite Difference Methods for Hyperbolic Equations

FDM for 1D 1st Order Linear Hyperbolic Equation

Characteristic Lines and CFL Condition

CFL Condition is not a Sufficient Condition for Stability

Consider the finite difference scheme of the advection equation

Um+1
j − Um

j

τ
+ a

Um
j+1 − Um

j−1

2h
= 0, a ∈ R1 \ {0} .

The CFL condition for the scheme is |ν| = |a|τ/h ≤ 1.

The Fourier modes solution Um
j = λmk e

i kjπ
N with amplification

factor λk = 1− i ν sin kπ
N . Since |λk | > 1 for all ν 6= 0, the scheme

is always unstable, whether the CFL condition is satisfied or not.

Note: For initial value problems or initial-boundary value problems

with periodic boundary conditions of a constant coefficient advection

equation, a necessary and sufficient condition for L2-stability is the so

called von Neumann condition: |λk | ≤ 1 + Kτ , for all −N + 1 ≤ k ≤ N.
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FDM for 1D 1st Order Linear Hyperbolic Equation

The Upwind Scheme

The Upwind Scheme for the Advection Equation

For the advection equation ut(x , t) + a(x , t) ux(x , t) = 0, by the
CFL condition, the simplest difference scheme is

Um+1
j =

{
Um
j − νmj 4+U

m
j , if amj ≤ 0,

Um
j − νmj 4−Um

j , if amj ≥ 0,

where νmj = amj τ/h satisfies |νmj | ≤ 1, or equivalently

Um+1
j =

{
(1 + νmj )Um

j − νmj Um
j+1, if amj ≤ 0,

(1− νmj )Um
j + νmj Um

j−1, if amj ≥ 0,

which may be viewed as obtained by using

4+t/4t to approximate ∂/∂t;

4+x/4x (a < 0) or 4−x/4x (a > 0) to approximate ∂/∂x .
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FDM for 1D 1st Order Linear Hyperbolic Equation

The Upwind Scheme

The Upwind Scheme for the Advection Equation

Characteristic method + Linear interpolation ⇒ Upwind scheme.

Let a > 0 be a constant, assume ν = aτ/h ≤ 1.

1 By the characteristic method: u(xj , tm+1) = u(xj − a τ, tm);

2 By linear interpolation:

u(xj − a τ, tm) ≈
xj − (xj − aτ)

h
umj−1 +

(xj − aτ)− xj−1

h
umj ;

3 Hence u(xj , tm+1) ≈ νumj−1 + (1− ν)umj ;

4 This leads to the scheme: Um+1
j = (1− ν)Um

j + νUm
j−1, which

is exactly the upwind scheme.
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FDM for 1D 1st Order Linear Hyperbolic Equation

The Upwind Scheme

The Truncation Error of the Upwind Scheme O(τ + h)

By Taylor series expansion, we have

Tm
j :=

um+1
j − umj

τ
+ a

umj − umj−1

h
−
[
∂u

∂t
+ a

∂u

∂x

]m
j

=
1

2
[τutt − a h uxx ]mj +

1

6

[
τ2uttt + a h2 uxxx

]m
j

+ · · ·

=−
[

1

2
a h (1− ν)uxx +

1

6
a h2(1− ν2)uxxx + · · ·

]m
j

, if a > 0.

Note, here a is a constant, so utt = a2uxx and ν = aτ/h, and
τutt = ahνuxx . Similarly τk∂k+1

t u = (−1)k+1ahkνk∂k+1
x u.
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FDM for 1D 1st Order Linear Hyperbolic Equation

The Upwind Scheme

The Truncation Error of the Upwind Scheme O(τ + h)

Similarly, we have

Tm
j :=

um+1
j − umj

τ
+ a

umj+1 − umj
h

−
[
∂u

∂t
+ a

∂u

∂x

]m
j

=
1

2
[τutt + a h uxx ]mj +

1

6

[
τ2uttt + a h2 uxxx

]m
j

+ · · ·

=

[
1

2
a h (1 + ν)uxx +

1

6
a h2(1− ν2)uxxx + · · ·

]m
j

, if a < 0.

Note, here a is a constant, so utt = a2uxx and ν = aτ/h, and
τutt = ahνuxx . Similarly τk∂k+1

t u = (−1)k+1ahkνk∂k+1
x u.
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FDM for 1D 1st Order Linear Hyperbolic Equation

The Upwind Scheme

The Stability and Convergence of the Upwind Scheme

The error emj = Um
j − umj satisfies the following error equation

em+1
j =

{
(1− |ν|)emj + |ν|emj+1 − τTm

j , if a < 0,

(1− |ν|)emj + |ν|emj−1 − τTm
j , if a > 0.

If the CFL condition is satisfied, i.e. |ν| ≤ 1, then, we have

Em+1 := max
j
|em+1
j | ≤ Em + τ max

j
|Tm

j | ≤ E 0 + tmax max
m,j
|Tm

j |,

∀(m + 1)τ ≤ tmax.
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FDM for 1D 1st Order Linear Hyperbolic Equation

The Upwind Scheme

The Solutions to Nonlinear Hyperbolic Equations are
Generally not Smooth

Therefore, if the CFL condition is satisfied, the upwind scheme is
stable in L∞ norm, and its convergence rate is O(τ + h), if the
solution u is sufficiently smooth.

However, in hyperbolic problems, discontinuities are commonly
seen in the physical solutions. In fact, the discontinuity creation
and propagation is a focus of investigation on nonlinear problems.
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Nonlinear Advection Equation and Blow Up of Its Classical Solution

1 Nonlinear advection equation:
ut(x , t) + a(u(x , t)) ux(x , t) = 0;

2 Characteristic equation: x ′(t) = a(u(x , t)), t > 0;

3 Solution is a constant on a characteristic curve:

du(x(t), t)

dt
=
∂u

∂t
+
∂u

∂x

dx

dt
=
∂u

∂t
+ a

∂u

∂x
= 0.

4 On a characteristic curve, a(u(x , t)) is a constant.

5 Characteristic curves are straight lines (with different slopes).

6 Suppose for ξ1 < ξ2, a1 := a(u0(ξ1)) > a2 := a(u0(ξ2)), then,
at time t̄ = (ξ2 − ξ1)/(a1 − a2) > 0, the two corresponding
characteristic lines intersect: (ξ1 + a1t̄, t̄) = (ξ2 + a2t̄, t̄).

7 In such a case, the classical solution blows up.



Weak Solutions for Nonlinear Conservation Laws

Since discontinuities are inevitable, we should take it into
consideration by introducing the concept of weak solutions.

Definition

u ∈ L1
loc(R× R+) is called a weak solution to the following 1D

initial value problem of the conservation law

ut(x , t) + f (u(x , t))x = 0,

u(x , 0) = u0(x),

if u satisfies the initial condition, and for all fixed 0 ≤ tb < ta and
−∞ < xl < xr <∞, the following equation holds∫ xr

xl

u(x , ta)dx =

∫ xr

xl

u(x , tb)dx +

∫ ta

tb

f (u(xl , t))dt

−
∫ ta

tb

f (u(xr , t))dt.



Shock Speed and Rankine-Hugoniot Jump Condition

1 Suppose there is an isolated discontinuity (i.e. a shock) x(t)
propagating at speed s(t) (i.e. x ′(t) = s(t));

2 By the integral form conservation law, for x1 = x(t1) and
x1 +4x = x(t1 +4t), we have∫ x1+4x

x1

u(x , t1 +4t)dx −
∫ x1+4x

x1

u(x , t1)dx

=

∫ t1+4t

t1

f (u(x1, t))dt −
∫ t1+4t

t1

f (u(x1 +4x , t))dt.

3 Denote ul = u(x1 − 0, t1), ur = u(x1 + 0, t1), then, we have

(ul − ur )4x = (f (ul)− f (ur ))4t + O(4t2).

4 Since x ′(t) = s(t), we are led to the Rankine-Hugoniot jump
condition: s[u] = [f ].



Finite Difference Methods for Hyperbolic Equations

FDM for 1D 1st Order Linear Hyperbolic Equation

Nonlinear Hyperbolic Equations and Weak Solutions

Weak Solutions of Non-viscous Burger’s Equation

Consider the initial value problem of the Burgers equation

∂u

∂t
+

1

2

∂u2

∂x
= 0; u(x , 0) =

{
1, if x < 0;

0, if x ≥ 0.

By the Rankine-Hugoniot jump condition,

s =
f (ur )− f (ul)

ur − ul
=

1
2u

2
r − 1

2u
2
l

ur − ul
=

0− 1
2

0− 1
=

1

2
.

Hence the weak solution of the problem is given by

u(x , t) =

1, if x < t/2;

0, if x ≥ t/2.
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Weak Solutions of Non-viscous Burger’s Equation

Consider the initial value problem of the equation

∂u2

∂t
+

2

3

∂u3

∂x
= 0; u(x , 0) =

{
1, if x < 0;

0, if x ≥ 0.

Define w = u2, by the Rankine-Hugoniot jump condition,

s =
f (wr )− f (wl)

wr − wl
=

2
3w

3/2
r − 2

3w
3/2
l

wr − wl
=

0− 2
3

0− 1
=

2

3
.

Hence the weak solution of the problem is given by

u(x , t) =

1, if x < 2t/3;

0, if x ≥ 2t/3.
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Weak Solutions of Non-viscous Burger’s Equation

For smooth u, both the Burger’s equation

∂u

∂t
+

1

2

∂u2

∂x
= 0

and the equation
∂u2

∂t
+

2

3

∂u3

∂x
= 0

are equivalent to the first order nonlinear hyperbolic equation

ut + uux = 0.
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Key Ingredients of a Conservation Law

The key ingredients of a conservation law are

the conservative quantities and the corresponding fluxes;

the integral form equations based on physical conservation
laws;

Entropy condition — to distinguish the physical solution from
the others.

Remark: For a nonlinear problem, the weak solution is generally
not unique even for a conservation law (see Exercise 3.4).
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L2 Is a Better Space to Investigate Hyperbolic Equations

The upwind scheme of the advection equation satisfies the
maximum principle, if CFL condition is satisfied;

However, for general hyperbolic equations (systems), the
solution do not satisfy the maximum principle.

Hyperbolic equations (systems) are often used to characterize
the propagation and evolution of waves.

Fourier modes are waves of various frequencies propagating at
their own characteristic speeds.

It is natural to apply the Fourier method to analyze the L2 stability
and accuracy of finite difference schemes for hyperbolic equations
(systems).
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