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Finite Difference Methods for Parabolic Equations

A Model Problem and Its Difference Approximations

1-D Initial Boundary Value Problem of Heat Equation

1-D Initial Boundary Value Problem of Heat Equation

The standard model problem: Homogeneous heat equation with
homogeneous Dirichlet boundary condition

ut = uxx , 0 < x < 1, t > 0, (1)

u(x , 0) = u0(x), 0 ≤ x ≤ 1, (2)

u(0, t) = u(1, t) = 0, t > 0. (3)

1 A sequence of independent nontrivial special solutions:

uk(x , t) = e−k
2π2t sin kπx , k = 1, 2, · · · .
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Finite Difference Methods for Parabolic Equations

A Model Problem and Its Difference Approximations

Analytical Solutions of the Homogeneous Heat Equation

Analytical Solutions of the Homogeneous Heat Equation

2 If the initial data u0 has a Fourier sine expansion

u0(x) =
∞∑
k=1

ak sin kπx ,

where
ak = 2

∫ 1

0
u0(x) sin kπx dx , k = 1, 2, · · · ,

3 then, the solution to the model problem (1)-(3) can be
written as

u(x , t) =
∞∑
k=1

ake
−k2π2t sin kπx .
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Finite Difference Methods for Parabolic Equations

A Model Problem and Its Difference Approximations

Finite Difference Discretization of the Heat Equation

Grid and Grid Function

1 Spatial grid: h = hN = 4x = 1/N, and xj = j h,
j = 0, 1, · · · ,N;

2 Temporal grid: τ = 4t, and tm = m τ , m = 0, 1, · · · ;

3 Grid function:
U = U(h,τ) = {Um

j : j = 0, 1, · · · ,N; m = 0, 1, · · · };

Next, we are going to discuss finite difference schemes of heat
equations and their analytical properties.
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Finite Difference Methods for Parabolic Equations

The Explicit Scheme and Its Stability and Convergence

The Explicit Scheme for the Heat Equation

An Explicit Scheme of the Heat Equation

Substituting ∂/∂t by 4+t/4t;

Substituting ∂2/∂x2 by δ2
x/(4x)2;

leads to the explicit difference scheme

Um+1
j − Um

j

τ
=

Um
j+1 − 2Um

j + Um
j−1

h2
, 1 ≤ j ≤ N − 1; m ≥ 0; (4)

U0
j = u0

j , 0 ≤ j ≤ N; (5)

Um
0 = Um

N = 0, m ≥ 1. (6)

The explicit scheme (4) can be equivalently written as[
4+t

τ
− δ2

x

h2

]
Um
j = 0.
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The Explicit Scheme and Its Stability and Convergence

The Explicit Scheme for the Heat Equation

The Stencil of the Explicit Scheme of the Heat Equation

The scheme (4) is called an explicit scheme, since

Um+1
j = (1− 2µ)Um

j + µ
(
Um
j−1 + Um

j+1

)
, ∀j ,

where µ = τ/h2 is called the grid ratio of the heat equation, thus,
Um+1
j can be explicitly calculated from Um node by node.

m

m+1

jj−1 j+1

t

x
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Truncation Error of the Explicit Scheme

By comparing the explicit scheme and the heat equation[
4+t

τ
− δ2

x

h2

]
Um
j = 0,

[
∂

∂t
− ∂2

∂x2

]
u = 0,

we introduce the truncation operator

T = T(h,τ) :=

[
4+t

τ
− δ2

x

h2

]
−
[
∂

∂t
− ∂2

∂x2

]
.

For sufficiently smooth u, by Taylor series expansion,

4+tu(x , t) = ut(x , t)4t+
1

2
utt(x , t)(4t)2+

1

6
uttt(x , t)(4t)3+· · · ,

δ2
xu(x , t) = uxx(x , t)(4x)2 +

1

12
uxxxx(x , t)(4x)4 + · · · .

Hence the truncation error can be written as

Tu(x , t) =
1

2
utt(x , t)τ − 1

12
uxxxx(x , t)h2 + O(τ2 + h4).



Finite Difference Methods for Parabolic Equations

The Explicit Scheme and Its Stability and Convergence

Truncation Error, Consistency and Order of Accuracy

Truncation Error of the Explicit Scheme

We can also use another form of the Taylor expansion of u at (x , t)

4+tu(x , t) = ut(x , t)4t +
1

2
utt(x , η)(4t)2,

δ2
xu(x , t) = uxx(x , t)(4x)2 +

1

12
uxxxx(ξ, t)(4x)4,

where η ∈ (t, t + τ), ξ ∈ (x − h, x + h), to express the truncation
error in the form

Tu(x , t) =
1

2
utt(x , η)τ − 1

12
uxxxx(ξ, t)h2.
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The Explicit Scheme and Its Stability and Convergence

Truncation Error, Consistency and Order of Accuracy

Consistency and Order of Accuracy of the Explicit Scheme

Since, for smooth u, the truncation error satisfy

Tu(x , t) =
1

2
utt(x , η)τ − 1

12
uxxxx(ξ, t)h2,

1 [τ−14+t − h−2δ2
x ] is consistent with [∂t − ∂2

x ], since

Tu(x , t)→ 0, as h→ 0, τ → 0, ∀(x , t) ∈ (0, 1)× R+.

2 The explicit scheme is of first and second order accurate with
respect to time and space, since Tu(x , t) = O(τ) + O(h2).

3 |Tu(x , t)| ≤ 1
2Mtt τ + 1

12Mxxxx h
2, ∀(x , t) ∈ Ωtmax ,

where Ωtmax , (0, 1)× (0, tmax), Mtt = sup(x ,t)∈Ωtmax
|utt(x , t)| and

Mxxxx = sup(x ,t)∈Ωtmax
|uxxxx(x , t)|.

9 / 37



L∞ Stability and Convergence of the Explicit Scheme

1 Error: emj = Um
j − umj , j = 0, 1, · · · ,N, m = 0, 1, · · · .

2 The error equation (compare τ−14+tU
m
j = h−2δ2

xU
m
j + f mj ):

em+1
j − emj

τ
=

emj+1 − 2emj + emj−1

h2
− Tm

j , 1 ≤ j ≤ N − 1; m ≥ 0; (7)

e0
j = 0, 0 ≤ j ≤ N; (8)

em0 = emN = 0, m ≥ 1, (9)

3 Stability (uniformly well-posedness of (7)-(9), to be proved):

‖e‖∞,Ωtmax
≤ C1

(
max

0≤j≤N
|e0

j |+ max
0<mτ≤tmax

(|em0 |+ |emN |))

)
+C2‖T‖∞,Ωtmax

4 A priori error estimate ‖e‖∞,Ωtmax
≤ C (Mtt τ + Mxxxx h

2).

What remains to show is the stability.
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Stability and Convergence of the Explicit Scheme

L∞ Stability of the Explicit Scheme

1 Define Ω = Ωtmax , ∂ΩD = {(x , t) ∈ ∂Ωtmax : t = 0, or x = 0, 1},

L(h,τ)U
m+1
j =

(
δ2
x

(∆x)2
− ∆+t

∆t

)
Um
j , then the conditions (1), (2)

of the maximum principle are satisfied, if 0 < µ ≤ 1/2
(Exercises 2.4).

2 Proper comparison function can also be found (Exercises 2.5).

3 The explicit scheme and its error equation:
−L(h,τ)U

m+1
j = f mj , −L(h,τ)e

m+1
j = −Tm

j ;

4 The stability then follows from the maximum principle.
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The Explicit Scheme and Its Stability and Convergence

Stability and Convergence of the Explicit Scheme

L∞ Stability of the Explicit Scheme

For parabolic problems, we have an alternative approach.

The explicit scheme and its error equation (µ = τ/h2):

Um+1
j = (1− 2µ)Um

j + µ
(
Um
j−1 + Um

j+1

)
+ τ f mj ,

em+1
j = (1− 2µ)emj + µ

(
emj−1 + emj+1

)
− τ Tm

j .

If µ ≤ 1
2 , |em+1

j | ≤ max
0≤j≤N

|emj |+ τ Tm, ∀j = 1, 2, · · · ,N − 1;

where Tm = max
1≤j≤N−1

|Tm
j |. Therefore, for all m ≥ 0, we have

max
1≤j≤N−1

|em+1
j | ≤ max

{
max

0≤j≤N
|e0
j |, max

1≤l≤m
max

(
|e l0|, |e lN |

)}
+τ

m∑
l=0

T l .
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Stability and Convergence of the Explicit Scheme

L∞ Stability Condition of the Explicit Scheme

If the grid ratio satisfies µ , 4t/(4x)2 ≤ 1/2, then, the explicit
scheme has the following properties

(C-1) stability: for all m ≥ 0,

max
1≤j≤N−1

|Um+1
j | ≤ max

{
max

0≤j≤N
|U0

j |, max
1≤l≤m

max
(
|U l

0|, |U l
N |
)}

+tmax‖f ‖∞,Ωtmax
,

‖e‖∞,Ωtmax
≤ max

0≤j≤N
|e0

j |+ max
0<mτ≤tmax

max (|em0 |, |emN |)) + tmax‖T‖∞,Ωtmax
;
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The Explicit Scheme and Its Stability and Convergence

Stability and Convergence of the Explicit Scheme

L∞ Stability Condition of the Explicit Scheme

(C-2) convergence rate is O(τ) (or O(h2)), more precisely

‖e‖∞,Ωtmax
≤ τ

(
1

2
+

1

12µ

)
Mxxxx tmax.

(Recall |Tu(x , t)| ≤ 1
2Mtt τ + 1

12Mxxxx h
2, µ = τ

h2 and ut = uxx)
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The Explicit Scheme and Its Stability and Convergence

Stability and Convergence of the Explicit Scheme

Refinement Path and Condition of L∞ Stability

τ = r(h) is said to give a refinement path, if r is a strictly
increasing function and r(0) = 0. (C-2) can be rewritten as

(C-3) Let {hi}∞i=1 satisfy limi→0 hi = 0. Let the refinement path
τ = r(h) satisfy µi = r(hi )/h

2
i ≤ 1/2. Suppose the solution u of

(1)-(3) satisfies that |uxxxx | ≤ C on (0, 1)× (0, tmax). Then the
solution sequence U(i) of (4)-(6), with grid sizes (hi , τi = r(hi )),
converge uniformly on [0, 1]× [0, tmax] to u, and the convergence
rate is O(h2

i ).

15 / 37



Finite Difference Methods for Parabolic Equations

The Explicit Scheme and Its Stability and Convergence

Stability and Convergence of the Explicit Scheme

Refinement Path and Condition of L∞ Stability

The convergence rate is optimal. However, for any fixed grid
spacing, as tmax →∞, we lost control on the error.

Recall that, if f = 0, the exact solution u(x , t)→ 0, as

t →∞, ‖e‖∞,Ωtmax
≤ τ

(
1
2

+ 1
12µ

)
Mxxxx tmax is certainly not a

satisfactory error estimate for large tmax .

Better results on error estimates can be obtained by applying
the maximum principle and choosing proper comparison
functions (Exercises 2.5 and 2.6).
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The Explicit Scheme and Its Stability and Convergence

Stability and Convergence of the Explicit Scheme

Fourier Analysis and L2 Stability of the Explicit Scheme

Similar as the model problem (1)-(3), the difference problem

Um+1
j − Um

j

τ
=

Um
j+1 − 2Um

j + Um
j−1

h2
, 1 ≤ j ≤ N − 1; m ≥ 0,

U0
j = u0

j , 0 ≤ j ≤ N,

Um
0 = Um

N = 0, m ≥ 1,

can also be solved by the method of separation of variables.
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Stability and Convergence of the Explicit Scheme

Fourier Analysis and L2 Stability of the Explicit Scheme

In fact, any given general constant-coefficient linear homogeneous
difference equation defined on a uniform grid on [−1, 1]× [0,∞)
admits a complete set of Fourier modes solutions:

U
(k)m
j = λmk e

ikπj4x , −N + 1 ≤ j ≤ N, −N + 1 ≤ k ≤ N,

4x = 1/N: the spatial grid size,

λk = |λk |e i arg λk : the amplification factor,

|λk |: relative change in the modulus
arg λk : the change in the phase angle

of the corresponding Fourier mode in one time step.
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The Explicit Scheme and Its Stability and Convergence

Stability and Convergence of the Explicit Scheme

Fourier Modes and Characteristic Equations

Substituting the Fourier mode Um
j = λmk e

ikπ j
N into the

homogeneous explicit difference scheme

Um+1
j = Um

j + µ
(
Um
j−1 − 2Um

j + Um
j+1

)
,

yields the characteristic equation of the explicit scheme

λm+1
k e ikπ

j
N = λmk e

ikπ j
N

[
1 + µ

(
e ikπ

1
N + e−ikπ

1
N − 2

)]
,

which has a unique solution

λk = 1− 4µ sin2 kπ4x

2
.
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A Necessary L2 Stability Condition: von Neumann condition

The stability of the computation requires that all Fourier modes
should be uniformly bounded, i.e. there exist a constant C
independent of N and k such that

|λmk | ≤ C , ∀mτ ≤ tmax, −N + 1 ≤ k ≤ N.

Assume C > 1, 2τ ≤ tmax, and set m̃ = [tmax/τ ], hence
m̃ ≥ tmax/τ − 1 ≥ tmax/2τ . Since C s is a concave function of C if
0 < s < 1, the above condition implies

|λk | ≤ C 1/m̃ ≤ 1 + (C − 1)/m̃ ≤ 1 + 2τ(C − 1)/tmax,

which leads to the following necessary condition, usually called the
von Neumann condition, for the L2 stability: there exists a
constant K independent of N and k such that

|λk | ≤ 1 + K τ, −N + 1 ≤ k ≤ N.
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The Explicit Scheme and Its Stability and Convergence

Stability and Convergence of the Explicit Scheme

A Necessary L2 Stability Condition of the Explicit Scheme

Take k = N, since λN = 1− 4µ, it follows from the von Neumann
condition for the L2 stability:

|λk | ≤ 1 + K τ, −N + 1 ≤ k ≤ N,

we obtain a necessary condition for the L2 stability of the explicit
scheme: −1 ≤ 1− 4µ ≤ 1, or more concisely (since µ > 0)

µ ≤ 1

2
.

In fact, if µ > 1/2, it follows from λN = 1− 4µ < −1 that the
modulus of λmNe

iπj will grow exponentially fast as m increases.
Thus the scheme is unstable for µ > 1/2.
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A Sufficient L2 Stability Condition of the Explicit Scheme

On the other hand, if µ ≤ 1
2 , then 0 ≤ 4µ sin2 kπ

2N ≤ 2, thus

|λk | ≤ 1, −N + 1 ≤ k ≤ N.

(C-4) µ ≤ 1
2 ⇒ the L2 stability of the explicit scheme.

Proof: Let U0
j = 1√

2

∑N
k=−N+1 (̂U0)k e

ikπ j
N . Then,

Um
j =

1√
2

N∑
k=−N+1

λmk (̂U0)k e
ikπ j

N .

Thus, it follows from |λk | ≤ 1, ∀k and the Parseval relation that

‖Um‖2
2 = ‖(̂Um)‖2

2 =
N∑

k=−N+1

∣∣∣λmk (̂U0)k

∣∣∣2≤ N∑
k=−N+1

∣∣∣(̂U0)k

∣∣∣2 = ‖U0‖2
2.
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Stability and Convergence of the Explicit Scheme

A Sufficient L2 Stability Condition of the Explicit Scheme

Rewrite the explicit scheme as Um+1 = N (Um), then, we have
shown that, for µ ≤ 1/2, ‖N (Um)‖2 ≤ ‖Um‖2 ≤ ‖U0‖2.

The corresponding error equation is em+1 = N (em)− τTm, thus
we have ‖em+1‖2 = ‖N (em)− τTm‖2 ≤ ‖em‖2 + τ‖Tm‖2

≤ ‖e0‖2 + τ

m∑
l=0

‖T l‖2.

This shows that the dependence of the solution of the explicit
scheme on the right hand side as well as the initial data is
uniformly continuous in the L2 norm, therefore is L2 stable. �
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Stability and Convergence of the Explicit Scheme

L2 Convergence of the Explicit Scheme

Since, for µ ≤ 1/2, the error of the explicit scheme satisfies

‖em+1‖2 ≤ ‖e0‖2 + τ

m∑
l=0

‖T l‖2,

if the corresponding consistency holds, say limh→0 ‖e0‖2 = 0 and

lim
τ→0

τ

m∑
l=0

‖T l‖2 = 0, ∀m ≤ tmax/τ,

then the difference solution is convergent. Note, if ‖Tu(·, t)‖2 is a
uniformly continuous function of t, then

lim
τ→0

τ

[tmax/τ ]∑
l=0

‖T l‖2 = 0 ⇔ lim
τ→0

∫ tmax

0
‖Tu(·, t)‖2 dt = 0.
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Stability and Convergence of the Explicit Scheme

L2 Convergence of the Explicit Scheme

(C-5) Suppose

1 {hi}∞i=1 satisfies limi→0 hi = 0;

2 the refinement path r satisfies µi = r(hi )/h
2
i ≤ 1/2;

3 the solution u satisfies uxxxx ∈ C((−1, 1)× R+) and∫ tmax

0 ‖uxxxx(·, t)‖2 dt <∞.

Then, max
0<mτi≤tmax

‖e(i)m‖2 = O(h2
i ).

Remark: Here it is assumed that ‖e(i)0‖2 = O(h2
i ), i.e. the initial data is

approximated with second order accuracy.
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Stability and Convergence of the Explicit Scheme

Summary of the 1st Order Forward Explicit Scheme

1 A sufficient and necessary condition for L2 stability, also a
sufficient condition for L∞ stability: µ = τ/h2 ≤ 1/2,
a rather strict restriction on the time step;

2 Convergence rate O(τ + h2).

3 Easy to solve, and the computational cost is low.

Question: is it possible to develop an explicit scheme so that the
stability condition is relaxed to say τ = O(h), and the convergence
rate is O(τ2 + h2).
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The Explicit Scheme and Its Stability and Convergence

Stability and Convergence of the Explicit Scheme

The Richardson scheme

The Richardson scheme (with truncation error O(τ2 + h2)):

Um+1
j − Um−1

j

2τ
=

Um
j+1 − 2Um

j + Um
j−1

h2
.

Substitute the Fourier mode Um
j = λmk e

ikπj4x into the scheme, we
are led to the characteristic equation of the Richardson scheme:

λ2
k + 8λkµ sin2 kπ4x

2
− 1 = 0.

The equation has two distinct real roots λ±k , and for all k 6= 0,

λ+
k + λ−k = −8µ sin2 kπ4x

2
< 0, λ+

k λ
−
k = −1, ⇒ λ−k < −1.

Hence, the Richardson scheme is unconditionally unstable.
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The Du Fort-Frankel scheme

The Du Fort-Frankel scheme:
Um+1
j − Um−1

j

2τ
=

Um
j+1 − (Um+1

j + Um−1
j ) + Um

j−1

h2
.

The characteristic equation of the Du Fort-Frankel scheme:
(1 + 2µ)λ2

k − 4λkµ cos(kπ4x)− (1− 2µ) = 0, which has roots

λ±k =
2µ cos(kπ4x)±

√
1−4µ2 sin2(kπ4x)

1+2µ .

If 4µ2 sin2(kπ4x) > 1, λ±k are conjugate complex roots, hence
|λ±k | = |λ+

k λ
−
k | = |(1− 2µ)/(1 + 2µ)| < 1;

If 4µ2 sin2(kπ4x) ≤ 1, |λ±k | ≤ (2µ| cos(kπ4x)| +1)/(1 + 2µ) ≤ 1.

Consequently Du Fort-Frankel scheme is unconditionally L2 stable.

The truncation error is Tm
j = O(( τh )2) + O(τ2 + h2) + O( τ

4

h2 ).

consistent if τ = o(h); convergence rate O(h2) only if τ = O(h2).
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The Explicit Scheme and Its Stability and Convergence

Stability and Convergence of the Explicit Scheme

No Explicit Scheme Can Unconditionally Converge

Since the solution of the heat equation picks up information
globally on the initial and the boundary data, it is impossible to
develop an explicit scheme which is unconditionally stable and at
the same time unconditionally consistent.

In fact, to guarantee an explicit scheme to converge, τ = o(h)
must hold on the refinement path.

Therefore, it is necessary to develop implicit finite difference
schemes for the parabolic partial differential equations.
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The 1st Order Backward Implicit Finite Difference Scheme
The initial-boundary value problem of the simplest implicit finite
difference scheme for the model problem (2.2.1)-(2.2.3):

Um+1
j − Um

j

τ
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

h2
, 1 ≤ j ≤ N − 1; m ≥ 0;

U0
j = u0

j , 0 ≤ j ≤ N;

Um
0 = Um

N = 0, m ≥ 1.

The scheme can be equivalently rewritten as

(1 + 2µ)Um+1
j = µUm+1

j−1 + Um
j + µUm+1

j+1 .

The truncation operator

T(h,τ) :=
[
4−t

τ −
δ2
x

h2

]
−
[
∂
∂t −

∂2

∂x2

]
.

L(h,τ) = δ2
x

(4x)2 − 4−t

4t .

Maximum principle holds for
Ω = Ωtmax , ∂ΩD = {(x , t) ∈ ∂Ωtmax :

x = 0, 1 or t = 0}.

m

m+1

jj−1 j+1

t

x



Finite Difference Methods for Parabolic Equations

The Implicit Schemes

The 1st Order Backward Implicit Finite Difference Scheme

Truncation Error and Order of Accuracy

The truncation operator T(h,τ) :=
[
4−t

τ −
δ2
x
h2

]
−
[
∂
∂t −

∂2

∂x2

]
.

By the Taylor series expansion, the truncation error of the 1st
order backward implicit scheme is

Tu(x , t) = −1

2
utt(x , t)τ − 1

12
uxxxx(x , t)h2 + O(τ2 + h4),

Tu(x , t) = −1

2
utt(x , η)τ − 1

12
uxxxx(ξ, t)h2.

Thus the 1st order backward implicit scheme is consistent with the
heat equation, and is of first and second order accurate with
respect to time and space respectively, i.e. Tu(x , t) = O(τ + h2).

31 / 37



Finite Difference Methods for Parabolic Equations

The Implicit Schemes

The 1st Order Backward Implicit Finite Difference Scheme

L∞ Stability of the 1st Order Backward Implicit Scheme

The 1st order backward implicit scheme and its error equation can
be equivalently written as

(1 + 2µ)Um+1
j = Um

j + µ
(
Um+1
j−1 + Um+1

j+1

)
+ τ f m+1

j ,

(1 + 2µ)em+1
j = emj + µ

(
em+1
j−1 + em+1

j+1

)
− τ Tm+1

j ,

(or (I + µAN−1)U
m+1 = µUm+1

b + Um + τ f m, eigenvalue(I+ µAN−1) > 1).

Thus, for any µ > 0 and for all m ≥ 0,

max
1≤j≤N−1

|em+1
j | ≤ max

{
max

0≤j≤N
|e0
j |, max

1≤l≤m+1
max

(
|e l0|, |e lN |

)}
+τ

m+1∑
l=1

T l .

Hence, the 1st order backward implicit scheme is unconditionally
L∞ stable and satisfies the maximum principle. Better estimate
can be obtained by taking proper comparison functions.
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Finite Difference Methods for Parabolic Equations

The Implicit Schemes

The 1st Order Backward Implicit Finite Difference Scheme

L2 Stability of the 1st Order Backward Implicit Scheme

Substituting the Fourier mode Um
j = λmk e

ikπj4x into the
homogeneous 1st order backward implicit scheme, yields the
characteristic equations of the scheme

λm+1
k e ikπ

j
N

[
1− µ

(
e ikπ

1
N + e−ikπ

1
N − 2

)]
= λmk e

ikπ j
N ,

which has a unique solution

λk =
1

1 + 4µ sin2 kπ4x
2

.

Hence, the 1st order backward implicit scheme is unconditionally
L2 stable.
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The Implicit Schemes

The 1st Order Backward Implicit Finite Difference Scheme

Efficiency of the 1st Order Backward Implicit Scheme

1 Unconditionally L2 and L∞ stable, can use larger τ ;

2 Convergence rate O(τ + h2), τ = O(h2), for efficiency.

3 Need to solve a tridiagonal and diagonally dominant linear
system, and the computational cost is about twice that of the
1st order forward explicit scheme if solved by the Thompson
method (forward elimination and backward substitution).

4 More efficient only if µ > 1, the computational cost is about
1/µ of that of the 1st order forward explicit scheme.

Better, but not good enough.
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The Crank-Nicolson scheme

The well known Crank-Nicolson scheme:

Um+1
j − Um

j

τ
=

1

2

[
Um
j+1 − 2Um

j + Um
j−1

h2
+

Um+1
j+1 − 2Um+1

j + Um+1
j−1

h2

]
;

(1 + µ)Um+1
j = (1− µ)Um

j +
µ

2

(
Um
j−1 + Um

j+1 + Um+1
j−1 + Um+1

j+1

)
1 T

m+ 1
2

j = −1
12

[
uttt(xj , tm+ 1

2
)τ2 + uxxxx(xj , tm+ 1

2
)h2
]

+O(τ4 +h4);

2 λk =
[
1− 2µ sin2 kπ4x

2

]
/
[
1 + 2µ sin2 kπ4x

2

]
, thus

unconditionally L2 stable.

3 The computational cost is about twice that of the explicit
scheme if solved by the Thompson method.

4 The maximum principle holds for µ ≤ 1.

5 Convergence rate is O(τ2 + h2), efficient if τ = O(h).



Finite Difference Methods for Parabolic Equations

The Implicit Schemes

The Crank-Nicolson scheme and θ-scheme

The θ-scheme (0 < θ < 1, θ 6= 1/2)

Um+1
j − Um

j

τ
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

h2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

h2
;

(1+2µθ)Um+1
j = (1−2µ(1−θ))Um

j +µ(1−θ)
(
Um
j−1 + Um

j+1

)
+µθ

(
Um+1
j−1 + Um+1

j+1

)
.

1 T
m+ 1

2
j = O(τ2 + h4), if θ = 1

2 −
1

12µ ; = O(τ + h2), otherwise.

2 λk =
[
1− 4(1− θ)µ sin2 kπ4x

2

]
/
[
1 + 4θ µ sin2 kπ4x

2

]
, thus

L2 stable for 2µ (1− 2θ) ≤ 1 (unconditional for θ ≥ 1/2).

3 The maximum principle holds for 2µ(1− θ) ≤ 1.
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Thank You!
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