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The Maximum Principle

Theorem

Suppose LhUj =
∑

i∈J\{j} cijUi − cjUj, ∀j ∈ JΩ; J and Lh satisfy

(1) JD 6= ∅, and J is JD connected with respect to Lh;

(2) cj > 0, cij > 0, ∀i ∈ DLh(j), and cj ≥
∑

i∈DLh
(j)

cij.

Suppose the grid function U satisfies LhUj ≥ 0, ∀j ∈ JΩ. Then,

MΩ , max
i∈JΩ

Ui ≤ max

{
max
i∈JD

Ui, 0

}
.

Furthermore, if J and Lh satisfy (3): J is connected with respect to
Lh; and there exists interior node j ∈ JΩ such that

Uj = max
i∈J

Ui ≥ 0.

Then, U must be a constant on J.



Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Maximum Principle

The Existence Theorem

Theorem

Suppose the grid J and the linear operator Lh satisfy the
conditions (1) and (2) of the maximum principle. Then, the
difference equation {

−LhUj = fj, ∀j ∈ JΩ,

Uj = gj, ∀j ∈ JD ,

has a unique solution.

proof: We only need to show that

LhUj = 0, ∀j ∈ JΩ; Uj = 0, ∀j ∈ JD ⇒ Uj = 0, ∀j ∈ J.

In fact, by the maximum principle LhU ≥ 0 implies U ≤ 0, and by
the corollary of the maximum principle, LhU ≤ 0 implies U ≥ 0,
thus U ≡ 0 on J . �
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The Maximum Principle

(−Lh)−1 is a Positive Operator

Corollary

Suppose the grid J and the linear operator Lh satisfy the
conditions (1) and (2) of the maximum principle. Then,

fj ≥ 0,∀j ∈ JΩ, gj ≥ 0,∀j ∈ JD , ⇒ Uj ≥ 0,∀j ∈ J;

and
fj ≤ 0,∀j ∈ JΩ, gj ≤ 0,∀j ∈ JD , ⇒ Uj ≤ 0,∀j ∈ J;

The corollary says that (−Lh)−1 is a positive operator, i.e.
(−Lh)−1 ≥ 0. In other words, every element of the matrix (−Lh)−1

is nonnegative.

In fact, the matrix −Lh is a M matrix, i.e. the diagonal elements of
A are all positive, the off-diagonal elements are all nonpositive, and
elements of A−1 are all nonnegative.
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The Comparison Theorem and the Stability

Theorem

Suppose the grid J and the linear operator Lh satisfy the
conditions (1) and (2) of the maximum principle. Let the grid
function U be the solution to the linear difference equation{

−LhUj = fj, ∀j ∈ JΩ,

Uj = gj, ∀j ∈ JD .

Let Φ be a nonnegative grid function defined on J satisfying

LhΦj ≥ 1, ∀j ∈ JΩ.

Then, we have max
j∈JΩ

|Uj| ≤ max
j∈JD
|Uj|+ max

j∈JD
Φj max

j∈JΩ

|fj|.
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The Comparison Theorem and the Stability

The Proof of the Comparison Theorem

Proof: Firstly, it follows from the maximum principle that

0 ≤ max
j∈JΩ

Φj ≤ max
j∈JD

Φj.

Next, define

Ψ±j = ±Uj +

[
max
i∈JΩ

|fi|
]

Φj, ∀j ∈ J.

It is easily verified that LhΨ±j ≥ 0 on JΩ, thus by the maximum
principle

±Uj ≤ Ψ±j ≤ max
j∈JD
|Uj|+ max

j∈JD
Φj max

j∈JΩ

|fj|, ∀j ∈ JΩ,

since Φ is nonnegative. �
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The Comparison Theorem and the Stability

The Comparison Theorem and the Stability

If the grid J and the linear operator Lh satisfy the conditions (1)
and (2) of the maximum principle. Let the grid function U be the
solution to the linear difference equation{

−LhUj = fj, ∀j ∈ JΩ,

Uj = gj, ∀j ∈ JD .

Then, the comparison theorem says that

max
j∈JΩ

|Uj| ≤ max
j∈JD
|gj|+ max

j∈JD
Φj max

j∈JΩ

|fj|,

in other words, the finite difference scheme is stable in the L∞
norm ‖ · ‖∞, as long as there is a nonnegative Φ s.t. LhΦ ≥ 1, and
maxj∈JD Φj is uniformly bounded with respect to J.
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A Priori Error Estimate

Theorem

Suppose the grid J and the linear operator Lh satisfy the
conditions (1) and (2) of the maximum principle. Let Φ be a
nonnegative grid function defined on J satisfying

LhΦj ≥ 1, ∀j ∈ JΩ.

Then, the error of the finite difference approximation equation
eh = {Uj − uj}j∈JΩ

can be bounded by the error on the Dirichlet
boundary and the local truncation error Th = {Lh(Uj − uj)}j∈JΩ

in
the sense that

max
j∈JΩ

|ej| ≤ max
j∈JD
|ej|+ max

j∈JD
Φj max

j∈JΩ

|Tj|.

Tj can be of different order on the regular and irregular interior
nodes. Is it possible for us to choose different comparison functions
for them, so that better error estimates can be obtained?



A Generalized version of the Comparison Theorem

Theorem

Suppose the grid J and the linear operator Lh satisfy the
conditions (1) and (2) of the maximum principle. Let the grid
function U be the solution to the linear difference equation{

−LhUj = fj, ∀j ∈ JΩ,

Uj = gj, ∀j ∈ JD .

Let Φ be a nonnegative grid function defined on J satisfying{
LhΦj ≥ C1 > 0, ∀j ∈ JΩ1 ,

LhΦj ≥ C2 > 0, ∀j ∈ JΩ2 ,

where JΩ1 ∪ JΩ2 = JΩ, JΩ1 ∩ JΩ2 = ∅. Then

max
j∈JΩ

|Uj| ≤ max
j∈JD
|Uj|+ max

j∈JD
Φj max

{
C−1

1 max
j∈JΩ1

|fj|,C−1
2 max

j∈JΩ2

|fj|
}
.
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Proof of the Generalized Comparison Theorem

Proof: Firstly, it follows from the maximum principle that

0 ≤ max
j∈JΩ

Φj ≤ max
j∈JD

Φj.

Next, define

Ψ±j = ±Uj + max

{
C−1

1 max
j∈JΩ1

|fj|,C−1
2 max

j∈JΩ2

|fj|
}

Φj, ∀j ∈ J.

We have LhΨ±j ≥ 0 on JΩ, thus, by the maximum principle,

±Uj ≤ Ψ±j ≤ max
j∈JD
|Uj|+ max

j∈JD
Φj max

{
C−1

1 max
j∈JΩ1

|fj|,C−1
2 max

j∈JΩ2

|fj|
}
,

since Φ is nonnegative. �
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A Better a Priori Error Estimate

Theorem

Suppose the grid J and the linear operator Lh satisfy the
conditions (1) and (2) of the maximum principle. Let Φ be a
nonnegative grid function defined on J satisfying{

LhΦj ≥ C1 > 0, ∀j ∈ JΩ1 ,

LhΦj ≥ C2 > 0, ∀j ∈ JΩ2 ,

Then, the error of the finite difference approximation equation
eh = {Uj − uj}j∈JΩ

satisfies

max
j∈JΩ

|ej| ≤ max
j∈JD
|ej|+ max

j∈JD
Φj max

{
C−1

1 max
j∈JΩ1

|Tj|,C−1
2 max

j∈JΩ2

|Tj|
}
.

We will see that, by defining proper Φ, this can actually produce
”optimal” error estimate for Dirichlet boundary value problems of
elliptic equations defined on domains with curved boundaries.
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An Example of Optimal Error Estimate

1 Poisson equation defined on 2-D region with curved boundary;

2 Uniform grid with hx = hy = h;

3 On
◦
J Ω =: JΩ1 , Lh is the standard 5-point difference scheme;

4 On JΩ \
◦
J Ω =: JΩ2 , Lh is a symmetric 5-point scheme on

nonuniform grid, for example (see (1.3.24))

LhUP =
1

hx

(
UE∗ − UP

h∗
x

− UP − UW

hx

)
+

1

hy

(
UN∗ − UP

h∗
y

− UP − US

hy

)
.

5 Define J̃D = JD ∩ [∪j∈JΩ2
DLh(j)].
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An Example of Optimal Error Estimate

6 The local truncation error satisfies

max
j∈JΩ1

|Tj| ≤ K1h2, max
j∈JΩ2

|Tj| ≤ K2,

where K1 and K2 are constants independent of h.

7 (x̄ , ȳ) is the circumcenter of Ω, R is the circumradius.

8 Take comparison functions of the following form{
Φ(x , y) = E1

{
(x − x̄)2 + (y − ȳ)2

}
, ∀ (x , y) 6∈ J̃D ,

Φ(x , y) = E1

{
(x − x̄)2 + (y − ȳ)2

}
+ E2, ∀ (x , y) ∈ J̃D ,

where E1 and E2 are positive undetermined coefficients;
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An Example of Optimal Error Estimate

9 Since DLh(j) ∩ J̃D 6= ∅ if and only if j ∈ JΩ2 , we have
0 ≤ Φj ≤ E1R2 + E2, ∀j ∈ JD ,

LhΦj = 4 E1, ∀j ∈ JΩ1 ,

LhΦj ≥ E1 + E2h−2 ≥ E2h−2, ∀j ∈ JΩ2 .

The last inequality follows from
h∗
x + hx

2hx
≥ 1

2
,

1

hxh∗
x

≥ h−2 and

Lh(x − x̄)2 = Lh(y − ȳ)2 = 2.
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An Example of Optimal Error Estimate

Thus, by taking C1 = 4E1 and C2 = E2h−2, it follow from the
generalized comparison theorem

max
j∈JΩ

|ej| ≤ max
j∈JD
|ej|+ max

j∈JD
Φj max

{
C−1

1 max
j∈JΩ1

|Tj|,C−1
2 max

j∈JΩ2

|Tj|
}
,

and 0 ≤ Φj ≤ E1R2 + E2, ∀j ∈ JD that

max
j∈JΩ

|ej| ≤ max
j∈JD
|ej|+ (E1R2 + E2) max

{
K1h2

4E1
,

K2h2

E2

}
.
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An Example of Optimal Error Estimate

Notice that

min
E2/E1

{(
R2 + E2/E1

)
max

{
K1h2

4
,

K2h2

E2/E1

}}
=

(
1

4
K1R2 + K2

)
h2

when
K1h2

4
=

K2h2

E2/E1
, we obtain an optimal error estimate

max
j∈JΩ

|ej| ≤ max
j∈JD
|ej|+

(
1

4
K1R2 + K2

)
h2.
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More General Extensions

1 The error estimates based on the maximum principle and the
comparison theorem can be extended to cover more general
problems.

2 The key to the maximum principle is the conditions (1), (2).

3 The key to the comparison theorem is the non-negative
function Φ such that LhΦ ≥ 1, which for the second order
problem can always be realized by taking a proper second
order polynomial.
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Extensions to Parabolic Problems

The maximum principle and comparison theorem can also be
applied to the stability analysis and error estimations for the finite
difference approximation solutions to the initial-boundary value
problems of parabolic partial differential equations (see Chapter 2).

The main difference is that the parabolic difference operators
generally only have the JD connection, which is the condition we
actually use in applications.
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Asymptotical Error Analysis

Asymptotical Error Analysis

The upper bound of the error obtained above for the Dirichlet
boundary value problems of elliptic equations is of the same order
as the local truncation error on the regular interior nodes.

The questions are

1 Is this the best error estimate we can have in general?

2 Can we obtain better numerical approximation by some post
procession?

The answers to both questions are positive.
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Taylor Expanding the Error Equation

For the poisson equation and 5-point scheme;

Suppose the solution u is sufficiently smooth;

Let hx = hy = h, let Jh be the corresponding set of grid
nodes,

then the local truncation error can be Taylor expanded as

Tj =
1

12
h2(∂4

xu + ∂4
yu)j +

1

360
h4(∂6

xu + ∂6
yu)j + · · · , ∀j ∈ Jh.

Hence, the error ej = Uj − uj of the difference solution U satisfies

Lhej = −Tj = − 1

12
h2(∂4

xu + ∂4
yu)j + O(h4), ∀j ∈ Jh.

20 / 38



Find the Leading Term of the Error

Suppose the solution ψ to the problem{
−Lψ := −(ψxx + ψyy ) = 1

12 (∂4
xu + ∂4

yu), x ∈ Ω,

ψ = 0, x ∈ ∂Ω,

is sufficiently smooth. Let Ψh be the corresponding finite
difference approximation solution. Then,

1 Lh(Ψ− ψ)j = O(h2) ⇒
2 Lhψj = LhΨj + O(h2) = − 1

12 (∂4
xu + ∂4

yu)j + O(h2) ⇒

3 Lhej = − 1
12 h2(∂4

xu + ∂4
yu)j + O(h4) = h2Lhψj + O(h4)

4 ⇒ Lh(U − u − h2ψ)j = Lh(eh − h2ψ)j = O(h4).

Thus, MaxP & CompTh ⇒ Uj = uj + h2ψj + O(h4), ∀j ∈ Jh. This
says that h2ψj is generally the leading term of the error ej.
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The Optimal Order of Finite Difference Approximation

We see that the leading term of the error eh is of second order in
general, unless ∂4

xu + ∂4
yu ≡ 0, i.e. the solution u is a polynomial

of degree no greater than 3 with respect to x and y .

Since by the maximum principle and the comparison theorem, we
have ‖Ψh − ψ‖∞ = O(h2), we also have

Uj − h2Ψj = uj + O(h4), ∀j ∈ Jh.

Since ∂4
xu + ∂4

yu is not known a priori, Ψh is not easily
computationally available. However, the expression suggests a way
to improve the approximation accuracy: the extrapolation.
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Extrapolation

Extrapolation Using Solutions on Jh and Jh/2

1 On the coarse mesh: Uh,j = uj + h2ψj + O(h4), ∀j ∈ Jh;

2 On the fine mesh: Uh/2,j = uj + (h/2)2ψj + O(h4), ∀j ∈ Jh/2,

3 Define U1
h,j ,

4Uh/2,j−Uh,j

3 = uj + O(h4), ∀j ∈ Jh.

We see that the leading term of the error of U1
h,j is O(h4).

4 Remember Uj = uj + h2ψj + O(h4), ∀j ∈ Jh. Thus

5 iff h << 1 such that O(h4) << h2ψ, h2ψ is the leading term,

6 and U1
h,j = uj + O(h4), ∀j ∈ Jh is really a better

approximation.
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Extrapolation

Extrapolation Using Solutions on Jh, Jh/2 and Jh/4

If h is sufficiently small, by U1
h,j = uj + O(h4), ∀j ∈ Jh and the

corresponding extrapolation formula, we are lead to

U2
h,j ,

24U1
h/2,j − U1

h,j

24 − 1
= uj + O(h6), ∀j ∈ Jh.

The question is: How do we know whether a given grid size h is
sufficiently small or not?
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An a Posteriori Error Estimation for Uh

Another important application of the extrapolation method is the a
posteriori error estimation. For example, if
Uh,j = uj + h2ψj + O(h4), ∀j ∈ Jh for all h > 0, Then, it follows

from
4Uh/2,j−Uh,j

3 = uj + O(h4) that

Uh,j − uj =
4

3

(
Uh,j − Uh/2,j

)
+ O(h4), ∀j ∈ Jh.

This implies that the leading term of the error eh is approximately
4
3

(
Uh,j − Uh/2,j

)
, which is supposed to be of order O(h2).

Hence, if
(
Uh,j − Uh/2,j

)
/
(
Uh/2,j − Uh/4,j

)
≈ 22, then we may view

h as being sufficiently small and eh,j ≈ 4
3

(
Uh,j − Uh/2,j

)
(an

asymptotically exact a posteriori error estimator).
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An a Posteriori Error Estimation for U1
h

Similarly, since

U1
h,j − uj =

24

24 − 1

(
U1
h,j − U1

h/2,j

)
+ O(h6), ∀j ∈ Jh.

This implies that the leading term of the error U1
h,j − uj is

approximately 24

24−1

(
U1
h,j − U1

h/2,j

)
, which is supposed to be of

order O(h4).

Hence, if
(

U1
h,j − U1

h/2,j

)
/
(

U1
h/2,j − U1

h/4,j

)
≈ 24, then we may

view h as being sufficiently small for U1
h and

U1
h,j − uj ≈ 24

24−1

(
U1
h,j − U1

h/2,j

)
(an asymptotically exact a

posteriori error estimator for U1
h).
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a Posteriori Error Estimation in General Case

Assume Uh,j = uj + Cjh
α + o(hα), where α > 0 is the

undetermined order of the leading term of the error, then, we have

Uh,j − uj =
2α

2α − 1

(
Uh,j − Uh/2,j

)
+ o(hα),

and Uh,j − Uh/2,j = (1− 2−α)Cjh
α + o(hα).

Thus, if h is sufficiently small, we have

‖Uh − u‖ ≈ Chα, ‖Uh − Uh/2‖ ≈ (1− 2−α)Chα,

⇒ log ‖Uh − Uh/2‖ ≈ log((1− 2−α)C )− α log(h−1).

27 / 38



Finite Difference Methods for Elliptic Equations

Asymptotical Error Analysis and Extrapolation

a Posteriori Error Estimation

a Posteriori Error Estimation in General Case

This shows that theoretically, in the log-log coordinate system
with log(h−1) as the abscissa and log ‖Uh − Uh/2‖ as the
ordinate, log ‖Uh − Uh/2‖ asymptotically converges to a
straight line with slope −α.

Remark: Recall that

‖U − u‖ = ‖eh‖ ≤ K‖LhU − Lhu‖ ≤ K (‖LhU − L̄u‖+ ‖L̄u − Lhu‖),

where LhU − L̄u is the residual of the algebraic equation LhU = f̄ , and

Lhu − L̄u = Th is the truncation error. In practical computation, there

exist h0 > h1 > h2 > 0, for h0 > h > h1, log ‖Uh − Uh/2‖ is close to a

straight line with slope −α, while for h2 > h > 0, log ‖Uh − Uh/2‖ is a

decreasing function of h.
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Estimate the Convergence Rate and the Constant C

Since, for sufficiently small h, the error satisfies

log ‖Uh − Uh/2‖ ≈ log((1− 2−α)C )− α log(h−1)

we can apply the least square method to estimate C and α.

To estimate α alone, we can make use of the formula(
Uh,j − Uh/2,j

)
/
(
Uh/2,j − Uh/4,j

)
→ 2α, as h→ 0.

For sufficiently small h, we have

U1
h,j ,

2αUh/2,j − Uh,j

2α − 1
= uj + o(hα), ∀j ∈ Jh.
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The Parabolic Partial Differential Equations

The Parabolic Partial Differential Equations

The parabolic partial differential equations are typical evolution
equations. A general linear parabolic partial differential equation
has the following form ∂u

∂t
− L(u) = f ,

1 u(x , t): a unknown function of x = (x1, · · · , xn) and t;

2 L: a linear elliptic differential operator with respect to x ;

3 The coefficients of L are functions of (x , t) in general;

4 The source term f is generally a real function of (x , t).

5 Steady state solution: if L and f are independent of t, then
the solution to the elliptic equation −L(u) = f also solves the
parabolic equation.
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The Parabolic Partial Differential Equations

An Example of the Parabolic Partial Differential Equations

Physics of heat conduction:

1 x ∈ Ω ⊂ Rn, t > 0;

2 κ: the heat capacity of the media on x ;

3 u(x , t): the temperature of the media on x at t;

4 κu(x , t): the heat density of the media on x at t;

5 a(x) > 0: the conduction parameter of the media on x ;

6 f (x): the density of the source or sink of heat;

7 J: the heat flux (measured by amount of heat per unit area
per unit time)

8 Fourier’s law: J = −a(x)∇u(x).
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The Parabolic Partial Differential Equations

The Change of Heat in the Media

For an arbitrary open subset ω ⊂ Ω with piecewise smooth
boundary ∂ω, the Fourier’s law says the heat brought into ω by the
heat diffusion per unit time is given by∫

∂ω
J · (−ν(x)) ds =

∫
∂ω

a(x)∇u(x) · ν(x) ds,

while the heat produced in ω by the source per unit time is∫
ω

f (x) dx .
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Introduction to Parabolic Problems

The Parabolic Partial Differential Equations

The Conservation of Heat and the Heat Equation

Therefore, the net change of the heat in ω per unit time is

d

dt

∫
ω
κ(x)u(x , t)dx =

∫
∂ω

a(x)∇u(x , t) · ν(x)ds +

∫
ω

f (x)dx .

By the divergence theorem (or Green’s formula or Stokes formula),
this leads to the heat equation in the integral form∫

ω
{κ(x)ut(x , t)−∇ · (a(x)∇u(x , t))} dx =

∫
ω

f (x , t) dx , ∀ω
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Introduction to Parabolic Problems

The Parabolic Partial Differential Equations

The Heat Equation

The term −[a(x)∇u(x , t)] is called as the heat flux, since it
represents the speed that the heat flows.

Assume that κ(x)ut(x , t)−∇ · (a(x)∇u(x , t))− f is smooth,
then, we obtain the the heat equation in the differential form

κ(x)ut(x , t)−∇ · (a(x)∇u(x)) = f (x), ∀x ∈ Ω,

or equivalently

ut(x , t)− κ−1(x)∇ · (a(x)∇u(x , t)) = κ−1(x)f (x , t), ∀x ∈ Ω.

In particular, if κ = 1 and a = 1, we have the classical heat
equation ut −4u = f .
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Initial and Boundary Conditions for the Heat Equation

For a complete heat conduction problem, we also need to impose
the initial condition

u(x , 0) = u0(x), ∀x ∈ Ω

as well as proper boundary conditions.

There are three types of most commonly used boundary conditions:

First type u(x , t) = uD(x , t), ∀x ∈ ∂Ω, t > 0;

Second type
∂u

∂ν
(x , t) = g(x , t), ∀x ∈ ∂Ω, t > 0;

Third type

(
∂u

∂ν
+ βu

)
(x , t) = g(x , t), ∀x ∈ ∂Ω, t > 0;

where β ≥ 0, and β > 0 at least on some part of the boundary
(physical meaning: higher temprature produces bigger outward heat flux).
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Introduction to Parabolic Problems

Initial and Boundary conditions

Boundary Conditions for the Heat Equation

1 1st type boundary condition — Dirichlet boundary condition;

2 2nd type boundary condition — Neumann boundary condition;

3 3rd type boundary condition — Robin boundary condition;

4 Mixed-type boundary conditions — different types of boundary
conditions imposed on different parts of the boundary.
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Finite Difference Discretization of Parabolic Equations

General Issues on Finite Difference Methods

1 Discretize the domain Ω× R+ by introducing a grid, say a
grid {(xj, tm) : j ∈ J, tm = m4t, m ≥ 0} produced by a grid
J on Ω and a uniform temporal grid with a time spacing 4t;

2 Discretize the function space by introducing grid functions,
say Um

j , for j ∈ J and m ≥ 0;

3 Discretize the differential operators by properly defined
difference operators, say Lh and 4+t ;

4 Solve the discretized problem to get a finite difference
solution;

5 Analyze the approximate properties of the finite difference
solution.
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