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The Maximum Principle

Suppose LyU; = ZieJ\{j} GiUi — qU;, Vj € Jo,; J and Ly, satisfy
(1) Jp # 0, and J is Jp connected with respect to Ly;
(2) g>0,6;>0,Vie D,(j), andg> Y g
i€Dy, (i)
Suppose the grid function U satisfies L,U; > 0, Vj € Jo. Then,

icJq icJp

Mq = max U; < max{max u;, 0}.

Furthermore, if J and Ly, satisfy (3): J is connected with respect to
Ly, and there exists interior node j € Jq such that
U = max U; > 0.
icJ
Then, U must be a constant on J.
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The Existence Theorem

Theorem

Suppose the grid J and the linear operator Ly, satisfy the
conditions (1) and (2) of the maximum principle. Then, the
difference equation

Lyl =f, Vi€ Ja,
U=g  VieJp,

has a unique solution.

proof: We only need to show that
LyUp=0,Vje Jo; Uj=0,Vijedp = Uj=0, Vjel
In fact, by the maximum principle L,U > 0 implies U < 0, and by ié‘-

the corollary of the maximum principle, L,U < 0 implies U > 0, ﬁ
thus U=0on J. O
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(—Lp)~!is a Positive Operator

Corollary

Suppose the grid J and the linear operator L), satisfy the
conditions (1) and (2) of the maximum principle. Then,

F>0Vic o, g=0Niep, = U>0VjeJ;

and
ﬁSQVjEJQ,ngO;VjGJD» = UJSO,VjEJ,

The corollary says that (—L,)~! is a positive operator, i.e.
(—Lp)~ > 0. In other words, every element of the matrix (—Lp)"*
is nonnegative.

A
In fact, the matrix —Lp, is a M matrix, i.e. the diagonal elements of
A are all positive, the off-diagonal elements are all nonpositive, and;
elements of A~! are all nonnegative.
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The Comparison Theorem and the Stability

Theorem

Suppose the grid J and the linear operator Ly, satisfy the
conditions (1) and (2) of the maximum principle. Let the grid
function U be the solution to the linear difference equation

_Lh(jj — fj:v Vj € JQ7
Ui = g, Vj € Jp.
Let ® be a nonnegative grid function defined on J satisfying

Lhd)j > 1, Vj € Jg.

Then, we have max\U] < max|U] + max ®; max |£].
JE i€Jp T i€da




Finite Difference Methods for Elliptic Equations
L Error Analysis Based on the Maximum Principle

LThe Comparison Theorem and the Stability

The Proof of the Comparison Theorem

Proof: Firstly, it follows from the maximum principle that

0 < max ®; < max ;.
i€Ja i€Jdp
Next, define
Vi = £U; + [max\fi@ P, Vjed
i€Jo

It is easily verified that thlljjE > 0 on Jg, thus by the maximum
principle

+U; <\|J <max|U\+max<D max]f] Vj € Ja,
i€J ISYL RS

since ® is nonnegative. O
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The Comparison Theorem and the Stability

If the grid J and the linear operator Ly, satisfy the conditions (1)
and (2) of the maximum principle. Let the grid function U be the
solution to the linear difference equation

~LpU=f, Vi€ g,
U=g, Vi€

Then, the comparison theorem says that

el = sy lanl + fag @i g1
in other words, the finite difference scheme is stable in the L*°
norm || - |0, as long as there is a nonnegative ® s.t. Ly, > 1, and
maxje, ®; is uniformly bounded with respect to J.




A Priori Error Estimate

Theorem

Suppose the grid J and the linear operator Ly, satisfy the
conditions (1) and (2) of the maximum principle. Let ® be a
nonnegative grid function defined on J satisfying

LhCDj >1, Vj € Jq.
Then, the error of the finite difference approximation equation
en = {Uj — uj}jes, can be bounded by the error on the Dirichlet

boundary and the local truncation error T, = {Ls(Uj — uj) }jesq in

the sense that

max |g| < max|e,| + max ®j max | Tj|.
j€Ja J€Ip j€Jdp j€Ja

T; can be of different order on the regular and irregular interior
nodes. Is it possible for us to choose different comparison functions
for them, so that better error estimates can be obtained?



A Generalized version of the Comparison Theorem

Theorem

Suppose the grid J and the linear operator Ly, satisfy the
conditions (1) and (2) of the maximum principle. Let the grid
function U be the solution to the linear difference equation

{—Lhujzﬁ, Vi € Jo,
U; = g, Vj € Jp.
Let ® be a nonnegative grid function defined on J satisfying
Lp®; > C1 >0, Vj € Ja,,
th)j > (G >0, Vj € JQz,
where JQ1 U JQ2 = Jo, JQl N JQ2 = (). Then

max |U;| < max|U| + max ®; max{Cl_1 max ||, C; * max |lj\}
i€Ja i€Jp i€dp i€Ja i€Ja,
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Proof of the Generalized Comparison Theorem

Proof: Firstly, it follows from the maximum principle that

0 < max®; < max ;.
] i€Ja i€Jdp
Next, define

\lljlL =+U;+ max{Cl_1 max |£], C; ' max |ﬂ\} 5, VjeJ
i€Jo, i€Ja,

We have L;,WjlL > 0 on Jg, thus, by the maximum principle,

:l:Ujg\U.igmax|Uj|+max<Djmax Cfl max|1§|,C2*1 max |fj| ¢,
J . . . .
i€dp i€dp i€Jo, i€Ja,

since ® is nonnegative. ]
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A Better a Priori Error Estimate

Theorem

Suppose the grid J and the linear operator Ly satisfy the
conditions (1) and (2) of the maximum principle. Let ® be a
nonnegative grid function defined on J satisfying

th)j > Cl > 0, Vj E JQI’

Ly®; > G >0, Vj € Ja,,
Then, the error of the finite difference approximation equation
en = {Uj — uj}jey, satisfies

max |g| < max|ej| + maxd) max{Cl_1 max | Tj|, C; * max \Tj\} .
i€Ja i€Jp €p i€Ja, i€Ja,

We will see that, by defining proper ®, this can actually produce
"optimal” error estimate for Dirichlet boundary value problems of
elliptic equations defined on domains with curved boundaries.
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An Example of Optimal Error Estimate

o
(2]
©
(%]

Poisson equation defined on 2-D region with curved boundary;
Uniform grid with h, = h, = h;

On Jq =: Jq,, L is the standard 5-point difference scheme;

On Jo \ Ja =: Ja,, Lp is a symmetric 5-point scheme on
nonuniform grid, for example (see (1.3.24))

_1 UE*_UP UP_UW 1 UN*_UP U,D—Us
LhUPhX< n; s )+ < h: h >

X y y

hy

@ Define Jp = Jp N [Vie o, Dr, ()]-
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An Example of Optimal Error Estimate

@ The local truncation error satisfies

max | T;| < K1h?, max | T;| < Ko,
i€y i€Ja,

where K7 and K> are constants independent of h.

@ (x,y) is the circumcenter of Q, R is the circumradius.

@ Take comparison functions of the following form

{¢(x,y) = E {(x =%+ (v -7} v(x.y) ¢ Jo,
O(x,y) = Bt {(x =X)*+ (y — ¥)*} + E2, V(x,y) € Jp,

where E; and E, are positive undetermined coefficients;
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An Example of Optimal Error Estimate

@ Since Dy, (j) N Jp # 0 if and only if j € Jg,, we have

0< 9, < ER*+ B, Vj € Jp,
th)j =4F, V_] € JQ17
Lh¢j > E + E2h_2 > Ezh_Z, Vj € JQ2.
1

1 2
> — > h
> > hh > h~* and

b + hy
2hy

The last inequality follows from

Lp(x —x)? = Lp(y —y)> = 2.

*
X
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An Example of Optimal Error Estimate

Thus, by taking C; = 4E; and G, = Exh2, it follow from the
generalized comparison theorem

max || < max |ej| + max ®;max{ C;
JjEJ i€Jdp i€Jp J€

T, Gt T;
j‘Q):| il & jrgjax| J‘})

Q)

and 0 < ¢j < E1R2 + Ep, Vj € Jp that

Kih?® Kyh? }

max |e| < max || + (E1R? + E>) max ,
maxa] < max]g] + (61R + Ex)max { e, 2
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An Example of Optimal Error Estimate

Notice that
: Kih?  Koh? 1
R? 4 E E) AR UL (2K R2 4 Ky | R
EZ‘/'EI{( +E/E max{ 4 BJE g e
K1 h? Ko h? . : .
when —— = , we obtain an optimal error estimate
4 Ey/E;

1
| < - KR + Ky | K.
jnégglejl_?ggglewr(i‘ 1R + z>

16 /38



Finite Difference Methods for Elliptic Equations
L Error Analysis Based on the Maximum Principle

LComparison Theorem and A Priori Error Estimation

More General Extensions

@ The error estimates based on the maximum principle and the
comparison theorem can be extended to cover more general
problems.

@ The key to the maximum principle is the conditions (1), (2).

© The key to the comparison theorem is the non-negative
function ® such that L,® > 1, which for the second order
problem can always be realized by taking a proper second
order polynomial.
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Extensions to Parabolic Problems

The maximum principle and comparison theorem can also be
applied to the stability analysis and error estimations for the finite
difference approximation solutions to the initial-boundary value
problems of parabolic partial differential equations (see Chapter 2).

The main difference is that the parabolic difference operators
generally only have the Jp connection, which is the condition we
actually use in applications.
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Asymptotical Error Analysis

The upper bound of the error obtained above for the Dirichlet
boundary value problems of elliptic equations is of the same order
as the local truncation error on the regular interior nodes.

The questions are

@ s this the best error estimate we can have in general?

@ Can we obtain better numerical approximation by some post
procession?

The answers to both questions are positive.
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Taylor Expanding the Error Equation

@ For the poisson equation and 5-point scheme;
@ Suppose the solution u is sufficiently smooth;

@ Let hy = h, = h, let J; be the corresponding set of grid
nodes,

then the local truncation error can be Taylor expanded as

1 1 ;
n:i?ﬁxu+@mry%aﬂ@u+@wﬁ~~jWEM-

Hence, the error ¢ = Uj — u; of the difference solution U satisfies

1 .
Lﬁ:_n:_ﬁﬁw@+@m+omm Vi € Jp.
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Find the Leading Term of the Error

Suppose the solution % to the problem
—ilaly = =l A by ) — le(aiu + 8§u), x € Q,
d} = 07 X € 89,

is sufficiently smooth. Let W}, be the corresponding finite
difference approximation solution. Then,

Q@ Ly(V—-v)j=0(r) =

Q@ Ly = LpVj+ O(h?) = — 5(0%u+ dtu); + O(h?) =
© Lhg = —15hP(8fu + Fju)j + O(h*) = W Luy + O(h*)
Q = Ly(U—u— k)= La(en — h*9)j = O(h*).

Thus, MaxP & CompTh = U; = u; + h*y; + O(h*), Vj € Jp. This
says that hzwj is generally the leading term of the error ;.
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The Optimal Order of Finite Difference Approximation

We see that the leading term of the error e, is of second order in
general, unless 0} u + 8}‘}u =0, i.e. the solution v is a polynomial
of degree no greater than 3 with respect to x and y.

Since by the maximum principle and the comparison theorem, we
have [[W, — ¥lco = O(h?), we also have

U — iV = uj+ O(h*), Vj € .

Since 8§u + 8;;u is not known a priori, Wy, is not easily
computationally available. However, the expression suggests a way
to improve the approximation accuracy: the extrapolation.
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Extrapolation Using Solutions on J, and Jj/»

@ On the coarse mesh: Uy = u; + h*j + O(h*), Vj € Jp;
@ On the fine mesh: Uy = uj + (h/2)%¢;+ O(h*), Vje Inj2;

© Define U}, £ *25=2 — 4 O(*), Vj € Jp.
We see that the leading term of the error of U/::,j is O(h*).

@ Remember U; = uj + h?y; + O(h*), Vj € Jp. Thus

@ iff h << 1 such that O(h*) << h?i, h?i is the leading term,

O and U%J = uj+ O(h*), Vj € Jp is really a better
approximation.
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Extrapolation Using Solutions on Js, Jj,/2 and Jy 4

If his sufficiently small, by U}“j = u;+ O(h*), Vj € Jy and the
corresponding extrapolation formula, we are lead to
24U, — U}

h/27' 7j .
UI%J = 24 J_ 1 =yt O(h6)> vj € Jp.

The question is: How do we know whether a given grid size h is
sufficiently small or not?
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An a Posteriori Error Estimation for U,

Another important application of the extrapolation method is the a
posteriori error estimation. For example, if
Unj = uj + h*; + O(h*), Vj € J, for all h> 0, Then, it follows

4Uj o —Up
from —2—=3 = y; + O(h*) that

_4

3 (Unj = Unjaj) + O(h*), Vi€ Jp

Unj —y

This implies that the leading term of the error e, is approximately
% (Unj — Upn/24). which is supposed to be of order O(h?).

Hence, if (Uh’j — Uh/z’j) / (Uh/2,j — Uh/47j) ~ 22, then we may view
h as being sufficiently small and ejj ~ 5 (Upj — Up/2;) (an
asymptotically exact a posteriori error estimator).
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An a Posteriori Error Estimation for U,%

Similarly, since
4

2
1 1 1 6 .
Upj — uj = 24 _ 1 (Uh,j - Uh/2,j) + O(h°), Vi€ I
This implies that the leading term of the error U,%j — uj is

approximately 23—11 (UhJ Uh/2 ) which is supposed to be of

order O(h*).

Hence, if (U,{j — U;/2,j> / (U/%/Zj - Ul%/‘hi) ~ 2* then we may
view h as being sufficiently small for U,% and
U:l ~ 24 i (U1 Ul}/2,j> (an asymptotically exact a

posterlorl error estimator for U}).
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a Posteriori Error Estimation in General Case

Assume Upj = uj + Gh™ 4 o(h*), where o > 0 is the
undetermined order of the leading term of the error, then, we have

2a
527 (Ui = Upp2j) +o(h"),

and Unj — Unjzj = (1 = 27%)GH™ + o(h°).

Unj—uj=

Thus, if h is sufficiently small, we have
|Un — ul| = Ch®, |Un — Uppal| = (1 —27%)Ch",

= log|[Us — Upal| = log((1 = 27%)C) — log(h™1).
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a Posteriori Error Estimation in General Case

This shows that theoretically, in the log-log coordinate system
with log(h™!) as the abscissa and log || U, — Up2|| as the
ordinate, log||Uy — Uy | asymptotically converges to a
straight line with slope —a.

Remark: Recall that
IU = ull = llenll < KI|ILaU — Lpu|l < K(|LsU — Lul + ||Lu — Lyul),

where L,U — Lu is the residual of the algebraic equation L,U = f, and
Lou — Lu = Ty, is the truncation error. In practical computation, there
exist hg > hy > hy > 0, for hg > h > hy, log ||Up — Up2|| is close to a
straight line with slope —a, while for ho > h > 0, log ||Up — Up /2|l is a
decreasing function of h.
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Estimate the Convergence Rate and the Constant C

Since, for sufficiently small h, the error satisfies
log [|Un — Upal| = log((1 —27*)C) — alog(h™)
we can apply the least square method to estimate C and a.

To estimate « alone, we can make use of the formula

(Unj — Unjaj) / (Unjaj — Unjag) — 2%, as h— 0.

For sufficiently small h, we have

2%Ups25 — Unj )
Uilr,j = —224 J_ 1 = uj+ o(h%), Vj€
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The Parabolic Partial Differential Equations

The parabolic partial differential equations are typical evolution
equations. A general linear parabolic partial differential equation
has the following form gy

@ u(x,t): a unknown function of x = (x1,---,x,) and t;
@ L: a linear elliptic differential operator with respect to x;
© The coefficients of L are functions of (x, t) in general;
@ The source term f is generally a real function of (x, t).

@ Steady state solution: if L and f are independent of t, then
the solution to the elliptic equation —L(u) = f also solves the
parabolic equation.
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An Example of the Parabolic Partial Differential Equations

Physics of heat conduction:
O xcQCR" t>0;
@ «: the heat capacity of the media on x;
© u(x,t): the temperature of the media on x at t;
@ rku(x,t): the heat density of the media on x at t;
@ a(x) > 0: the conduction parameter of the media on x;
@ f(x): the density of the source or sink of heat;

@ J: the heat flux (measured by amount of heat per unit area
per unit time)

@ Fourier's law: J = —a(x)Vu(x).
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The Change of Heat in the Media

For an arbitrary open subset w C €2 with piecewise smooth
boundary Ow, the Fourier's law says the heat brought into w by the
heat diffusion per unit time is given by

/aw J-(—v(x))ds = /&U a(x)Vu(x) - v(x) ds,

while the heat produced in w by the source per unit time is

/w £(x) dx.
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The Conservation of Heat and the Heat Equation

Therefore, the net change of the heat in w per unit time is

% ’ k(x)u(x, t)dx = / a(x)Vu(x,t) - v(x)ds + / f(x)dx.

ow w

By the divergence theorem (or Green's formula or Stokes formula),
this leads to the heat equation in the integral form

/ Tl 6) — 7 - (el T, D) e = / F(x, t) dx, W

w
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The Heat Equation

The term —[a(x)Vu(x, t)] is called as the heat flux, since it
represents the speed that the heat flows.

Assume that k(x)ut(x,t) — V- (a(x)Vu(x, t)) — f is smooth,

then, we obtain the the heat equation in the differential form
k(x)ue(x, t) = V- (a(x)Vu(x)) = f(x), VxeQ,

or equivalently

ue(x,t) — K H(x) V- (a(x)Vu(x, t)) = 6 H(x)f(x, 1), V¥xeQ.

In particular, if Kk =1 and a = 1, we have the classical heat
equation uy — Au=f.
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Initial and Boundary Conditions for the Heat Equation

For a complete heat conduction problem, we also need to impose
the initial condition

u(x,0) = up(x), Vx € Q
as well as proper boundary conditions.

There are three types of most commonly used boundary conditions:

First type u(x,t) = up(x,t), Vxe€0Q, t>0;
ou
Second type a(x, t)=g(x,t), Vxe€0Q, t>0;

Third type <gz + ﬁu) (x,t) =g(x,t), Vxe€dQ, t>0;

where 5 >0, and 8 > 0 at least on some part of the boundary
(physical meaning: higher temprature produces bigger outward heat flux).
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Boundary Conditions for the Heat Equation

@ 1st type boundary condition — Dirichlet boundary condition;

@ 2nd type boundary condition — Neumann boundary condition;

© 3rd type boundary condition — Robin boundary condition;

@ Mixed-type boundary conditions — different types of boundary
conditions imposed on different parts of the boundary.
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General Issues on Finite Difference Methods

@ Discretize the domain Q x R, by introducing a grid, say a
grid {(xj, tm) :j € J, tm = mAt, m > 0} produced by a grid
J on Q and a uniform temporal grid with a time spacing At;

@ Discretize the function space by introducing grid functions,
say Uj’", for je€ Jand m > 0;

© Discretize the differential operators by properly defined
difference operators, say Ly and AL¢;

@ Solve the discretized problem to get a finite difference
solution;

@ Analyze the approximate properties of the finite difference
solution.
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